Search Trees

Computer Science E-22
Harvard University
David G. Sullivan, Ph.D.

Binary Search Trees

- Search-tree property: for each node k (k is the key):
 - all nodes in k’s left subtree are $< k$
 - all nodes in k’s right subtree are $\geq k$

- Our earlier binary-tree example is a search tree:

- With a search tree, an inorder traversal visits the nodes in order!
 - in order of increasing key values
Searching for an Item in a Binary Search Tree

- Algorithm for searching for an item with a key \(k \):
 - if \(k \) == the root node's key, you’re done
 - else if \(k < \) the root node’s key, search the left subtree
 - else search the right subtree

- Example: search for 7

```
public class LinkedTree {
    // Nodes have keys that are ints
    private Node root;

    public LLList search(int key) {  // "wrapper method"
        Node n = searchTree(root, key);  // get Node for key
        if (n == null) {
            return null;  // no such key
        } else {
            return n.data;  // return list of values for key
        }
    }

    private static Node searchTree(Node root, int key) {
        if ( ) {
        } else if ( ) {
        } else if (               ) {
        } else {
        }
    }
}
```

Implementing Binary-Tree Search
Inserting an Item in a Binary Search Tree

• public void insert(int key, Object data)
 will add a new (key, data) pair to the tree

• Example 1: a search tree containing student records
 • key = the student's ID number (an integer)
 • data = a string with the rest of the student record
 • we want to be able to write client code that looks like this:
    ```java
    LinkedTree students = new LinkedTree();
    students.insert(23, "Jill Jones,sophomore,comp sci");
    students.insert(45, "Al Zhang,junior,english");
    ```

• Example 2: a search tree containing scrabble words
 • key = a scrabble score (an integer)
 • data = a word with that scrabble score
    ```java
    LinkedTree tree = new LinkedTree();
    tree.insert(4, "lost");
    ```

Inserting an Item in a Binary Search Tree (cont.)

• To insert an item \((k, d)\),
 we start by searching for \(k\).

• If we find a node with key \(k\), we add \(d\) to the list of data values for that node.
 • example: `tree.insert(4, "sail")`

• If we don't find \(k\), the last node seen
 in the search becomes the parent \(P\)
 of the new node \(N\).
 • if \(k < P\)'s key, make \(N\) the left child of \(P\)
 • else make \(N\) the right child of \(P\)

• Special case: if the tree is empty,
 make the new node the root of the tree.

• Important: The resulting tree is still a search tree!
Implementing Binary-Tree Insertion

• We'll implement part of the `insert()` method together.

• We'll use iteration rather than recursion.

• Our method will use two references/pointers:
 • `trav`: performs the traversal down to the point of insertion
 • `parent`: stays one behind `trav`
 • like the `trail` reference that we sometimes use when traversing a linked list

```java
public void insert(int key, Object data) {
    Node parent = null;
    Node trav = root;
    while (trav != null) {
        if (trav.key == key) {
            trav.data.addItem(data, 0);
            return;
        }
        // what should go here?
    }

    Node newNode = new Node(key, data);
    if (root == null) {   // the tree was empty
        root = newNode;
    } else if (key < parent.key) {
        parent.left = newNode;
    } else {
        parent.right = newNode;
    }
}
```
Deleting Items from a Binary Search Tree

- **Three cases for deleting a node x**
- **Case 1:** x has no children.
 Remove x from the tree by setting its parent’s reference to null.

 Example: delete 4

- **Case 2:** x has one child.
 Take the parent’s reference to x and make it refer to x’s child.

 Example: delete 12

Deleting Items from a Binary Search Tree (cont.)

- **Case 3:** x has two children
 - we can't give both children to the parent. why?
 - instead, we leave x’s node where it is, and we replace its key and data with those from another node
 - the replacement must maintain the search-tree inequalities

 Example: delete 12

 Two options: which ones?
Deleting Items from a Binary Search Tree (cont.)

- **Case 3:** x has two children (continued):
 - replace x's key and data with those from the smallest node in x's right subtree—call it y
 - we then delete y
 - it will either be a leaf node or will have one right child. why?
 - thus, we can delete it using case 1 or 2

Example:

Delete 12

1. **before:**
 - $x = 12$
 - $y = 18$
 - 12's right child: 18

2. **after:**
 - Copy node y's contents into node x
 - Delete node y
 - $x = 18$

Which Nodes Could We Use To Replace 9?

```
  9
  / \  \
 4   17
 / \  /  \\    \
3  8 10 25 20 36
/ \  / \  /   /  \\   \\  \
1 5 10 20 7 36
```
Implementing Deletion

public LList delete(int key) {
 // Find the node and its parent.
 Node parent = null;
 Node trav = root;
 while (trav != null && trav.key != key) {
 parent = trav;
 if (key < trav.key) {
 trav = trav.left;
 } else {
 trav = trav.right;
 }
 }
 // Delete the node (if any) and return the removed items.
 if (trav == null) { // no such key
 return null;
 } else {
 LLList removedData = trav.data;
 deleteNode(trav, parent); // call helper method
 return removedData;
 }
}

Implementing Case 3

private void deleteNode(Node toDelete, Node parent) {
 if (toDelete.left != null && toDelete.right != null) {
 // Find a replacement - and
 // the replacement's parent.
 Node replaceParent = toDelete;
 // Get the smallest item
 // in the right subtree.
 Node replace = toDelete.right;
 // what should go here?
 toDelete.key = replace.key;
 toDelete.data = replace.data;
 // Recursively delete the replacement
 // item's old node. It has at most one
 // child, so we don't have to
 // worry about infinite recursion.
 deleteNode(replace, replaceParent);
 } else {
 ...
 }
}
Implementing Cases 1 and 2

```java
private void deleteNode(Node toDelete, Node parent) {
    if (toDelete.left != null && toDelete.right != null) {
        ...
    } else {
        Node toDeleteChild;
        if (toDelete.left != null)
            toDeleteChild = toDelete.left;
        else
            toDeleteChild = toDelete.right;
        // Note: in case 1, toDeleteChild
        // will have a value of null.
        if (toDelete == root)
            root = toDeleteChild;
        else if (toDelete.key < parent.key)
            parent.left = toDeleteChild;
        else
            parent.right = toDeleteChild;
    }
}
```

Recall: Path, Depth, Level, and Height

- There is exactly one path (one sequence of edges) connecting each node to the root.
- depth of a node = # of edges on the path from it to the root
- Nodes with the same depth form a level of the tree.
- The height of a tree is the maximum depth of its nodes.
 - example: the tree above has a height of 2
Efficiency of a Binary Search Tree

- For a tree containing \(n \) items, what is the efficiency of any of the traversal algorithms?
 - you process all \(n \) of the nodes
 - you perform \(O(1) \) operations on each of them

- Search, insert, and delete all have the same time complexity.
 - insert is a search followed by \(O(1) \) operations
 - delete involves either:
 - a search followed by \(O(1) \) operations (cases 1 and 2)
 - a search partway down the tree for the item, followed by a search further down for its replacement, followed by \(O(1) \) operations (case 3)

Efficiency of a Binary Search Tree (cont.)

- Time complexity of searching:
 - best case:

 - worst case:
 - you have to go all the way down to level \(h \) before finding the key or realizing it isn't there
 - along the path to level \(h \), you process \(h + 1 \) nodes

 - average case:

- What is the height of a tree containing \(n \) items?
Balanced Trees

• A tree is balanced if, for each of its nodes, the node’s subtrees have the same height or have heights that differ by 1.
 • example:
 • 26: both subtrees have a height of 1
 • 12: left subtree has height 0
 right subtree is empty (height = -1)
 • 32: both subtrees have a height of 0
 • all leaf nodes: both subtrees are empty
 • For a balanced tree with \(n \) nodes, height = \(O(\log n) \)
 • each time that you follow an edge down the longest path, you cut the problem size roughly in half!
 • Therefore, for a balanced binary search tree, the worst case for search / insert / delete is \(O(h) = O(\log n) \)
 • the "best" worst-case time complexity

What If the Tree Isn't Balanced?

• Extreme case: the tree is equivalent to a linked list
 • height = \(n - 1 \)
• Therefore, for an unbalanced binary search tree, the worst case for search / insert / delete is \(O(h) = O(n) \)
 • the "worst" worst-case time complexity
• We'll look next at search-tree variants that take special measures to ensure balance.
2-3 Trees

• A 2-3 tree is a balanced tree in which:
 • all nodes have equal-height subtrees (perfect balance)
 • each node is either
 • a 2-node, which contains one data item and 0 or 2 children
 • a 3-node, which contains two data items and 0 or 3 children
 • the keys form a search tree

• Example:

```
2-node:

< k    k

```

```
3-node:

< k1  > k2
```

```
28 61

10          40
  3  14  20  34  51
```

```
77 90
```

```
68 80 87 93 97
```

Search in 2-3 Trees

• Algorithm for searching for an item with a key k:
 if $k ==$ one of the root node’s keys, you’re done
 else if $k <$ the root node’s first key
 search the left subtree
 else if the root is a 3-node and $k <$ its second key
 search the middle subtree
 else
 search the right subtree

• Example: search for 87

```
28 61

10          40
  3  14  20  34  51
```

```
77 90
```

```
68 80 87 93 97
```
Insertion in 2-3 Trees

- Algorithm for inserting an item with a key k:
 - search for k, but don’t stop until you hit a leaf node
 - let L be the leaf node at the end of the search
 - if L is a 2-node
 - add k to L, making it a 3-node
 - else if L is a 3-node
 - split L into two 2-nodes containing the items with the smallest and largest of: k, L’s 1st key, L’s 2nd key
 - the middle item is “sent up” and inserted in L’s parent

Example: add 52

Example 1: Insert 8

- Search for 8:

- Add 8 to the leaf node, making it a 3-node:
Example 2: Insert 17

- Search for 17:

- Split the leaf node, and send up the middle of 14, 17, 20 and insert it the leaf node's parent:

Example 3: Insert 92

- In which node will we initially try to insert it?
Example 3: Insert 92

- Search for 92:

```
  28 61
  /   \
10    40
 /  \   /
3 14 20 34 51 68 80 87 93 97
```

- Split the leaf node, and send up the middle of 92, 93, 97 and insert it the leaf node’s parent:

```
  28 61
  /   \
10    40
 /  \   /
34 51 68 80 87 92 97
```

- In this case, the leaf node’s parent is also a 3-node, so we need to split is as well…

Example 3 (cont.)

- We split the [77 90] node and we send up the middle of 77, 90, 93:

```
  28 61
  /   \
10    40
 /  \   /
34 51 68 80 87 92 97
```

- We try to insert it in the root node, but the root is also full!

```
  28 61
  /   \
10    40
 /  \   /
34 51 68 80 87 92 97
```

- Then we split the root, which increases the tree’s height by 1, but the tree is still balanced.

```
  28 61
  /   \
10    40
 /  \   /
34 51 68 80 87 92 97
```

- This is only case in which the tree’s height increases.
Efficiency of 2-3 Trees

• A 2-3 tree containing n items has a height $h \leq \log_2 n$.

• Thus, search and insertion are both $O(\log n)$.
 • search visits at most $h + 1$ nodes
 • insertion visits at most $2h + 1$ nodes:
 • starts by going down the full height
 • in the worst case, performs splits all the way back up to the root

• Deletion is tricky – you may need to coalesce nodes!
 However, it also has a time complexity of $O(\log n)$.

• Thus, we can use 2-3 trees for a $O(\log n)$-time data dictionary!

External Storage

• The balanced trees that we've covered don't work well if you want to store the data dictionary externally – i.e., on disk.

• Key facts about disks:
 • data is transferred to and from disk in units called blocks, which are typically 4 or 8 KB in size
 • disk accesses are slow!
 • reading a block takes ~10 milliseconds (10^{-3} sec)
 • vs. reading from memory, which takes ~10 nanoseconds
 • in 10 ms, a modern CPU can perform millions of operations!
B-Trees

• A B-tree of order m is a tree in which each node has:
 • at most $2m$ entries (and, for internal nodes, $2m + 1$ children)
 • at least m entries (and, for internal nodes, $m + 1$ children)
 • exception: the root node may have as few as 1 entry
 • a 2-3 tree is essentially a B-tree of order 1

• To minimize the number of disk accesses, we make m as large as possible.
 • each disk read brings in more items
 • the tree will be shorter (each level has more nodes), and thus searching for an item requires fewer disk reads

• A large value of m doesn’t make sense for a memory-only tree, because it leads to many key comparisons per node.

• These comparisons are less expensive than accessing the disk, so large values of m make sense for on-disk trees.

Example: a B-Tree of Order 2

• $m = 2$: at most $2m = 4$ items per node (and at most 5 children)
 at least $m = 2$ items per node (and at least 3 children)
 (except the root, which could have 1 item)

• The above tree holds the same keys this 2-3 tree:

• We used the same order of insertion to create both trees: 51, 3, 40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14
Search in B-Trees

- Similar to search in a 2-3 tree.
- Example: search for 87

![B-Tree Search Diagram]

Insertion in B-Trees

- Similar to insertion in a 2-3 tree:
 - search for the key until you reach a leaf node
 - if a leaf node has fewer than $2m$ items, add the item to the leaf node
 - else split the node, dividing up the $2m + 1$ items:
 - the smallest m items remain in the original node
 - the largest m items go in a new node
 - send the middle entry up and insert it (and a pointer to the new node) in the parent
- Example of an insertion without a split: insert 13

![B-Tree Insertion Diagram]
Splits in B-Trees

- Insert 5 into the result of the previous insertion:

The middle item (the 10) is sent up to the root. The root has no room, so it is also split, and a new root is formed:

Splitting the root increases the tree’s height by 1, but the tree is still balanced. This is only way that the tree’s height increases.

- When an internal node is split, its $2m + 2$ pointers are split evenly between the original node and the new node.

Analysis of B-Trees

- All internal nodes have at least m children (actually, at least $m+1$).

Thus, a B-tree with n items has a height $\leq \log_m n$, and search and insertion are both $O(\log_m n)$.

- As with 2-3 trees, deletion is tricky, but it’s still logarithmic.
Search Trees: Conclusions

- Binary search trees can be $O(\log n)$, but they can degenerate to $O(n)$ running time if they are out of balance.

- 2-3 trees and B-trees are *balanced* search trees that guarantee $O(\log n)$ performance.

- When data is stored on disk, the most important performance consideration is reducing the number of disk accesses.

- B-trees offer improved performance for on-disk data dictionaries.