Publications

h-index: 13, citations: 793 (as of October 2025, Google Scholar)

Publications In-Prep, Submitted, and Under Review

  • Feng, X., Mickley, L. J., Kaplan, J. O., et al. Regionwide modeling study shows that the historical “fire deficit” has a strong influence on recent wildfire in the western United States, in prep.
  • Cheng, Y., McColl, K., Mickley, L. J., and Feng, X. What controls future wildfires in the western United States?, submitted to PNAS (under review).

Peer-Reviewed Publications

2025

  • Feng, X., Mickley, L. J., Kaplan, J. O., Kelp, M., Li, Y., and Liu, T. Large role of anthropogenic climate change in driving smoke concentrations across the western United States from 1992 to 2020, Proceedings of the National Academy of Sciences, accepted.
  • Li, Y., Dykema, J. A., Peterson, D. A., Feng, X., Shen, X., June, N. A., Fromm, M. D., McHardy, T. M., Jacquot, J. L., Pittman, J. V., Daube, B. C., Wofsy, S. C., Dean-Day, J., Rapp, A. D., Bowman, K. P., Cziczo, D. J., Mickley, L. J., Pierce, J. R., and Keutsch, F. N. Enhanced Radiative Cooling by Large Aerosol Particles from Pyrocumulonimbus, Science Advances, accepted.

2024

  • Kim, H., Park, R. J., Hong, S. Y., Park, D. H., Kim, S. W., Oak, Y. J., Feng, X., Lin, H., and Fu, T.-M. A mixed layer height parameterization in a 3-D chemical transport model: Implications for gas and aerosol simulations, Science of The Total Environment, 176838, https://doi.org/10.1016/j.scitotenv.2024.176838, 2024.
  • Xia, H., Wang, D., Abad, G., Yang, X., Zhu, L., Pu, D., Feng, X., Zhang, A., Song, Z., Mo, Y., and Wang, J. Multi-Scale Correlation Reveals the Evolution of Socio-Natural Contributions to Tropospheric Hcho Over China from 2005 to 2022, Science of The Total Environment, 954, 176197, https://doi.org/10.1016/j.scitotenv.2024.176197, 2024.
  • Nyadanu, S. D., Foo, D., Pereira, G., Mickley, L. J., Feng, X., Bell, M. L. Short-term effects of wildfire-specific fine particulate matter and its carbonaceous components on perinatal outcomes: A multicentre cohort study in New South Wales, Australia, Environment International, 191, 109007, https//doi.org/10.1016/j.envint.2024.109007, 2024.
  • Wang, D., Pu, D., De Smedt, I., Zhu, L., Yang, X., Sun, W., Xia, H., Song, Z., Li, X., Li, J., Zhang, A., Feng, X., Chen, Y., Yang, X., Fu, T.-M., and Wang, J. Evolution of global O3-NOx-VOCs sensitivity before and after the COVID-19 from the ratio of formaldehyde to NO2 from satellites observations, Journal of Environmental Sciences, https://doi.org/10.1016/j.jes.2024.07.029, 2024.
  • Lin, H., Emmons, L. K., Lundgren, E. W., Yang, L. H., Feng, X., Dang, R., Zhai, S., Tang, Y., Kelp, M. M., Colombi, N. K., Eastham, S. D., Fritz, T. M., and Jacob, D. J. Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2), Atmospheric Chemistry and Physics, 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, 2024.
  • Yang, L. H., Jacob, D. J., Dang, R., Oak, Y. J., Lin, H., Kim, J., Zhai, S., Colombi, N. K., Pendergrass, D. C., Beaudry, E., Shah, V., Feng, X., Yantosca, R. M., Chong, H., Park, J., Lee, H., Lee, W.-J., Kim, S., Kim, E., Travis, K. R., Crawford, J. H., and Liao, H. Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia, Atmospheric Chemistry and Physics, 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, 2024.
  • Feng, X., Mickley, L. J., Bell, M. L., Liu, T., Fisher, J. A., and Val Martin, M. Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying injection heights, Atmospheric Chemistry and Physics, 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, 2024.
  • Wu, W., Fu, T.-M., Arnold, S., Spracklen, D., Zhang, A., Tao, W., Wang, X., Hou, Y., Mo, J., Chen, J., Li, Y., Feng, X., Lin, H., Huang, Z., Zheng, J., Shen, H., Zhu, L., Wang, C., Ye, J., and Yang, X. Temperature-dependent evaporative anthropogenic VOC emissions significantly exacerbate regional ozone pollution, Environmental Science & Technology, 58, 5430-5441. https://doi.org/10.1021/acs.est.3c09122, 2024.

2023

  • Feng, X., Ma, Y., Lin, H., Fu, T.-M., Zhang, Y., Wang, X., Zhang, A., Yuan, Y., Han, Z., Mao, J., Wang, D., Zhu, L., Wu, Y., and Yang, X. Impacts of ship emissions on the air quality in Southern China: opportunistic insights from the abrupt emission changes in early 2020, Environmental Science & Technology, 57, 16999-17010. https://doi.org/10.1021/acs.est.3c04155, 2023. (Journal Cover Article)
  • Zhang, A., Fu, T.-M., Feng, X., Guo, J., Liu, C., Chen, J., Mo, J., Zhang, X., Wang, X., Wu, W., Hou, Y., Yang, H., and Lu, C. Deep learning-based ensemble forecasts and predictability assessments for surface ozone pollution, Geophysical Research Letters, 50, e2022GL102611. https://doi.org/10.1029/2022GL102611, 2023.

2022

  • Wang, X., Fu, T.-M., Zhang, L., Lu, X., Liu, X., Amnuaylojaroen, T., Latif, M. T., Ma, Y., Zhang, L., Feng, X., Zhu, L., Shen, H., and Yang, X. Rapidly changing emissions drove substantial surface and tropospheric ozone increases over Southeast Asia, Geophysical Research Letters, 49, e2022GL100223. https://doi.org/10.1029/2022GL100223, 2022.
  • Xu, X., Feng, X., Lin, H., Zhang, P., Huang, S., Song, Z., Peng, Y., Fu, T.-M., and Zhang, Y. Modeling the high-mercury wet deposition in the southeastern US with WRF-GC-Hg v1.0, Geoscientifc Model Development, 15, 3845–3859, https://doi.org/10.5194/gmd-15-3845-2022, 2022.

2021

  • Feng, X., Lin, H., Fu, T.-M., Sulprizio, M. P., Zhuang, J., Jacob, D. J., Tian, H., Ma, Y., Zhang, L., Wang, X., Chen, Q., and Han, Z. WRF-GC (v2.0): online two-way coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.7.2) for modeling regional atmospheric chemistry–meteorology interactions, Geoscientific Model Development, 14, 3741–3768, https://doi.org/10.5194/gmd-14-3741-2021, 2021.
  • Hu, S., Wang, D., Wu, J., Zhou, L., Feng, X., Fu, T.-M., Yang, X., Ziegler, Alan D., and Zeng, Z. Aerosol presence reduces the diurnal temperature range: an interval when the COVID-19 pandemic reduced aerosols revealing the effect on climate, Environmental Science: Atmospheres, 1, 5, 208-213, https://doi.org/10.1039/D1EA00021G, 2021.
  • Li, Y., Fu, T.-M., Yu, J., Feng, X., Zhang, L., Chen, J., Boreddy, S. K. R., Kawamura, K., Fu, P., Yang, X., Zhu, L., and Zeng, Z. Impacts of Chemical Degradation on the Global Budget of Atmospheric Levoglucosan and Its Use As a Biomass Burning Tracer, Environmental Science & Technology, 55, 8, 5525-5536, https://doi.org/10.1021/acs.est.0c07313, 2021.
  • Wang, X., Fu, T.-M., Zhang, L., Cao, H., Zhang, Q., Ma, H., Shen, L., Evans, M. J., Ivatt, P. D., Lu, X., Chen, Y., Zhang, L., Feng, X., Yang, X., Zhu, L., and Henze, D. K. Sensitivities of ozone air pollution in the Beijing–Tianjin–Hebei area to local and upwind precursor emissions using adjoint modeling, Environmental Science & Technology, 55, 9, 5752-5762, https://doi.org/10.1021/acs.est.1c00131, 2021.

2020

  • Lin, H., Feng, X., Fu, T.-M., Tian, H., Ma, Y., Zhang, L., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Lundgren, E. W., Zhuang, J., Zhang, Q., Lu, X., Zhang, L., Shen, L., Guo, J., Eastham, S. D., and Keller, C. A. WRF-GC (v1.0): online coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.2.1) for regional atmospheric chemistry modeling – Part 1: Description of the one-way model, Geoscientific Model Development, 13, 3241–3265, https://doi.org/10.5194/gmd-13-3241-2020, 2020.
  • Zhang, R., Zhang, Y., Lin, H., Feng, X., Fu, T.-M., and Wang, Y. NOx Emission Reduction and Recovery during COVID-19 in East China, Atmosphere, 11, 433, https://doi.org/10.3390/atmos11040433, 2020.

2019

  • Feng, X., Fu, T.-M., Cao, H., Tian, H., Fan, Q., and Chen, X. Neural network predictions of pollutant emissions from open burning of crop residues: Application to air quality forecasts in southern China, Atmospheric Environment, 204, 22-31, https://doi.org/10.1016/j.atmosenv.2019.02.002, 2019.