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STOCHASTIC MODELING IN NANOSCALE BIOPHYSICS:
SUBDIFFUSION WITHIN PROTEINS

BY S. C. KOU1

Harvard University

Advances in nanotechnology have allowed scientists to study biological
processes on an unprecedented nanoscale molecule-by-molecule basis, open-
ing the door to addressing many important biological problems. A phenom-
enon observed in recent nanoscale single-molecule biophysics experiments
is subdiffusion, which largely departs from the classical Brownian diffusion
theory. In this paper, by incorporating fractional Gaussian noise into the gen-
eralized Langevin equation, we formulate a model to describe subdiffusion.
We conduct a detailed analysis of the model, including (i) a spectral analysis
of the stochastic integro-differential equations introduced in the model and
(ii) a microscopic derivation of the model from a system of interacting parti-
cles. In addition to its analytical tractability and clear physical underpinning,
the model is capable of explaining data collected in fluorescence studies on
single protein molecules. Excellent agreement between the model prediction
and the single-molecule experimental data is seen.

1. Introduction.

1.1. Background: Nanoscale single-molecule biophysics. It is said that the fa-
mous Richard Feynman once described seeing the images of single atoms as a “re-
ligious experience” for physicists. Recent advances in nanotechnology have turned
Feynman’s “religious” encounter into daily reality. In particular, scientists are now
able to study biological processes on an unprecedented nanoscale molecule-by-
molecule basis [cf. Moerner (2002), Nie and Zare (1997), Tamarat, Maali, Lounis
and Orrit (2000), Weiss (2000), Xie and Lu (1999), Xie and Trautman (1998), Kou,
Xie and Liu (2005)], thus opening the door to addressing many problems that were
inaccessible just a few decades ago.

Compared with traditional experiments, which involve a population of mole-
cules, (nanoscale) single-molecule experiments offer many advantages. First, they
provide experimental data with more accuracy and higher resolution because sci-
entists can “zoom in” on individual molecules to study and measure them. Second,
by following individual molecules, these single-molecule experiments can capture
transient intermediates and detailed dynamics of biological processes. This type of
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information is rarely available from the traditional population experiments. Third,
in a living cell, many important biological functions are often carried out by single
molecules; thus, understanding the behavior of molecules at the individual level is
of crucial importance. Many new discoveries [see, e.g., Asbury, Fehr and Block
(2003), English et al. (2006), Kou et al. (2005), Lu, Xun and Xie (1998), Zhuang
et al. (2002)] have emerged from the nanoscale single-molecule studies.

The technological advance also brings opportunities and challenges for sto-
chastic modelers because the individual molecules, subject to statistical and quan-
tum mechanics of the nanometer world, behave stochastically. Characterizing their
fluctuation thus requires stochastic models [Kou (2007)]. In the current article we
focus on modeling the phenomenon of subdiffusion observed in single-molecule
experiments to exemplify the stochastic modeling problems in the field.

1.2. Subdiffusion in proteins: The experimental finding. Since Einstein’s and
Wiener’s ground breaking works in the early 20th century, the theory of Brownian
motion and diffusion processes has revolutionized not only physics, chemistry and
biology, but also probability and statistics. One key characteristic of Brownian
motion is that the second moment E[x2(t)], which in physics corresponds to the
mean squared displacement (location) of a Brownian particle, is proportional to
time t . In some systems [cf. Bouchaud and Georges (1990), Klafter, Shlesinger
and Zumofen (1996), Sokolov, Klafter and Blumen (2002)], scientists, however,
have discovered a clear departure from Brownian diffusion. The mean squared
displacement E[x2(t)] there is no longer proportional to t , but rather E[x2(t)] ∝
tα , where 0 < α < 1. Because α < 1, these movements satisfying E[x2(t)] ∝ tα

are defined as subdiffusion. Recent single-molecule biophysics experiments [Yang
et al. (2003), Kou and Xie (2004), Min et al. (2005)] reveal that subdiffusion may
be quite prevalent in biological systems.

In a 2003 Science paper [Yang et al. (2003)] scientists conducting single-
molecule experiments on a protein–enzyme system observed this subdiffusion phe-
nomenon. The experiment studied a protein–enzyme compound, called Fre, which
is involved in the DNA synthesis of the bacterium E. Coli. In the reactions Fre
works as a catalyst. Figure 1 shows the crystal structure of Fre, which contains
two smaller structures: FAD (an electron carrier) and Tyr (an amino acid). The
3D conformation (shape) of Fre spontaneously fluctuates, and consequently, the
(edge-to-edge) distance between the two substructures FAD and Tyr varies over
time. It was found in the experiment that the stochastic distance fluctuation be-
tween FAD and Tyr undergoes a subdiffusion. Section 5 provides more details
about the experiment.

1.3. Modeling subdiffusion. To explain this subdiffusion phenomenon, we
shall formulate a stochastic model by incorporating fractional Gaussian noise
(formally the derivative of fractional Brownian motion) into a stochastic integro-
differential equation framework governed by the generalized Langevin equation.
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FIG. 1. The crystal structure of Fre. The two substructures FAD and Tyr are shown.

Since its introduction [Mandelbrot and Van Ness (1968)], fractional Brown-
ian motion (fBm) has proven to be an indispensable tool for stochastic model-
ing [Samorodnitsky and Taqqu (1994), Taqqu (1986), Whitt (2002), Adler, Feld-
man and Taqqu (1998)]; its applications range from queuing systems [Glynn
and Zeevi (2000), Heath, Resnick and Samorodnitsky (1997), Konstantopoulos
and Lin (1996)] to finance [Heyde (1999), Mandelbrot (1997)] to internet traf-
fic [Leland, Taqqu, Willinger and Wilson (1994), Crovella and Bestavros (1996),
Mikosch, Resnick, Rootzén and Stegeman (2002)]. On the other hand, the general-
ized Langevin equation [Chandler (1987), Zwanzig (2001), Wang and Tokuyama
(1999)], used primarily in the physics literature, has attracted less attention from
probabilists and statisticians. Notably, it is the connection between fBm and the
generalized Langevin equation (GLE), as we shall see, that leads to a satisfactory
model to account for the experimentally observed subdiffusion within proteins.

A key requirement in the construction of biophysical models, in addition to the
preference of analytical tractability, is that the model must agree with fundamental
physical laws and should have a sound physical foundation. Hence, we will also
discuss the model’s physical basis.

From an applied probabilistic/statistical point of view, to describe subdiffusion,
we study several stochastic integro-differential equations driven by fBm. We con-
duct a detailed analysis, in particular, a spectral analysis, of their properties (in
Sections 2 and 3). We also consider the connection between our model and in-
teracting particle systems through a microscopic derivation of the model from a
system of interacting particles (in Section 4). Some of the mathematical structures
of GLE and fBm have been independently considered in Kupferman (2004). In this
paper, in addition to the detailed stochastic investigation, we apply the analytical
results to fit the nanoscale single-molecule experimental data (in Section 5) and to
show that the model successfully explains the experimental observations.



504 S. C. KOU

The paper is organized as follows. Section 2 concerns the basic model to de-
scribe the subdiffusive movement of a free particle. Section 3 studies subdiffusive
motion under the presence of an outside potential. Section 4 investigates the phys-
ical foundation of our model. Section 5 applies the model to explain the nanoscale
single-molecule experimental results, which shows close agreement between the
model and the data. Section 6 concludes the paper with a discussion and raises
some open problems.

2. Modeling subdiffusion of a free particle.

2.1. Physical Brownian motion via the Langevin equation with white noise. To
facilitate the discussion of our model, let us first review how the law of Brownian
diffusion was derived in physics because the Brownian motion used by physicists
and the term Brownian motion used in probability and statistics refer to different
things: Physicists’ Brownian motion corresponds to the integral of the Ornstein–
Uhlenbeck process, as we shall see shortly, whereas statisticians and probabilists’
Brownian motion refers to the Wiener process, although both share the character-
istic of E[x2(t)] ∝ t for large t .

Suppose we have a Brownian particle with mass m suspended in water. The
physical description of the particle’s free motion starts from the Langevin equation
[Risken (1989), Van Kampen (2001), Karlin and Taylor (1981)]

m
dv(t)

dt
= −ζv(t) + F(t),(2.1)

where v(t) is the velocity of the particle at time t , and dv(t)/dt is the acceleration
of the particle. On the right-hand side, ζ is the friction constant, reflecting the fact
that the resistance the particle receives is proportional to its velocity, and F(t) is
the white noise, formally the derivative of the Wiener process.

The Langevin equation has an important physical constraint that links the fric-
tion constant ζ with the noise level, because both the movement of the particle
and the friction originate from one source—the collision between the particle and
surrounding water molecules. Borrowing physicists’ notation δ(·) of Dirac’s delta
function, this link can be expressed as

E[F(t)F (s)] = 2ζkBT · δ(t − s),(2.2)

where kB is the Boltzmann constant, and T is the underlying temperature. This
proportional relationship between the noise level and the friction constant is a con-
sequence of the fluctuation–dissipation theorem in statistical mechanics [Chandler
(1987), Hill (1986)]. In the more familiar probability notation, equations (2.1) and
(2.2) translate to

mdv(t) = −ζv(t) dt + √
2ζkBT dB(t),(2.3)
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where B(t) is the Wiener process, and the formal association of “F(t) =√
2ζkBT dB(t)/dt” is recognized.
The stationary solution of equation (2.3) is the Ornstein–Uhlenbeck process

[Karlin and Taylor (1981)], which is Gaussian with mean function E[v(t)] = 0
and covariance function E[v(t)v(s)] = kBT

m
exp(− ζ

m
|t − s|). It follows that, for the

displacement, x(t) = ∫ t
0 v(s) ds, which is the actual observed motion, the variance

is

Var[x(t)] = E[x2(t)] =
∫ t

0

∫ t

0
E[v(s)v(u)]duds

= 2
kBT

ζ
t − 2

kBT m

ζ 2

(
1 − e−(ζ/m)t )(2.4)

∼ 2
kBT

ζ
t, for large t.

The last line is known (in physics) as Einstein’s Brownian diffusion law (where
2kBT /ζ is the Einstein diffusion constant). It is worth emphasizing that when
physicists talk about the Brownian motion of a free particle, they refer to the in-
tegral of the Ornstein–Uhlenbeck process and the corresponding equation (2.4),
which bears the resemblance of Var[x(t)] ∝ t for large t to the Wiener process.

2.2. Toward subdiffusion. The classical theory of Brownian diffusion, how-
ever, cannot explain the subdiffusion phenomenon, which, defined by Var[x(t)] ∝
tα with 0 < α < 1 for large t , has been notably observed in distance fluctuation
within proteins. We will explain the experimental details in Section 5, where the
theoretical results and predictions of our model are compared with the experimen-
tal data. In this subsection and the next we focus on the model itself.

The starting point of our model is the generalized Langevin equation (GLE)
[Chandler (1987), Zwanzig (2001)]

m
dv(t)

dt
= −ζ

∫ t

−∞
v(u)K(t − u)du + G(t),(2.5)

where, in comparison with the Langevin equation (2.1), (i) a noise G(t) having
memory replaces the memoryless white noise and (ii) a kernel K convoluted with
the velocity makes the process non-Markovian.

The reason that both K and G(t) appear in the equation is that any closed (equi-
librium) physical system must satisfy the fluctuation–dissipation theorem, which
requires the memory kernel K(t) and the fluctuating noise to be linked by

E[G(t)G(s)] = kBT ζ · K(t − s).(2.6)

In an intuitive sense this relationship arises because both the friction and the mo-
tion of the particle originate from the collision between the particle and its sur-
rounding media. Equations (2.5) and (2.6) contain their Langevin counterpart (2.1)
and (2.2) as a special case, in which the kernel K is the delta function.
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It is important to note that relationship (2.6) also rules out models like
mdv(t)/dt = −ζv(t)+G(t), with G(t) an arbitrary noise to describe biophysical
processes because this kind of model violates the fluctuation–dissipation theorem,
and thus cannot correspond to any (equilibrium) physical process. In other words,
to have a physically meaningful description of biophysical processes, the subdif-
fusion process, in particular, the convolution term

∫ t
−∞ v(u)K(t − u)du must be

present in equation (2.5).
Under the framework of GLE, the key question is as follows: Is there a com-

bination of kernel function and noise structure that can lead to subdiffusion? To
answer this question, we note that the white noise is mathematically interpreted
as the formal derivative of the Wiener process. It is well known that the Wiener
process is the unique process characterized by (i) being Gaussian, (ii) having inde-
pendent increments, (iii) having stationary increments, and (iv) being self-similar.
These properties carry their physical meanings: the independent increments of the
Wiener process make the white noise independent across time; the stationary incre-
ments of the Wiener process mean that the white noise is time translation invariant;
the self-similarity means that the white noise is invariant to time scale change. To
generalize the white noise, we want to maintain as many nice properties as pos-
sible and at the same time introduce memory. This leads us to consider processes
with the following three properties: (i) Gaussian, (ii) stationary increments, and
(iii) self-similar. The only class of processes that embodies all three properties
is the fBm process, BH(t) [Embrechts and Maejima (2002), Samorodnitsky and
Taqqu (1994)], which is Gaussian with mean E[BH(t)] = 0 and covariance func-
tion E[BH(t)BH (s)] = 1

2(|t |2H + |s|2H − |t − s|2H). H , between 0 and 1, is the
Hurst parameter; BH(t) reduces to the Wiener process when H = 1/2.

2.3. Subdiffusion via the generalized Langevin equation with fractional Gaus-
sian noise. Taking G(t) in (2.5) to be the (formal) derivative of fBm, which is
referred to as the fractional Gaussian noise (fGn), FH(t) = √

2ζkBT dBH (t)/dt ,
we have the following model:

The model for subdiffusion:

m
dv(t)

dt
= −ζ

∫ t

−∞
v(u)KH(t − u)du + FH(t),(2.7)

where the kernel KH(t), according to equation (2.6), is (formally) given by

KH(t) = E[FH(0)FH (t)]/(kBT ζ )

= 2 lim
h↓0

E

[
BH(h)

h

BH(t + h) − BH(t)

h

]
(2.8)

= 2 lim
h↓0

1

2h2 (|t + h|2H + |t − h|2H − 2|t |2H )

= 2H(2H − 1)|t |2H−2, for t �= 0.
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In the more familiar probability notation equation (2.7) can be written as follows:
The model for subdiffusion:

mdv(t) = −ζ

(∫ t

−∞
v(u)KH(t − u)du

)
dt + √

2ζkBT dBH(t),(2.9)

where, as in (2.8),

KH(t) = 2H(2H − 1)|t |2H−2, for t �= 0.(2.10)

One question about this model equation (2.9) arises immediately from a proba-
bilistic standpoint: what is the interpretation of the integral with respect to fBm?

Stochastic integrals driven by fBm have been an active research area in recent
years. The constructions of the stochastic integral include restricting the integrand
to specific classes of functions as in Dai and Heyde (1996), Gripenberg and Norros
(1996), Lin (1995), Shiryaev (1998), using pathwise integration for the case of
1/2 < H < 1 as in Mikosch and Norvaisa (2000), applying Malliavin calculus as
in Alòs, Mazet and Nualart (2000), Duncan, Hu and Pasik-Duncan (2000), Nualart
(2006), and using regularization as in Rogers (1997), Carmona and Coutin (2000).
For reviews, see, for example, Duncan, Hu and Pasik-Duncan (2000), Pipiras and
Taqqu (2000), Pipiras and Taqqu (2001) and Embrechts and Maejima (2002).

As we shall see shortly, the case of 1/2 < H < 1 is particularly relevant to our
description of subdiffusion here. In this case, pathwise integration appears most
natural, and hence, we interpret our model equation (2.9) with H > 1/2 in the
pathwise Riemann–Stieltjes sense [Mikosch and Norvaisa (2000)]. This pathwise
integration allows us to treat integrals with respect to dBH (t) as if they were clas-
sical integrals, which simplifies our calculation.

The presence of the convolution term and the dBH(t) term makes equation
(2.9) non-Markovian and nonstandard. The solution to model (2.9) is given by the
following theorem, whose proof is deferred to the Appendix.

THEOREM 2.1. Let K̃H (ω) and K̃+
H (ω) denote the Fourier transforms of the

kernel KH(t) on the entire and positive real lines, respectively:

K̃H (ω) =
∫ ∞
−∞

eitωKH(t) dt = 2�(2H + 1) sin(Hπ)|ω|1−2H ,(2.11)

K̃+
H(ω) =

∫ ∞
0

eitωKH(t) dt

(2.12)
= �(2H + 1)|ω|1−2H [sin(Hπ) − i cos(Hπ)sign(ω)],

where sign(ω) is the sign function, which is 1 if ω > 0 and −1 if ω < 0. Then under
the pathwise interpretation of dBH (t) for 1/2 < H < 1, the solution to model (2.9)
is

v(t) = √
2ζkBT

∫ ∞
−∞

r(t − u)dBH(u),
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where the deterministic function r(t) is given by

r(t) = 1

2π

∫ ∞
−∞

1

ζ K̃+
H(ω) − imω

e−itω dω.

Furthermore, the solution v(t) is a stationary Gaussian process with mean func-
tion E[v(t)] = 0 and covariance function

Cv(t) = E[v(0)v(t)] = 1

2π

∫ ∞
−∞

e−itωC̃v(ω)dω,

where the Fourier transform C̃v(ω) of Cv(t) is given by

C̃v(ω) =
∫ ∞
−∞

eitωCv(t) dt = kBT ζ K̃H (ω)/|ζ K̃+
H(ω) − imω|2.

REMARK 1. When H → 1/2, we have C̃v(ω) → 2kBT ζ/(ζ 2 + m2ω2) and
E[v(0)v(t)] = Cv(t) → kBT

m
exp(− ζ

m
|t |), which recovers the Ornstein–Uhlenbeck

result from classical Brownian diffusion.

REMARK 2. A careful reader might note that equations (2.11) and (2.12) in-
volve Fourier transforms of power functions, which are not integrable, so a nat-
ural question here is their meaning. In general, the Fourier transform f̃ of a
nonintegrable function f is defined as f̃ (ω) = limα→∞

∫ ∞
−∞ f (t) exp(−|t |/α) ×

exp(itω) dt , that is, the limit of exponential damping. It is in this sense that, for
example, |t |−1/2 and

√
2π |ω|−1/2 are regarded as a Fourier transform pair. See

Champeney (1987) for a thorough discussion. All the Fourier and inverse Fourier
transforms in this article are defined in this general sense.

The next theorem, whose proof is given in the Appendix, details how our model
(2.9) explains subdiffusion.

THEOREM 2.2. Under model (2.9), let x(t) = ∫ t
0 v(s) ds be the displacement.

Then for 1/2 < H < 1, the mean squared displacement

Var[x(t)] = E[x(t)2] ∼ kBT

ζ

sin(2Hπ)

πH(1 − 2H)(2 − 2H)
t2−2H

(2.13)
∝ t2−2H , for large t.

In other words, our model with 1/2 < H < 1 leads to subdiffusion.

REMARK 3. When H → 1/2, the right-hand side of (2.14) converges to
(2kBT /ζ )t , and we recover the Einstein Brownian diffusion law.
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The above theorem says that, for a particle, if its velocity process v(t) is gov-
erned by model (2.9) with H > 1/2, then the second moment E[x2(t)] of the
displacement x(t) = ∫ t

0 v(s) ds satisfies E[x2(t)] ∝ t2−2H for large t , which is
exactly the characteristic of subdiffusion. Therefore, our model (2.9) with Hurst
parameter H > 1/2 leads to an explanation of how subdiffusion could arise in bio-
physical systems—as long as the fractional Gaussian noise drives the underlying
physical fluctuation, the system will be subdiffusive.

3. Modeling subdiffusion under external potential. The model (2.9) ex-
plains subdiffusion of a free particle, that is, the motion of a particle without the
influence of an outside force (or potential). If there is an external potential U(x)

(e.g., a magnetic field), which is a function of the displacement x(t), the model
has to be modified.

In the case of white noise and the Langevin equation (2.1), which corresponds
to classical Brownian diffusion, one should add the term −U ′(x(t)) to the right-
hand side of the equation to account for the external potential [Risken (1989), Van
Kampen (2001), Karlin and Taylor (1981)]:

m
dv(t)

dt
= −ζv(t) − U ′(x(t)) + F(t), x(t) =

∫ t

0
v(s) ds.

For GLE, similarly, the term −U ′(x(t)) also needs to be added to the right-
hand side of the equation to account for the external potential [Chandler (1987),
Zwanzig (2001)]. Therefore, to describe the movement of a subdiffusive particle
under the presence of an external potential U(x), we have the following model.

The model for subdiffusion under a general potential U(x):

m
dv(t)

dt
= −ζ

∫ t

−∞
v(u)KH(t − u)du − U ′(x(t)) + FH(t),

x(t) =
∫ t

0
v(s) ds,

which is the companion of (2.7).
The harmonic potential U(x) = 1

2mψx2, where m is the mass of the particle and
the constant ψ reflects the potential’s strength, is of particular importance because
when the movement is confined to a short range, such as the movement within a
protein as we shall see in Section 5, the underlying potential function can often be
adequately approximated by a harmonic one. Under such a harmonic potential, the
model is as follows.

The model for subdiffusion under a harmonic potential:

m
dv(t)

dt
= −ζ

∫ t

−∞
v(u)KH(t − u)du − mψx(t) + FH(t),

(3.1)

x(t) =
∫ t

0
v(s) ds.
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An equivalent expression in the more familiar probability notation is

dx(t) = v(t) dt,

mdv(t) = −ζ

(∫ t

−∞
v(u)KH(t − u)du

)
dt(3.2)

− mψx(t) dt + √
2ζkBT dBH(t).

REMARK 4. Compared with the model (2.9) for the movement of a free
particle, the above model (3.2) has two distinctive features. First, the presence
of the external potential changes the model from a single equation to a set of
two coupled equations, and correspondingly, the solution to model (3.2) is a
two-dimensional process. Second, for a free particle, since there is no external
potential to bound its movement, the displacement process x(t) cannot be sta-
tionary [which is manifested in Theorem 2.2, where the variance Var(x(t)) ∝
t2−2H → ∞, as t → ∞]. On the other hand, for model (3.2), since the har-
monic potential always pulls the particle back to the origin [because of the
term −mψx(t)], the displacement process x(t) can be stationary, and thus,
we can talk about the stationary mean and variance of x(t), as we shall see
next.

The next theorem, whose proof is deferred to the Appendix, gives the solution
to model (3.2), which describes the subdiffusive motion under a harmonic poten-
tial.

THEOREM 3.1. Under the pathwise interpretation of dBH(t) for 1/2 <

H < 1, the solution to equation (3.2) is

x(t) = √
2ζkBT

∫ ∞
−∞

ρ(t − u)dBH(u),

v(t) = √
2ζkBT

∫ ∞
−∞

ρ′(t − u)dBH(u),

where the deterministic function ρ(t) is defined as

ρ(t) = 1

2π

∫ ∞
−∞

e−itω 1

mψ − mω2 − iωζ K̃+
H(ω)

dω.

Furthermore, the solution (x(t), v(t)) is a stationary bivariate Gaussian process
with mean function E[x(t)] = E[v(t)] = 0 and covariance functions given by

E[x(s)x(s + t)] = E[x(0)x(t)]

= kBT ζ

2π

∫ ∞
−∞

e−itω K̃H (ω)

|mψ − mω2 − iωζ K̃+
H(ω)|2 dω,
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E[x(s)v(s + t)] = E[x(0)v(t)]

= kBT ζ

2π

∫ ∞
−∞

e−itω iωK̃H (ω)

|mψ − mω2 − iωζ K̃+
H(ω)|2 dω,

E[v(s)x(s + t)] = E[v(0)x(t)]

= kBT ζ

2π

∫ ∞
−∞

e−itω iωK̃H (ω)

|mψ − mω2 − iωζ K̃+
H(ω)|2 dω,

E[v(s)v(s + t)] = E[v(0)v(t)]

= kBT ζ

2π

∫ ∞
−∞

e−itω ω2K̃H (ω)

|mψ − mω2 − iωζ K̃+
H(ω)|2 dω,

where the expressions of K̃H (ω) and K̃+
H(ω) are given by (2.11) and (2.12), re-

spectively.

REMARK 5. It is straightforward to verify that in the limiting case of
ψ → 0, the result of E[v(0)v(t)] in the above theorem converges to the ex-
pression of Cv(t) in Theorem 2.1. This says that as the harmonic potential
becomes weaker and weaker, the particle will behave more and more like a
free particle, and in the limit the movement reduces to that of a free parti-
cle.

One special case of model (3.1) is when the acceleration term mdv(t)/dt is
negligible. This corresponds to the so-called overdamped condition in physics [Van
Kampen (2001)], where the friction in the system is very large, causing the acceler-
ation of the particle to be negligible. In the overdamped scenario, the acceleration
term drops out, and the model changes to the following.

The model for subdiffusion under a harmonic potential and the over-
damped condition:

mψx(t) = −ζ

∫ t

−∞
v(u)KH(t − u)du + FH(t), x(t) =

∫ t

0
v(s) ds.(3.3)

It can be rewritten in the more familiar probability notation as

dx(t) = v(t) dt,
(3.4)

mψx(t) dt = −ζ

(∫ t

−∞
v(u)KH(t − u)du

)
dt + √

2ζkBT dBH (t).

The next theorem (with proof given in the Appendix) solves equation (3.4).
We will use the solution to explain the experimental data in Section 5 because in
biological systems, such as within a protein, the friction is usually large and the
overdamped condition usually holds.
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THEOREM 3.2. Under the pathwise interpretation of the stochastic integral
for 1/2 < H < 1, the solution to equation (3.4) is a stationary Gaussian process
with mean E[x(t)] = 0 and covariance function

σx(t) = E[x(0)x(t)] = kBT

mψ
E2−2H

(−(t/τ )2−2H )
,(3.5)

where the constant

τ =
(

ζ�(2H + 1)

mψ

)1/(2−2H)

,(3.6)

and Eα(z) is the Mittag–Leffler function [see Erdélyi et al. (1953), Chapter 18]
defined by

Eα(z) =
∞∑

k=0

zk/�(αk + 1).

REMARK 6. The Mittag–Leffler function generalizes the exponential function
in a natural way. When H → 1/2, the Mittag–Leffler function in (3.5) reduces to
the exponential function, and σx(t) = (kBT /mψ) exp(−(mψ/ζ )t), recovering the
classical Brownian diffusion result.

4. Physical basis of the model. We shall apply the results in the previous
two sections to explain the nanoscale subdiffusive motion observed within pro-
teins. But before doing so, we will study in this section the physical foundation of
the model, since a key requirement for biophysical models is that, in addition to
satisfying fundamental physical laws, they must have a sound physical basis.

4.1. The thermal dynamic requirement for a free particle. The law of ther-
mal dynamics [Chandler (1987), Hill (1986), Reif (1965)] requires that, for a free
particle, the (equilibrium) stationary variance of its velocity should be kBT /m,
where m is the mass of the particle. The next theorem (whose proof is deferred
to the Appendix) verifies that indeed our model (2.9) for the free particle satisfies
this thermal dynamic requirement.

THEOREM 4.1. Under model (2.9), the stationary variance of the velocity
Var[v(0)] satisfies

Var[v(0)] = kBT

m
for all 1/2 < H < 1.
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4.2. The thermal dynamic requirement for the movement of a particle under
harmonic potential. For particles moving under a harmonic potential U(x) =
1
2mψx2, the law of thermal dynamics asserts that the equilibrium (stationary) vari-
ance of the displacement should be kBT

mψ
. The next theorem (whose proof is given in

the Appendix) confirms that our model (3.2) for harmonic potential indeed satisfies
the thermal dynamic requirement.

THEOREM 4.2. Under model (3.2), the stationary variance of the displace-
ment Var[x(0)] satisfies the thermal dynamic requirement of

Var[x(0)] = kBT

mψ
for all 1/2 < H < 1.

For model (3.4), which describes subdiffusion under harmonic potential and the
overdamped condition, the results of Theorem 3.2 imply

σx(0) = Var[x(0)] = kBT

mψ
E2−2H (0) = kBT

mψ
for all 1/2 < H < 1.(4.1)

We thus have the following:

THEOREM 4.3. Under model (3.4), the stationary variance of the displace-
ment Var[x(0)] satisfies the thermal dynamic requirement of

Var[x(0)] = kBT

mψ
for all 1/2 < H < 1.

4.3. Deriving the model from a system of interacting particles. In this subsec-
tion we will demonstrate that the model in Section 3 can be derived from the phys-
ical microscopic interaction between the particle under study and its surrounding
media; in particular, the model can be derived from a Hamiltonian system con-
sisting of the particle and its surroundings. For more general discussion about the
Hamiltonian and GLE, see Zwanzig (2001).

We start the derivation from the Hamiltonian [Corben and Stehle (1995)] of the
particle

Hs = p2

2m
+ 1

2
mψx2,

where p = mv is the momentum, and x is the displacement. Here the Hamiltonian,
which is essentially the total energy of the particle, consists of the kinetic energy
p2/(2m) = mv2/2 and the potential energy, which is mψx2/2 under the harmonic
case. The surrounding media, consisting of N small molecules, has its own Hamil-
tonian (total energy)

HB =
N∑

j=1

( p2
j

2mb

+ 1

2
mbω

2
j

(
qj − γj

ω2
j

x

)2)
,(4.2)
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where N , on the order of 1023, is the total number of molecules in the me-
dia, mb is the (common) mass of an individual molecule in the media, pj and
qj are respectively the momentum and location of the j th molecule, ωj is
the oscillation frequency of the j th molecule (as each individual molecule os-
cillates in the media), and the term (qj − γjx/ω2

j ) captures the interaction
between the particle of interest and the individual molecules in the media,
where γj is the interacting strength between the particle and the j th mole-
cule.

The total Hamiltonian (energy) of the entire system (i.e., the particle plus the
media) is thus Hs + HB . Once the total Hamiltonian is given, the classical theory
of mechanics [Corben and Stehle (1995)] states that the motion of the particle, as
well as that of the individual molecules, is given by

dx

dt
= ∂(Hs + HB)

∂p
,

dp

dt
= −∂(Hs + HB)

∂x
,(4.3)

dqj

dt
= ∂(Hs + HB)

∂pj

,
dpj

dt
= −∂(Hs + HB)

∂qj

,(4.4)

which is a set of coupled differential equations. The exact expressions of Hs and
HB reduce (4.3) and (4.4) to

dx

dt
= p

m
,

dp

dt
= −mψx +

N∑
j=1

γjmb

(
qj − γj

ω2
j

x

)
,(4.5)

dqj

dt
= pj

mb

,
dpj

dt
= −mbω

2
j qj + mbγjx,(4.6)

from which we can first express qj and pj in terms of x(t) and their initial val-
ues:

qj (t) = qj (0) cos(ωj t) + pj (0)

mbωj

sin(ωj t) + γj

ωj

∫ t

0
x(s) sin

(
ωj(t − s)

)
ds.

Applying an integration by parts on it gives

qj (t) − γj

ω2
j

x(t) =
[
qj (0) − γj

ω2
j

x(0)

]
cos(ωj t) + pj (0)

mbωj

sin(ωj t)

− γj

ω2
j

∫ t

0
cos

(
ωj(t − s)

)
dx(s).

Taking this expression into (4.5), we obtain

m
d2x

dt2 = −mψx(t) −
∫ t

0
J (t − s) dx(s) + G(t),
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where

J (t) = mb

N∑
j=1

γ 2
j

ω2
j

cos(ωj t),

G(t) =
N∑

j=1

mbγj

(
qj (0) − γj

ω2
j

x(0)

)
cos(ωj t) +

N∑
j=1

γj

ωj

pj (0) sin(ωj t).

Upon making the association

ζ ∝ mb, ζK(t) = J (t),

we reach the GLE model

m
dv(t)

dt
= −mψx(t) − ζ

∫ t

0
K(t − s)v(s) ds + G(t), x(t) =

∫ t

0
v(s) ds.

REMARK 7. If we let the harmonic potential mψx2/2 become weaker and
weaker, then in the limit of ψ → 0, the model (2.5) of a free particle is recovered.

The randomness of G(t) comes from the fact that the initial values of q =
(q1(0), q2(0), . . . , qN(0)) and p = (p1(0), . . . , pN(0)) have a thermal dynamic
distribution

f (p,q) ∝ exp
(
− HB

kBT

)
,

which leads to

E[pj (0)] = E[qj (0) − γjx(0)/ω2
j ] = 0 for all j,

E[p2
j (0)] = mbkBT , E

[(
qi(0) − γjx(0)/ω2

j

)2] = kBT

mbω
2
j

,

E
[
pj (0)

(
qi(0) − γix(0)/ω2

i

)] = 0 for all i and j,

implying

E[G(t)G(s)] = kBT mb

N∑
j=1

γ 2
j

ω2
j

cos
(
ωj(t − s)

) = kBT ζK(t − s),

which exactly recovers the fluctuation–dissipation relationship (2.6).
The underpinning of a fractional Gaussian memory kernel. Because N ,

the total number of molecules in the media, is large, the memory kernel K(t) ∝
1
N

∑N
j=1 γ 2

j cos(ωj t)/ω
2
j is essentially given by

K(t) ∝ E

[
γ 2

ω2 cos(ωt)

]
=

∫ ∞
0

E[γ 2|ω]
ω2 cos(ωt)g(ω)dω,
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where g(·) is the probability density function of the molecules’ oscillation fre-
quencies. If γ and g(ω) are such that

E[γ 2|ω]
ω2 g(ω) ∝ ω1−2H ,(4.7)

then

K(t) ∝ |t |2H−2 ∝ KH(t),

giving rise to the memory kernel (2.10) of the fractional Gaussian noise. Many
scenarios can lead to equation (4.7). For example, if the interacting strength γ is a
(deterministic) power function of ω: γ 2 ≈ ω3−2H , and the distribution g is roughly
uniform over the spectrum, then (4.7) would hold approximately. Another example
is γ and ω being independent and g having an (approximate) power tail g(ω) ∼
ω3−2H exp(−αω) with a very small α; then (4.7) would also hold approximately.

5. From theory to experiments. A recent single-molecule experiment [Yang
et al. (2003)] studied a protein–enzyme compound Fre, which is involved in the
DNA synthesis of E. Coli. As shown in Figure 1, Fre contains two subunits: FAD
and Tyr. Because the 3D conformation of Fre spontaneously fluctuates over time,
the (edge-to-edge) distance between FAD and Tyr varies. This distance is one di-
mensional; its fluctuation provides information about the conformational dynamics
of Fre. To experimentally probe this one-dimensional distance fluctuation, Fre is
placed under a laser beam. The laser excites FAD to be fluorescent. By recording
the fluorescence lifetime of FAD, one can trace the distance between FAD and
Tyr, because at any time t the fluorescence lifetime λ(t) of FAD is a function of
the one-dimensional distance [see Gray and Winkler (1996), Moser et al. (1992)]

λ(t) = k0e
β(xeq+x(t)),(5.1)

where k0 and β are known constants [Moser et al. (1992)], xeq is the mean distance,
and x(t) with mean 0 is the distance fluctuation at time t .

To model x(t), we first note that the external potential experienced by the fluctu-
ating subunits is well approximated by a harmonic one, U(x) = mψx2/2, because
the movement is confined within the short range of Fre. We shall see in Section 5.3
that this close approximation is well tested in the experiment.

5.1. Testing the autocorrelation structure of the model. With the harmonic
potential, people used to model x(t) as a Brownian diffusion process m d

dt
v(t) =

−ζv(t) − mψx(t) + F(t), x(t) = ∫ t
0 v(s) ds, or by its overdamped version

mψx(t) = −ζv(t) + F(t), x(t) = ∫ t
0 v(s) ds, where F(t) is the white noise.

The nanoscale single-molecule experimental data of λ(t), unlike the traditional
population experiments, provides the means to test the model. One can calcu-
late the empirical autocorrelation function of λ(t) from the experimental data



MODELING SUBDIFFUSION WITHIN PROTEINS 517

FIG. 2. Autocorrelation function of the fluorescence lifetime λ(t). The open circles represent the
empirical autocorrelation calculated from the experimental data. The dashed line is the best fit
from the classical Brownian diffusion model. The solid line is the fit [H = 0.74, ζ/(mψ) = 0.40,
β2kBT /(mψ) = 0.81] from our model (3.4), agreeing well with the data.

and compare it with the theoretical autocorrelation function from the model. The
autocorrelation function is used as the test statistic because the experimentally
recorded fluorescence lifetime is actually the true λ(t) plus background and equip-
ment noise. Doing an autocorrelation effectively removes the noise (since the noise
is uncorrelated). For a stationary Gaussian process x(t), it is straightforward to cal-
culate the autocorrelation function of λ(t) from equation (5.1),

cov(λ(0), λ(t)) = k2
0e2βxeq+β2Cx(0)(eβ2Cx(t) − 1

)
,(5.2)

where Cx(t) = cov(x(0), x(t)). Figure 2 shows the empirical autocorrelation func-
tion (the open circles) compared with the best (least-square) fitting from the
Brownian diffusion model (the dashed curve). A clear discrepancy is seen.

The solid line in Figure 2 is the result from modeling x(t) by the subdiffusive
process (3.4) under the harmonic potential. The curve is fitted by using the Hurst
parameter H = 0.74, expression (5.2) and the result of Theorem 3.2 [with σx(t)

replacing Cx(t) in (5.2)]. A very close agreement with the experimental autocorre-
lation function is seen. Here the overdamped model (3.4) is applied to explain the
data, since the movement within a protein is subject to the overdamped regime.

5.2. Testing higher-order correlation functions. To check our model, we make
predictions about the distance fluctuation and test whether these predictions can
be confirmed by the experiments. The first set of predictions involves higher-order
autocorrelation functions because they are very sensitive to distinguishing mod-
els [Mukamel (1995)]. With the values of the fitting parameters fixed to those in
Figure 2, we compute from the model the predicted three-step and four-step au-
tocorrelation functions E[�λ(0)�λ(t1)�λ(t1 + t2)] and E[�λ(0)�λ(t1)�λ(t1 +
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FIG. 3. Higher-order autocorrelation functions of λ(t). (a), (b) and (c): The experimen-
tally obtained autocorrelation functions E[�λ(0)�λ(t)�λ(2t)], E[�λ(0)�λ(2t)�λ(3t)] and
E[�λ(0)�λ(t)�λ(2t)�λ(3t)] overlaid with the model predictions for various t . The theoretical
curves from the model (3.4) are calculated using the same parameter values as in Figure 2 [H = 0.74,
ζ/(mψ) = 0.40, and β2kBT /(mψ) = 0.81].

t2)�λ(t1 + t2 + t3)], where �λ(t) = λ(t) − E[λ(t)], and compare them with their
experimental counterparts. The exact expressions for the three-step and four-step
autocorrelation functions are given in the Appendix.

Figure 3(a) shows the evenly spaced three-step autocorrelation function
E[�λ(0)�λ(t)�λ(2t)] as a function of time t ; Figure 3(b) shows the unevenly
spaced three-step autocorrelation function E[�λ(0)�λ(2t)�λ(3t)] as a function
of time t ; Figure 3(c) shows the evenly spaced four-step autocorrelation function
E[�λ(0)�λ(t)�λ(2t)�λ(3t)] as a function of t . The theoretical curves (the solid
lines) in Figure 3 are calculated from model (3.4) using the parameter values ob-
tained from the fitting in Figure 2. In all cases, the close agreement between the
theoretical curves (the solid lines) and the experimental values (the open circles)
is seen.

The second prediction from the model is time-symmetry. For any t1 and t2, the
model predicts E[�λ(0)�λ(t1)�λ(t1 + t2)] = E[�λ(0)�λ(t2)�λ(t1 + t2)], which
can be straightforwardly seen from the formulas in the Appendix. It says that if
our model is true, then one can swap the order of the time lags without changing
the correlation value. This can be tested by taking t1 = t , t2 = 2t and plotting
the experimentally obtained three-step correlation E[�λ(0)�λ(t)�λ(3t)] against
E[�λ(0)�λ(2t)�λ(3t)] for various t . A 45◦ line is predicted by the model. The
experimental plot in Figure 4 indeed confirms the prediction.

5.3. Testing the harmonic potential. As a final check of our model, we ask
if the two important model assumptions of harmonic potential and fractional
Gaussian memory kernel (2.10) can be directly verified from the experiment. An-
other recent single-molecule experiment [Min et al. (2005)] indeed confirmed the
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FIG. 4. A test for time-symmetry. The experimental three-step correlations E[�λ(0)�λ(t)�λ(3t)]
and E[�λ(0)�λ(2t)�λ(3t)] plotted again each other for various t . A 45◦ line is predicted by our
model.

assumptions. This experiment studied a protein complex formed by fluorescein
(FL) and monoclonal antifluorescein (anti-FL). See Figure 5. Similar to Fre, this
complex contains two substructures Tyr and FL, between which the distance fluc-
tuates over time. Using exactly the same experimental technique as in the previous
Fre experiment, the distance fluctuation can be probed from the fluorescence life-
time of FL (upon placing the complex under a laser beam).

This latter experiment has identical settings as the previous one, except that it
has much higher signal-to-noise ratio, and thus provides higher resolution data that
allows the model assumptions to be further tested. The high resolution data on λ(t)

first enables x(t) to be reconstructed from (5.1) through a local binning (kernel)
average. See Figure 6(a). The empirical equilibrium (stationary) distribution P̂ (x)

of x(t) is then obtained from the histogram of all the x(t). According to thermal
dynamics, the equilibrium distribution P(x) and the potential function U(x) is

FIG. 5. The crystal structure of the FL and anti-FL complex. The two substructures Tyr and FL are
highlighted. This new experiment has idential settings as the previous Fre experiment (Figure 1), but
it has much higher signal-to-noise ratio that enables experimental testing of the key assumptions of
our model.
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FIG. 6. (a) The distance fluctuation x(t) reconstructed from (5.1), and the corresponding empirical
distribution P̂ (x). (b) The estimated empirical potential function Û(x) = −kBT log(P̂ (x)), the open
circles, compared with the harmonic potential, the dashed line.

linked by P(x) ∝ exp(−U(x)/(kBT )). A natural estimate for U(x) is thus Û (x) =
−kBT log(P̂ (x)), which is shown in Figure 6(b). A harmonic potential, the dashed
line in Figure 6(b), is seen to fit Û (x) very well, hence confirming the validity of
our earlier assumption.

5.4. Testing the fractional Gaussian memory kernel. To test the fractional
Gaussian memory kernel (2.10), first we calculate from the reconstructed x(t)

the experimental autocorrelation function Ĉx(t) = ĉov(x(0), x(t)) and compare
it with the theoretical expression (3.5) from Theorem 3.2. Figure 7(a) shows the
comparison, where the result from our model (the solid line) agrees well with the
experimental values (the open circles).

Furthermore, from the overdamped GLE mψx(t) = −ζ
∫ t
−∞ v(u)K(t −u)du+

G(t), x(t) = ∫ t
0 v(s) ds with an arbitrary memory kernel K , we can establish a one-

to-one correspondence between the Laplace transform of Cx(t) = cov(x(0), x(t))

and the Laplace transform of the memory kernel K(t), as shown in the fol-
lowing theorem, which then allows us to recover K(t) from the experimental
Ĉx(t) = ĉov(x(0), x(t)) and compare it with the assumed fractional Gaussian
noise memory kernel.

THEOREM 5.1. For the overdamped GLE mψx(t) = −ζ
∫ t
−∞ v(u)K(t −

u)du+G(t), x(t) = ∫ t
0 v(s) ds with a general memory kernel K(t), there is a one-

to-one correspondence between the Laplace transform C̃x(s) = ∫ ∞
0 e−stCx(t) dt

of Cx(t) = cov(x(0), x(t)) and the Laplace transform K̃(s) = ∫ ∞
0 e−stK(t) dt of

the memory kernel K(t):

C̃x(s) = kBT ζ

mψ

K̃(s)

mψ + ζ sK̃(s)
, K̃(s) = mψ

ζ

mψC̃x(s)

kBT − mψsC̃x(s)
.(5.3)
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FIG. 7. (a) The autocorrelation functions of x(t) calculated from the experimental data, the open
circles, compared with the Mittag–Leffler expression (3.5) from our model, the solid line. (b) The ex-
perimentally determined memory kernel compared with the memory kernel of the fractional Gaussian
noise.

Therefore, knowing Cx(t) allows the recovery of K(t) in the Laplace space.

The proof of the theorem is given in the Appendix. With this theorem, using
the empirical autocorrelation function Ĉx(t), we can determine (in the Laplace
space) the memory kernel experienced by the protein in the experiment. Fig-
ure 7(b) shows, in the Laplace space, the experimentally obtained memory kernel
from (5.3) compared with the Laplace transform of the fractional Gaussian mem-
ory kernel K̃H(s) = ∫ ∞

0 e−stKH (t) dt = �(2H + 1)s1−2H , which is a power law.
Close agreement is seen, which verifies the second key assumption of our model.

6. Discussion. To explain the experimentally observed subdiffusion phenom-
enon, we formulate in this article a stochastic model by incorporating fractional
Gaussian noise into the generalized Langevin equation framework. The resulting
stochastic integro-differential equations driven by fractional Brownian motion are
nonstandard. We study in detail these model equations. Using the analytical re-
sults, we show that the model leads to a satisfactory account for subdiffusion.

The model, in addition, has three attractive features: (1) The underlying the-
ory is simple. First, compared with the classical Brownian diffusion theory, the
model has only one more parameter: the Hurst parameter H . Second, the model
offers analytical tractability. For instance, under the harmonic potential, closed
form expressions of the displacement covariance function are obtained in Theo-
rems 3.1 and 3.2. (2) The model, derivable from a Hamiltonian consideration, has
a sound physical basis, which is an important requirement for biophysical models.
(3) The theoretical results from the model agree well with the experimental data.
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Not only are the model predictions confirmed by the experiments, but also each
key model assumption is directly verified in the experiments.

The successful application of our model to explain subdiffusion only exempli-
fies one instance of the numerous and growing stochastic modeling opportunities
in nanoscale biophysics. Many interesting problems remain to be explored.

1. Existence, uniqueness and solution under a general potential. In this paper
we solved the model equations (GLE with fGn) for the harmonic potential U(x) =
mψx2/2. For a general potential U(x), the equation becomes

dx(t) = v(t) dt,

mdv(t) = −ζ

(∫ t

−∞
v(u)KH(t − u)du

)
dt(6.1)

−U ′(x(t)) dt + √
2ζkBT dBH(t).

A natural follow-up question is as follows: under what conditions does there exist
such a bivariate process (x(t), v(t)), and when is it unique, for example, in the
weak sense? Furthermore, if such a bivariate process exists and is unique, then how
might one solve it, at least numerically? The answers to these questions are directly
related to many biological and chemical systems, since many such biophysical and
biochemical processes are subject to general potentials.

2. First passage time and rare events calculation. Many biological events are
associated with the first passage time problem; for example, the completion of an
enzymatic reaction corresponds to the first time that the enzymatic system escapes
an energy barrier [Risken (1989), Van Kampen (2001)]. Consequently, calculating
the distribution of the first passage time is of immediate biological applicability.
For instance, the distribution of the first time that x(t) reaches a given level from
equation (6.1) directly relates to the understanding of enzymatic reactions in a
sluggish protein environment [Min et al. (2005)]. Furthermore, these first passage
time problems in biology usually correspond to the crossing of a very high bar-
rier. An interesting open problem is thus to investigate how simulation, such as
importance sampling, or large deviation techniques can be applied here to assess
or approximate the probability of high barrier crossing.

3. Interacting particle systems. It is seen in Section 4 that our model can be de-
rived from a system of interacting particles. This type of microscopic picture is not
unusual for biological systems, as biological events, such as gene expression, tend
to resolve from the interaction between many small units. It is thus interesting to
see how the modern understanding of interacting particle systems can be extended
to biological systems. For our model, in particular, a linear coupling between qj

and x in the Hamiltonian (4.2) is assumed in the derivation. It is desirable to relax
this assumption to extend the microscopic derivation to more general interaction
terms.
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The booming field of nanoscale (single-molecule) biophysics has attracted
much attention from biologists, chemists and physicists, as it projects a bright pic-
ture for new scientific discoveries. It also presents many interesting and challeng-
ing problems for stochastic modelers due to the stochastic nature of the nanometer
world. It is our hope that this article will generate further interest in applying mod-
ern probabilistic and statistical methodology to interesting biophysical and scien-
tific problems.

APPENDIX: PROOFS AND DERIVATIONS

PROOF OF THEOREM 2.1. The pathwise interpretation of dBH (t) allows
us to apply the technique of analyzing classical integro-differential equations to
solve (2.9). Suppose v(t) is the solution. Then applying a Fourier transform to
both sides of equation (2.9), we know that ṽ(ω) = ∫ ∞

−∞ eitωv(t) dt must satisfy

−imωṽ(ω) = −ζ ṽ(ω)K̃+
H(ω) + √

2ζkBT

∫ ∞
−∞

eitω dBH (t).

The unique solution of the above equation is

ṽ(ω) = √
2ζkBT

∫ ∞
−∞

eitω dBH (t)/[ζ K̃+
H (ω) − imω].

An inverse Fourier transform gives

v(t) = 1

2π

∫ ∞
−∞

e−itωṽ(ω)dω = √
2ζkBT

∫ ∞
−∞

r(t − u)dBH(u).

Since r(t) is deterministic, it is straightforward to verify that v(t) given above
is indeed a finite Gaussian process with zero mean. To calculate the covariance
function, we use the fact [cf. Duncan, Hu and Pasik-Duncan (2000)] that, for H >

1/2 and deterministic functions f and g,

E

[∫
f (u)dBH (u) ·

∫
g(u)dBH (u)

]
=

∫ ∫
H(2H − 1)|u − v|2H−2f (u)g(v) dudv,

which provides

E[v(t)v(s)]
= 2kBT ζ

∫ ∞
−∞

∫ ∞
−∞

H(2H − 1)|u − v|2H−2r(t − u)r(s − v) dudv(A.1)

= kBT ζ

∫ ∞
−∞

∫ ∞
−∞

r(t − u)r(s − v)KH(u − v) dudv.
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A change of variable of y = t − u, z = s − v gives

E[v(t)v(s)] = kBT ζ

∫ ∞
−∞

∫ ∞
−∞

r(y)r(z)KH(t − s − y + z) dy dz

= E[v(0)v(t − s)].
Therefore, v(t) is a stationary Gaussian process. To obtain the stationary covari-

ance Cv(t) = E[v(0)v(t)], we compute C̃v(ω) = ∫ ∞
−∞ eitωCv(t) dt .

From (A.1), it follows by a change of variable of y = t − u, z = u − v that

C̃v(ω) =
∫ ∞
−∞

eitωCv(t) dt

= kBT ζ

∫ ∞
−∞

dt eitω
∫ ∞
−∞

∫ ∞
−∞

r(t − u)r(−v)KH(u − v) dudv

= kBT ζ

(∫ ∞
−∞

r(y)eiyω dy

)(∫ ∞
−∞

r(−v)eivω dv

)(∫ ∞
−∞

KH(z)eizω dz

)
.

By the definition of r(t), the above expression is simplified to

C̃v(ω) = kBT ζ K̃H (ω)/
[(

ζ K̃+
H(ω) − iωm

)(
ζ K̃+

H(−ω) + iωm
)]

,

which for ω ∈ R can be further simplified to

C̃v(ω) = kBT ζ K̃H (ω)/|ζ K̃+
H (ω) − iωm|2(A.2)

because K̃+
H (−ω) is the complex conjugate of K̃+

H(ω) as the kernel function KH(t)

is real. �

PROOF OF THEOREM 2.2. Since E[x(t)] = ∫ t
0 E[v(s)]ds = 0, it follows that,

for t > 0,

Var[x(t)] = E[x2(t)] =
∫ t

0

∫ t

0
E[v(s)v(u)]duds = 2

∫ t

0

∫ s

0
Cv(u)duds.

The right-hand side is

2
∫ t

0

∫ s

0
Cv(u)duds = 2

∫ t

0

∫ s

0

[
1

2π

∫ ∞
−∞

e−iuωC̃v(ω)dω

]
duds

= 2
∫ t

0

∫ s

0

[
1

π

∫ ∞
0

cos(uω)C̃v(ω)dω

]
duds.

Applying Fubini’s theorem twice simplifies it to

2
∫ t

0

∫ s

0
Cv(u)duds = 2

π

∫ ∞
0

1

ω2 C̃v(ω)(1 − cos tω) dω.
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Plugging in the result of Theorem 2.1, we obtain

E[x2(t)] = 2

π

∫ ∞
0

1

ω2

kBT ζ K̃H (ω)

|ζ K̃+
H (ω) − imω|2 (1 − cos tω) dω

= 2

π

∫ ∞
0

(
2kBT ζ�(2H + 1) sin(Hπ)ω−1−2H (1 − cos tω)

)
× (

m2ω2 + 2�(2H + 1) cos(Hπ)mζω2−2H

+ ζ 2�2(2H + 1)ω2−4H )−1
dω.

A change of variable η = tω gives

E[x2(t)]
= 2

π
t2−2H

∫ ∞
0

(
2kBT ζ�(2H + 1) sin(Hπ)η−1−2H (1 − cosη)

)
× (

m2η2t−4H + 2�(2H + 1) cos(Hπ)mζη2−2H t−2H

+ ζ 2�2(2H + 1)η2−4H )−1
dη.

As t → ∞, by the dominated convergence theorem, the above integral converges
to ∫ ∞

0

2kBT sin(Hπ)η−1−2H (1 − cosη)

ζ�(2H + 1)η2−4H
dη = kBT

ζ

sin(2Hπ)

2H(1 − 2H)(2 − 2H)
.

Therefore, as t → ∞, the mean-squared displacement

E[x2(t)]/t2−2H → kBT

ζ

sin(2Hπ)

πH(1 − 2H)(2 − 2H)
. �

PROOF OF THEOREM 3.1. Applying a Fourier transform to equation (3.2), we
know that x̃(ω) = ∫ ∞

−∞ eitωx(t) dt and ṽ(ω) = ∫ ∞
−∞ eitωv(t) dt must satisfy

ṽ(ω) = −iωx̃(ω),

−imωṽ(ω) = −ζ ṽ(ω)K̃+
H (ω) − mψx̃(ω) + √

2ζkBT

∫ ∞
−∞

eitω dBH (t),

which has the unique solution

x̃(ω) =
√

2ζkBT

mψ − mω2 − iωζ K̃+
H(ω)

∫ ∞
−∞

eitω dBH (t),

ṽ(ω) = −√
2ζkBT iω

mψ − mω2 − iωζ K̃+
H(ω)

∫ ∞
−∞

eitω dBH (t).
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An inverse Fourier transform gives

x(t) = √
2ζkBT

∫ ∞
−∞

ρ(t − u)dBH(u),

v(t) = √
2ζkBT

∫ ∞
−∞

ρ′(t − u)dBH(u).

With ρ(t) being deterministic, it is straightforward to verify that (x(t), v(t)) given
above is a finite stationary bivariate Gaussian process with zero mean. For the
covariance function E[x(0)x(t)], we have

E[x(0)x(t)] = 2kBT ζ

∫ ∞
−∞

∫ ∞
−∞

H(2H − 1)|u − v|2H−2ρ(t − u)ρ(−v) dudv

= kBT ζ

∫ ∞
−∞

∫ ∞
−∞

ρ(t − u)ρ(−v)KH(u − v) dudv.

The Fourier transform of the above equation is∫ ∞
−∞

eitωE[x(0)x(t)]dt

= kBT ζ

∫ ∞
−∞

dt eitω
∫ ∞
−∞

∫ ∞
−∞

ρ(t − u)ρ(−v)KH(u − v) dudv

= kBT ζ

(∫ ∞
−∞

ρ(y)eiyω dy

)(∫ ∞
−∞

ρ(−v)eivω dv

)(∫ ∞
−∞

KH(z)eizω dz

)
,

y = t − u, z = u − v.

By the definition of ρ(t), the above expression is simplified to∫ ∞
−∞

eitωE[x(0)x(t)]dt = kBT ζ K̃H (ω)/|mψ − mω2 − iωζ K̃+
H(ω)|2.

Thus,

E[x(0)x(t)] = kBT ζ

2π

∫ ∞
−∞

e−itωK̃H (ω)/|mψ − mω2 − iωζ K̃+
H(ω)|2 dω.

The expressions of E[x(0)v(t)], E[v(0)x(t)] and E[v(0)v(t)] can be obtained
similarly. �

PROOF OF THEOREM 3.2. Following the proofs of Theorems 2.1 and 3.1,
applying the Fourier method on equation (3.4) and some detailed calculations af-
terward yield

x(t) = √
2ζkBT

∫ ∞
−∞

μ(t − u)dBH(u),

v(t) = √
2ζkBT

∫ ∞
−∞

μ′(t − u)dBH(u),
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where

μ(t) = 1

2π

∫ ∞
−∞

e−itω 1

mψ − iωζ K̃+
H(ω)

dω,

from which we know that E[x(t)] = 0, and that the Fourier transform σ̃x(ω) =∫ ∞
−∞ eitωσx(t) dt = ∫ ∞

−∞ eitωE[x(0)x(t)]dt satisfies

σ̃x(ω) = kBT ζ K̃H (ω)/|mψ − iωζ K̃+
H(ω)|2.

Using the expressions (2.11) and (2.12), we have, for ω > 0,

σ̃x(ω) = (
2kBT ζ�(2H + 1) sin(Hπ)ω1−2H )
× (

m2ψ2 − 2mψζ�(2H + 1) cos(Hπ)ω2−2H

(A.3)
+ ζ 2�2(2H + 1)ω4−4H )−1

= kBT

mψ

2 sin(Hπ)(τω)2−2H /ω

1 − 2 cos(Hπ)(τω)2−2H + (τω)4−4H
,

where the last equality uses the definition of τ in (3.6).
To establish (3.5), we only need to show that the Fourier transform

of kBT
mψ

E2−2H (−(t/τ )2−2H ) is exactly equal to σ̃x(ω), that is,∫ ∞
−∞ e−itω(kBT /mψ)E2−2H (−(t/τ )2−2H )dt = σ̃x(ω), which by (A.3) reduces

to show that, for ω > 0,

2
∫ ∞

0
cos(tω)E2−2H

(−(t/τ )2−2H )
dt

(A.4)

= 2 sin(Hπ)(τω)2−2H/ω

1 − 2 cos(Hπ)(τω)2−2H + (τω)4−4H
.

The Laplace transform of the Mittag–Leffler function has been given in Erdélyi et
al. (1953), Chapter 18 as∫ ∞

0
eptEα

(−(t/τ )α
)
dt = 1

p

1

1 + (τp)−α
.

Taking p = iω in the above formula gives

2
∫ ∞

0
cos(tω)E2−2H

(−(t/τ )2−2H )
dt

= 2 Re
(

1

iω

1

1 + (iτω)−(2−2H)

)

= 2

ω
Re

(
1

i

1

1 + (τω)−(2−2H)e−i(1−H)π

)

= 2

ω
Re

(
1

i + (τω)−(2−2H)(−i cos(Hπ) + sin(Hπ))

)
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= 2

ω

sin(Hπ)(τω)2−2H

1 − 2 cos(Hπ)(τω)2−2H + (τω)4−4H
,

which is exactly (A.4). The proof is thus completed. �

PROOF OF THEOREM 4.1. From the result of Theorem 2.1, we have

Var[v(0)] = E[v2(0)]
= 1

2π

∫ ∞
−∞

kBT ζ K̃H (ω)/|ζ K̃+
H (ω) − imω|2 dω

= 1

π

∫ ∞
0

(
2kBT ζ�(2H + 1) sin(Hπ)ω1−2H )
× (

ζ 2�2(2H + 1)ω2−4H + m2ω2

+ 2mζ�(2H + 1)ω2−2H cos(Hπ)
)−1

dω.

A change of variable η = ω2H gives

Var[v(0)] = kBT

πH

∫ ∞
0

ζ�(2H + 1) sin(Hπ)

m2η2 + 2mζ�(2H + 1) cos(Hπ)η + ζ 2�2(2H + 1)
dη.

Using the general formula
∫ ∞

0
dx

x2+2xy cosφ+y2 = φ
y sinφ

, the above expression is
simplified to

Var[v(0)] = kBT

m
for all 1/2 < H < 1,

which agrees with the thermal dynamic requirement. �

PROOF OF THEOREM 4.2. Theorem 3.1 implies

Var[x(0)]
= E[x2(0)]
= kBT ζ

2π

∫ ∞
−∞

K̃H (ω)/|mψ − mω2 − iωζ K̃+
H(ω)|2 dω

= kBT

π

∫ ∞
0

(
2ζ�(2H + 1) sin(Hπ)ω1−2H )

× ([mψ − mω2 − ζ�(2H + 1)ω2−2H cos(Hπ)]2

+ [ζ�(2H + 1)ω2−2H sin(Hπ)]2)−1
dω.
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A change of variable η = τω, where τ = [ζ�(2H + 1)]1/(2−2H), gives

Var[x(0)] = kBT

π

∫ ∞
0

(2 sin(Hπ)η1−2H )

× ([mψ − mη2/τ 2 − η2−2H cos(Hπ)]2(A.5)

+ [η2−2H sin(Hπ)]2)−1
dη.

Consider the complex valued function

f (z) = [z(mψ − mz2/τ 2 − z2−2HeiHπ)]−1.

It is straightforward to verify that it is analytic on the region defined by the bound-
ary curve

C = [1/R,R] ∪ {Reiθ : 0 ≤ θ ≤ π} ∪ [−R,−1/R] ∪ {eiθ /R : 0 ≤ θ ≤ π},
where the real number R > 1, and [1/R,R] is the real interval between 1/R and R.

It follows that
∫
C f (z) dz = 0. But∫

C
f (z) dz = I + II + III + IV,

where

I =
∫ R

1/R
[x(mψ − mx2/τ 2 − x2−2HeiHπ)]−1 dx,

II =
∫ π

0

[
Reiθ (

mψ − mR2e2iθ /τ 2 − R2−2Heiθ(2−2H)eiHπ )]−1
dReiθ ,

III =
∫ −1/R

−R
[x(mψ − mx2/τ 2 − x2−2HeiHπ)]−1 dx,

IV =
∫ 0

π

[
eiθ

R

(
mψ − m

e2iθ

R2τ 2 − eiθ(2−2H)

R2−2H
eiHπ

)]−1

d
eiθ

R
.

We thus have I + III = −(II + IV). We can simplify I + III, II and IV as

I + III =
∫ R

1/R
[x(mψ − mx2/τ 2 − x2−2HeiHπ)]−1 dx

+
∫ R

1/R
[x(mψ − mx2/τ 2 − x2−2He−iHπ)]−1 dx

=
∫ R

1/R

1

x

2i sin(Hπ)x2−2H

[mψ − mx2/τ 2 − x2−2H cos(Hπ)]2 + [x2−2H sin(Hπ)]2 dx,

II = i

∫ π

0

(
mψ − mR2e2iθ /τ 2 − R2−2Heiθ(2−2H)eiHπ )−1

dθ,

IV = −i

∫ π

0

(
mψ − m

e2iθ

R2τ 2 − eiθ(2−2H)

R2−2H
eiHπ

)−1

dθ.
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It therefore follows that∫ R

1/R

1

x

2 sin(Hπ)x2−2H

[mψ − mx2/τ 2 − x2−2H cos(Hπ)]2 + [x2−2H sin(Hπ)]2 dx

=
∫ π

0

(
mψ − m

e2iθ

R2τ 2 − eiθ(2−2H)

R2−2H
eiHπ

)−1

dθ

−
∫ π

0

(
mψ − mR2e2iθ /τ 2 − R2−2Heiθ(2−2H)eiHπ )−1

dθ.

Letting R → +∞ provides (by the dominated convergence theorem)

lim
R→+∞

∫ π

0

(
mψ − m

e2iθ

R2τ 2 − eiθ(2−2H)

R2−2H
eiHπ

)−1

dθ = π

mψ
,

lim
R→+∞

∫ π

0

(
mψ − mR2e2iθ /τ 2 − R2−2Heiθ(2−2H)eiHπ )−1

dθ = 0,

yielding∫ ∞
0

1

x

2 sin(Hπ)x2−2H

[mψ − mx2/τ 2 − x2−2H cos(Hπ)]2 + [x2−2H sin(Hπ)]2 dx = π

mψ
.

Plugging this expression into (A.5), we finally obtain

E[x2(0)] = kBT

mψ
for all 1/2 < H < 1. �

PROOF OF THEOREM 5.1. Consider the function

h̆(s) = kBT ζ

mψ

K̃(s)

mψ + ζ sK̃(s)
,

where K̃(s) is the Laplace transform of the memory kernel K(t). The inverse
Laplace transform h(t) of h̆(s) is given by Doetsch (1974), pages 4 and 148,

h(t) = 1

2πi

∫ i∞
−i∞

est h̆(s) ds

= 1

2π

∫ ∞
−∞

eiωt h̆(iω) dω, ω = is

= 2

π

∫ ∞
0

cos(ωt)Re[h̆(iω)]dω.

Since

Re[h̆(iω)] = kBT ζ

mψ
Re

[
K̃(iω)

mψ + iζωK̃(iω)

]
= kBT ζ Re[K̃(iω)]

|mψ − iζωK̃(−iω)|2
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and

K̃(ω) =
∫ ∞
−∞

eitωK(t) dt = 2 Re[K̃(iω)],

K̃+(ω) =
∫ ∞

0
eitωK(t) dt = K̃(−iω),

we obtain

h(t) = 1

π

∫ ∞
0

cos(ωt)kBT ζ K̃(ω)/|mψ − iζωK̃+(ω)|2 dω.

On the other hand, from the proof of Theorem 3.2, we know that for a general
memory kernel K(t), the covariance Cx(t) = cov(x(0), x(t)) is given by

Cx(t) = 1

2π

∫ ∞
−∞

e−itωkBT ζ K̃(ω)/|mψ − iωζ K̃+(ω)|2 dω

= 1

π

∫ ∞
0

cos(ωt)kBT ζ K̃(ω)/|mψ − iζωK̃+(ω)|2 dω,

which is identical to h(t). Therefore, the Laplace transform C̃x(s) of Cx(t) is h̆(s),
namely,

C̃x(s) = kBT ζ

mψ

K̃(s)

mψ + ζ sK̃(s)
. �

Exact expressions of the higher-order autocorrelation functions of λ(t). Since
the fluorescence lifetime λ(t) and the distance fluctuation x(t) are linked by

λ(t) = k0e
β(xeq+x(t)),

to calculate the higher-order autocorrelations of λ(t), the following expression is
very useful.

A useful expression. Suppose x(t) is a stationary Gaussian process with mean 0,
and covariance function Cx(t) = Cov(x(0), x(t)). Then for any t1 ≤ t2 ≤ · · · ≤ tn,
the expectation of E{eAx(t1)eAx(t2) · · · eAx(tn)}, where A is a constant, is given by

E
{
eAx(t1)eAx(t2) · · · eAx(tn)} = exp

{
n

2
A2Cx(0) + A2

∑
i<j

Cx(tj − ti)

}
.(A.6)

PROOF. Since x(t1) + · · · + x(tn) is Gaussian with mean 0 and variance
nCx(0) + 2

∑
i<j Cx(tj − ti), it follows that eAx(t1)eAx(t2) · · · eAx(tn) is log-

normally distributed, and the standard result of the log-normal distribution yields

E
{
eAx(t1)eAx(t2) · · · eAx(tn)} = exp

{
n

2
A2Cx(0) + A2

∑
i<j

Cx(tj − ti)

}
.

�
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Using this expression, we first have E[λ(t)] ≡ E[λ(0)] = E[k0e
β(xeq+x(t))] =

k0 exp(βxeq + 1
2β2Cx(0)). For the three-step correlation function, the stationarity

of λ(t) reduces E[�λ(0)�λ(t1)�λ(t1 + t2)] to

E[�λ(0)�λ(t1)�λ(t1 + t2)]
= E

[{λ(0) − E[λ(0)]}{λ(t1) − E[λ(t1)]}{λ(t1 + t2) − E[λ(t1 + t2)]}]
= E{λ(0)λ(t1)λ(t1 + t2)} + 2{E[λ(0)]}3

− E[λ(0)](E{λ(0)λ(t1)} + E{λ(0)λ(t1 + t2)} + E{λ(t1)λ(t1 + t2)}).
Using (A.6), it is further simplified to

E[�λ(0)�λ(t1)�λ(t1 + t2)]
= k3

0e3βxeq+3β2Cx(0)/2{
eβ2[Cx(t1)+Cx(t2)+Cx(t1+t2)] − eβ2Cx(t1)

− eβ2Cx(t2) − eβ2Cx(t1+t2) + 2
}
.

Similarly, expanding the individual terms in the four-step correlation function
and using the stationarity and (A.6) provide

E[�λ(0)�λ(t1)�λ(t1 + t2)�λ(t1 + t2 + t3)]
= k4

0e4βxeq+2β2Cx(0)

× {
eβ2[Cx(t1)+Cx(t2)+Cx(t3)+Cx(t1+t2)+Cx(t2+t3)+Cx(t1+t2+t3)]

− eβ2[Cx(t1)+Cx(t2)+Cx(t1+t2)]

− eβ2[Cx(t1)+Cx(t2+t3)+Cx(t1+t2+t3)]

− eβ2[Cx(t1+t2)+Cx(t3)+Cx(t1+t2+t3)]

− eβ2[Cx(t2)+Cx(t3)+Cx(t2+t3)] + eβ2Cx(t1)

+ eβ2Cx(t2) + eβ2Cx(t3) + eβ2Cx(t1+t2)

+ eβ2Cx(t2+t3) + eβ2Cx(t1+t2+t3) − 3
}
.
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