
Stochastic Networks in Nanoscale Biophysics:
Modeling Enzymatic Reaction of a Single Protein

S. C. KOU

Advances in nanotechnology enable scientists for the first time to study biological processes on a nanoscale molecule-by-molecule basis.
A surprising discovery from recent nanoscale single-molecule biophysics experiments is that biological reactions involving enzymes behave
fundamentally differently from what classical theory predicts. In this article we introduce a stochastic network model to explain the experi-
mental puzzles (by modeling enzymatic reactions as a stochastic network connected by different enzyme conformations). Detailed analyses
of the model, including analyses of the first-passage-time distributions and goodness of fit, show that the stochastic network model is capa-
ble of explaining the experimental surprises. The model is analytically tractable and closely fits experimental data. The biological/chemical
meaning of the model is discussed.
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1. INTRODUCTION

The rapid advances in nanotechnology have generated much
excitement in the scientific and engineering communities. Its
application to the biological front in the last two decades led
to the new field of nanoscale biophysics: Scientists for the first
time were able to study biological processes on an unprece-
dented nanoscale molecule-by-molecule basis (Nie and Zare
1997; Xie and Trautman 1998; Xie and Lu 1999; Tamarat,
Maali, Lounis, and Orrit 2000; Weiss 2000; Moerner 2002;
Kou, Xie, and Liu 2005b). This new development has opened
the door to addressing many problems that were inaccessi-
ble just a few decades ago and has attracted much attention
from biologists, chemists, and biophysicists, because nanoscale
single-molecule experiments offer many advantages over the
traditional experiments involving a population of molecules.
First, by allowing scientists to “zoom in” on individual mole-
cules, single-molecule experiments provide data with more ac-
curacy and higher resolution. Second, by isolating, tracking,
and manipulating individual molecules, single-molecule exper-
iments capture transient intermediates and detailed dynamics
of a biological process, the type of information rarely available
from traditional population experiments. Third, by following
single molecules, scientists can study biological processes di-
rectly on the individual molecule level, instead of relying on
the extremely difficult task of synchronizing the actions of a
population of biomolecules. Fourth, because many important
biological functions in a living cell are performed by single
molecules, understanding the behavior of individual biomole-
cules is a crucial task, for which single-molecule experiments
are specifically designed. Many new scientific discoveries (see,
e.g., Lu, Xun, and Xie 1998; Zhuang et al. 2002; Asbury, Fehr,
and Block 2003; Yang et al. 2003; Kou and Xie 2004; Kou et
al. 2005a) have emerged from the nanoscale single-molecule
studies.

Advances in nanoscale single-molecule biophysics also bring
opportunities for statisticians and probabilists because to char-
acterize the behavior of individual molecules, which exist in the
nanometer world subject to the laws of statistical and quantum
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mechanics, stochastic models and their statistical inference are
indispensable (Kou 2008).

In this article we consider recent single-molecule experi-
ments on enzymatic reactions (Flomembom et al. 2005; Eng-
lish et al. 2006), where the high-resolution experimental results
showed a surprising departure from what classical theory pre-
dicts. To explain the single-molecule experimental findings, we
introduce a stochastic network model to describe the enzymatic
reaction kinetics.

According to the classical Michaelis–Menten (MM) model
of enzymatic reaction in biochemistry (Atkins and de Paula
2002), an enzyme catalyzes a reaction in the following way.
First, the enzyme binds to the reactant, which is referred to in
the biochemistry literature as a substrate, and forms an enzyme–
substrate complex. The complex then undergoes a decomposi-
tion to generate the reaction product and release the enzyme in
its original form to catalyze the next substrate. In the biochem-
istry literature this process is typically diagrammed as

E + S � ES → E0 + P, E0 → E,

where the arrows indicate the reaction direction and E (and
E0), S, ES, and P stand for the enzyme, the substrate, the
enzyme–substrate complex, and the reaction product, respec-
tively.

In addition to providing a schematic picture, the classical
MM model also gives quantitative results; for example, it ex-
plicitly describes how the reaction rate depends on the substrate
concentration (see Sec. 2 for details). Over the years, numer-
ous experiments carried out in the traditional way (i.e., using
a population of enzymes and substrates) yielded results agree-
ing with the quantitative descriptions of the MM model, and,
thus, for decades the MM model was featured in textbooks as
the fundamental mechanism for enzymatic reactions (Hammes
1982; Fersht 1985; Segel 1993).

Recent nanoscale single-molecule experiments (English et
al. 2006), which for the first time tracked the behavior of a sin-
gle enzyme, however, have surprised researchers, as the high-
resolution experimental data showed an unequivocal departure
from the MM model:
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• First, under the MM model a single enzyme behaves as
a continuous-time Markov chain, switching among the
three states E, ES, and E0. From the Markov descrip-
tion, the MM model predicts that an enzyme’s turnover
time, which is the time that it takes the enzyme to com-
plete one catalytic cycle (i.e., to go from state E to state
E0), should have (almost) a purely exponential distrib-
ution. The single-molecule experimental data, however,
show that the distribution of the turnover time is actually
much heavier than an exponential one.

• Second, because under the MM model a single enzyme
behaves as a continuous-time Markov chain, it follows
from the Markov property that an enzyme’s successive
turnover times should be independently and identically
distributed. In the single-molecule experiments, however,
it is observed that a single enzyme’s successive turnover
times are, in fact, highly correlated, possessing a strong
memory.

• Third, the MM model gives a formula (known as the
Michaelis–Menten equation in the literature) that displays
a hyperbolic relationship between the reaction rate and the
substrate concentration. This formula appears to hold for
the single-molecule experimental data.

Sections 2 and 5 will provide more details. Some questions
immediately arise from these observations. First, what causes
the turnover time’s heavier-than-exponential distribution? Sec-
ond, how can an enzyme “remember” its past, and from where
does the memory come? Third, given that the experimental
data have contradicted the two fundamental predictions of the
MM model, how can the explicit formula derived from the MM
equation still hold?

We formulate a stochastic network model to answer these
questions.

From a statistics standpoint, we conduct a detailed analysis of
the stochastic network: studying its statistical inference as well
as analyzing the first passage times on the network, as both are
crucial in explaining the experimental puzzles.

From an application point of view, we show that by utilizing
a stochastic network structure to describe enzymatic reaction
kinetics at the molecular level, the recent experimental puzzles
can be satisfactorily resolved.

The outline of the article is as follows. Section 2 reviews the
experimental puzzles that motivate our study and introduces our
stochastic network model; special attention is paid to the bio-
logical/chemical meaning of the model components. Section 3
investigates the properties of the model, the stationary and the
first-passage-time distributions in particular. The analytical re-
sults are applied in Section 4 to explain the experimental puz-
zles. Section 5 considers data from recent single-molecule ex-
periments, assesses the goodness of fit of the MM model to
the real data, and uses maximum likelihood to fit our model
to the experimental data, showing close agreement between our
model and the data. Section 6 concludes the article with a dis-
cussion. All the technical derivations and proofs are given in
the Appendix.

2. MODELING ENZYMATIC REACTIONS

2.1 The Classical Michaelis–Menten Model and
Its Limitations

To facilitate the introduction of our model, we first review
the classical MM model and its limitations in explaining recent
single-molecule experimental results.

In the MM model, with the substrate concentration held con-
stant, a single enzyme molecule cycles repetitively through the
three states E, ES, and E0 via

E + S
k1[S]
�
k−1

ES
k2→ E0 + P, E0 δ→ E, (2.1)

where the symbol [S] denotes the (constant) substrate concen-
tration; k1 is the association rate (per unit substrate concentra-
tion); k−1 and k2 are, respectively, the dissociation and catalytic
rate; and δ is the rate of E0’s return to E.

In our familiar statistics language, diagram (2.1) is the rout-
ing map of a three-state continuous-time Markov chain with the
infinitesimal generator (transition matrix)

QMM =
(−k1[S] k1[S] 0

k−1 −(k−1 + k2) k2
δ 0 −δ

)
.

An enzyme molecule switches continuously among the three
states E, ES, and E0 according to QMM.

The time needed for an enzyme to complete one catalytic
cycle is called the turnover time.

In the MM model the turnover time is the first passage time
from state E to state E0. The density function of this first pas-
sage time is given by the following proposition, whose deriva-
tion is deferred to the Appendix.

Proposition 2.1. The density function of the first passage
time from state E to state E0 is

f (t) = k1k2[S]
2p

(
e−(q−p)t − e−(q+p)t

)
, (2.2)

where p = √
(k1[S] + k2 + k−1)2/4 − k1k2[S] and q =

(k1[S] + k2 + k−1)/2.

Equation (2.2), together with (2.1), has important experimen-
tal implications for the MM model.

• First, (2.2) says that the distribution of the turnover time
should have an exponential decay with rate q − p in the
MM model. Furthermore, due to the exponential nature,
for most values of t , e−(q−p)t easily overwhelms e−(q+p)t ;
thus, f (t) is almost a purely exponential distribution, and
will, thus, yield a practically straight line on a log-linear
plot. Figure 1 illustrates this point, plotting f (t) on a log-
linear scale for typical values of [S], k1, k2, and k−1; a
clear linear pattern is shown.

• Second, because an enzyme’s behavior is modeled as a
Markov chain in the MM model, it follows immediately
that an enzyme’s successive turnover times are indepen-
dently and identically distributed. No memory should be
found among the turnover times.
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Figure 1. Density function f (t) of the turnover time from the MM
model plotted on a log-linear scale. [S] = 100 μM (micromolar),
k1 = 5 × 107 M−1 s−1, k2 = 730 s−1, k−1 = 18,300 s−1.

• Third, from (2.2) we know that the mean turnover time is∫ ∞

0
f (t)t dt = k1[S] + k2 + k−1

k1k2[S] .

The reciprocal of the mean turnover time is defined as the
enzymatic reaction rate (Yang and Cao 2001; Kou et al.
2005a; Min et al. 2006):

v = 1
/(∫ ∞

0
f (t)t dt

)
= k2[S]

[S] + (k2 + k−1)/k1
. (2.3)

This relationship, referred to as the Michaelis–Menten
equation, is of fundamental importance in the biochem-
istry literature (Segel 1993; Atkins and de Paula 2002):
It gives an explicit hyperbolic dependence of the reaction
rate v on the substrate concentration [S].

Before nanoscale single-molecule experiments were possi-
ble, numerous researchers had studied different enzyme sys-
tems under the traditional experimental approach. Unable to
follow an individual enzyme molecule, the traditional experi-
ments relied on a population of enzymes, and by measuring the
accumulation of reaction products over time, researchers esti-
mated the reaction rate for various substrate concentrations. It
was found in these traditional experiments that the hyperbolic
form in (2.3), that is,

v ∝ [S]/([S] + C) with some constant C,

appeared to hold for many enzymes. Thus, for decades the MM
model has been featured in textbooks as the fundamental mech-
anism for enzymatic reactions (Hammes 1982; Fersht 1985;
Segel 1993).

Advances in nanotechnology have made it possible to study
enzymatic reactions at the single-molecule level. English et
al. (2006) recently carried out single-molecule experiments to
study β-galactosidase, an essential enzyme in the human body
that catalyzes the breakdown of the sugar lactose (Jacobson,
Zhang, DuBose, and Matthews 1994; Dorland 2003). The ex-
perimental results surprised researchers, as the high-resolution
data clearly demonstrated that

a. The empirical distribution of the experimentally recorded
turnover times is much heavier than an exponential one.

b. A single enzyme’s successive turnover times are strongly
correlated.

c. The hyperbolic relationship of v ∝ [S]/([S] + C) appears
to hold true for the single-molecule data.

Section 5 will provide details about the experiments. Given
that findings (a) and (b) contradict the fundamentals of the MM
model, finding (c) is even more surprising.

2.2 The Stochastic Network Model

Model Construction. An important clue in our effort to re-
solve the experimental puzzles comes from other recent single-
molecule experiments (Lu et al. 1998; Yang et al. 2003; Kou
and Xie 2004; Min et al. 2005a; Min et al. 2005b), where, in
studying different biological systems, researchers have become
aware that enzymes are not rigid entities but rather dynamic
biomolecules, experiencing constant changes and fluctuations
in their three-dimensional shape and configuration. This obser-
vation suggests that we should not treat an enzyme as an object
with a fixed state; instead, we should view an enzyme as a col-
lection of states, each state being a distinct conformation (i.e.,
a distinct spatial configuration) with an enzyme spontaneously
switching among the different states. With this insight we pro-
pose the following stochastic network model for enzymatic re-
actions, diagrammed as

S + E1

k11[S]
�
k−11

ES1
k21→ P + E0

1, E0
1

δ1→ E1,

↓↑ ↓↑ ↓↑ ...

S + E2

k12[S]
�
k−12

ES2
k22→ P + E0

2, E0
2

δ2→ E2,

...
...

...
...

↓↑ ↓↑ ↓↑
S + En

k1n[S]
�
k−1n

ESn
k2n→ P + E0

n, E0
n

δn→ En,

(2.4)

where E1,E2, . . . represent the different states (conformations)
of the original enzyme, and ESi and E0

i are the states corre-
sponding to subsequent enzyme–substrate binding and decom-
position. The parameter [S] in (2.4) denotes the concentration
of substrate [as in (2.1)]; k1i is the association rate (per unit
concentration) for the ith state Ei ; and k−1i , k2i , and δi are,
respectively, the dissociation, catalytic, and returning rates cor-
responding to the transitions from ESi to S + Ei , from ESi to
P + E0

i , and from E0
i to Ei , respectively.

The transitions among the Ei ’s in the model capture the (con-
formational) fluctuation of the enzyme. It should be understood
that Ei not only connects with Ei−1 and Ei+1 but also with all
the other Ej ’s [we only depict the Ei ↔ Ei−1 and Ei ↔ Ei+1
transitions in (2.4) due to graphical limitations], and the same
is true among the ESi states and the E0

i states, respectively.
Different states, due to their specific spatial arrangement,

could have different reactivity levels. This is embodied in the
model by allowing k1i , k−1i , k2i , and δi to take distinct values
for different i.

The transitions between S + Ei and ESi incorporate the in-
sight that in a real enzymatic reaction, the enzyme–substrate
binding should take place between the substrate and a specific
spatial configuration of the enzyme (and in this regard there is
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no transition between S + Ei and ESj and between ESi and E0
j

for i �= j because they correspond to different conformations).
Our model (2.4) generalizes the classical MM model to a

stochastic network in the sense of Kelly and Williams (1995),
Glasserman, Sigman, and Yao (1996), Chen and Yao (2001),
and Ball, Kurtz, Popovic, and Rempala (2006). Each stage
of enzymatic reaction (initiation, binding, and decomposition)
consists of a collection of states (enzyme conformations). As
we shall see, this multistates network structure plays a central
role in explaining the experimental results.

Statistical Formulation. Let αij denote the transition rate
from Ei to Ej (i �= j ), βij denote the transition rate from ESi to
ESj , and γij denote the transition rate from E0

i to E0
j . Then the

stochastic network (2.4) can be described as a continuous-time
Markov chain with infinitesimal generator (transition matrix)

Q =
(QAA − QAB QAB 0

QBA QBB − (QBA + QBC) QBC

QCA 0 QCC − QCA

)
,

(2.5)

where for notational convenience the square matrix QAA rep-
resents the transition rates among the Ei states (think of Ai as
shorthand notation for Ei ),

(QAA)ij = αij for i �= j, (QAA)ii = −
∑
j �=i

αij .

Likewise, the matrices QBB and QCC represent the transition
rates among the ESi states and E0

i states, respectively (think of
Bi and Ci as shorthand notation for ESi and E0

i , respectively),

(QBB)ij = βij for i �= j, (QBB)ii = −
∑
j �=i

βij ,

(QCC)ij = γij for i �= j, (QCC)ii = −
∑
j �=i

γij .

The diagonal matrices QAB , QBA, QBC , and QCA in (2.5)
denote the transition rates from Ei to ESi , from ESi to Ei ,
from ESi to E0

i , and from E0
i to Ei , respectively: QAB =

diag(k11[S], k12[S], . . . , k1n[S]), QBA = diag(k−11, k−12, . . . ,

k−1n), QBC = diag(k21, k22, . . . , k2n), and QCA = diag(δ1, δ2,

. . . , δn).

Turnover Time. In our model (2.4) an enzyme’s turnover
time is the first passage time from the first reaction stage to
the third stage, that is, from any Ei state to any E0

j state.
For example, suppose an enzyme travels through the following
path: E0

1 → E1 → E2 → ES2 → E0
2 → E2 → E3 → ES3 →

ES1 → S1 → ES1 → E0
1 . Then the first turnover time corre-

sponds to E1 → E2 → ES2 → E0
2 , and the second corresponds

to E2 → E3 → ES3 → ES1 → S1 → ES1 → E0
1 . The feature

that a turnover event can start from any Ei and end in any E0
j

in our model captures the fact that in a single-molecule exper-
iment, instead of observing the specific enzyme conformations
and their interconversions, one can record only the time for an
enzyme to complete a reaction cycle. In other words, on the
network (2.4), the exact states are not observed, and only tran-
sitions from the first stage (consisting of E1, . . . ,En) to the last
stage (consisting of E0

1, . . . ,E0
n) are observed.

3. PROPERTIES OF THE STOCHASTIC
NETWORK MODEL

We study the stochastic network model in this section. The
results will be used in Section 4 to explain the experimental
puzzles.

3.1 Detailed Balance: A Constraint on the Model

An important chemical requirement for kinetic models is the
detailed balance condition (Lewis 1925; Schnakenberg 1976;
Kelly 1979). It states that if any two states are mutually spon-
taneously convertible, then detailed balance must hold between
them. In our case, because Ei and Ej are mutually convert-
ible, and so are the pairs ESi and ESj , E0

i , and E0
j , and Ei and

ESi , the transition rates must satisfy the following constraints:
There exist positive numbers φ(Ei), φ(ESi ), and φ(E0

i ) (i =
1,2, . . . , n) such that, for any i and j ,

φ(Ei)αij = φ(Ej )αji, φ(ESi )βij = φ(ESj )βji,
(3.1)

φ(Ei)k1i[S] = φ(ESi )k−1i , φ(E0
i )γij = φ(E0

j )γji .

In matrix notation the detailed balance condition can be con-
cisely written as(

�A 0
0 �B

)(
QAA QAB

QBA QBB

)

=
(

QAA QAB

QBA QBB

)T (
�A 0
0 �B

)
, (3.2)

�CQCC = QT
CC�C,

where the diagonal matrices �A = diag(φ(E1),φ(E2), . . . ,

φ(En)), �B = diag(φ(ES1), . . . , φ(ESn)), and �C =
diag(φ(E0

1), . . . , φ(E0
n)).

The detailed balance condition (3.1) implies, in particular,
that if we isolate the Ei states (i = 1,2, . . . , n) and look only at
transitions among them, that is, if we look at the subnetwork of
(2.5) with transition matrix QAA, then

φA = (
φ(E1),φ(E2), . . . , φ(En)

)
(3.3)

is the stationary measure for the subnetwork: φAQAA = 0. Sim-
ilarly, for ESi states in isolation, and E0

i states in isolation

φB = (
φ(ES1), . . . , φ(ESn)

)
and

(3.4)
φC = (

φ(E0
1), . . . , φ(E0

n)
)

are the stationary measures for the subnetworks, respectively:
φBQBB = 0, φCQCC = 0. Furthermore, if we consider the sub-
network consisting of Ei and ESi states (i = 1,2, . . . , n) to-

gether [which has
(

QAA − QAB QAB

QBA QBB − QBA

)
as the transition ma-

trix], (φA,φB) is the stationary measure:

(φA,φB)

(
QAA − QAB QAB

QBA QBB − QBA

)
= 0.

On the other hand, because ESi and E0
i are not mutually con-

vertible, there is no detailed balance between them, and, in gen-
eral, (φA,φB,φC) is not the stationary measure of the entire
network: (φA,φB,φC)Q �= 0.
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Remark 1. It is worth emphasizing that in our model detailed
balance holds only for subnetworks, not for the entire network.
The reason is that (1) the transition rate k2i from ESi to E0

i is
positive, but there is no transition from E0

i to ESi , and (2) the
transition rate δi from E0

i to Ei is positive, but there is no tran-
sition from Ei to E0

i . Therefore, there do not exist nonzero
φ(Ei), φ(ESi ), and φ(E0

i ) to maintain the detailed balance be-
tween ESi and E0

i or between Ei and E0
i . From a chemical

standpoint, this happens because ESi and E0
i (and Ei and E0

i )
are not mutually spontaneously convertible. Except for these
special pairs, the detailed balance, however, does hold for any
other pairs; for example, it holds between Ei and Ej , between
ESi and ESj , between E0

i and E0
j , and between Ei and ESi as

shown in (3.1).

3.2 Stationary Distribution

Let X(t) be the process evolving according to our stochastic
network model (2.4).

Lemma 3.1. Suppose all the parameters k1i , k−1i , k2i , δi , αij ,

βij , and γij are positive. Then the continuous-time Markov
chain X(t) is ergodic. Let the row vectors πA = (π(E1),

π(E2), . . . , π(En)), πB = (π(ES1), . . . , π(ESn)), and πC =
(π(E0

1), . . . , π(E0
n)) denote the stationary distribution of the

entire network. Up to a normalizing constant, they are deter-
mined by

πA = −πCQCAL, πB = −πCQCAM, (3.5)

πC(QCC − QCA − QCAMQBC) = 0, (3.6)

where the matrices L and M are given by

L = [QAA − QAB − QAB(QBB − QBA − QBC)−1QBA]−1,

(3.7)

M = [QBB − QBC − (QBB − QBA − QBC)Q−1
ABQAA]−1.

(3.8)

Lemma 3.1, whose derivation is deferred to the Appendix,
tells us that to obtain the stationary measure of X(t), the key
equation is (3.6) because upon solving it for πC we can imme-
diately get πA and πB via (3.5).

3.3 Distributions of First Passage Times

As we noted in Section 2.2, an enzyme turnover event in our
model can start from any Ei state and end in any E0

j state. To
calculate the turnover time distributions, let TEi

and TESi
de-

note the first passage time to reach the set {E0
1, . . . ,E0

n} from
states Ei and ESi , respectively, and let fEi

(t) and fESi
(t) be

their corresponding density functions. The following theorem
provides an explicit formula for the distributions in terms of
their Laplace transforms.

Theorem 3.2. Let f̃Ei
(s) and f̃ESi

(s) be the Laplace trans-
forms of fEi

(t) and fESi
(t) [i.e., f̃J (s) = ∫ ∞

0 e−stfJ (t) dt ,

J = Ei or ESi ] and denote f̃A(s) = (f̃E1(s), f̃E2(s), . . . ,

f̃En(s))
T and f̃B(s) = (f̃ES1(s), f̃ES2(s), . . . , f̃ESn(s))

T . Then
the distributions of the turnover times are given by(

f̃A(s)

f̃B(s)

)
=

[
sI −

(
QAA − QAB QAB

QBA QBB − QBA − QBC

)]−1

×
(

0
QBC1

)
, (3.9)

where the boldface 1 denotes the vector (1,1, . . . ,1)T .

The derivation of Theorem 3.2 is given in the Appendix. The
following corollary is a direct consequence of Theorem 3.2; its
proof is also deferred to the Appendix.

Corollary 3.3. Let the vectors μA = (E(TE1),E(TE2), . . . ,

E(TEn))
T and μB = (E(TES1), . . . ,E(TESn))

T denote the mean
first passage times. Then they are given by(

μA

μB

)
=

(−(L + M)1
−(N + R)1

)
, (3.10)

where the matrices L and M are defined in Lemma 3.1, and the
matrices N and R are given by

N = [QAA − (QAA − QAB)Q−1
BA(QBB − QBC)]−1,

R = [QBB − QBA − QBC − QBA(QAA − QAB)−1QAB ]−1.

3.4 Stationary Turnover Time Distribution and
Reaction Rate

A single-molecule experiment tracks the reaction cycles of a
single enzyme, records the enzyme’s successive turnover times
over a long period, and then obtains the empirical distribution
(i.e., the histogram) of these recorded turnover times. To find
the theoretical correspondence of this empirical distribution,
we first note that in our model a turnover event can start from
any state Ei , each having its own first-passage-time distribution
fEi

(t). Therefore, in the long run, the overall distribution of all
the turnover times should be characterized by the weighted av-
erage of fEi

(t) with the weights given by the stationary proba-
bility of a turnover event’s starting from Ei . Let w(Ei) denote
this stationary probability; the overall stationary (equilibrium)
turnover time distribution is then

feq(t) =
∑

i

w(Ei)fEi
(t).

Lemma 3.4. The Laplace transform f̃eq(s) of feq(t) is

f̃eq(s) = wf̃A(s)

w1
,

where the (row) weighting vector w, up to a normalizing con-
stant, is the nonzero solution of

w(I + MQBC − Q−1
CAQCC) = 0, (3.11)

and f̃A(s) is given in Theorem 3.2 (the matrix M is defined in
Lemma 3.1).

Combining the results of Corollary 3.3 and Lemma 3.4, we
have the following result.
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Corollary 3.5. The mean stationary turnover time under
model (2.4) is given by

μeq =
∫ ∞

0
tfeq(t) dt

= 1

w1
w(I − Q−1

CAQCC)Q−1
BC

× [I − (QBB − QBA − QBC)Q−1
AB ]1, (3.12)

where the row vector w is defined in Lemma 3.4.

Reaction Rate. The reciprocal of an enzyme’s mean sta-
tionary turnover time is defined as the enzymatic reaction rate
(Yang and Cao 2001; Kou et al. 2005a; Min et al. 2006). There-
fore, under our stochastic network model (2.4), the reaction rate
v is given by

v = 1/μeq = {w1}/{w(I − Q−1
CAQCC)Q−1

BC

× [I − (QBB − QBA − QBC)Q−1
AB ]1}

.

4. EXPLAINING THE EXPERIMENTAL PUZZLES

Utilizing the previous results, we now apply our model to ex-
plain the single-molecule experimental findings, starting from
the first puzzle.

4.1 Heavier-Than-Exponential Turnover
Time Distribution

The MM model predicts the turnover time distribution to be
nearly exponential (see Sec. 2.1 and Fig. 1). This prediction,
however, is contradicted by the single-molecule experimental
finding that the empirical distribution of an enzyme’s turnover
times actually exhibits a heavily skewed right tail. (We will give
details about the experiments in Sec. 5.) Our stochastic network
model, on the other hand, offers a simple explanation.

As we noted in Section 3.4, the empirical turnover time dis-
tribution is theoretically characterized in our model by the sta-
tionary turnover time distribution feq(t). Its Laplace transform,
according to Lemma 3.4 and Theorem 3.2, is

f̃eq(s) = 1

w1
(w 0 )

(
f̃A(s)

f̃B(s)

)

= 1

w1
(w 0 )

×
[
sI −

(
QAA − QAB QAB

QBA QBB − QBA − QBC

)]−1

×
(

0
QBC1

)
, (4.1)

where the weighting vector w is defined in (3.11). The next
lemma simplifies this expression.

Lemma 4.1. Let G denote the matrix(
QAA − QAB QAB

QBA QBB − QBA − QBC

)
.

It is diagonalizable:

G = U�U−1 =
2n∑
i=1

λiξ iη
T
i ,

where the diagonal matrix � = diag(λ1, λ2, . . . , λ2n) consists
of the eigenvalues of G, which are strictly negative, the columns
ξ1, ξ2, . . . , ξ2n of the matrix U are the right eigenvectors of G,
and the rows ηT

1 ,ηT
2 , . . . ,ηT

2n of U−1 are the left eigenvectors.
This diagonalization implies that

f̃eq(s) =
2n∑
i=1

σi

−λi

s − λi

,

where

σi = 1

−λi

[
(w 0)ξ i

w1
ηT

i

(
0

QBC1

)]
,

which translates to

feq(t) =
2n∑
i=1

σi(−λie
λi t ). (4.2)

The proof is deferred to the Appendix.
Lemma 4.1 tells us that under our stochastic network model

the stationary turnover time distribution consists of a mixture
of exponential distributions (because λi < 0 for all i). There-
fore, as long as there are multiple states (conformations) in the
network (n > 1), the distribution, in general, would be heavier
than a single exponential one.

Equation (4.2), thus, gives an explanation of the first experi-
mental surprise. In particular, it says that if one plots the empiri-
cal distribution (i.e., the histogram) of successive turnover times
on a logarithmic scale, instead of observing a straight line indi-
cating a single-exponential tail, one would find a line skewed to
the right, which is exactly what has been observed in the single-
molecule experiments (see Sec. 5).

Remark 2. The multistates structure plays a central role
here. Without it, we would not be able to have a heavier-than-
exponential distribution to account for the experimental obser-
vation.

4.2 Memory (Correlation) Between Successive
Turnover Times

Under the classical MM model (2.1) the turnover times of
an enzyme are independently and identically distributed. The
single-molecule experimental discovery of correlation between
an enzyme’s successive turnover times contradicts this predic-
tion. Our stochastic network model provides a natural explana-
tion of this puzzle.

The key is that in our model an enzyme turnover event can
start from any Ei states (which models the fact that a single-
molecule experiment records only the time for an enzyme to
complete a reaction cycle and cannot observe the specific en-
zyme states; see Sec. 2.2). The unobservability of individual
states gives rise to an aggregation effect: Rather than the de-
tailed movements on the full network, one is able to observe
only transitions from one group of states {E1, . . . ,En} to an-
other group {E0

1, . . . ,E0
n}. The aggregation masks the original

Markov structure and directly leads to correlation between suc-
cessive turnover times.
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To make the idea transparent, imagine there are only two
states E1 and E2 for illustration per se:

S + E1

k11[S]
�
k−11

ES1
k21→ P + E0

1, E0
1,

δ1→ E1,

α12 ↓↑ α21 β12 ↓↑ β21 γ12 ↓↑ γ21
...

S + E2

k12[S]
�
k−12

ES2
k22→ P + E0

2, E0
2

δ2→ E2.

Suppose the transition rates αij , βij , and γij are all small, mean-
ing that the transitions between E1 and E2, between ES1 and
ES2, and between E0

1 and E0
2 are all infrequent. Then it is eas-

ily seen that if a turnover event starts from E1, it is highly likely
that the next turnover event will also start from E1; the same is
true for turnover events starting from E2. Now imagine further-
more that E1 and E2 have different reactivity levels; for exam-
ple, the transitions between E1 and ES1, from ES1 to E0

1 , and
from E0

1 to E1 are all fast, while the transitions between E2 and
ES2, from ES2 to E0

2 , and from E0
2 to E2 are all slow. Then it is

clear that a slow/fast turnover will likely be followed by another
slow/fast turnover, naturally producing the correlation between
successive turnover times.

Remark 3. We see from the preceding discussion that the
apparent memory does not mean an enzyme can actually “re-
member” its past. In fact, it is the aggregation effect, that is, the
(experimental) indistinguishability of the individual states, that
generates the apparent memory. In a similar spirit, this type of
aggregate Markov process has been applied in the study of ion
channels (see Colquhoun and Hawkes 1981; Fredkin and Rice
1986). The multistates structure again plays a pivotal role here.
Without the multiple states, we would not have aggregation and,
consequently, would not be able to account for the memory.

4.3 Hyperbolic Relationship Between Reaction Rate and
Substrate Concentration

The classical MM model describes a hyperbolic dependence
of the reaction rate v on the substrate concentration [S] [see
(2.3)]. Interestingly, in both traditional population-based exper-
iments and recent single-molecule experiments, the hyperbolic
relationship of v ∝ [S]/([S]+C) appears to hold. With the pre-
vious negative experimental results countering the MM model,
a natural question is to make sense of this “positive” one. Our
network model offers a resolution. In particular, it points out
various general scenarios under which the hyperbolic form will
arise.

The reaction rate in the network model was derived in Sec-
tion 3.4 to be

v = {w1}/{w(I − Q−1
CAQCC)Q−1

BC

× [I − (QBB − QBA − QBC)Q−1
AB ]1}

, (4.3)

with the weighting vector w defined in (3.11). To find the link
between v and [S], we note that of all the transition rates in
the model, only those from Ei to ESi involve [S]: QAB =
diag(k11[S], k12[S], . . . , k1n[S]). See Section 2.2. Let us denote

QAB = [S]Q̃AB, Q̃AB = diag(k11, . . . , k1n).

The next lemma (with derivation given in the App.) supplies a
generic condition under which the specific hyperbolic relation-
ship will appear.

Lemma 4.2. If the stationary weights w in (4.3) do not de-
pend on [S], then the reaction rate v has a hyperbolic depen-
dence on [S]:

v = χ[S]
[S] + CM

, (4.4)

where the constants

χ = w1/{w(I − Q−1
CAQCC)Q−1

BC1},
CM = {

w(I − Q−1
CAQCC)Q−1

BC(QBA + QBC − QBB)Q̃−1
AB1

}
/{w(I − Q−1

CAQCC)Q−1
BC1}

do not involve [S].
Remark 4. Lemma 4.2 indicates that the hyperbolic expres-

sion of v ∝ [S]/([S]+C) is not unique to the MM model. Such
a formula could readily arise from our model.

Fast Enzyme Reset. In most enzymatic reactions, including
those involving β-galactosidase, once the product is released,
the enzyme returns very quickly to restart a new cycle (Segel
1993). This biochemical fact is captured in our model (2.4) by
letting δi (i = 1,2, . . . , n), the transition rates from E0

i to Ei ,
go to ∞. For the remainder of this section, we, thus, focus on
studying these fast-cycle-reset enzymes.

The reaction rate expression (4.3) in this case can be reduced
to

v = {w1}/{wQ−1
BC[I − (QBB − QBA − QBC)Q−1

AB ]1}
,

and (3.11), which determines the weights w, can be simplified
to

w(I + MQBC) = 0; (4.5)

the two constants χ and CM in Lemma 4.2 become

χ = w1/{wQ−1
BC1},

(4.6)
CM = {wQ−1

BC(QBA + QBC − QBB)Q̃−1
AB1}/{wQ−1

BC1}.
The next theorem, whose proof is deferred to the Appendix,

identifies six different scenarios; each scenario guarantees the
stationary weights w not depending on [S] and, hence, the hy-
perbolic relationship (4.4).

Theorem 4.3. For enzymes with fast cycle reset (i.e., after
taking the limit of δi → ∞, i = 1, . . . , n), if any one of the
following six scenarios holds, then the stationary weights w will
not depend on the concentration [S], and, hence, the reaction
rate will obey

v = χ[S]
[S] + CM

.

Scenario 1. There are no or negligible transitions among the
Ei states; that is, QAA → 0, in which case χ = {φBQBC1}/
{φB1} and CM = {φB(QBA + QBC)Q̃−1

AB1}/{φB1}.
Scenario 2. There are no or negligible transitions among the

ESi states; that is, QBB → 0, in which case χ = {φAQ̃AB ×
(QBA + QBC)−1QBC1}/{φAQ̃AB(QBA + QBC)−11} and
CM = {φA1}/{φAQ̃AB(QBA + QBC)−11}.
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Scenario 3. The transitions among the Ei states are much
faster than the others; that is, QAA = κQ̃AA, and the scale κ is
much larger than the other transition rates: κ → ∞. In this case
χ = {φAQ̃AB(QBB −QBA −QBC)−1QBC1}/{φAQ̃AB(QBB −
QBA − QBC)−11} and CM = {φA1}/{φAQ̃AB(QBA + QBC −
QBB)−11}.

Scenario 4. The transitions among the ESi states are much
faster than the others; that is, QBB = κQ̃BB , and the scale
κ is much larger than the other transition rates: κ → ∞.
In this case χ = {φBQBC1}/{φB1} and CM = {φB(QBA +
QBC)Q̃−1

AB1}/{φB1}.
Scenario 5. The transition rate from ESi to Ei is much

larger than the rate from ESi to E0
i ; that is, k−1i 	 k2i for

i = 1,2, . . . , n. In this case χ = {φBQBC1}/{φB1} and CM =
{φB(QBA + QBC)Q̃−1

AB1}/{φB1}.
Scenario 6. For all the ESi states, the ratios between the for-

ward and backward transition rates are the same: k21/k−11 =
k22/k−12 = · · · = k2i/k−1i = · · · = k2n/k−1n. In this case χ =
{φBQBC1}/{φB1} and CM = {φB(QBA+QBC)Q̃−1

AB1}/{φB1}.
Note that the row vectors φA and φB referred to previously

are defined by (3.3) and (3.4).

The six scenarios in Theorem 4.3, each covering a large class
of enzymes, have their biochemical implications. Scenarios
1 and 2 correspond to the so-called slow fluctuating enzymes,
those whose conformations fluctuate/interconvert slowly; Sce-
narios 3 and 4 correspond to fast fluctuating enzymes, those
having fast conformational fluctuations; Scenario 5 corre-
sponds to the so-called primitive enzymes, those whose dis-
sociation rate is much larger than their catalytic rate (Albery
and Knowles 1976; Min et al. 2006); Scenario 6 corresponds
to conformational-equilibrium enzymes, those possessing the
chemical property that the energy–barrier difference between
their dissociation and catalysis is invariant across conforma-
tions (Min et al. 2006).

By pointing out various general cases under which the hy-
perbolic relationship between v and [S] arises from our model,
Theorem 4.3 and Lemma 4.2 provide an explanation of the third
experimental puzzle: Although the MM model gives the de-
scription of v ∝ [S]/([S] + C), observing such a relationship
in experiments by no means implies that the MM model is the
underlying mechanism because the MM model is only one of
many that display such a relationship—the discovery of mem-
ory and heavier-than-exponential distribution of the turnover
times points to the opposite direction. This understanding helps
reconcile the long-held belief in the MM model with the recent
single-molecule experimental surprises. For decades, numerous
traditional experiments on different enzymes yielded the v ∝
[S]/([S] + C) relationship; because of this, they were viewed
as strong evidence for the MM model. Now we know that these
traditional experimental outcomes can be better viewed as evi-
dence for our more general stochastic network model.

5. FROM THEORY TO EXPERIMENTAL DATA

A recent single-molecule experiment (English et al. 2006)
conducted by the Xie group at Harvard University (Department
of Chemistry and Chemical Biology) studied β-galactosidase

(β-gal), an essential enzyme in the human body that catalyzes
the breakdown of the sugar lactose (Jacobson et al. 1994; Dor-
land 2003). In the experiment a single β-gal molecule is immo-
bilized (to a bead), which allows its enzymatic turnovers to be
continuously monitored under a fluorescence microscope. To
detect the individual turnovers, careful design and special treat-
ment were carried out so that once the experimental system was
placed under a laser beam the reaction product and only the re-
action product was fluorescent. This setting ensures that as the
β-gal enzyme catalyzes one substrate molecule after another,
a strong fluorescence signal is emitted and detected only when
a product is released, that is, only when the enzyme reaches
the E0

i + P stage [see (2.1) and (2.4) for diagrams]. Recording
the fluorescence signals over time thus enables the experimental
determination of individual turnovers.

Figure 2(a) presents a schematic picture of the experimental
setup. Figure 2(b) shows a typical fluorescence intensity read-
ing from the experiment: Each vertical bar is a fluorescence in-
tensity spike generated by the release of one reaction product.

Because β-gal is a fast-reset enzyme (Sec. 4.3), the time
lag between two adjacent fluorescence spikes is the enzymatic
turnover time. Thus, by moving along the time axis and tak-
ing the time lag between every two consecutive fluorescence
spikes [the vertical bars in Fig. 2(b)], one obtains the succes-
sive turnover times of the β-gal molecule (in this way the raw
experimental record was translated into numerical datasets).

To investigate how the substrate concentration [S] affects the
turnover times, the experiment was repeated at different levels
of [S]; throughout each repetition the substrate concentration
[S] is held at a fixed level.

5.1 Experimental Turnover Time Distributions

The empirical distributions of the experimental turnover
times obtained at four substrate concentrations [S] = 10 μM,
20 μM, 50 μM, and 100 μM (micromolar) are plotted in Fig-
ure 3 on a log-linear scale (open circles, filled circles, open
squares, and filled squares correspond to the four substrate con-
centrations, respectively). Rather than following straight lines
on the logarithmic scale as the MM model predicts, the empir-
ical distributions have curved tails at high substrate concentra-
tions.

Applying Pearson’s chi-squared test, we assess the good-
ness of fit of the MM model. Using 10 equally spaced bins
(along the x axis), we calculate the Pearson chi-squared sta-
tistic

∑
i (Oi − Ei)

2/Ei , where the expected bin counts Ei are
calculated from (2.2). For the experimental data at [S] = 50 μM
and 100 μM, the p values are both less than 1%.

A careful reader might ask: Why were the curved tails not ob-
served in the classical population-based ensemble experiments?
The answer is that, although, in principle, the classical experi-
ments should also observe these curved tails, in practice, with-
out the capability to track individual enzymes, the classical ex-
periments can only record the fast reaction turnovers, and the
slow turnovers that constitute the curved tails are entirely miss-
ing.

Now, as a check of our stochastic network model, we fit it to
the empirical turnover time distributions. To do so, we note that
the model parameters need to be constrained/simplified because
so far there are too many.
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(a) (b)

Figure 2. (a) Schematic presentation of the experimental setup. A single β-gal molecule is immobilized to a bead on a glass cover slip.
Two laser beams (confocal beam and bleaching beam) are applied to make sure that only the reaction product is fluorescent. By recording the
fluorescence signals over time, one can resolve the individual turnovers of the β-gal molecule. (b) Experimental fluorescence intensity reading.
Each fluorescence intensity spike is caused by the release of a reaction product.

5.1.1 Parameter Simplification Under the Stochastic Net-
work Model. An important piece of information for simpli-
fication comes from Figure 3, which shows that at low sub-
strate concentrations ([S] = 10 μM and 20 μM), the empirical
distributions are roughly exponential, whereas at high concen-
trations ([S] = 50 μM and 100 μM), the empirical distribu-
tions are heavier than exponential. In our model (2.4) at low [S]
the transition rates k1i[S] from Ei to ESi become small com-
pared with the other rates, which implies that at low [S] the
slow transitions from Ei to ESi make up and determine most
of the turnover times. The near-exponential empirical distrib-

Figure 3. Empirical distributions of the turnover times on a
log-linear scale. The open circles, filled circles, open squares, and
filled squares represent experimental data obtained at substrate con-
centrations of 10 μM, 20 μM, 50 μM, and 100 μM, respectively. The
solid curves are the fittings from our model using (5.2), where the fitted
parameter k̂1 = 5.01×107 M−1 s−1, k̂−1 = 1.83×105 s−1, â = 4.25,
and b̂ = 220 s−1.

utions at low [S], therefore, point to the homogeneity of the
k1i ’s (because homogeneous k1i are most consistent with the
near-exponential picture). At high [S] the transition rates k1i[S]
from Ei to ESi in our model become large compared with the
others, implying that at high [S] the transitions from ESi to E0

i
(with rates k2i ) will make up and determine most of the turnover
times instead. The heavier-than-exponential empirical distribu-
tions at high concentrations, hence, point to the heterogeneity of
the k2i ’s. Incorporating these ideas, we make the first parame-
ter simplification for model fitting: k11 = k12 = · · · = k1n ≡ k1,
k−11 = k−12 = · · · = k−1n ≡ k−1, while k2i keep distinct val-
ues.

The second simplification comes from the experimental ob-
servation of the hyperbolic relationship between the reaction
rate v and [S] (Sec. 5.2). Guided by Theorem 4.3, we invoke
Scenarios 1 and 2, that is, the slow-fluctuating condition, be-
cause recent single-molecule experiments (Lu et al. 1998; Yang
et al. 2003; Min et al. 2005b) suggest slow conformational fluc-
tuation in enzymes and in enzyme–substrate complexes. We,
thus, make the second parameter simplification: QAA = O(ε),
QBB = O(ε1+d), and ε → 0, d > 0.

Under these two simplifications, the Laplace transform (4.1)
of the equilibrium turnover time distribution reduces to (after
some algebra)

f̃eq(s) = 1∑n
i=1 wi

(
n∑

i=1

wi

× k1k2i[S]
k1k2i[S] + s(k1[S] + k2i + k−1) + s2

)
, (5.1)

where the weights wi , according to the proof of Theorem 4.3 in
the Appendix, are given by wi = φAik1k2i/(k−1 + k2i ) with φA

defined in (3.3).
The total number n of conformation states is unknown, as the

individual conformations are not observed in the experiment.
But the general consensus is that n is large (because an enzyme
can change its three-dimensional shape in a very broad range).
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A continuum approximation to (5.1), thus, appears reasonable,
leading to

f̃eq(s) =
∫ ∞

0
w(k2)

k1k2[S]
k1k2[S] + s(k1[S] + k2 + k−1) + s2

dk2,

where w(k2) is the continuum approximation of the weights wi ,
expressed in terms of a continuous k2. The simplest distribu-
tion over the positive real line is the gamma distribution. Taking
w(k2) to be a gamma density, we reach the final simplification
form for data fitting:

f̃eq(s) =
∫ ∞

0

ka−1
2 exp(−k2/b)

ba
(a)

× k1k2[S]
k1k2[S] + s(k1[S] + k2 + k−1) + s2

dk2,

where a and b are the two parameters of the gamma density. In
the time domain the preceding expression translates to

feq(t) =
∫ ∞

0

ka−1
2 exp(−k2/b)

ba
(a)

k1k2[S]
2p(k2)

× (
e−[q(k2)−p(k2)]t − e−[q(k2)+p(k2)]t)dk2,

(5.2)

p(k2) =
√

1

4
(k1[S] + k2 + k−1)2 − k1k2[S],

q(k2) = 1

2
(k1[S] + k2 + k−1).

Compared with the initial model, there are only four parameters
in (5.2): k1, k−1, a, and b.

5.1.2 Fitting Our Model to the Data. To fit our simplified
turnover time distribution (5.2) to the single-molecule exper-
imental data, we first find the maximum likelihood estimates
(MLEs) of the four parameters. Because the gradient of the log-
likelihood function ∇ logfeq = 1

feq
∇feq, we obtain (after some

algebra)

∂feq

∂k1
=

∫ ∞

0

ka−1
2 exp(−k2/b)

ba
(a)

k2[S]
2p

×
{
g − k1

p

[S]
2p

(q − k2)g

+ k1
t[S]

2

{
q − k2

p
h − g

}}
dk2,

∂feq

∂k−1
=

∫ ∞

0

ka−1
2 exp(−k2/b)

ba
(a)

k1k2[S]
4p2

×
{
qht −

(
pt + q

p

)
g

}
dk2,

∂feq

∂a
=

∫ ∞

0

ka−1
2 exp(−k2/b)

ba
(a)

(
logk2 − logb − 
′(a)


(a)

)

× k1k2[S]
2p

g dk2,

∂feq

∂b
=

∫ ∞

0

ka−1
2 exp(−k2/b)


(a)ba+2

k1k2[S]
2p

(k2 − ab)g dk2,

Figure 4. Gamma distribution w(k2) = ka−1
2 exp(−k2/b)/[ba ×


(a)] of k2, using the fitted â and b̂. The dashed vertical line is the
mean of the distribution.

where for notational ease p, q , g, and h denote the following:

p �
√

1

4
(k1[S] + k2 + k−1)2 − k1k2[S],

q � 1

2
(k1[S] + k2 + k−1),

g � exp(−(q − p)t) − exp(−(q + p)t),

h � exp(−(q − p)t) + exp(−(q + p)t).

The integrals in feq and ∇feq cannot be evaluated analyt-
ically. Hence, we used numerical integration and the conju-
gate gradient method (the Polak–Ribiere method in particu-
lar), which only requires knowledge of first derivatives (see
Press, Flannery, Teukolsky, and Vetterling 1992), to find the
maximum likelihood estimates, and we obtained k̂1 = 5.01 ×
107 M−1 s−1, k̂−1 = 1.83 × 105 s−1, â = 4.25, and b̂ =
220 s−1.

Using the MLEs, we fit our turnover time distribution (5.2)
to the experimental data, shown in Figure 3 as the solid curves
(overlaid on the empirical distributions). For all four substrate
concentrations, close agreement between the theoretical curves
and the experimental values is evident. Figure 4 plots the
gamma distribution w(k2) = ka−1

2 exp(−k2/b)/[ba
(a)] of k2,
using the fitted â and b̂. It is clear that the rate k2 varies over a
broad range, which contrasts sharply with the MM assumption
of a constant k2.

5.2 Experimental Relationship Between Reaction Rate
and Substrate Concentration

At each substrate concentration [S], the reaction rate can
be directly calculated from the experimental turnover times
T1, T2, T3, . . . , TN via v̂ = 1/T̄ . If the hyperbolic relationship
of

v = χ[S]/([S] + CM)

holds, then a plot of 1/v versus 1/[S] should yield a straight
line with slope CM/χ and intercept 1/χ . Figure 5 graphs 1/v̂

versus 1/[S] from experimental data. Notably, a linear pattern
indeed emerges. A simple least squares fit (the black line in
Fig. 5) gives χ̂ = 730 s−1 and ĈM = 390 μM with standard
errors 40 s−1 and 30 μM, respectively.
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Figure 5. Plot of 1/v̂ versus 1/[S] from the experimental data. The
reaction rate v̂ at each point is calculated from the experimental data at
the corresponding substrate concentration. The black line is the least
squares fit with χ̂ = 730 ± 80 s−1 and ĈM = 390 ± 60 μM.

As a consistency check of our model, we compute from for-
mula (5.2) that

μeq =
∫ ∞

0
tfeq(t) dt

=
∫ ∞

0

ka−1
2 exp(−k2/b)

ba
(a)

k1[S] + k2 + k−1

k1k2[S] dk2

= [S] + (k−1 + b(a − 1))/k1

b(a − 1)[S] ,

which gives

v = 1

μeq
= b(a − 1)[S]

[S] + (k−1 + b(a − 1))/k1
≡ χ ′[S]

[S] + C′
M

.

Plugging in the MLEs of Figure 3, we note that χ̂ ′ = b̂(â−1) =
715 s−1 and Ĉ′

M = (k̂−1 + b̂(â − 1))/k̂1 = 380 μM agree
well with the least squares nonparametric estimates of χ̂ =
730 ± 80 s−1 and ĈM = 390 ± 60 μM given previously (mean
plus/minus twice the standard error).

5.3 Experimental Autocorrelation of Turnover Times

From the experimental successive turnover times T1, T2,

T3, . . . , TN , one can calculate their empirical autocovariance

Cov(m) = 1

N − m

∑
i

(Ti − T̄ )(Ti+m − T̄ ).

Figure 6 shows the empirical autocorrelation function, plotting
the normalized Cov(m) against mT̄ for m = 1,2, . . . at a rep-
resentative substrate concentration [S] = 100 μM. Instead of a
flat horizontal line at 0 as the MM model would predict, a clear
memory effect is seen in Figure 6. The experimental data at
other substrate concentrations showed a similar correlation pic-
ture. The evident memory indicates strongly that the classical
MM missed important aspects of real enzymatic reactions and
that models like ours that can account for the memory are nec-
essary.

6. DISCUSSION

In this article we introduce a stochastic network model to
explain the experimental puzzles arising from single-molecule
studies of enzymatic reactions. The use of the multiple states

Figure 6. Turnover time autocorrelation function. Cov(m) is plot-
ted against mT̄ from the experimental data at substrate concentration
[S] = 100 μM.

(to capture the enzyme’s conformational fluctuation) plays a
fundamental role in the model’s success. We conduct a de-
tailed study of the model (such as analyzing the first-passage-
time distributions). Using the analytical results, we show that
the model explains (a) the heavier-than-exponential empirical
turnover time distributions, (b) the memory effect of turnover
times, and (c) the observed hyperbolic relationship between en-
zymatic reaction rate and substrate concentration.

The model has three additional appealing features. (1) It of-
fers analytical tractability as the results in Sections 3 and 4 illus-
trate. (2) The theoretical results from the model agree well with
the experimental data (as seen in Sec. 5). (3) The model has a
solid biological/chemical underpinning—each component and
parameter in the model has its biological/chemical meaning.

Some problems remain open for future exploration.

1. When we estimated the model parameters in Section 5.1,
we first calculated the log-likelihood by adding up the log-
density contribution from each observed turnover time
and then maximized it. Because this calculation essen-
tially ignores the correlation of the turnover times, it is, in
fact, a quasi-likelihood method (Heyde 1997). Although
ergodicity ensures the consistency, a theoretical investi-
gation of its efficiency remains open.

2. We simultaneously fit the turnover time distributions at
multiple concentrations. Extending the fitting to the auto-
correlation functions is open for further study.

3. When we fit our model to the experimental data, we used
the continuum limit by letting the number of states n go
to ∞ and then assumed a gamma distribution. Although
this simple approach fits the experimental data well, it
remains to be seen if the continuum limit and gamma
distribution can be derived directly from a more biolog-
ical/biophysical microscopic angle. Such study will pro-
vide an interesting connection between statistics and bio-
physics by giving the statistical assumptions a biological
underpinning; it will, furthermore, lead to not only poten-
tially better approximation schemes, but also new insight
into the biological nature of an enzyme’s conformation
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fluctuation (e.g., the potential mean field in the conforma-
tion space).

4. In fitting the data we applied the slow-fluctuating-enzyme
condition, because it appeared most natural. A problem
for future study is to explore the other scenarios of Theo-
rem 4.3, investigate how to constrain the model parame-
ters under these scenarios, and compare their fittings to
the data. Such investigation will help pin down the role
that conformational fluctuation plays in enzymatic reac-
tions and can potentially guide the design of new exper-
iments to elucidate the underlying microscopic biophysi-
cal picture.

The new field of nanoscale (single-molecule) biophysics has
attracted much attention from biologists, chemists, and physi-
cists, as it holds promise for new scientific discoveries. It also
presents many interesting problems for statisticians because of
the stochastic nature of the nanometer world. Our stochastic
network model for single-molecule enzymatic reaction exem-
plifies only one instance of the numerous and growing research
opportunities in nanoscale biophysics. We hope that this article
will generate further interest in applying modern statistical and
probabilistic methodology to interesting biophysical and scien-
tific problems.

APPENDIX: PROOFS

Proof of Proposition 2.1

To obtain the turnover time distribution under the MM model, let
TE and TES denote the first passage times to reach E0 from states E

and ES, respectively, and let fE(t) and fES(t) be their corresponding
density functions. The routing map (2.1) immediately gives

TE
d= Ek1[S] + TES, (A.1)

where the random variables on the right side are independent of each
other, and throughout this proof, Eρ denotes an exponential random
variable with rate ρ. Next, noting that one can go either forward or
backward from state ES with the two directions characterized by two
exponential random variables Ek2 and Ek−1 , we have

fES(t) dt = P(TES ∈ (t, t + dt))

= P
(
TES ∈ (t, t + dt), Ek2 < Ek−1

)
+ P

(
TES ∈ (t, t + dt), Ek2 > Ek−1

)
= P

(
Ek2 ∈ (t, t + dt), Ek2 < Ek−1

)
+ P

(
Ek−1 + TE ∈ (t, t + dt), Ek2 > Ek−1

)
= k2e−(k2+k−1)t dt

+
(∫ t

0
fE(t − z)k−1e−(k2+k−1)z dz

)
dt

+ o(dt). (A.2)

In the Laplace space (A.1) and (A.2) become

f̃E(s) = k1[S]
k1[S] + s

f̃ES(s),

f̃ES(s) = k2

k2 + k−1 + s
+ k−1

k2 + k−1 + s
f̃E(s),

where f̃E(s) and f̃ES(s) are the Laplace transforms of fE(t) and
fES(t), respectively [i.e., f̃J (s) = ∫ ∞

0 e−st fJ (t) dt , J = E or ES].

Solving them, we obtain

f̃E(s) = k1k2[S]
k1k2[S] + s(k1[S] + k2 + k−1) + s2

,

and correspondingly the density function of the turnover time is

fE(t) = k1k2[S](e−(q−p)t − e−(q+p)t
)
/(2p),

where p =
√

(k1[S] + k2 + k−1)2/4 − k1k2[S] and q = (k1[S]+k2 +
k−1)/2.

Proof of Lemma 3.1

Let Yn denote the embedded Markov chain associated with X(t)

[i.e., Yn is the discrete-time Markov chain corresponding to the jumps
of X(t)]. It is straightforward to check that Yn is irreducible and
aperiodic and is, thus, positive recurrent. This guarantees that (see
Kijima 1997) (1) X(t) is ergodic, (2) the stationary distribution of
X(t) exists and is unique, and (3) the stationary distribution satisfies
(πA,πB,πC)Q = 0. The definition (2.5) of Q then gives

(πA,πB,πC)

×
(QAA − QAB QAB 0

QBA QBB − (QBA + QBC) QBC

QCA 0 QCC − QCA

)
= 0,

which implies that

(πA,πB)

(
QAA − QAB QAB

QBA QBB − (QBA + QBC)

)

+ πC (QCA 0 ) = 0, (A.3)

πBQBC + πC(QCC − QCA) = 0. (A.4)

From (A.3) we have

(πA,πB) = −πC (QCA 0 )

×
(

QAA − QAB QAB

QBA QBB − (QBA + QBC)

)−1
.

The formula for block-matrix inversion provides

(
QAA − QAB QAB

QBA QBB − (QBA + QBC)

)−1
=

(
L M
N R

)
, (A.5)

where

L = [QAA − QAB − QAB(QBB − QBA − QBC)−1QBA]−1,

M = [QBB − QBC − (QBB − QBA − QBC)Q−1
AB

QAA]−1,
(A.6)

N = [QAA − (QAA − QAB)Q−1
BA

(QBB − QBC)]−1,

R = [QBB − QBA − QBC − QBA(QAA − QAB)−1QAB ]−1.

Therefore,

(πA,πB) = −πC (QCA 0 )

(
L M
N R

)

= −(πCQCAL, πCQCAM), (A.7)

Substituting (A.7) into (A.4), we have the final equation for πC :
πC(QCC − QCA − QCAMQBC) = 0.
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Proof of Theorem 3.2

Consider a Markov chain Z(t) modified from X(t) by making
{E0

1 , . . . ,E0
n} absorbing (see Keilson 1979; Kijima 1997). It has tran-

sition matrix

Qz =
(QAA − QAB QAB 0

QBA QBB − (QBA + QBC) QBC

0 0 0

)
.

The first passage time to {E0
1 , . . . ,E0

n} for X(t) is the same as the
absorbing time of Z(t). Applying a first-step analysis and noting there
is no direct transition from Ei to E0

j
, we have

P(TI ∈ (t, t + dt)) =
∑

J∈{ES1,...,ESn}

∑
K∈{E0

1 ,...,E0
n}

PIJ (t)(Qz)JK dt

+ o(dt) for I = Ei or ESi ,

where PIJ (t) is Z(t)’s transition probability from state I to state J at
time t ; in matrix form the equation can be written as

(
fA(t)

fB(t)

)
dt = P(t)

(
0

QBC1

)
dt + o(dt), (A.8)

where P(t) is the sub–transition matrix of Z(t) corresponding to the
nonabsorbing states.

The full transition matrix of Z(t) is exp(Qzt), of which P(t) is the
upper-left block. It is straightforward to verify from block-matrix cal-
culation that

P(t) = exp

((
QAA − QAB QAB

QBA QBB − (QBA + QBC)

)
t

)
,

which (according to the basic properties of matrix exponential) has
Laplace transform

P̃(s) =
∫ ∞

0
exp(−st)P(t) dt

=
[
sI −

(
QAA − QAB QAB

QBA QBB − QBA − QBC

)]−1
.

Applying a Laplace transform on (A.8) and using the previous formula
for P̃(s), we finally obtain (3.9).

Proof of Corollary 3.3

Equation (3.9) gives

s

(
f̃A(s)

f̃B(s)

)
=

(
QAA − QAB QAB

QBA QBB − (QBA + QBC)

)(
f̃A(s)

f̃B(s)

)

+
(

0
QBC1

)
.

Taking the derivative with respect to s in the preceding expression and
evaluating it at s = 0 yield

(
μA

μB

)
= −

( f̃′
A

(0)

f̃′
B

(0)

)

= −
(

QAA − QAB QAB

QBA QBB − (QBA + QBC)

)−1 (
1
1

)
,

which is simplified to (3.10) by the block-matrix inversion (A.5)
and (A.6).

Proof of Lemma 3.4

Because a turnover event begins right after the enzyme enters the
Ei (i = 1,2, . . . , n) state from the E0

i
state (see Sec. 2.2), it follows

that the stationary probability w(Ei) is proportional to the probabil-
ity flux from E0

i
to Ei , that is, the expected number of transitions

from E0
i

to Ei per unit time. The latter is given by π(E0
i
)δi according

to Levy’s formula (see Serfozo 1999). Therefore, the weight vector
(w(Ei), . . . ,w(En)) ∝ w = πCQCA. According to Lemma 3.1, πC

satisfies (3.6), which implies immediately that w must satisfy (3.11).

Proof of Corollary 3.5

From Lemma 3.4 we know μeq = (wμA)/(w1), which by Corol-
lary 3.3 is μeq = −[w(L + M)1]/(w1). Next, it is straightfor-
ward to verify from the definition of L and M in Lemma 3.1
that L = −M(QBB − QBA − QBC)Q−1

AB
, which implies L + M =

−M[(QBB − QBA − QBC)Q−1
AB

− I]. It, thus, follows that

μeq = 1

w1
wM[(QBB − QBA − QBC)Q−1

AB
− I]1.

The definition (3.11) of w tells us that wM = w(Q−1
CA

QCC − I)Q−1
BC

.
Plugging it into the preceding expression yields (3.12).

Proof of Lemma 4.1

The detailed balance condition (3.2) tells us that
(

�A 0
0 �B

)
G is

symmetric, because �A, �B , QAB , QBA, and QBC are all diago-

nal matrices. Hence, the matrix
(

�A 0
0 �B

)1/2
G

(
�A 0
0 �B

)−1/2
is also

symmetric and, thus, admits a spectral decomposition. Consequently,
G is diagonalizable: G = U�U−1 = ∑2n

i=1 λiξ iη
T
i

, where λi are the

eigenvalues of G, and ξ i and ηT
i

are the corresponding right and left
eigenvectors, respectively. This implies that

(sI − G)−1 =
2n∑
i=1

1

s − λi
ξ iη

T
i ,

which means that f̃eq(s) can be re-expressed as

f̃eq(s) =
2n∑
i=1

1

s − λi

[
(w 0)ξ i

w1
ηT
i

(
0

QBC1

)]
.

The matrix G satisfies

G1 =
(

QAA − QAB QAB

QBA QBB − QBA − QBC

)(
1
1

)

= −
(

0
QBC1

)
. (A.9)

Because the diagonal elements of QBC are all positive, (A.9) implies
that G is a lossy generator (see Keilson 1979; Kijima 1997), and,
hence, all its eigenvalues λi are strictly negative. Thus, we can rewrite

f̃eq(s) =
2n∑
i=1

σi
−λi

s − λi
,

σi = 1

−λi

[
(w 0)ξ i

w1
ηT
i

(
0

QBC1

)]
,

which translates to feq(t) = ∑2n
i=1 σi(−λie

λi t ).
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Proof of Lemma 4.2

With w not depending on [S], direct calculation from (4.3) yields

v = {w1}
/{

w(I − Q−1
CA

QCC)Q−1
BC

×
{

I − 1

[S] (QBB − QBA − QBC)Q̃−1
AB

}
1
}

= (
w1/{w(I − Q−1

CA
QCC)Q−1

BC
1}[S])/([S] − {w(I − Q−1

CA
QCC)Q−1

BC
(QBB − QBA − QBC)Q̃−1

AB
1}

/{w(I − Q−1
CA

QCC)Q−1
BC

1}),
which is (4.4).

Proof of Theorem 4.3

We have seen that for enzymes with fast cycle reset the equi-
librium weights w are determined by (4.5), which is equivalent to
w(I + Q−1

BC
M−1) = 0.

The definition (3.8) of M gives

I + Q−1
BC

M−1

= Q−1
BC

QBB − Q−1
BC

(QBB − QBA − QBC)Q−1
AB

QAA

= Q−1
BC

QBB − Q−1
BC

(QBB − QBA − QBC)Q̃−1
AB

QAA/[S].
Consider Scenario 1 now. This scenario (QAA → 0) implies that

I + Q−1
BC

M−1 → Q−1
BC

QBB . So in this case w is the nonzero solu-

tion of wQ−1
BC

QBB = 0. We know from Section 3.1 that φBQBB = 0.
Therefore, w = φBQBC , which does not depend on [S]. According
to Lemma 4.2 and (4.6), we then have v = χ [S]/([S] + CM), where
χ = φBQBC1/{φB1} and CM = {φB(QBA + QBC)Q̃−1

AB
1}/{φB1}.

Consider Scenario 2 next. This scenario (QBB → 0) implies
that I + Q−1

BC
M−1 → Q−1

BC
(QBA + QBC)Q̃−1

AB
QAA/[S]. So w is

the solution of wQ−1
BC

(QBA + QBC)Q̃−1
AB

QAA = 0. We know that

φAQAA = 0 from Section 3.1. Therefore, w = φAQ̃AB(QBA +
QBC)−1QBC , which does not depend on [S]. Lemma 4.2 and (4.6)
then tell us that v = χ [S]/([S] + CM), where χ = {φAQ̃AB(QBA +
QBC)−1QBC1}/{φAQ̃AB(QBA + QBC)−11} and CM = {φA1}/
{φAQ̃AB(QBA + QBC)−11}.

Consider Scenario 3. Under this scenario (QAA = κQ̃AA with
the scale κ → ∞), (I + Q−1

BC
M−1)/κ → −Q−1

BC
(QBB − QBA −

QBC)Q̃−1
AB

Q̃AA/[S]. Hence, w is the solution of wQ−1
BC

(QBB −
QBA − QBC)Q̃−1

AB
Q̃AA = 0. Because φAQ̃AA = 0, it follows that

w = φAQ̃AB(QBB − QBA − QBC)−1QBC , which does not depend
on [S]. Lemma 4.2 and (4.6) then imply v = χ [S]/([S] + CM), where
χ = {φAQ̃AB(QBB − QBA − QBC)−1QBC1}/{φAQ̃AB(QBB −
QBA − QBC)−11} and CM = −{φA1}/{φAQ̃AB(QBB − QBA −
QBC)−11}.

Consider Scenario 4. Under this scenario (QBB = κQ̃BB with the
scale κ → ∞), (I + Q−1

BC
M−1)/κ → Q−1

BC
Q̃BB − Q−1

BC
Q̃BBQ̃−1

AB
×

QAA/[S], which tells us that w is the solution of w(Q−1
BC

Q̃BB −
Q−1

BC
Q̃BBQ̃−1

AB
QAA/[S]) = 0. Because φBQ̃BB = 0, it follows that

w = φBQBC , which does not depend on [S]. Lemma 4.2 and (4.6)
then imply v = χ [S]/([S] + CM), where χ = φBQBC1/{φB1} and
CM = −{φB(QBB − QBA − QBC)Q̃−1

AB
1}/{φB1} ={φB(QBA +

QBC)Q̃−1
AB

1}/{φB1}.
Consider Scenario 5. This scenario (k−1i 	 k2i ) implies that

QBA +QBC ≈ QBA, so I+Q−1
BC

M−1 → Q−1
BC

QBB −Q−1
BC

(QBB −
QBA)Q̃−1

AB
QAA/[S]. Therefore, w is the solution of w{Q−1

BC
QBB −

Q−1
BC

(QBB − QBA)Q̃−1
AB

QAA/[S]} = 0. Using the facts that φA ×

QAA = φBQBB = 0 and φAQ̃AB [S] = φBQBA (see Sec. 3.1),
we can verify that w = φBQBC is the solution, which does not
depend on [S]. We thus know from Lemma 4.2 and (4.6) that
v = χ [S]/([S] + CM), where χ = φBQBC1/{φB1} and CM =
{φB(QBA + QBC)Q̃−1

AB
1}/{φB1}.

Finally, consider Scenario 6. This scenario implies that QBC ∝
QBA, say QBC = κQBA. So I + Q−1

BC
M−1 = Q−1

BC
QBB − Q−1

BC
×

(QBB − (1 + κ)QBA)Q̃−1
AB

QAA/[S]. Using the facts that φAQAA =
φBQBB = 0 and φAQ̃AB [S] = φBQBA, we can verify that w =
φBQBC is the solution of w(I + Q−1

BC
M−1) = 0. It does not de-

pend on [S]. It, thus, follows from Lemma 4.2 and (4.6) that
v = χ [S]/([S] + CM), where χ = φBQBC1/{φB1} and CM =
{φB(QBA + QBC)Q̃−1

AB
1}/{φB1}.

[Received January 2007. Revised May 2007.]
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