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Nonparametric regression, often called smoothing, is a widely used data analysis method. The use of a smoother requires the choice of
a smoothing parameter that by balancing � delity and roughness controls how much smoothing is done. Two popular selection criteria
for choosing the smoothing parameter are Cp and generalized maximum likelihood (GML). Each of these has its own problems. For Cp ,
the problem is its high variability, whereas for GML, the problem is its potentially large bias. By studying the geometry of selection
criteria, we give an intuitive explanation of the strength and weakness of Cp and GML. The geometry then motivates a new selection
method, the extended exponentia l (EE) criterion, which combines the strength of Cp and GML but mitigates their weaknesses in terms
of variability, bias, and undersmoothing .
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1. INTRODUCTION

Regression is a fundamental problem in statistics; one
observes pairs 84xi1 yi51 i D 1121 : : : 1 n9 and wants to estimate
the regression function of y on x. The classical approach � ts a
polynomial to the data. The alternative method, nonparametric
regression, the method considered in this article, approaches
the problem under the mild assumption that f4x5 is a smooth
function of x, without imposing parametric restrictions about
the functional dependence (see, e.g., Eubank 1988; Härdle
1990; Hastie and Tibshirani 1990; Wahba 1990; Rosenblatt
1991; Green and Silverman 1994; Simonoff 1996; Bowman
and Azzalini 1997).

In practice, the performance of many nonparametric proce-
dures depends critically on the choice of a smoothing param-
eter that determines how locally the smoothing should be
done. This article explores the problem of selecting the appro-
priate smoothing parameter. There is an impressive literature
on choosing smoothing parameters, most of which is written
from a very general large-sample perspective (see, e.g., Wahba
1985; Li 1986, 1987; Hall and Johnstone 1992; Jones, Mar-
ron, and Sheather 1996; Hurvich, Simonoff, and Tsai 1998). In
this article we take a more specialized approach, concentrat-
ing on spline-like smoothers and the small-sample properties
of selection criteria. At the center of our small-sample study
is a geometric interpretation of selection criteria that not only
leads to simple formulas that predict the accuracy of compet-
ing selection criteria, but also motivates a new selection crite-
rion, the extended exponential (EE) criterion, which in some
ways has more desirable properties than the two popular cri-
teria Cp and generalized maximum likelihood (GML). Indeed,
the term “extended exponential” itself comes from the geo-
metric interpretation; the new criterion can be viewed geomet-
rically as coming from an exponential family extended from
the Cp and GML families. This point will become clear in
Section 5 (see Remark 5).
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The Cp criterion (Mallows 1973), which chooses the
smoothing parameter by minimizing an unbiased estimate of
the prediction error, is perhaps the most popular smoothing
methodology, if one includes its close cousins such as the gen-
eralized cross-validation (GCV) (Craven and Wahba 1979) and
the Akaike information criterion (AIC) (Akaike 1974). (The
close relationship of GCV and Cp is described in sec. 7 of
Efron 1986 and also in sec. 4 of Efron 2001.) Despite its popu-
larity, Cp can be highly variable; it occasionally selects a very
wiggly curve even when the true underlying curve is known
to be smooth (see, e.g., Hurvich et al. 1998). On the other
hand, GML, another selection criterion suggested by Wecker
and Ansley (1983) from an empirical Bayes framework and
studied by Wahba (1985) and Stein (1990), behaves more sta-
bly; rarely would it choose some curve much wigglier than the
true underlying curve. GML can have serious problems with
bias, however.

Figures 1 and 2 illustrate the results of two simulation
experiments. In each experiment, 1000 datasets were gener-
ated from a curve shown in panel (a) of each � gure (also
shown are the generated points 84xi1 yi59 for one particu-
lar dataset). The Cp and GML criteria were then applied to
these datasets to choose the degrees of freedom (a quantity
closely related to the smoothing parameter; see Sec. 2) of
the smoothing-spline � tted curve. The rightmost two panels in
Figures 1(b) and 2(b) show the histograms of the Cp and GML
estimated degrees of freedom. In experiment 1 (as discussed
in Sec. 2), the ideal degrees of freedom of the true curve are
5.18, and the GML criterion is seen to do a good job; the esti-
mated degrees of freedom are concentrated on 5.18, whereas
the Cp estimates of degrees of freedom spread out over a
wide range. In experiment 2, the ideal degrees of freedom are
13.42. We see from Figure 2 that although the Cp estimates
are still highly variable, they are centered around the right
place, whereas the GML estimates are badly biased upward.

The geometric interpretation of Cp and GML provides an
explanation of these empirical observations; that is, why the
Cp criterion is so variable, whereas the GML criterion can
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Figure 1. Simulation Experiment 1. (a) True curve and one particular dataset out of 1000 simulations. (b) Histograms of EE, GML, and Cp

estimated degrees of freedom. (Histograms truncated at d f D 12.)

have such a large bias. Roughly speaking, the variability of Cp

stems from the fact that it suffers from a geometric instability,
whereas the large bias of GML arises from the fact that GML
is not Fisher consistent.

With the strength and weakness of Cp and GML delineated,
we now propose a new selection criterion, the EE criterion,
which combines the strength of the two while mitigating their
defects. The new selection criterion, with its root in the geom-
etry, tends to give smaller variance, smaller bias, and smaller
tendency toward undersmoothing.

The left panels of Figures 1(b) and 2(b) show the EE esti-
mated degrees of freedom in the two simulation experiments.
In both examples, the EE estimates are signi� cantly less vari-
able than the Cp estimates, and the bias of EE is less than
that of GML. In other words, the EE criterion behaves more
“robustly”; it does not give eccentric estimates as Cp occa-
sionally does, and, unlike GML, its bias stays reasonably in
check even in some unfavorable situations.

This article is organized as follows. Section 2 brie� y
reviews spline-like smoothers and the selection criteria Cp

and GML, then discusses the geometric interpretation of these
criteria. Section 3 introduces the EE criterion and gives its
geometric motivation. Sections 4 and 5 further explore the
geometry to provide theoretical approximation of the bias and
variance of the selection criteria, as well as theoretical anal-
ysis of the stability of selection criteria. Section 6 considers
the error of estimating the curve, discussing the connection
between estimating the curve and estimating the ideal degrees
of freedom. Section 7 gives marginal-Bayesian interpretation
of the EE criterion, and Section 8 summaries the results and
provides some further discussion.

2. THE GEOMETRY OF Cp AND GENERALIZED
MAXIMUM LIKELIHOOD

After giving a brief review of spline-like smoothers and
the Cp and GML selection criteria, this section presents a
geometric picture of Cp and GML that is used in subsequent
analyses concerning variance, bias, and prediction and to moti-
vate the EE selection criterion.
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Figure 2. Simulation Experiment 2. (a) True curve and one particular sample out of 1000 simulations. (b) Histograms of EE, GML, and Cp

estimated degrees of freedom. (Histograms truncated at d f D 20.)

2.1 Spline-Like Smoothers and the Cp and
Generalized Maximum Likelihood
Selection Criteria

Smoothing starts with n observed data points 84xi1 yi59
n
iD1

in the plane, the goal being to estimate f4x5 D E4y—x5, the
regression function of y on x, usually nonparametrically. In
this article we consider estimation of f 4x5 at the “design
points” xi , say fi D f 4xi5 using a linear smoother,

Of‹ D A‹y1 (1)

with y D 4y11 : : : 1 yn50 and Of‹ D 4 Of‹11 : : : 1 Of‹n50, the vector that
estimates f D 4f11 f21 : : : 1 fn50 D 4f4x151 f 4x251 : : : 1 f 4xn550.
The entries of the n � n smoothing matrix A‹ depend on
x D 4x11 x21 : : : 1 xn5 and also on a nonnegative smoothing
parameter, ‹. A mnemonically helpful case is the mov-
ing average smoother with window width ‹, (the “band-

width”), for which Of‹i is the average of those yj values having
—xj ƒ xi— µ ‹. Usually, ‹ itself must be inferred from the data.

A selection criterion is a method of choosing ‹ on the basis
of the data. The Cp criterion (Mallows 1973) chooses ‹ to
minimize an unbiased estimate of total squared-error risk. Sup-
pose that the yi are uncorrelated, with mean fi and constant
variance ‘ 2, written as

y 4f1‘ 2I50 (2)

Then the Cp estimate of ‹ is O‹Cp D arg min‹8C‹4y59, where
the Cp statistic

C‹4y5 D ˜y ƒ Of‹˜2 C 2‘ 2tr4A‹5 ƒ n‘ 2

is an unbiased estimate of E ˜ Of‹ ƒ f ˜2, the squared prediction
error. The notation C‹4y5 assumes that x is � xed, as is usual
in regression problems, and that ‘ 2 is known. The trace of
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the smoothing matrix tr4A‹5 is referred to as the degrees of
freedom,

df‹ D tr4A‹51

agreeing with the standard de� nition when A‹ represents poly-
nomial regression; it is a monotonic decreasing function of ‹
that is usually of more interest than ‹ itself. We assume that
‘ 2 is known; see Section 8 for the usual case in which ‘ 2

must be estimated from the data.
The GML criterion (Wecker and Ansley 1983), has a

normal-theory empirical Bayesian motivation. If we strengthen
(2) to y N 4f1‘ 2I5 and put a Gaussian prior on the under-
lying curve, f N 401‘ 2A‹4I ƒA‹5ƒ15, then, according to the
Bayes theorem,

y N 401‘ 24I ƒ A‹5ƒ15 and f —y N 4A‹y1A‹50 (3)

The second relationship shows that Of‹ D A‹y is the Bayes
estimate of f under squared error loss. The � rst relationship
motivates the GML selection for the smoothing parameter
‹1 O‹GML D maximum likelihood estimate (MLE) of ‹ based
on y N 401‘ 24I ƒ A‹5ƒ150

One class of linear smoothers of particular interest in this
article is spline-like smoothers (Efron 2001), in which the
class of smoothing matrices 8A‹10 µ ‹ µ ˆ9 has the form

A‹ D U a‹U 01 (4)

where U is an n � n orthogonal matrix not depending on the
smoothing parameter ‹ and a‹ D diag4a‹i5, a diagonal matrix
with ith diagonal element

a‹i D 1=41 C ‹ki51 i D 1121 : : : 1 n1 (5)

the constants k D 4k11 k21 : : : 1 kn5, solely determined by
x, being nonnegative and nondecreasing. According to (5),
spline-like smoothers achieve the goal of smoothing by shrink-
ing the higher-frequency components of the response toward
0, shrinking more for larger values of ‹ and i.

One popular class of spline-like smoothers is cubic smooth-
ing splines, which amount to making a particular choice of U
and k in (4) and (5), (see Green and Silverman 1994, chap.
2). In this case, the � rst two columns of U span the space of
linear functions of x; also, k1 D k2 D 0, making a‹1 D a‹2 D 1
for all ‹, which says that linear functions of x are preserved
by the smoother. Note that in this case the degrees of freedom,
df ‹ D Pn

iD1 a‹i , increase from 2 to n as ‹ decreases from ˆ
to 0 in (5).

Other spline-like smoothers can be fashioned in a variety
of ways, including the methods based on orthogonal series.
For example, we might take the jth column of U to be the
vector x

jC1
i Gram–Schmidt orthogonalized with respect to the

lower powers. Then the smoother (5) would shrink the higher-
powered components of the response toward 0, more so for
larger values of ‹ (see Hastie 1996). The key assumption of
spline-like smoothers is that all of the smoothing matrices
A‹ are symmetric and have the same eigenvectors (i.e., the
columns of U ) for all ‹. This allows a rotation of coordinates
for the model y 4f1‘ 2I5, Of‹ D A‹y to

z D U 0y=‘ 1 g D U 0f=‘ 1 Og‹ D U 0Of‹=‘ 1 (6)

putting the smoother family (1) into diagonal form,

z 4g1 I51 Og‹ D a‹z0 (7)

Transformations (6) assume that ‘ is known; see Section 8
for the case where ‘ must be estimated from the data. Let
b‹i D 1 ƒ a‹i . In the new coordinate system, the Cp statistic
can be expressed as a function of z2,

C‹4z25 D ˜y ƒ Of‹˜2 C 2‘ 2tr4A‹5 ƒ n‘ 2

D‘ 2
nX

iD1

4b2
‹iz

2
i ƒ 2b‹i5 C n‘ 20 (8)

De� ne

w D z2 D 4z2
11 z2

21 : : : 1 z2
n503 (9)

then the Cp choice of ‹ is given by

O‹Cp D arg min
‹

X
i

4b2
‹iwi ƒ 2b‹i50 (10)

Remark 1. Because ki D 0 in (5) implies a‹i D 1 and b‹i D
0 for all values of ‹, those wi with ki D 0 do not contain
any information about ‹ and thus do not enter into the Cp

criterion (10). Hereafter, we use the notation “
P

i” to indicate
summation over coordinates having a‹i < 1.

Similarly, the GML selection criterion can be simply
described in the 4z1 g5 coordinate system,

O‹GML D MLE of ‹ based on y N 401‘ 24I ƒ A‹5ƒ15

D MLE of z N 4011=b‹5 D MLE of w �2
1 =b2

‹0

This can be further simpli� ed to O‹GML D arg min‹

P
i4b‹iwi ƒ

logb‹i5, because the density of w �2
1 =b2

‹ is d‹4w5 D
exp4ƒ 1

2

P
i4b‹iwi ƒ logb‹i55=

Q
i

p
2� wi0

2.2 The Geometry of Generalized Maximum
Likelihood and Cp

The fact that GML chooses ‹ as the minimizer ofP
i4b‹iwi ƒ logb‹i5 leads to a simple geometric picture. If

we de� ne ‡GML
‹i D ƒb‹i , ÇGML

‹ D 4‡GML
‹1 1‡GML

‹2 1 : : : 1‡GML
‹n 50,

and –GML
‹ D ƒ P

i log b‹i, then O‹GML D arg max‹84ÇGML
‹ 50w ƒ

–GML
‹ 9 and O‹GML must satisfy

¡

¡‹

n
4ÇGML

‹ 50wƒ–GML
‹

o­­­
‹D O‹GML

D 4 PÇGML
‹ 504wƒÌ‹5

­­­
‹D O‹GML

D01

(11)

where Œ‹ D 4Œ‹11Œ‹21 : : : 1Œ‹n50 with Œ‹i D 1=b‹i , and P‡GML
‹

is the vector with components P‡GML
‹i D ¡‡GML

‹i =¡‹ D ƒ¡=¡‹ b‹i ,
which can be further simpli� ed for spline-like smoothers,
because under (5),

¡

¡‹
b‹i D a‹ib‹i=‹ and

¡2

¡‹2
b‹i D ƒ2a‹ib

2
‹i=‹20

The normal equation representation (11) suggests a simple
geometric interpretation of the GML criterion. For a given
observation w D z2, GML chooses ‹ by projecting w onto the
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Figure 3. The Geometry of the GML Criterion: O‹GML is obtained by
projecting w onto {Œ‹} orthogonally to the direction P‡‹ . Here, two coor-
dinates, wi and wj (i < j ), are indicated.

line 8Œ‹ D 1=b‹ 2 ‹ ¶ 09 orthogonally to the direction P‡GML
‹ .

We call 8Œ‹ D 1=b‹ 2 ‹ ¶ 09 “the line of expectations,” fol-
lowing Efron (2001). Figure 3 diagrams this geometric inter-
pretation two dimensionally.

Let ¬GML
‹ D 8w 2 4 P‡GML

‹ 504wƒŒ‹5 D 09. Solving the normal
equation (11) is equivalent to � nding the hyperplane ¬GML

‹

passing through w. It is worth pointing out that because the
orthogonal vectors P‡GML

‹ change direction with ‹, the level
surfaces ¬GML

‹ are not parallel to each other (see Fig. 3).
Like GML, Cp also has a simple geometric interpretation.

Starting from the Cp formula O‹Cp D argmin‹

P
i4b2

‹iwi ƒ
2b‹i5, if we let ‡

Cp

‹i D ƒb2
‹i, –

Cp

‹ D ƒ2
P

i b‹i then O‹Cp D
argmax‹84Ç

Cp

‹ 50w ƒ –
Cp

‹ 9, and the normal equation for O‹Cp is

¡

¡‹

n
Ç

Cp

‹

¢0
w ƒ –

Cp

‹

o­­­
‹D O‹Cp

D P‡Cp 0
‹ 4w ƒ Œ‹5

­­­
‹D O‹Cp

D 01 (12)

where P‡Cp

‹i D ¡
¡‹

‡
Cp

‹i D ƒ2b‹i
¡

¡‹
b‹i , and Œ‹i D 1=b‹i.

From (12), Cp can be geometrically interpreted as choos-
ing ‹ by projecting w onto 8Œ‹ 2 ‹ ¶ 09 orthogonally to the
direction P‡Cp

‹ , and similarly solving for the Cp estimate O‹Cp

is equivalent to � nding the level surface ¬
Cp

‹ that contains w,
where ¬

Cp

‹ D 8w 2 P‡Cp 0
‹ 4w ƒŒ‹5 D 09. Figure 4(a) displays the

geometry of Cp together with that of GML. The solid lines
represent the orthogonal directions and level surfaces of Cp;
the dotted lines, the GML directions and level surfaces. One
interesting fact about the geometry is that GML and Cp share
the same line of expectations, 8Œ‹ D 1=b‹ 2 ‹ ¶ 09. The differ-
ence between GML and Cp is the orientation of the orthogonal

direction ( P‡GML
‹ and P‡Cp

‹ ) or, equivalently, the tilting of the
level surface (¬GML

‹ and ¬
Cp

‹ ). Figure 4(a) also reveals that as
‹ varies, the Cp orthogonal direction P‡Cp

‹ rotates faster than
its GML counterpart. This is important, and we return to it in
Section 5.

2.3 The Ideal Degrees of Freedom

For any smoothing problem of the form (1), there will be
an ideal choice of the smoothing parameter ‹0, and a corre-
sponding ideal degrees of freedom, df0 D tr4A‹0

5, such that ‹0

minimizes the expected squared error of prediction,

‹0 D argmin
‹

Ef˜Of‹ ƒ f˜20 (13)

Figure 4. The Geometry of Selection Criteria. (a) The geometry of
Cp and GML. ¬GML

‹ and ¬
Cp
‹ intersect at Œ‹ D 1=b‹ . The solid lines

represent the Cp level surfaces; dotted lines, the GML level surfaces.
The thick line is the common line of expectations. (b) The level surfaces
of the EE criterion.

Other de� nitions of “ideal” are possible, such as those of Hall
and Johnstone (1992) and HRardel, Hall, and Marron (1988).
As pointed out by a referee, Gu (1998) provided an interest-
ing discussion of the concept of degrees of freedom, where
it is argued that degrees of freedom is not replicate-invariant.
Here we are interested in (13) because it � ts in well with the
usual notions of estimation accuracy and the following two
theorems, especially Theorem 2 connect the estimation of the
curve with the estimation of the ideal degrees of freedom. (See
also Theorem 7 in Sec. 6.)

Theorem 1. If y 4f1‘ 25 and Of‹ D A‹y, then the ideal
choice of ‹ is

‹0 D argmin
‹

X
i

4b2
‹i4g2

i C 15 ƒ 2b‹i50 (14)

Theorem 2. For general ‹, the total estimation error

Ef ˜ Of‹ ƒ f ˜2

D E ˜ Of‹0
ƒ f ˜2 Cd0 ¢ 4df‹ ƒ df‹0

52 C o4—df‹ ƒ df‹0
—251

where the constant

d0 D ‘ 2
X

i

µ³³
¡

¡‹
b‹0i

2́

C
³

b‹0 i

¡2

¡‹2
b‹0i

´´
4g2

i C 15

ƒ
¡2

¡‹2
b‹0 i

¶ ³X
i

¡

¡‹
a‹0 i

2́
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depends only on the true curve and the design points
x11 x21 : : : 1 xn.

The proofs of Theorems 1 and 2 are deferred to Appendix
A. Note that E4w5 D g2 C 1. Comparing (10) and (14), The-
orem 1 reveals that if we replace w in the Cp criterion by
its expectation g2 C 1, then the resulting choice of ‹ corre-
sponds exactly with the ideal smoothing parameter, suggest-
ing that Cp is a “natural” criterion. We return to this point in
Section 4.1. Theorem 2 says that to second order, the error
of estimating the curve f by using a smoothing parameter ‹
is proportional to the squared difference between the degrees
of freedom corresponding to ‹ and the ideal degrees of free-
dom. Thus, comparing different criteria by their performance
on estimating the ideal degrees of freedom also provides an
f-estimation comparison. For this reason, the next three sec-
tions concentrate on estimating the ideal degrees of freedom.
Section 6 covers estimating the curve, discussing the relation-
ship between estimating the ideal degrees of freedom and
adaptively estimating the curve.

3. THE EXTENDED EXPONENTIAL
SELECTION CRITERION

3.1 The Criterion

Figures 1 and 2 reveal some general properties of Cp

and GML. In the � rst example, x comprises 61 equally
spaced points on the interval 6ƒ11 17, f 4x5 D sin4� 4x C 155=
4x=2 C 151‘ D 1; in the second example, x is 64 equally
spaced points on 60117, f 4x5 D 1

3
B10154x5 C 1

3
B7174x5 C

1
3
B51104x5, ‘ D 005, where the beta function Bp1q4x5 D

4â4p C q5=â 4p5â4q55xpƒ141ƒx5qƒ1. (This is case 1 in Wahba
1985.) In experiment 1, where the ideal degrees of freedom
are 5.18, the Cp- and GML-estimated degrees of freedom with
mean 5.64 and 4.84 and median 5.03 and 5.00 are both nearly
unbiased. However, as manifested by the longer tails of the
Cp estimates seen in Figure 1, the standard deviation of the
Cp-estimated degrees of freedom (2.37) is far larger than the
standard deviation of the GML estimates (.94). A more robust
measure of spread,

4interquartile range5=10351 (15)

gives .81 for Cp and .65 for GML. The larger variability of
the Cp estimates undermines it as a competitive estimator in
this example.

Figure 2 presents a dif� cult situation for GML. The ideal
degrees of freedom in this case are 13.42. Although the Cp

estimate’s robust standard error (.91) is still much larger than
the corresponding measure for GML (.45), its mean of 13.86
and median of 13.31 show that Cp is almost unbiased. In con-
trast, GML, with a mean of 15.85 and a median of 15.84, is
badly biased upward. Cp outperforms GML in this case. As
evidenced in these two examples, the problem for Cp is its
instability, whereas the trouble for GML is its potentially large
bias. The simulation examples, in a certain sense as pointed
out by a referee, provide a small sample re� ection of the
result of Wahba and Wang (1995), who showed that there is a
nonzero probability that Cp (GCV) would choose the smooth-
ing parameter to be 0 (namely, df D n); the bar at the right

end of the Cp histogram serves as a reminder. At this point,
one naturally hopes to � nd a “robust” selection criterion—one
that behaves stably and will not give eccentric estimates as Cp

occasionally does, yet at the same time does not suffer from
enormous bias.

Our proposed new selection criterion, the EE criterion, satis-
� es these qualitative requirements to a large extent. Expressed
in the coordinate system (6), (9), the EE criterion chooses the
smoothing parameter ‹ according to

O‹EE D arg min
‹

X
i

h
Cb‹iwi

2=3 ƒ 3b1=3
‹i

i
1 (16)

where C D
p

� =622=3â 47=657 D 10203 (see Sec. 4.1 for an
explanation of the choice of C) and wi D z2

i .
Applying the EE formula (16) to the two examples produces

the histograms showed in the left panels of Figures 1(b) and
2(b). In the � rst example, the EE estimates have mean 5.16,
median 5.16, and robust deviation .73; in the second exam-
ple, the mean 14.52, median 14.42, and robust deviation .79.
Table 1 summarizes the statistics describing the performance
of the EE criterion together with those of Cp and GML.

Comparing the statistics given in Table 1, two properties
of the EE criterion are noteworthy: (a) The variability of the
EE estimates is signi� cantly smaller than that of Cp , and (b)
in the unfavorable situation of experiment 2, although the EE
criterion has some bias, the bias is much smaller than that
of GML. In short, the EE criterion performs as a reasonably
“robust” compromise between Cp and GML.

3.2 The Geometric Motivation

The EE selection criterion is motivated by the geometry of
Figures 3 and 4, where Cp and GML share the same line of
expectations. If an observation happens to lie on this line, say
w D Œ‹! for some ‹!, then both GML and Cp would estimate
‹! to be the smoothing parameter. In other words, the line of
expectations works as a common ground for GML and Cp .
What about points away from the line of expectations? Efron
(2000) showed that in the case of E8w9 D 1 C g2 lying below
the line of expectations, Cp tends to work most ef� ciently,
whereas when E8w9 is above the line of expectations, GML
outperforms Cp .

Table 1. Summary Statistics Comparing the EE Estimated Degrees
of Freedom With Those of GML and Cp on the

Two Simulation Experiments

Experiment 1 Experiment 2
(ideal d f D 5018) (ideal d f D 13042)

Cp EE GML Cp EE GML

Mean 5064 5016 4084 13086 14052 15085
Median 5003 5016 5000 13031 14042 15084
Bias 02 002 02 01 100 204
Standard error 2037 1009 094 2010 086 046
Mean squared

error (MSE) 5078 1020 1000 4062 1094 6012
Robust spread 081 073 065 091 079 045

NOTE: The robust measure of spread is the interquartile range divided by 1.35.
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The goal of combining the strengths of Cp and GML moti-
vates the EE criterion. Figure 4(b) shows the EE level surface
¬EE

‹ , which can be derived from the normal equation of the
EE formula 41652 ¬EE

‹ D 8w 2 P‡EE 0
‹ 4w2=3 ƒ ŒEE

‹ 5 D 09, where
P‡EE

‹i D ƒC3=2 ¡
¡‹

b‹i D ƒC3=2a‹ib‹i=‹ and ŒEE
‹i D 1=4Cb2=3

‹i 5.
Comparing Figure 4(a) and (b), we notice that above the line
8Œ‹ D 1=b‹ 2 ‹ ¶ 09, ¬EE

‹ behaves much like the GML level
surface ¬GML

‹ , and below the line, ¬EE
‹ follows ¬

Cp

‹ . Geomet-
rically, the EE criterion is seen to smoothly combine Cp and
GML. The simulation results of Figures 1 and 2 con� rm this
geometric intuition. Theoretical results are given in Sections 4
and 5. Section 7 discusses the Bayesian properties of the selec-
tion criteria, and explains the term “extended exponential.”

3.3 A Uni’ ed Framework

Geometry motivates the de� nition of the EE criterion, but
geometry alone does not completely explain formula (16).
Indeed, there is a class of selection criteria that each have a
simple geometric picture. Let p ¶ 1, and q ¶ 1 be two � xed
constants. De� ne the function mathtight

l
4p1q5

‹ 4u5

D
(P

i

£
4cq B‹i5

pui ƒ p

pƒ1
44cqB‹i5

pƒ1 ƒ 15
¤

if p > 1
P

i4cqB‹iui ƒ logB‹i5 if p D 11
(17)

where

B‹i D b1=q

‹i and cq D
p

� =621=qâ41=2 C 1=q57 (18)

(see Sec. 5.1 for the choice of cq). For each pair 4p1q5, a
selection criterion can be de� ned as

O‹4p1q5 D argmin
‹

8l
4p1 q5

‹ 4w1=q59

D
(

arg min‹

P
i6cqB

p

‹iw
1=q
i ƒ p

pƒ1
B

pƒ1
‹i 7 if p > 1

arg min‹

P
i4cqB‹iw

1=q
i ƒ logB‹i5 if p D 11

(19)

where w D z2 D 4z2
11 z2

21 : : : 1 z2
n50 as before. This class of selec-

tion criteria, indexed by the pair 4p1 q5, contains the EE, Cp ,
and GML criteria, as direct calculation replacing 4p1q5 by
411151 42115, and 4 3

2
1 3

2
5 gives the following theorem.

Theorem 3. For p D 1, and q D 11 O‹41115 is the same as the
GML estimate O‹GML; for p D 2, q D 1, O‹42115 is the Cp estimate
O‹Cp 3 p D q D 3

2
gives the EE selection criterion.

The theorem helps explain the EE formula (16). Because
p D 1 for GML and p D 2 for Cp , to compromise between the
two, it is reasonable to take p D 3=2. Kou (2001) studied the
Bayesian properties of the selection criteria family (19) and
showed that indeed, taking p D 3=2 is most Bayesian robust.
The EE choice of q D 3=2 is based on two facts: (a) q > 1 is
required so that we can have a “curved” level surface to com-
bine the geometry of Cp and GML; (b) Kou (2001) also con-
sidered the large-sample properties of the selection criteria and
showed that p ¶ q is needed for desirable asymptotic proper-
ties. In addition to theoretical justi� cations of Sections 4 and
5, simulations like those of Figures 1 and 2 support choosing
EE from class (19).

Like GML and Cp , every member of (19) enjoys a simple
geometric picture. The normal equation for O‹4p1q5 has the form

Pl4p1q5

O‹4p 1q5
4w1=q5 D

¡

¡‹
l
4p1q5

O‹4p1q5
4w1=q5

D ƒ P‡4p1q5 0
‹

±
w1=q ƒ Œ

4p1 q5

‹

²­­­
‹D O‹4p 1q5

D 01 (20)

where

P‡4p1q5

‹ D
±

P‡4p1q5

‹1 1 P‡4p1q5

‹2 1 : : : 1 P‡4p1q5

‹n

²

with P‡4p1q5

‹i D ƒ
p

q‹
a‹i4cqB‹i5

p1 (21)

and

Œ
4p1 q5

‹ D
±

Œ
4p1 q5

‹1 1Œ
4p1q5

‹2 1 : : : 1Œ
4p1 q5

‹n

²

with Œ
4p1q5

‹i D 1=4cqB‹i50 (22)

Replacing the orthogonal direction P‡‹ by P‡4p1q5

‹ , the line of
expectations 8Œ‹ 2 ‹ > 09 by 8Œ

4p1q5

‹ D 1=4cqB‹5 2 ‹ > 09, w
by u D w1=q , and the level surface ¬GML

‹ by

¬
4p1 q5

‹ D u D w1=q 2
X

i

a‹iB
p

‹i4ui ƒ 1=4cqB‹i55 D 0 1

Figures 3 and 4 also apply to the geometry of a general esti-
mator O‹4p1q5.

We make some remarks about the class (19) and their
geometry.

Remark 2. From de� nition (17), it is seen that l
4p1q5

‹ !
l

411q5

‹ as p ! 1. Efron (2001) constructed a family ¦ 4p5 of
selection criteria indexed by a parameter p ¶ 1, corresponding
to taking q D 1 in (19). The 4p1q5 family O‹4p1q5 can also be
thought of as a two-parameter generalization of that family.

Remark 3. As ‹ # 0, Œ
4p1q5

‹ moves upward along the line
of expectations, the orthogonal direction P‡4p1q5

‹ also changes.
For spline-like smoothers, P‡4p1q5

‹ rotates counterclockwise
(because P‡4p1q5

‹i = P‡4p1q5

‹j is an increasing function of ‹ for i < j).
Furthermore, the speed of rotation of the EE and GML cri-
teria is considerably slower than that of Cp . As explained in
Section 5, this slower rotation causes the EE and GML crite-
ria to be substantially more stable than Cp .

4. VARIANCE, BIAS, AND BIAS CORRECTION

The simple geometry of the criteria diagrammed in
Figures 3 and 4 helps derive useful theoretical results. We
� rst exploit it to calculate the variance and bias of the 4p1q5-
estimated degrees of freedom.

4.1 Variance and Bias

In this section we suppress the superscripts for notational
ease; for example, we write P‡‹ instead of P‡4p1q5

‹ , and Pl‹4u5

instead of Pl4p1q5

‹ 4u5, and so on. We denote by cdf the degrees
of freedom associated with O‹1cdf D df4 O‹5 D

Pn
iD1 a O‹i and

u D 4u11 u21 : : : 1 un5 D 4w
1=q

1 1w
1=q

2 1 : : : 1w1=q
n 50 (23)
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Theorem 4. Let df1 be the degrees of freedom obtained
by substituting u0 ² E8u9 into the 4p1q5-estimation formula

df1 D df 4‹151 ‹1 D arg min
‹

l‹4u05 D arg min
‹

l‹4E8w1=q950

(24)

Then a delta method approximation for the standard error of

the 4p1 q5 estimator cdf
4p1q5

is

sep1q4cdf 5
0D

µX
i

³
¡cdf

¡ui

­­­­
u0

2́

var ui

¶1=2

D
­­­­
³ nX

iD1

Pa‹1 i

´
Rl‹1

4u05

­­­­
³X

i

P‡2
‹1 ivarui

1́=2

1 (25)

where a single dot on a variable denotes its � rst derivative with
respect to ‹ and double dots indicate the second derivatives,
that is, Pa‹i D 4¡=¡‹5a‹ and Rl‹4u5 D 4¡2=¡‹25l‹4u05.

Derivation of Theorem 4. Starting from the normal equa-
tion Pl O‹4u5 D 0, standard application of the implicit func-
tion theorem gives the delta in� uence of ui on O‹1¡ O‹=¡ui D
ƒ4Rl O‹4u55ƒ14¡=¡ui5 Pl‹4u5—‹D O‹ D P‡ O‹i=

Rl O‹4u5, from which the delta
in� uence of ui on cdf is given by

¡cdf

¡ui

D
¡cdf

¡ O‹
¡ O‹
¡ui

D
³ nX

iD1

Pa O‹i

´
P‡ O‹i=Rl O‹4u50 (26)

A � rst-order Taylor expansion on cdf around u0 yields

cdf
0D df1 C

X
i

¡cdf

¡ui

­­­­
u0

4ui ƒ u0i50 (27)

The desired result follows by applying the delta method cal-
culations on (26) and (27).

The approximation (25) has a simple computational form if
the underlying smoothers are spline-like, under which

P‡4p1q5

‹i D ƒ
p

q‹
a‹i4cqB‹i5

p1 (28)

and

R‡4p1q5

‹i D
p

q‹2
a‹i4cqB‹i5

p62 ƒ 41 C p=q5a‹i71

Rl‹4u5 D pcpƒ1
q =4q‹25 ¢ Q‹4u51 (29)

¡cdf

¡ui

D
¡cdf

¡ui

D cq a O‹iB
p

O‹i

¢³X
i

aO‹ib O‹i

´
Q O‹4u51

where Q‹4u5 D P
i a‹iB

pƒ1
‹i 8a‹i=q C 641 C p=q5a‹i ƒ 27�

4cq B‹iui ƒ 159. Thus, for spline-like smoothers, the delta
method approximation simpli� es to

sep1q4cdf 5
0D cq —Q‹1

4u05—ƒ1

³X
i

a‹1 ib‹1i

´µX
i

a2
‹1iB

2p

‹1 ivar ui

¶1=2

0

(30)

Table 2 reports the results of applying approximation (30)
to the two cases of experiment 1 and 2. The delta method
approximation (30) agrees well with the robust standard error

Table 2. Comparison of „ Method Approximation With Simulation
Results From the Two Experiments

Experiment 1 Experiment 2

Formula Empirical se Formula Empirical se
(30) (15) (30) (15)

EE (p D 3
2 1q D 3

2 ) 0725 0731 0787 0794
Cp (p D 21q D 1) 0769 0812 0894 0913
GML (p D 11q D 1) 0639 0653 0455 0451

(15) from the simulation results, lending theoretical support
to the stable performance of the EE and GML estimates in
Figures 1 and 2.

The derivation of Theorem 4, especially the Taylor expan-
sion (27), emphasizes the importance of u0 D E8w1=q9 and
the theoretical degrees of freedom df

4p1q5

1 (24). Here df
4p1q5

1

works as the central value of cdf
4p1q5

. By central value, we

mean that the mean and median of cdf
4p1q5

are closely located
around df

4p1q5

1 , as shown in Table 3, which compares df
4p1q5

1

with the empirical mean and median of cdf
4p1 q5

. For a 4p1q5
estimator, we can get an idea of bias by looking at the differ-
ence df

4p1q5

1 ƒ df0, where df0 is the ideal degrees of freedom.
For Cp, p D 2, q D 1, u0 D E8w9 D g2 C 1; so ‹

Cp

1 D argmin‹P
i8b

2
‹i4g2

i C15ƒ 2b‹i9 according to (24). But Theorem 1 says
that ‹0, the ideal smoothing parameter de� ned in (13), is also
‹0 D arg min‹

P
i8b

2
‹i4g2

i C 15 ƒ 2b‹i9. Therefore, for Cp , its

central value df
Cp

1 gives the ideal degrees of freedom df0,
echoing our earlier claim for the naturalness of Cp . For gen-
eral 4p1 q5 estimates, because the central value ‹

4p1q5

1 6D ‹0,
cdf

4p1q5
is potentially biased.

Before calculating the bias of cdf
4p1q5

, we detour to an
important technical point. Because z N 4g1 I5, it follows that
wi D z2

i are independent, each having a noncentral chi-squared
distribution with 1 degree of freedom and noncentrality param-

eter g2
i 2 wi

ind.
�2

1 4g2
i 5. Thus u0i D E8ui9 D E8w1=q

i 9 involves
the fractional moment of a noncentral �2

1 random variable.

Lemma 1. For wi �2
1 4g2

i 5, r ¶ 0, Ewr
i D 1p

�
2r â4r C

1=25M4ƒr11=21 ƒg2
i =25, where M4¢1 ¢1 ¢5 is the con� uent

hypergeometric function given by M4c1 d1 z5 D 1 C cz=d C
4c52z

2=4d522W C ¢ ¢ ¢ C 4c5nzn=4d5nnW C ¢ ¢ ¢ , with 4d5n de� ned
by 4d5n D d4d C 15 ¢ ¢ ¢ 4d C n ƒ 15. In particular,

u0i D Ew1=q
i D

1
p

�
21=qâ 41=q C 1=25M4ƒ1=q11=21 ƒg2

i =250

(31)

Table 3. Comparison of d f ( p, q)
1 With Empirical Mean and

Median of cd f
( p, q)

Empirical Empirical
df1 mean median

Experiment 1 EE (p D 3
2 1q D 3

2 ) 5026 5016 5016
Cp (p D 21q D 1) 5018 5064 5003
GML (p D 11q D 1) 5012 4084 5000

Experiment 2 EE (p D 3
2 1q D 3

2 ) 14045 14052 14042
Cp (p D 21q D 1) 13042 13086 13031
GML (p D 11q D 1) 15085 15085 15084



774 Journal of the American Statistical Association, September 2002

Proof. See Appendix A.

Lemma 1 not only provides explicit formula for computa-
tion, but also helps explain the choice of C in (16) and cq

in (17) and (19). Starting from the normal sampling model
y N 4f1‘ 2I5, if the true curve f is linear and a cubic smooth-
ing spline is used to recover f , then the orthogonal transforma-
tion (6) would give g3 D g4 D : : : D gn D 0, which, according
to (31), forces the central value u0 to be

u0i D
1

p
�

21=qâ41=q C 1=25M4ƒ1=q1 1=2105

D
1

p
�

21=qâ41=q C 1=251 i ¶ 30 (32)

Because linear models, although simple, are such an impor-
tant case, it is natural to require that any reasonable selection
criterion preserve linearity when the underlying curve indeed
is a straight line. In the case of 4p1q5 estimators, careful exam-
ination of the geometry displayed in Figure 3 indicates that the
point corresponding most naturally to 2 degrees of freedom
is the left endpoint of the line of expectations. This suggests
matching the central value u0 D E8w1=q9 with the leftend point
so that the central degrees of freedom df

4p1q5

1 D 2. By (22),
the ith (i ¶ 3) coordinate of the left endpoint is 1=cq , which
together with (32) implies cq D

p
� =621=qâ41=2C 1=q57.

The geometric picture also leads to a simple way of calcu-
lating median bias. De� ne

S D ƒ P‡4p1q50
‹0

u ƒ Œ
4p1q5

‹0

¢
1

where, as before, ‹0 is the ideal choice of smoothing param-

eter. Then, locally (see Fig. 3), cdf
4p1 q5

< df0 if u lies to the
left of ¬‹0

, the hyperplane associated with the ideal degrees

of freedom df0, and cdf
4p1q5

> df0 if u lies to the right of ¬‹0
.

In other words, cdf
4p1 q5

ƒ df0 locally has the same sign as S,
which suggests the approximation

P cdf
4p1q5

< df0

¢ 0D P4S < 050 (33)

Because ui D w1=q
i are independently distributed, S has

mean M4S5 D ƒ P‡4p1q5 0
‹0

4u0 ƒ Œ
4p1q5

‹0
5, variance V 4S5 D

P
i P‡4p1q5 2

‹0 i varui, and skewness

skew4S5 D
E4S ƒ M4S553

V 4S53=2
D ƒ

P
i P‡4p1q5 3

‹0 i E64ui ƒ u0i5
37

4
P

i P‡4p1q5 2
‹0 i var ui53=2

0

An Edgeworth expansion involving the � rst three moments
provides

P4S < 05
0D ê

³
ƒ

M4S5p
V 4S5

´

ƒ
1

6
skew4S5

³
M4S52

V 4S5
ƒ 1

´
�

³
ƒ

M4S5
p

V4S5

´
1 (34)

where ê and � are the cdf and density of the standard normal
distribution. This also gives the following result.

Theorem 5. The median bias of cdf
4p1q5

has Edgeworth
approximation

P
±
cdf

4p1q5
< df0

² 0D ê

³
ƒ

M4S5p
V 4S5

´

ƒ
1
6

skew4S5

³
M4S52

V4S5
ƒ 1

´
�

³
ƒ

M4S5p
V4S5

´
0

(35)

Formulas (21) and (22) give simple expressions for spline-
like smoothers,

M4S5 D pc
p
q

q‹0

P
i a‹0 iB

p

‹0i4u0i ƒ 1=4cqB‹0 i55

V 4S5 D
³

pc
p
q

q‹0

2́ P
i a2

‹0iB
2p

‹0 ivarui

and

skew4S5 D P
i a3

‹0 iB
3p

‹0 iE64ui ƒ u0i5
37

³P
i a

2
‹0iB

2p

‹0 ivar ui

ƒ́3=2

0

Table 4 compares approximation (35) with the empirically

observed P4cdf
4p1 q5

< df05 for the two simulation experiments.
The accuracy of (35) is clearly demonstrated. The theoretical
calculation once again reveals that Cp is almost unbiased and
that although EE is possibly biased, its potential bias is sig-
ni� cantly smaller than the bias of GML.

4.2 Resubstitution and Bias Correction

Theorems 4 and 5 are of more than theoretical value. In
real applications where the true curve g (or, equivalently, f) is
unknown, the following resubstitution idea can be used to get
estimates of standard error and median bias.

Recall that we produce (30) and (35) via

% ‹1 ! standard error formula
% u0 D E8w1=q9 &

g median bias formula
& g2 C 1 ! ‹0 %

0

The resubstitution method replaces the unknown true curve g
with Og D a O‹z, the estimated curve,

% O‹1 ! standard error
% Ou0 &

z ! O‹ ! Og D a O‹z estimated median bias
& Og2 C 1 ! O‹0 %

0

(36)

Equipped with the standard error, we can say more about the
estimate. For instance, a naive 90% con� dence interval for
the degrees of freedom is 6cdf ƒ 1065bse1cdf C 1065bse7. For the
particular scatterplot displayed in Figure 2(a), the EE criterion
via (36) produces a naive 90% interval 6120651 150537, neatly
containing 13.42, the ideal degrees of freedom.

The resubstitution idea of (36) also suggests a simple
method of bias correction. Suppose that estimate cdf behaves
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Table 4. Comparison of Approximation (35) With Monte Carlo Estimates of P(cd f
( p, q )

< d f0)

Experiment 1 Experiment 2

Observed Observed

Approximation (35) P(cd f
(p1q)

< d f0) Approximation (35) P(cd f
(p1q)

< d f0)

EE (p D 3
2 1q D 3

2 ) 0483 0507 0068 0071
Cp (p D 21q D 1) 0573 0583 0544 0540
GML (p D 11q D 1) 0584 0618 < 0 0

approximately normally around its center of distribution. Then
a bias correction is given by

fdf D cdf C êƒ1
±

P4cdf < df05
²

bse1 (37)

with P4cdf < df05 approximated by (35) through resubstitution
(36). Figure 5 shows the effect of bias correction on the EE

and Cp estimates cdf
EE

and cdf
Cp

for the second experiment
(Fig. 2). The unshaded bars present the histogram of cdf ; the

12 14 16 18 20

0
50

10
0

15
0

degrees of freedom

ideal df   = 13.42

EE estimates of df
bias corrected version

12 14 16 18 20

0
50

10
0

15
0

degrees of freedom

ideal df   = 13.42

Cp estimates of df
bias corrected version

(b)

(a)

Figure 5. Bias Correction (37) on EE and Cp Estimates. (a) His-
tograms of EE and the corresponding bias corrected estimates. (b) His-
tograms of Cp estimates and its bias-corrected version.

shaded bars, the histogram of the bias-corrected estimate fdf .
Formula (37) is seen to work well for the EE estimates but
essentially has no effect on the Cp estimates, the reason being
that for Cp , the problem is its large variability, not bias. For-
mula (37) has also been tried on the GML estimates, however
without satisfactory result. The problem is that the bias of the
GML estimates is so big that Edgeworth approximation (35)
starts breaking down. More than 90% of the GML estimates in
experiment 2 assign negative values to the Edgeworth approx-
imation of P4cdf < df05, which in turn invalidates (37).

5. REVERSAL EFFECT AND VARIABILITY

Tables 1 and 2, through simulations and theoretical approx-
imation, exhibit the high variability of the Cp estimates com-
pared with the EE or GML estimates, as seen in Figures 1 and
2, where the troublesome long right tails of the Cp estimates
are particularly worrisome. In this section we show that this is
due to the reversal effect (Efron 2001) caused by the rotation
of the direction P‡4p1q5

‹ (21). In addition, we also show that the
reversal effect of the EE estimator is much smaller than that of
Cp, which underlines the stable behavior of the EE estimates.

Going back to the geometry of Figure 3, points on ¬‹, the
level surface passing through Œ

4p1q5

‹ orthogonally to P‡4p1q5

‹ ,
satisfy the normal equation Pl4p1q5

‹ 4u5 D ƒ P‡4p1 q5 0
‹ 4u ƒ Œ

4p1 q5

‹ 5 D
0. Because the directions P‡4p1 q5

‹ are not parallel to each other,
different hyperplanes intersect each other, with points on the
intersection of two hyperplanes satisfying both normal equa-
tions. One direct consequence of nonparallelness is numerical
instability, because the solution of a given normal equation
might not be unique. But this is not the only trouble, however.

Figure 6 illustrates this “crossover” phenomenon, show-
ing ¬‹0

, the � at space corresponding to the ideal degrees of
freedom df0, intersecting ¬‹0Cd‹ for some small d‹. From
Pl4p1 q5

‹0
4u5 D 0 and Pl4p1q5

‹0Cd‹4u5 D 0, we see that as d‹ ! 0, the
limiting intersection point u! satis� es

Pl4p1q5

‹0
4u!5 D 0 and Rl 4p1q5

‹0
4u!5 D 00 (38)

Now imagine moving a point u along ¬‹0
away from Œ

4p1q5

‹0

toward u!. Because the second derivative Rl4p1q5

‹0
4u5 is linear in

u according to (29), it changes sign from positive to 0 at the
critical point u!, and then negative beyond it. This means that
as u moves upward, ‹0 switches from a local minimum of
l

4p1 q5

‹ to a local maximum. Therefore, for points lying on ¬‹0

beyond u!, the 4p1 q5 estimate O‹4p1q5, which by de� nition is
the global minimizer of l

4p1 q5

‹ , must be far away from ‹0!
This phenomenon was called the reversal effect by Efron

(2001). Figure 6 also shows that the faster the rotation of
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Figure 6. Illustration of the Reversal Effect. The rotation of P‡‹ causes
different hyperplanes ¬‹ to intersect. The limiting intersecting point
de’ nes the beginning of the reversal region. The faster the rotation of
P‡‹, the closer the reversal region to the line of expectations and the

more severe the reversal effect.

P‡4p1q5

‹ , the closer the critical point u! to the line of expec-
tations, and hence the greater the chance that a point falls
beyond u!, that is, the more severe the reversal effect. The EE
and GML directions P‡4 3

2 1 3
2 5

‹ and P‡411 15

‹ rotate more slowly than
the Cp direction P‡421 15

‹ , implying that EE and GML suffer less
than Cp from the reversal effect. This is the main factor behind
the stable behavior of the EE criterion. Table 5 measures the
speed of rotation in terms of curvature.

The following theorem, modi� ed slightly from theorem 3
of Efron (2001), formally connects the distance from u! to
Œ

4p1q5

‹0
with the speed of rotation of P‡4p1q5

‹ .

Theorem 6. The minimum distance between the critical
point u! (38), and Œ

4p1q5

‹0
is given by

min
u!

h
u! ƒ Œ

4p1q5

‹0

¢0
èƒ1 u! ƒ Œ

4p1 q5

‹0

¢i1=2

D
1

ƒ‹0
4è5

P‡4p1q5 0
‹0

PŒ‹0

P‡4p1q5 0
‹0

è P‡4p1 q5

‹0

0

Here è, a symmetric nonnegative de� nite matrix discussed
later, de� nes ƒ‹4è5, the curvature of Ç

4p1q5

‹ with respect to è,

ƒ‹4è5 D
³

det4M‹5

P‡4p1q5 0
‹ è P‡4p1q5

‹

¢3

1́=2

with M‹ D
³

P‡4p1q5 0
‹ è P‡4p1 q5

‹ P‡4p1q5 0
‹ è R‡4p1q5

‹

P‡4p1q5 0
‹ è R‡4p1 q5

‹ R‡4p1q5 0
‹ è R‡4p1q5

‹

´
0

Proof. See Appendix B.

Remark 4. Two matrices are of particular interest: è D
I and è D V‹0

D ¡Œ‹=¡Ç‹ D diag44cq B‹0i5
ƒ4pC15=p5. When

Table 5. Squared Statistical Curvature of the EE, Cp , and GML Criteria

EE Cp GML

Experiment 1 .29 .70 .08
Experiment 2 .09 .23 .02

è D I , ƒ‹4I5 is the usual Euclidean curvature, and the theorem
says that the minimum Euclidean distance from u! to Œ

4p1q5

‹0
is

proportional to the radius of Euclidean curvature of Ç
4p1q5

‹ at
‹0; when è D V‹0

, ƒ‹4V‹5 is the statistical curvature de� ned
by Efron (1975) and used by Efron (2001) to compare Cp and
GML, and because ¡

¡‹
Œ‹0

D V‹0
P‡4p1 q5

‹0
, the theorem says that

the minimum Mahalanobis distance from u! to Œ
4p1q5

‹0
is equal

to the radius of statistical curvature.

The theorem suggests that the curvature is a good measure
of the reversal effect. Table 5 reports the squared statistical
curvatures of the EE, Cp , and GML criteria on the two simu-
lation experiments. The curvature of the EE criterion is much
smaller than that of Cp .

Motivated by the reversal phenomenon on ¬‹0
, we extend

it by de� ning the reversal region to be the region beyond the
critical point u! (see Fig. 6),

reversal region D
©
u 2 Rl 4p1q5

‹0
4u5 ƒ ‚‹0

Pl4p1q5

‹0
4u5 < 0

ª
1

where ‚‹0
D RÇ4p1 q50

‹0
V 2

‹0
PÇ4p1q5

‹0
=4 PÇ4p1q50

‹0
V 2

‹0
PÇ4p1q5

‹0
5. For any point

that falls into the reversal region, ‹0 is not even a local mini-
mum of l

4p1q5

‹ , implying that O‹ must be far from ‹0. Figure 7
plots

R0 D
£Rl 4p1 q5

‹0
4u5 ƒ ‚‹0

Pl4p1 q5

‹0
4u57=‹2

0 (39)

(horizontal axis) versus the EE- and Cp-estimated degrees of
freedom (vertical axis) for the 1000 simulations of Figure 1. It
is quite evident that observations with a negative value of R0

are likely to produce wild curves (i.e., curves with very large
degrees of freedom) and vice versa.

The mean, variance, and skewness of R0 are

M4R05 D ‹ƒ2
0

£
i‹0

C ‚‹0
PÇ4p1 q5

‹0
ƒ RÇ4p1q5

‹0

¢0
u0 ƒ Ì

4p1q5

‹0

¢¤
1 (40)

V4R05 D ‹ƒ4
0

P
i ‚‹0

P‡4p1q5

‹0 i ƒ R‡4p1q5

‹0 i

¢2
var ui1 (41)

and

S4R05 D
P

i4‚‹0
P‡4p1q5

‹0 i ƒ R‡4p1q5

‹0 i 53E4ui ƒ u0i5
3

6
P

i4‚‹0
P‡4p1 q5

‹0i ƒ R‡4p1q5

‹0i 52 var ui7
3=2

(42)

A three-term Edgeworth expansion thus gives

P4u 2 RR5 D P4R0 < 05
0D ê

³
ƒ

M4R05p
V4R05

´

ƒ
1
6

S4R05

³
M4R05

2

V4R05
ƒ 1

´
�

³
ƒ

M4R05p
V 4R05

´
0

(43)

Table 6 records approximation (43) along with the Monte
Carlo estimates of P4u 2 RR5. The EE criterion is seen to
have smaller reversal region effect [in experiment 1, P4u 2
RR5

0D 0088 for EE versus .20 for Cp; in experiment 2,
P4u 2 RR5

0D 0002 for EE versus 0067 for Cp] and thus less
variability. Computational details in the case of spline-like
smoothers are provided in Appendix B.
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Figure 7. Plots Showing the Reversal Region Effect. (a) The EE esti-
mated degrees of freedom against R0 for the 1000 simulations of Fig-
ure 1. (b) The Cp estimates of Figure 1.

6. ADAPTIVE ESTIMATION OF f

In this section we consider the effect of using an esti-
mated smoothing parameter on the subsequent estimation of f ,
complementing our previous investigation of estimating df0,
the ideal degrees of freedom. The link between the two has
been extensively studied by Efron (2001); also see the dis-
cussion of Section 2.3. Here, in the context of spline-like

Table 6. Approximation (43) and Empirically Observed P( u 2 RR) , the
Probability of an Observation Falling Into the Reversal Region

Experiment 1 Experiment 2

Approximation Observed Approximation Observed
(43) P(u 2 RR) (43) P(u 2 RR)

EE 0088 0084 0002 0002
Cp 0201 0195 0067 0065
GML 0019 0016 1092� 10ƒ9 0

smoothers, we propose an approximation for the prediction
error E˜Of O‹ ƒ f˜2 D‘ 2E˜Og O‹ ƒ g˜2, where OfO‹ D A O‹y1 Og O‹ D aO‹z.

The approximation starts from the decomposition of
E˜OgO‹ ƒ g˜2,

E˜OgO‹ ƒ g˜2 D E˜4Og O‹ ƒ Og‹0
5 C 4Og‹0

ƒ g5˜2

D E˜Og‹0
ƒ g˜2 C 2E84Og‹0

ƒ g504Og O‹ ƒ Og‹0
59

C E˜Og O‹ ƒ Og‹0
˜2

D E˜a‹0
z ƒ g˜2 C 2E84a‹0

z ƒ g504aO‹z ƒ a‹0
z59

C E˜4aO‹ ƒ a‹0
5z˜20 (44)

Theorem 7. The squared estimation error E˜Og O‹ ƒ g˜2 has
approximation

E˜OgO‹ ƒ g˜2 0D E˜Og‹0
ƒ g˜2 C �0E4cdf ƒ df05

2

C Š0E4cdf ƒ df05 C R1 (45)

where

�0 D
³X

i

a‹0 ib‹0i

ƒ́2 X
i

a2
‹0ib

2
‹0i4g2

i C 151

Š0 D 2
³X

i

a‹0 ib‹0 i

ƒ́1 X
i

a‹0ib‹0i61 ƒ b‹0i4g2
i C 1571

and

R D
P

i a2
‹0 ib

2
‹0i cov44cdf ƒ df05

21 z2
i 5

4
P

i a‹0 ib‹0 i5
2

C
2

P
i a‹0ib‹0 i cov4cdf 1a‹0iz

2
i ƒ gizi5P

i a‹0 ib‹0i

0

The derivation of Theorem 7 is deferred to Appendix A.
Notice that Š0=2 is the weighted average of 1 ƒ b‹0 i4g

2
i C 15,

which is likely to be close to 0 for large i, because we expect
gi ! 0 and b‹0 i ! 1. The foregoing approximation hence
suggests that the cost of adaptively estimating f , besides the
unavoidable error E˜Og‹0

ƒ g˜2, comes mainly from E4cdf ƒ
df05

2, the MSE of estimating df0, and the covariances between
cdf and z. Approximation (45) also indicates that the excess
risk due to adaptation (i.e., estimating ‹ from the data rather
than using a � xed ‹) arises from the variance of cdf and the
correlation between cdf and z.

Approximation (45) is not yet immediately useful because
of the unknown covariances. Expansion (27) provides simple
approximations for them,

cov4cdf 1 z2
i 5

0D
¡cdf

¡ui

—u0
cov4ui1 z2

i 51

cov4cdf 1 zi5
0D

¡cdf

¡ui

—u0
cov4ui1 zi51

cov 4cdf ƒ df05
21 z2

i

¢ 0D 24df1 ƒ df05

³
¡cdf

¡ui

—u0

´
cov4ui1 z2

i 5

C
³

¡cdf

¡ui

—u0

2́

cov 4ui ƒ u0i5
21 z2

i

¢
1

(46)
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Table 7. The Error of Estimating the Curve g

Empirical (SE) Approximation (45) Sum II

Experiment 1 EE 5075 (012) 5049 4094
Cp 6010 (014) 5060 5010
GML 5081 (012) 5046 4093

Experiment 2 EE 12026 (015) 12032 11097
Cp 12047 (016) 12016 11084
GML 12072 (015) 12098 12068

NOTE: Empirical mean (and standard error) from simulations together with approximation
(45); sum II is the sum of the ’ rst two terms of (45).

where the formula for ¡cdf =¡ui—u0
is given by (29) and the

covariances between u and z can be calculated by Lemma 1
or the method used to derive it (see App. A); for example,

cov4ui1 zi5 D gi21C1=qâ41=q C 1=25

� M41 ƒ 1=q1 3=21ƒg2
i =25=4q

p
� 51

E4uiz
2
i 5 D 21C1=qâ41=q C 3=25

� M4ƒ1ƒ 1=q11=21 ƒg2
i =25=

p
� 1

E4u2
i z

2
i 5 D 21C2=qâ42=q C 3=25

� M4ƒ1ƒ 2=q11=21 ƒg2
i =25=

p
� 0

(47)

Table 7 reports the performance of approximation (45) on
the two simulations, where, in addition to (46), E4cdf ƒ df05

is estimated by df1 ƒ df0 and E4cdf ƒ df05
2 is estimated by

4df1 ƒ df05
2 C var4cdf5 through (30). It is worth pointing out

that in real applications, where the true curve g is unknown,
(45) can be used together with the resubstitution method
of Section 4.2 to estimate the total estimation error. The
approximation is seen to work reasonably well on our two
cases. Table 7 also shows that the � rst two terms in (45),
E˜Og‹0

ƒ g˜2 C �0E4cdf ƒ df05
2, account for more than 90% of

the total estimation error, suggesting their role as a moder-
ate indicator of total estimation error. Not surprisingly, the EE
criterion works “robustly” in terms of estimating the curve,
consistent with our previous results.

7. A MARGINAL BAYESIAN INTERPRETATION FOR
THE EXTENDED EXPONENTIAL CRITERION

We have been working mainly under the frequentist model
y 4f1‘ 2I5, although the GML criterion was derived in
the Bayesian framework (3). Actually, like GML, the EE
criterion has a marginal Bayesian interpretation: instead
of the GML marginal density w exp4ƒ 1

2

P
i4b‹iwi ƒ

logb‹i55=
Q

i

p
2� wi, if we assume the density

ui D w2=3
i

ind.
exp

±
ƒC0 c3=2

q b‹iui ƒ 3c1=2
q b1=3

‹i

¢²
dEE

0 4ui51 (48)

then calculating the MLE yields the EE criterion (16), becauseP
i6cqb‹iw

2=3
i ƒ 3b1=3

‹i 7 is the negative log-likelihood up to a
constant. [The properties of the “carrier” dEE

0 4ui5 are discussed
later.] More generally, every member of the 4p1q5 family
(19) has a marginal Bayesian interpretation; if we assume that

u D w1=q comes from the marginal density

u D w1=q

8
>>>>>><
>>>>>>:

exp
±

ƒC0

P
i

£
4cq B‹i5

pui ƒ p

pƒ1
4cqB‹i5

pƒ1
¤²

d
4p1q5

0 4u5

if p > 1

exp
±

ƒC0

P
i

£
cqB‹iui ƒ log4cqB‹i5

¤²
d

411 q5

0 4u5

if p D 1

(49)

rather than the GML density, then the MLE gives the 4p1q5
criterion. The density (49) is a curved exponential family as
a function of the parameter ‹, which means that it can be
written as

u D w1=q exp4Ç0
‹u ƒ –‹5d

4p1q5

0 4u51

where Ç‹ D ƒC04cqB‹5p is the natural parameter vector and
–‹ is the cumulant generating function given by

–‹ D –4Ç‹5 D

8
<
:

ƒC0

P
i

p

pƒ1
4cqB‹i5

pƒ1 if p > 1

ƒC0

P
i log B‹i if p D 1

0 (50)

Because of the one-to-one correspondence between a density
and its cumulant generating function, (50) in fact completely
determines the distribution. For instance, the Cp marginal den-
sity is inverse Gaussian, which was shown by Efron (2001),
and in the EE marginal distribution (48), the normalizing
density dEE

0 4ui5 in (48) follows a positive stable law with
order 1=3, and, consequently, its exponential tilts give the
EE marginal density. (For reference of stable laws, see Feller
1971.) Compared with the GML density, which is based on

the assumption that wi

ind.
�2

1 =b‹i (see Sec. 2.1), the stable law
with order 1=3 has a heavier tail. This suggests that from a
marginal Bayesian standpoint, the EE criterion is more robust,
intuitively agreeing with our earlier analysis.

Remark 5. The term “extended exponential” comes from
the fact that the EE density is an exponential family, which
can be viewed as extended from the Cp and GML densities.

The fact that EE, Cp , and GML all have a Bayesian inter-
pretation suggests performing a Bayesian simulation to sup-
plement the frequentist simulation of Figures 1 and 2. We take
x to be 61 equally spaced points on the 6ƒ1117 interval and
take the true degrees of freedom to be 8, which determines the
smoothing parameter ‹ through

P61
iD1 a‹i D P61

iD1 1=41C‹ki5 D
8. Then we draw 1000 samples of w from the GML and
Cp marginal densities. For each of these 1000 samples, we
apply the EE, Cp , and GML criteria to choose the degrees of
freedom.

Figure 8 displays the simulation results. The top row
(a) shows the result of applying the three criteria to the
1000 samples from the GML density. Not surprisingly, GML
works very well, whereas Cp suffers from instability. The bot-
tom row (b) shows the performance of the three criteria on the
1000 samples from the Cp density. Compared to the previous
case, Cp performs much better, because it is working in its
own family, whereas the performance of GML deteriorates. In
both cases, the EE criterion works well, even though neither
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Figure 8. Bayesian Simulation. (a) The performance of EE, Cp , and GML on the 1000 samples from the GML density; (b) the performance of
EE, Cp , and GML on the 1000 samples from the Cp marginal density. The true degrees of freedom are 8 in both cases.

of the cases comes from the EE marginal distribution. Figure
8 thus gives the EE criterion some Bayesian support.

Remark 6. In contrast to its frequentist counterpart in
which the curve is � xed, we can think of the Bayesian simula-
tion as � rst drawing 1000 curves from some (possibly implicit)
prior, then generating 1 sample from each curve. Figure 8 also
re� ects the variability of the underlying curves.

8. DISCUSSION

Working on spline-like smoothers, in this article we have
studied the geometry of selection criteria. This not only gives
an intuitive explanation of the weakness and strength of the
Cp and GML criteria, but also motivates the EE criterion. EE
smoothly and robustly combines the strengths of GML and
Cp , giving smaller bias, smaller variance, and smaller reversal
effects. The simulation as well as theoretical results based on
the geometry support EE (particularly its bias-corrected ver-
sion) as a competitive criterion in both the frequentist and
Bayesian sense. An interesting open problem is to general-
ize the EE criterion to general linear smoothers. Although the

class of spline-like smoothers is large, such a generalization
would certainly be desirable. We conclude this article by dis-
cussing the case in which the variance ‘ 2 must be estimated
from the data.

If ‘ 2 is unknown in the model y 4f 1‘ 2I 5, then we can
replace it with an estimate Q‘ 2. De� nitions (6), (7), and (9)
give Qz ² U 0y= Q‘ D z ¢ 4‘ = Q‘ 5 and Qw ² Qz2,

Qu D Qw1=q D u ¢R1 where R D 4‘ 2= Q‘ 251=q1

leading to estimators Q‹4p1 q5 D arg min‹8l
4p1q5

‹ 4 Qu59, and likewise
fdf

4p1q5
; see (19). For p D 2 and q D 1 (the Cp case), this

amounts to substituting Q‘ 2 for ‘ 2 in (8). The close connection
between Q‹421 15 and Wahba’s (1985) GCV criterion is explained
at the end of section 4 of Efron (2001), complementing a
similar discussion there for GML at the end of Section 3.

If R 411varR5 independently of u, then it is easy to see
that

Qu 4u01var u C varR ¢4u0u
0
0 C var u551 (51)
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where var u D diag4var ui5. The in� uence function calculations
in Section 4 lead from (51) to the useful approximation

var8fdf
4p1q5

9

var8cdf
4p1q5

9

0D 1C varR ¢
µ

1C
4
P

i a‹1 iB
pƒ1
‹1i =cq 52

P
i a2

‹1 iB
2p

‹1i var ui

¶
1 (52)

using the identity
P

i a‹1iB
p

‹1iu0i D P
i a‹1 iB

pƒ1
‹1i =cq , which can

be derived from the normal equation (20). In practice, the
estimate Q‘ 2 can be based on the higher components of U 0y
4‘ g1‘ 2I5, as in (8.11) of Efron (2001),

Q‘ 2 D
nX

nƒ1ƒM

4U 0y52
i =4M ƒ 251

because the assumed smoothness of f implies that gi

0D 0 for
i large and that Q‘ 2 and u are nearly independent. The Gaus-
sian model y N 4f1‘ 2I5 then has var8‘ 2= Q‘ 29 D 2=4M ƒ
45. Applied with M D 40, this together with (52) gives
se4fdf5=se4cdf 5 D 1017 for Cp and 1.18 for GML, compared
with a simulation value of 1.22 (with se D 003) for the latter.

Formula (52) shows the loss of precision in cdf
4p1q5

from
having to estimate ‘ 2. Results like those in Sections 4–6
can be developed similarly for the unknown ‘ 2 case, at the
expense of complications due to the Qu nondiagonal covariance
matrix in (51).

APPENDIX A: PROOFS

Proof of Theorem 1

According to (6), ˜ Of‹ ƒ f ˜2D‘ 2 ˜ Og‹ ƒ g ˜2. It follows that

E˜Of‹ ƒ f˜2 D‘ 2E˜Og‹ ƒ g˜2 D‘ 2

"
nX

iD1

E4a‹izi ƒ gi5
2

#

D‘ 2

"
nX

iD1

b2
‹i4g2

i C15ƒ 2b‹i

¢
C n

#
0

Consequently, ‹0 D argmin‹ E˜Of‹ ƒ f˜2 D argmin‹

P
i8b2

‹i4g2
i C 15 ƒ

2b‹i9.

Proof of Theorem 2

Applying a Taylor expansion on ‹ around ‹0 yields

E ˜ Of‹ ƒ f ˜2D E ˜ Of‹0
ƒ f ˜2 C

1

2

³
¡2

¡‹2
E ˜ Of‹ ƒ f ˜2

´­­­­
‹D‹0

4‹ƒ‹052

Co4—‹ ƒ‹0—250 (A.1)

Notice that the � rst derivative term vanishes because ‹0 is the min-
imizer of E ˜ Of‹ ƒ f ˜2. Because ‹ and df‹ have a one-to-one corre-
spondence, we have

‹ ƒ‹0 D
³

¡df‹

¡‹

­­­­
‹D‹0

´ƒ1

4df‹ ƒ df‹0
5C o4—df‹ ƒ df‹0

—50 (A.2)

Substituting this into (A.1) yields Ef ˜ Of‹ ƒ f ˜2D E ˜ Of‹0
ƒ f ˜2 Cd0 ¢

4df‹ ƒdf‹0
52 Co4—df‹ ƒdf‹0

—25, where the constant

d0 D
1
2

µ
¡2

¡‹2
E ˜ Of‹ ƒ f ˜2

.³
¡df‹

¡‹

2́¶­­­­
‹D‹0

D‘ 2
X

i

µ³³
¡

¡‹
b‹0 i

2́

C
³

b‹0 i

¡2

¡‹2
b‹0 i

´´
4g2

i C15 ƒ
¡2

¡‹2
b‹0i

¶

�
³X

i

¡

¡‹
a‹0 i

ƒ́2

0

The relationships 4¡=¡‹5b‹i D a‹ib‹i=‹ and 4¡2=¡‹25b‹i D
ƒ2a‹ib

2
‹i=‹2 come directly from the fact that a‹i D 1=41 C ‹ki5.

Proof of Lemma 1

Ewr
i D E—zi—2r D

1
p

2�

Z ˆ

ƒˆ
—x—2r exp

³
ƒ

4x ƒgi5
2

2

´
dx

D
1

p
2�

Z ˆ

gi

4x ƒgi5
2r eƒx2=2 dx

C
1

p
2�

Z ˆ

ƒgi

4x Cgi5
2r eƒx2=2 dx (A.3)

Borrowing a special function, Hh function, from the mathemati-
cal physics literature, which, for example, Abramowitz and Stegun
(1972, p. 691) de� ne as

8
><
>:

Hhr 4x5 D
1

â4r C15

Z ˆ

x
4t ƒx5r eƒ 1

2 t2
dt for r ¶ 0

Hhƒ14x5 D eƒ 1
2 x2

0

(A.3) can be concisely expressed as Ewr
i D 4â42r C15=

p
2� 5

6Hh2r 4gi5 C Hh2r 4ƒgi57. An interesting connection between the Hh

function and another special function, the parabolic cylinder func-
tion U , which is widely used in mathematical physics, Hhr 4x5 D
eƒx2=4U4r C 1

2 1 x5, gives Ewr
i D 4â42r C 15=

p
2� 5eƒg2

i =46U42r C
1
2 1 gi5 C U 42r C 1

2 1 ƒgi57. The parabolic cylinder function U itself
(e.g., according to formula 19.12.3 of Abramowitz and Stegun
1972), satis� es U4a1x5 C U4a1ƒx5 D 42

p
� 2ƒ 1

4 ƒ 1
2 aeƒx2=45=4â4 3

4
C

1
2 a55M4 1

2 a C 1
4 1 1

2 1 1
2 x25, where M4¢1 ¢1 ¢5 is the con� uent hyper-

geometric function. It � nally follows that
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â42r C15
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2ƒreƒ 1

2 g2
i M

³
1
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1
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1
1
2
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2
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The last step uses two identities: M4a1b1 z5 D ezM4bƒa1b1ƒz5 andp
� â42x5 D 22xƒ1â4x5â4x C 1

2 5.

Proof of Theorem 7

Viewing a‹ as a function of df‹ and applying a � rst-order Taylor
expansion on a O‹i around a‹0 i yields

a O‹i

0D a‹0 i C
¡a‹i

¡df

­­­­
‹D‹0

4cdf ƒ df05

D a‹0 i C
a‹0 ib‹0 iP
j a‹0 jb‹0 j

4cdf ƒdf050
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Applying it on the decomposition (44) gives
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nX

iD1
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b2

‹0i4g2
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E
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D E4cdf ƒdf05 ¢ E4a‹0 iz
2
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2
i ƒgizi5

D 61 ƒb‹0i4g2
i C157E4cdf ƒ df05 C cov4cdf 1a‹0 iz

2
i ƒ gizi5
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E84cdf ƒdf05
2z2

i 9 D E4cdf ƒdf052 ¢ E8z2
i 9 C cov44cdf ƒdf05

21 z2
i 5

D 4g2
i C15E4cdf ƒdf052 C cov44cdf ƒ df0521 z2

i 51

we have E˜Og O‹ ƒ g˜2 0D E˜Og‹0
ƒ g˜2 C �0E4cdf ƒ df052 C Š0E4cdf ƒ

df05 CR, as in (45).

APPENDIX B: DETAILS OF THE REVERSAL EFFECT

Proof of Theorem 6

Suppressing the scripts, we have a quadratic optimization problem,

min
u

4u ƒ Ì‹50èƒ14u ƒÌ‹51 (B.1)

subject to Pl‹4u5 D 0 and Rl‹4u5 D 0. The Lagrangian is h4u1�1‚5 D
4u ƒ Ì‹50èƒ14u ƒ Ì‹5 ƒ � Pl‹4u5 ƒ ‚Rl‹4u5. Setting ¡h

¡u
D ¡h

¡�
D ¡h

¡‚
D 0

and solving the resulting linear equations gives the minimum dis-
tance,

min
u

£
4u ƒ Ì‹50èƒ14u ƒÌ‹5

¤1=2

D
³

RÇ0
‹è RÇ‹

4 PÇ0
‹è PÇ‹52

ƒ
4 RÇ0

‹è PÇ‹52

4 PÇ0
‹è PÇ‹53

ƒ́ 1
2 i‹

PÇ0
‹è PÇ‹

D
1

ƒ‹

i‹

PÇ0
‹è PÇ‹

1

which is achieved at
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4 PÇ0
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PÇ0
‹è PÇ‹

PÇ‹

´
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For è D V‹ , the minimum distance is simpli� ed to the radius of
statistical curvature, 1=ƒ‹ . The proof also says that the trajectory of
the point minimizing (B.1) is given by u4‹5 D Ì‹ Co‹ , where

o‹ D
1

i‹ƒ2
‹

V‹

³
RÇ‹ ƒ

RÇ0
‹V‹ PÇ‹

PÇ0
‹V‹ PÇ‹

PÇ‹

´
0

So ideally, the reversal region should be de� ned as the region con-
sisting of the points lying above the hyperplane that passes through
the intersection of 8u 2 Pl‹4u5 D 09 and 8u 2 Rl‹4u5 D 09 and is tangent

to the curve 8u4‹59. Any hyperplane passing through the intersec-
tion of 8u 2 Pl‹4u5 D 09 and 8u 2 Rl‹4u5 D 09, except ¬‹ itself, has the
form 8u 2 Rl‹4u5ƒ‚Pl‹4u5 D 09 for some ‚ 2 R. It then follows that ‚

should be taken as

RÇ0
‹V‹ Pu4‹5

PÇ0
‹V‹ Pu4‹5

D
RÇ0

‹V‹ PÌ‹ C RÇ0
‹V‹ Po‹

PÇ0
‹V‹ PÌ‹ C PÇ0

‹V‹ Po‹

0

A simple approximation for ‚ is RÇ0
‹V 2

‹ PÇ‹= PÇ0
‹V 2

‹ PÇ‹, which gives the
reversal region de� ned in Section 5. Besides being simple, simulation
results like those in Figure 6 give the best support for this de� nition.

Computational Details in the Case of Spline-Like Smoothers
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