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Bayesian analysis of single-molecule experimental
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Summary. Recent advances in experimental technologies allow scientists to follow biochemical
processes on a single-molecule basis, which provides much richer information about chemical
dynamics than traditional ensemble-averaged experiments but also raises many new statisti-
cal challenges. The paper provides the first likelihood-based statistical analysis of the single-
molecule fluorescence lifetime experiment designed to probe the conformational dynamics of
a single deoxyribonucleic acid (DNA) hairpin molecule. The conformational change is initially
treated as a continuous time two-state Markov chain, which is not observable and must be
inferred from changes in photon emissions. This model is further complicated by unobserved
molecular Brownian diffusions. Beyond the simple two-state model, a competing model that
models the energy barrier between the two states of the DNA hairpin as an Ornstein—Uhlen-
beck process has been suggested in the literature. We first derive the likelihood function of
the simple two-state model and then generalize the method to handle complications such as
unobserved molecular diffusions and the fluctuating energy barrier. The data augmentation
technique and Markov chain Monte Carlo methods are developed to sample from the posterior
distribution desired. The Bayes factor calculation and posterior estimates of relevant param-
eters indicate that the fluctuating barrier model fits the data better than the simple two-state
model.

Keywords: Bayes factor; Brownian diffusion; Continuous time Markov chain; Cox process;
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1. Introduction

Recent technological advances have allowed scientists to make observations on single-molecule
dynamics, which was unthinkable just a few decades ago (Nie and Zare, 1997; Xie and Traut-
man, 1998; Weiss, 2000; Tamarat et al., 2000; Moerner, 2002)—the famous physicist Richard
Feynman once described that seeing the images of single atoms was a ‘religious experience’.
Complementary to the traditional experiments that are done on large ensembles of molecules,
single-molecule experiments offer a great potential and many advantages for new scientific dis-
coveries. First, one can directly measure the distributions of molecular properties, rather than
only the ensemble average. Second, single-molecule experiments can capture transient inter-
mediates of a biochemical process by following it in realtime, which previously could only be
accomplished by synchronizing the actions of a large ensemble of molecules. Third, single-mole-
cule trajectories provide detailed dynamic information, which is unavailable from the traditional
ensemble experiments. The detailed dynamic information is particularly important for complex
biomolecules that have intricate internal structures (Xie and Lu, 1999; Yang et al., 2003) as the
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understanding of the dynamics of individual molecules is essential to reveal their biochemical
properties and functions.

The new advances provide not only opportunities but also significant challenges, ranging
from experimental and theoretical to statistical. The statistical challenges arise from the sto-
chastic nature of single-molecule trajectories. Whereas the experimental and theoretical issues
have attracted many researchers, statistical aspects of the single-molecule studies have received
less attention. We consider here a particular type of single-molecule experiments for the study
of deoxyribonucleic acid (DNA) hairpin kinetics to exemplify several statistical issues such as
the modelling of single-molecule dynamics and experimental complications, efficient estimation
of parameters of interest, model discrimination and statistical computation. To cope with the
experimental complexity successfully, we use a Bayesian data augmentation approach, which
provides much more precise estimates than the method-of-moment type of approach that is
widely used in the field. We adopt the Bayesian approach here, not only because of its coher-
ency and optimality in dealing with complex models and nuisance parameters, but also because
we have quite detailed knowledge (prior) on the various parameters that are involved. The
general strategies that are developed here can also be applied to other single-molecule experi-
ments.

1.1. Deoxyribonucleic acid hairpin

A DNA hairpin is a single-stranded nucleic acid structure with bases at the two ends comple-
menting each other so that the intramolecular pairing can form. Owing to the forming and
breaking of the pairing, a DNA hairpin has two states, open and closed. In the closed state, the
two ends pair together and the whole structure resembles a hairpin, whereas in the open states the
intramolecular pairings are broken (Bonnet et al., 1998; Krichevsky and Bonnet, 2002). Fig. 1
illustrates the closed and open states of the DNA hairpin 5~-CCCAA—(T),;-TTGGG-3'.

In a live cell, with the breaking of intermolecular pairing between the two DNA strands
(double helix) the loose strand often forms a DNA hairpin structure. The DNA hairpin struc-
ture participates in many important biological functions including, for example, the regulation
of gene expression (Zazopoulos et al., 1997), DNA recombination (Froelich-Ammon et al.,
1994) and the facilitation of mutagenic events (Trinh and Sinden, 1993). The hairpin structure
can also be a potential antisense drug (Tang ez al., 1993), as the injection into a live cell of a
hairpin that has its nucleic acid bases complementing the messenger ribonucleic acid of a disease
gene could potentially block the gene’s expression. Because of its biological relevance, studying
the conformational properties of a DNA hairpin, such as the conformational fluctuation and
energy barrier between the open and closed states, serves as an important model system to
understand more complicated biochemical processes.

Fig. 1. The two states of a DNA hairpin: to infer the closed and open states, a fluorescence donor F and a
quencher Q are attached to the two ends of the DNA hairpin
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Fig. 2. The laser excites the donor dye, which releases photons: by comparing the detected photon arrival
times with the regular laser pulse train, the photon delay times (with respect to their excitation pulse) are
determined

1.2. Fluorescence lifetime experiments

The DNA hairpin spontaneously switches between the open and closed states. In the single-mol-
ecule fluorescence lifetime experiment under study, a fluorescence donor dye and a quencher are
attached to the two ends of the DNA molecule (Fig. 1). The molecule is then placed in a focal
volume illuminated by a laser pulse train. The donor dye emits photons when excited by a laser
pulse, and the quencher annihilates the excitation. In the hairpin’s closed state, the quenching
is strong and very few photons from the donor are detected; in the open state, because the
donor and quencher are far from each other, the quenching is weak and many photons from
the donor are detected. For the photons detected their arrival times are recorded. By comparing
the detected photon arrival time with the regular laser pulse train, we can further determine the
time length that it takes the donor dye to release the photon from the moment that it is excited.
This time length is termed the photon delay time. Fig. 2 illustrates the determination of the
arrival times ¢ and the delay times 7.

Let A denote closed, and let B denote open. The simplest model for the DNA hairpin dynam-
ics is a continuous time two-state Markov chain termed the two-state model (Reilly and Skinner,
1993, 1994a, b): a molecule starting from state A will stay in A with an exponentially distributed
waiting time and then jump to state B; and vice versa for state B. This can be depicted as

kia

AZ B, (1.1
k21

where k1> and ky; represent the transition rate constants between the two states. Let
—ki2 k12
o-(
ko —ka
be the intensity matrix (infinitesimal generator). The Kolmogorov forward equation (Fokker—
Planck equation) gives the transition matrix

_ [ mi+mexp(—kt) m{l—exp(—ki)}
P(t) =exp(Qt) = (771{1 Zexp(—kn)} 7 m1 exp(—k) ) (1.2)

where k =k +kp1 and (mq, m) = (ka1 / (k12 +k21), k12/ (k12 + k21)) 1s the steady state distribution
of the two-state Markov chain.

Both the photon arrival times 7 and the corresponding delay times 7 depend on the underlying
hidden two-state process. Let (7)) denote the fluorescence level of the DNA hairpin structure at
time ¢, which takes values a and b respectively in states A and B with a > b. The photon arrival
time ¢ follows a doubly stochastic Poisson process with the arrival rate inversely proportional
to (1), where the term ‘doubly stochastic’ arises since both the arrival time and the arrival rate
are stochastic. In the literature this process is also referred to as a Cox process (Cox, 1955).
For a detected photon, its photon delay time 7 follows an exponential distribution with rate
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Fig.3. Datastructure in the single-molecule lifetime experiments: |, photon arrival times ¢ in seconds (heights
represent the delay time 7 in nanoseconds); I~ L, unobserved two-state Markov chain, on which both ¢
and 7 depend

~(t). The dependence of the delay time on the underlying states is because, when the donor
and quencher are close to each other (i.c. in the closed state), there is a transfer of energy from
the donor to the quencher, which shortens the delay time. Fig. 3 illustrates the dependence of
the data on the two-state process . The bold line depicts the unobserved two-state Markov
chain corresponding to the open—closed states of the DNA hairpin. Each vertical bar in Fig. 3
represents the arrival (time) of a photon. We can see that in the open state (i.e. high value of
~~1) there are more frequent photon arrivals. For each bar (i.e. each photon arrival), the height
represents the corresponding delay time 7 of that recorded photon. In the open state, the delay
times 7 tend to be larger. The open or closed state of the DNA hairpin can hence be inferred
indirectly from the detected photon arrival times and the delay times (Lu et al., 1998; Jia et al.,
1997; Eggeling et al., 1998).

In addition to the hidden Markov structure, the unobserved Brownian diffusion trajectory of
the molecule in the solvent adds another layer of complexity that significantly complicates the
inference (see Section 3). To resolve these issues efficiently we use a Bayesian data augmentation
approach, which ‘imputes’ the missing Brownian process (Tanner and Wong, 1987).

As increasingly more molecular data are accumulated, scientists begin to question the simple
two-state model. For example, it has been argued that the energy barrier between the two states
can also fluctuate dynamically or there may be substates within each of the two states and these
substates may communicate at different rates (Cao, 2000; Yang and Cao, 2001, 2002). With the
current data resolution and existing methods of inference, discerning the different models and
assessing their fit to the experimental data have remained elusive beyond mere speculation (see
Schenter et al. (1999) for further discussions). Using the Bayesian data augmentation approach,
we are able to provide significant statistical evidence to conclude that the simple two-state model,
which does not allow the energy barrier fluctuation between the two states, is not sufficient to
explain the data. Shedding light on the nature of the energy barrier could be the first step towards
a comprehensive understanding of a DNA hairpin’s biophysical properties.

The paper is organized as follows. Section 2 details the two-state statistical model and the
corresponding Bayesian analysis based on a closed form likelihood. Section 3 introduces the
data augmentation approach for handling experimental complications, such as the molecular
Brownian motion. Section 4 considers models beyond the two-state case. Section 5 analyses
experimental as well as simulated data and discusses the issue of model assessment, where, by
studying the continuous diffusive model, we demonstrate that the simple two-state model is
insufficient to capture the fine details of the DNA hairpin’s conformational dynamics. Section
6 concludes the paper with further discussion.
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2. Bayesian analysis of the two-state model

Let Y(¢) be the total number of photon arrivals up to time ¢. Within an infinitesimal time
interval (¢, +dr) the probability of observing a photon is proportional to v~ !(r)ds. Denoting
AY; =Y(t+dr) — Y(¢), we have

P(AY, = 1]y) = Ag(t) v~ (1) dt, 2.1)
[TIAY, =1y ]~y(@ exp{—y()T} (2.2)

where A () is the photon arrival intensity at time ¢, which could vary from time to time. The
stochastic nature of Ag(#) will be addressed in Section 3. In the present section, to focus on the
basic ideas, we treat Ay(¢) as a constant over time Ao (f) = Ag. Following the convention in the
stochastic processes literature, we use both parentheses and subscripts to index (the same) sto-
chastic processes; for example v(¢) and 7, both denote the underlying two-state Markov chain,
and Y(r) and Y; both refer to the photon counting process. It is important to point out that
formulation (2.1) is equivalent to the photon arrivals’ following the Cox process, but working
with equation (2.1) allows an easy generalization as we shall demonstrate.

2.1. Likelihood calculation

Let 0=ty <t < ... <t, be the observed photon arrival times and let 7; be the correspond-
ing photon delay times. The pairs {(z;,7;)}!_, are collected through the fluorescence lifetime
experiments. Note that the likelihood consists of contributions from three parts:

(a) the photon arrival times #;;
(b) the delay times 7;;
(c) the fact that no photon arrives in time interval (¢, f;11).

Note also that the Cox process can be viewed as a hidden Markov process. But it is distinct from
the standard hidden Markov model (Elliott ez al., 1999) in that interval lengths between adjacent
photon arrivals are also informative about the hidden process (7). Given v = (v(tg), . . ., (1)),
the joint likelihood function can be written as

n A n
Ler.i0) =Pl T {2ar | T 90 exp(-6m)
i—o L) i=0

n—1
x [T P{Y(t ) — Y(t) =0, y(tir ) Iy () }-
i=0
Using an infinitesimal matrix approach, in Appendix A we show that

P{Y(t ) = Y(t:) =0, y(tir1) Iy (1) } =[exp{(Q — H) (tiv1 — 1) ). 1t141))»

where Q is as in Section 1.2,
_ A()/a 0
H= ( 0 A()/b)

and the index I(¢) is equal to 1 if v(f) =a and 2 otherwise. Hence, the unconditional likelihood
can be computed by assuming that (#y) starts from the stationary distribution and summing
out the (#;) by recursive matrix multiplications:

n—1
L(t,70) =(7T1,7T2)D0H{ [T exp{(0 - H)Ari}D,-HH} (}) 2.3)

=
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where (71, m) is the equilibrium distribution of v(¢), At; =t;41 —t; and

D — aexp(—ar;) 0
e 0 bexp(—bt;) )’

Remark 1. We note that the likelihood function can also be obtained through the first-step
analysis by starting from the infinitesimal generator and setting up a set of differential equa-
tions (Karlin and Taylor, 1998; Karr, 1986). Compared with the first-step analysis, the matrix
approach that is detailed in Appendix A is more intuitive and easier to generalize to accommo-
date other complications such as the two-by-two model (Schenter ef al., 1999) and the molecular
Brownian diffusions (see Section 3). For example, in the two-by-two model one assumes that
there are two substates within each of the two states:

kia
A = B,
kai
a3 13 ad 1 2.4
ki
Ar = B>
k)

where o and (3 are the transition rates between the substates. The ~(f) process takes value
ay, az, by and b; in the states Ay, Ay, B] and B, respectively. The same likelihood formula (2.3)
holds with Q, H and D; being replaced by the corresponding matrices in the new model:

—(k12+0) o k12 0 <~ Ay

o 3 —(Ki+ B 0 K, <A
ka1 0 — (k21 + ) o <~ By

0 k5, B —(k5+B)/ < B

. Ag Ag Ag A
H=d1ag(0, 70’ 70’ 0>,
ay a» by by

D; =diag{a; exp(—a7;),azexp(—ax;), b1 exp(—b17;), brexp(—byi) }.

We defer further discussion on the two-by-two model to Section 4, where models beyond the
two-state model are considered. It is also worthwhile to note that Wolpert and Ickstadt (1998)
have generalized the Cox process to doubly stochastic hierarchical models to account for uncer-
tainty and spatial variations of the underlying rate in point process models.

2.2. A Markov chain Monte Carlo algorithm
The two-state model has five parameters: a, b, 71, k and Ay. Let n(0) denote the prior distribution
on the parameters 8 = (a, b, 71, k, Ap). Then the posterior distribution is

P(O|t,T) xn(0) L(t, 7|0),
where the following constraints hold:

(@) a>b>0,
(b) 0<m <1,
(c) k>0,

(d) Ay > 0.

Since direct computation from P(0|t, T) is infeasible, we design a Metropolis-type algorithm to
sample from it. This algorithm iterates the following steps.
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Step I: given a and b,

(1) draw x from I'(1/cy,acy) and y from I'(1/c3, bey), where ¢; and ¢y are two tuning

parameters, and

(ii) let @’ =max(x, y) and b’ =min(x, y).
The tuning parameters ¢ and ¢, control the step size of the proposal. Taking a’ and b’ to be
the maximum and minimum respectively of x and y satisfies constraint (a) and consequently
makes the proposal density a mixture of two product gamma densities.
Step 2: given my, draw 7} from the beta distribution B{c37i,c3(1 —m)}. Since the mean
and variance of B{c3my,c3(1 — )} are m and m (1 —71)/(c3+1) respectively, 7} can be
viewed as a local perturbation of 7y, and the tuning parameter c3 controls the localness of
the perturbation.
Step 3: given k, draw k' from I'(1/c4, kc4). The mean and variance of k' /k are 1 and ¢4 respec-
tively, letting ¢4 finely tune the perturbation.
Step 4: given Ay, draw A{ from I'(1/cs, Agcs), whose mean is Ay, and whose variance is
controlled by c;

This algorithm works quite well in our simulation study in which 815 data pairs {(, 7',-)}5150
were generated from the hidden  process (815 is a data size that is typical in real experiments).
Fig. 4 summarizes the posterior sampling distributions (with a flat prior) for the parameters,
where the vertical bars represent the true values. The algorithm, besides correctly identifying all
the parameters, runs quite fast: it took less than 2 min on a Pentium 4 personal computer to draw
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Fig. 4. Histograms of the posterior samples for the simulated two-state data (|, true value): (a) a; (b) b; (c)
m; (d) k; (e) Ag
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the 10000 samples in Fig. 4. The fast computation is primarily because the direct evaluation of
the likelihood function (2.3) requires only O(n) operations.

3. Brownian diffusion in the two-state model

3.1. Statistical formulation

In the single-molecule lifetime experiment, as the laser-excited dye emits photons, the DNA
hairpin molecule also diffuses in the focal volume. As a result, since the laser illuminating inten-
sity that the DNA molecule receives is highest at the centre of the focal volume and decreases
from the centre outwards, the actual photon arrival intensity Ay(¢) varies. Mathematically, we
can write Ag(7) = Ag a(r) with

32 BZ 2
0+ By B2 } 3.1)

)= exp{ 2w3, 2w?
where (B (1), By(f) and B;(?)) is the location of the DNA molecule, and the constants w,, and
w, specify the x-, y- and z-axes of the ellipsoidal focal volume. Let o denote the diffusion con-
stant, i.e. Bx(f) =0 Wi(1), By(t) =0 Wa(¢) and B, () = o W3(r), where (W (1), W (1), W3(r)) are
three independent standard Brownian motions. In the lifetime experiments, the constants wy,,
w, and o are calculated by fluorescence correlation spectroscopy theory (Magde et al., 1974)
and are assumed known. With the presence of diffusion, the probability formulations (2.1) and
(2.2) are changed to

P(AY,; =1y, 00) = Ag alt) v~ () d, (3.2)
[TIAY: =1, a;]~ () exp{—y(OT}. (3.3)

Owing to the extra conditionality on the intensity «(#), the likelihood changes as well. Because
in the experiments «(f) is a slow-varying process relative to the photon arrivals, we made an
approximation that a(f) ~ a(t;) for t € (t;,;1). Then, using the same discretization technique
as in Appendix A, we have

P{Y(17) = Y(10) = 0,7 (tD) |7 (t0), or(t0) } = (exp[{ @ — x(t0) H} (11 — 10)D 1. 1) »

where the matrices Q and H are the same as before. Like in Section 2, combining the likelihood
contributions from intervals {(#;,#,4+1);i=0, 1,...,n — 1} with those from the pairs {#;, 7; } yields
the conditional likelihood given «;, a modification of equation (2.3):

n—1 1
L(t, 7|6, Oéz)Z(Wl,Wz)DoHo{ II eXp{(Q_Hi)Ali}DHlHi—H} <1> (3.4
=

where H; denotes a(t;) H = a(t;) diag(Ag/a, Ag/b). With a prior distribution 7(€) on the param-
eters, the posterior distribution of 8 given the observations {(z;, ;) }/"_, is

POIt, T) fx/n(@) L(t,710,0) P(ay) d(ay), (3.5)

where P(a;) denotes the probability law of «(f). Comparing expression (3.5) with the corres-
ponding expression in Section 2, we note that the Brownian diffusion factor a(¢) of the mol-
ecule is not observable and must be integrated out. This path integral cannot be calculated
analytically and must be dealt with by the data augmentation approach (Tanner and Wong,
1987).
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3.2. Data augmentation

Intuitively, if the Brownian diffusion (By, By, B;) is given, the computation that was described
in Section 2 can be easily carried out. Thus, by sampling from the joint posterior distribution
of @ and (By, By, B;),

P(0, By, By, B:|t, 7) xn(0) L(t, 7|6, ;) P(Byx) P(By) P(B;), (3.6)

where the dependence of a; on (By, By, B;) is given by equation (3.1), we effectively marginal-
ized out the hidden diffusion process and obtain the correct inference. We only need to augment
the three-dimensional Brownian motion at the photon arrival times and, correspondingly, each
term of expression (3.6) has a simple form. For example, the transition density for By is

=l {Bi(tiv1) — Be(t)}

1
P(B;)=(2m)"/? -—
(Bx)=@m) ™" exp| 55 2 Ar

3.7

Starting from an initial 6 and a configuration of (B, By, B;), we iterate the following conditional
sampling steps to simulate from expression (3.6).

Step 1: draw 6 conditioning on the current diffusion (B, By, B;),
[6|B,, By, B;,t, 7]~ P(0|By, By, B;,t,7) xn(0) L(t, 7|0, o). (3.8)
Step 2: draw the diffusion (B,, By, B;) conditioning on the current value of 6,
[Bx, By, B;|0,t, 7]~ P(By, By, B;|0,t,7) < L(t, 7|0, ;) P(By) P(By) P(B;). (3.9)

The first step is achieved by the Metropolis—Hastings (MH) algorithm as outlined in Section
2. Since the computation that is involved in the MH algorithm is much simpler than the sam-
pling in step 2, especially when the chain is long, we conduct the MH iteration several times in
step 1 before moving on to step 2.

Step 2 is achieved by updating the diffusion chain time point by time point. In other words,
for each of i=0,1,...,n, we propose a new location B=(%, y,z) for the ith time point B(¢;) =
(Bx(t;), By(t;), B;(t;)) of the diffusion chain (with the others fixed) and accept the proposal
according to the MH rule. Since only one time point is considered each time, the MH ratio is
easy to compute. For example, if the ith time point B(#;) = (Bx(#), By(%i), Bz (1)) is proposed to
change to B= (X, y, z), the MH probability is simply

L(t,7|6,;) P(By) P(By) P(B;) T{B— B(1;)}
" L(t,T|6,0;) P(By)P(By) P(B;) T{B(1;,) > B} |

min| 1

where T{-— -} is the transition density of the proposal and

P(By) P(By) P(B;)
P(B.) P(By) P(B;)

follows from equation (3.7). To evaluate the likelihood function L(t, 7|6, a,) efficiently, we
implemented the following forward—backward recursive scheme: backward compute the partial
sums (integrals) in the likelihood; forward update the diffusion chain one component (time
point) at a time. This approach ensures that the computation cost is only O(n) operations,
whereas the naive approach is of order O(n?).

To begin the forward—backward algorithm, we first compute backwards a sequence of matrices
K; by the recursion
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Kn+1=I= K, =D, Hy,
K,':DiHieXp{(Q—H,')AI,‘}KH_], i<n,

where, as before, D; = diag{aexp(—ar;),bexp(—b7)}, H; = a(t;) diag(Ao/a, Ag/b) and At; =
tir1 —t;. Denote vy = (71, m3). Then the forward sampling algorithm can be described as follows,
fori=0,1,...,n.

Step 1: propose a change B=(x, y,7) for the ith time point B(#;).
Step 2: compute

R— D;H;exp{(Q — H;)At;} ifi<n,
“ | D,H, ifi=n,
and
g_ { DiHiexp{(Q — H) Ay} ifi<n,
D, H, ifi=n,

where H; = a(t;) diag(Ag/a, Ag/b) and

- P+y 7
a(t) = exp(— Tw)%y — 2w§>
is the value of the illuminating intensity of the ith time point under the proposal B. There-
fore, v; RK; 11 i) is now the likelihood L(t, 7|0, ;) evaluated at the original diffusion chain,
and v;SK; 4| (% is the likelihood L(t, 7|0, ;) evaluated at the diffusion chain with newly pro-
posed ith time point. The vector v; is used to record the likelihood contribution from the first
i time points; it will be updated at step 4.

Step 3: compute the MH ratio

. LtTie, &) P(By) P(B,) P(B,) T{B—B(1;)}
 L(t,716,0,) P(B) P(By) P(B.) T{B(t;) — B}

Step 4: generate u ~ U(0, 1). If u <min(1, r), we update B(t;) to B and let vi+1 =v;S; otherwise,
we keep B(#;) unchanged and let v; 1| = v; R. The vector v;;| now records the likelihood con-
tribution from the first i 4+ 1 time points.

Note that the MH approach is necessary since direct (conditional) sampling of B(#;) is diffi-
cult. Although it is possible to conduct a ‘blocking’ operation on B(?), i.e. updating a segment
of the process (B(#;), B(tj+1), - . ., B(t;15—1)) simultaneously, it is not clear whether this will sub-
stantially improve the convergence since a multidimensional MH algorithm is tricky to conduct.
Besides, we found that the foregoing componentwise updating scheme takes advantage of an
efficient likelihood evaluation scheme and is already quite efficient. In a later section, we shall
show that the blockwise move is very useful for handling a more complicated model.

3.3. Other experimental complications

Owing to technological limitations, the actual experiments have more complications in addition
to the molecular Brownian diffusion. The first additional complication comes from the back-
ground photons. So far in the analysis we have assumed that the photons that are recorded all
come from the laser-excited DNA hairpin structure. But in the real experiment the laser also
excites photons from the background, whose arrival is characterized as a time homogeneous
Poisson process with rate p. The parameter p can be estimated by running a long controlled
experiment with no molecule put in the focal volume (the photons detected thus all come from



Analysis of Single-molecule Experimental Data 479

the background) and is assumed known to us. Thus, we only need to change the overall photon
arrival process (the Cox process) from equation (3.2) to

P(AY[=1|’y,,at)={p+ Aoa,}dt. (3.10)
~(®

The likelihood function correspondingly changes from equation (3.4) to

n—1
L(t,TIG,az)=(771,7T2)DoG0{ 11 CXP{(Q—Gi)Ali}DiHGiH} (i), (3.11)

=l

where the matrix D; =diag{aexp(—ar;),bexp(—bm;)} is as defined before and the new matrix
. A A
G,:chag{p+ 70a(t,~),p+ boa(t,')}. (3.12)

The second experimental complication is the issue of time wrapping related to the deter-
mination of the photon delay time. As seen in Section 1.2, the delay times are determined by
comparing the detected photon arrival times with the regular laser pulse train. However, a care-
ful inspection of Fig. 2 suggests that, if the delay time exceeds the interval, 13.2 ns, between
two adjacent laser pulses, we are no longer sure which laser pulse excites the donor dye. The
machine reading assumes that the dye is excited by the pulse immediately preceding the arrival
of the photon detected, but this creates the time wrapping effect. For example, if the actual
delay time is 17 ns, the machine will determine it as 17 — 13.2=3.8 ns. The third complication
arises from negative readings: some photon delay times 7 are recorded as negative. The negative
7 indicates that a photon has arrived, but the delay time is missing. These two complications
can be handled relatively easily by further modifying the likelihood function. Thanks to the
memoryless property of the exponential distribution, the time wrapping changes the distribution
of the delay time 7 to a truncated exponential distribution, which alters expression (3.3) to

1@ exp{— 07}
I —exp{—y(OM}’

where M is the point of wrapping (13.2 ns in the above example). The negative recording further
alters distribution (3.13) to

[TIAY; =1, v, o] (3.13)

v(0) exp{—y ()T}
1 —exp{—y(OM}

[TIAY =1, cp, 7> 0]~

Consequently replacing the D;-matrix by

. aexp(—ar;) bexp(—bt;)
~ ) diag ,
D;= 1 —exp(—aM)’ 1 —exp(—bM)
1

if 7 >0, (3.14)

ifTi<0

in formula (3.11) gives the likelihood for the real experimental data.

4. Beyond two-state models: the continuous diffusive model

4.1. The model

The two-state model (1.1) depicts the conformational dynamics as a two-state continuous time
Markov chain. However, scientists have observed that for some proteins and enzymes the two-
state model is not sufficiently accurate to describe the conformational details. For example, the
two-state model implies a ‘memoryless’ property between consecutive waiting times at different
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states, and this property has been seen to be violated in many single-molecule experiments involv-
ing proteins and enzymes (Schenter et al., 1999; Lu et al., 1998). This phenomenon, known as
‘dynamic disorder’ (Xie, 2002; Zwanzig, 1990), motivates models beyond the two-state model.
The two-by-two model (2.4) that was briefly described in Section 2 is such an attempt. In this
model the states A and A, are experimentally indistinguishable and so are B; and B;. What
can be observed from the experiments are, hence, the aggregate effects of A| and A, (and
respectively By and B»). In the statistics literature, this type of process is termed the aggregated
Markov processes (Fredkin and Rice, 1986). The consequence of aggregation is that the times
that a molecule spends in the collective states { A1, A} and { By, B, } are no longer independent,
which could explain the dynamic disorder (Cao, 2000; Yang and Cao, 2001, 2002). As shown in
Section 2, the likelihood function for the two-by-two model shares a simple form as the two-state
model. Therefore the Bayesian data augmentation approach that is outlined in Sections 2 and
3 is readily available for the two-by-two model. The inference procedure is essentially identical,
except that there are more parameters in the two-by-two model.

The two-by-two model can be further generalized to a continuous diffusive model, which
cannot be directly handled by the data augmentation approach that was developed earlier and
is the focus of the current section. In this model, instead of using the discrete aggregation to
explain the dynamic disorder, a continuous stochastic control process x(¢) is introduced which
‘controls’ the transition rates as follows:

kipexp{—x()}
—

4.1
ko1 e)q:)?—x(t)}

Physically, this can be seen as a result of a dynamically fluctuating energy barrier between the
two states (x(7) is related to the energy barrier A(¢) through x(¢) = h(f)/kgT, where kg is the
Boltzmann constant and 7 is the temperature). This fluctuating energy barrier (see Fig. 5 for
an illustration) allows the transition rates to be time varying and stochastic. Correspondingly,
the consecutive waiting times at states A and B are not independent.

As first suggested by Agmon and Hopfield (1983), an Ornstein—Uhlenbeck process is used to
capture the fluctuation of the energy barrier between the two states:

dix; = —Ax, dt + /(26N dW,. 4.2)

A way to picture model (4.1) is to think of the DNA molecule as having infinitely many
indistinguishable states { A1, Ay, ...} and { By, Ba, ... }, a continuous generalization of the two-
by-two model. Although many debates have been initiated (Bonnet ez al., 1998; Ying et al., 2001;
Grunwell ef al., 2001; Ansari et al., 2001, 2002), so far there is no clear evidence about whether
the continuous diffusive model is definitively more appropriate than the simple two-state model

Free Energy

* closed / b open
e A Lo _/’f

Fig. 5. Fluctuating barrier between the two states: the Ornstein—Uhlenbeck process models the dynamic
oscillation of the energy barrier between the open and closed states of the DNA hairpin
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for the DNA hairpin. It is thus of interest to synthesize all the available statistical evidence most
efficiently for discerning between models.

4.2. Likelihood and data augmentation under the continuous diffusive model

Employing the observation that the control process x(7) is stable between two successive photon
arrivals, we impose the approximation that x(¢r) ~ x(t;) for t € (¢;,1;11) and apply the technique
in Section 2 to obtain the closed form conditional likelihood giving both «(#) and x(¢):

N n—1 N
L(t, 716, s, x;) = (m1,m2) Do G [ 'Ho exp{(Q; — Gi)Afi}Di+1Gi+1] ( } >, 4.3)

where G; and D; are as defined before in equations (3.12) and (3.14), and
02 <—k12 exp{—x(t)}  kiexp{—x(t)} )
"\ kuexp{—x(t)} —kaexp{—x(t)} )’

The posterior distribution of the parameters (8, A, £) given the observations {(#;,7;)} is
PO [ [9ONOLETI.crx) P PO A de. @

where P(x;|)\, €) is the transition density for the process x(¢) and 7 denotes the prior distribution
on the parameters.

By augmenting both x(#) and the Brownian diffusion B(z), we consider the joint distribution
of (8, \, &) and (B(?), x(¥)):

P(ea )\s 69 Bs x|t7 T) X 77(09 )\a S)L(t9 T|0a Oé[,)Ct) P{B(t)} P(-xl|)\5 é-) (45)
From the Kolmogorov backward equation

aP ’p aP

— = — —Ax—,

ot ax2 ox

we have x(t;1)[x(f;) ~ N[x(5;) exp(—AAL), £{1 —exp(—2AA#;) }] (see Karlin and Taylor (1981),
page 218). Assuming that the Ornstein—Uhlenbeck process x(¢) starts from the stationary dis-
tribution, we have the joint density
n—1

[1{1- exp(—zmm}—“z}
i=0

1=

P(ar| A, &) e~ D/ {

(4.6)

(1) ! {x(tiv) —x(mexp(—wi)}z}

XeXp{_ 26 & 26{1—exp(—2)\Ap))

To make the Markov chain Monte Carlo sampling more efficient, we reparameterize the
control process x(f) by replacing £ with

=/ (EN.
The Ornstein—Uhlenbeck process is then changed to
dx; = —Ax, dt + ¢ /2dW,. 4.7
The joint distribution (4.5) is then modified to
PO, )\, ¢, B, x/|t, 7)1 (8, \, §) L(t, 7|0, s, x;) P{B() } P(x;: |\, $*/ N), (4.8)

where 7/’ is the prior distribution on (6, A, ¢).
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To obtain Monte Carlo samples from the joint posterior distribution, we iterate the following
conditional sampling steps, starting from an initial configuration:

ON [0|>\’ d)aBaxlata 7]0(77/(0; )\7 ¢)L(taT|0’ ataxt)a
@) ~ [\, 016, B, x, t, T o< (8, \, ) P(x: |\, $% /),
BN [B|07 )\a (ba-xlst’ T]O(L(t’T|6a al’x[) P(B),

x(t) ~[x:10,\, ¢, B, t, T] o L(t, 7|0, v, x;) P(x; | A, 2/ ).

The sampling of @ and (), ¢) is achieved by the MH algorithm. The conditional sampling of B(¢)
and x; cannot be achieved in closed form. We employ the same backward—forward algorithm as
described in Section 3 to update them recursively componentwise.

4.3. Scale transformation update
To improve the computation efficiency further, we introduce an update that changes (A, ¢) and
x; simultaneously. This move is important because of the high correlation between (), ¢) and
x;—itis seen from equation (4.7) that, conditional on large values of x;, posterior draws of (), ¢)
tend to be large, whereas a large pair of (A, ¢) in turn tend to give rise to large values of x;. Thus,
if we can move (), ¢) and x; together, the sampler should be able to converge faster.

Given the current configuration of (A, ¢, 8, B(?), x;), the scale transformation proposes a move

(P, x1) = (50, 8x1), 4.9)

where s is a scalar. In other words, the proposal attempts to scale ¢ and the control process x;
up or down together. To preserve the joint distribution (4.8), the scalar s must be sampled from

the following conditional distribution according to the ‘generalized Gibbs sampling’ rule in Liu
and Sabatti (2000):

p(s) O(Sn+1 P(Oa Aﬂ S¢) Bx» Bya BZv le|ta T)
ocs" Ty (0,0, s§) L(t, 716, a, 5x0) P{sxi|A, (s0)°/ A}
1 (@, )\, sp)L(t, 7|0, ay,sx;), (4.10)
whose derivation is deferred to Appendix A. Since direct simulation from distribution (4.10) is
not yet feasible, we apply the MH algorithm by noting that s = I means no scaling;: first, propose

s from the gamma density I'(s; 1/c, ¢), which has mean 1; then accept the proposed s with the
MH-like probability

—1.
r=min{l,r(s ’”C’C)p(s)s}. @.11)
I'(s;1/c,¢) p(1)

If the proposal is accepted, we update (¢, x;) by the scale move (4.9). Fig. 6 compares the auto-
correlation of the samples with and without the scale move. The improvement over the standard
approach is quite substantial. From a theoretical point of view, this MH move can be stated in a
more general form that could find potential use in other applications. The following result gives
a direct MH rule under the setting of general transformation groups. The proof is deferred to
Appendix A.

Theorem 1. Let A be a locally compact group of transformations on the state space X. Let
1(dv) be the left Haar measure on A and let 7w(x) be the target probability distribution that is
of interest defined on X. Suppose that we propose the following group action move: draw v
from f(v) u(dv) and update x’ =v(x). Then, to maintain 7(x) as the stationary distribution
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after the move, the proposed move should be accepted with probability

fo™H a1, (x)] }
fw)m(x) ’

where J,,(x) is the Jacobian of the transformation x’ =v/(x).

r=min {1,
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5. Empirical studies

5.1. Simulated data sets

As an illustration as well as to assess the efficacy of our approach, a two-state simulation exper-
iment was carried out. First, we generate the Brownian diffusion process (By, By, B;), which
gives a; according to equation (3.1); we then generate the two-state Markov process v(¢); finally
the pairs {(#;, ;) }7_, are generated according to Cox process (3.2) and exponential distribution
(3.3). Using the same parameter 6, this data generation process is repeated 50 times, providing
50 independent data sets (as is typical in real experiments). The length of the data sets ranges
from several hundred pairs to a few thousand. To make the simulation data as realistic as possi-
ble, the background photons and the time wrapping were both incorporated in the simulation.
Our goal is to infer 8 from the generated (¢;, 7;).

It is easy to apply the data augmentation approach that is described in Section 3.2 to analyse
these 50 data sets jointly, simply by multiplying the likelihood functions from each individual
experiment. For each data set, a Brownian diffusion chain is augmented. With a flat prior on 6,
5000 posterior samples are drawn from the joint distribution (3.6). Fig. 7 displays the sample
posterior distribution of the parameters (the vertical bars are the true values that were used to
generate the data). The algorithm is seen to identify all the parameters correctly. Fig. 8 plots the
posterior samples pairwise. It is evident that a further reparameterization is not needed. Fig. 9
shows the autocorrelations between successive Monte Carlo samples for the parameters. The
fast decay of the autocorrelations suggests speedy convergence of the algorithm. As a further

0.245 0.250 0.255 0.260 6000 6500 7000 7500 8000

1.50 1.55 1.60 1.65

0.245 0.250 0.255 0.260

0.360.380.400.420.44

60006500700075008000

37000

35000

150 155 160 1.65 0.36 0.38 0.40 0.42 0.44 35000 36000 37000 38000

Fig. 8. Pairwise plot of the posterior samples for the simulated data
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Fig. 9. Autocorrelation plot of the posterior samples for the simulated data: (a) a; (b) b; (c) 7¢; (d) k; (e) Ag

test, we started the algorithm from different starting-points; all converge quickly to the posterior
modal area.

To see how well the data augmentation approach unveils the hidden information, we com-
pare the true Brownian motion paths with the augmented paths. Fig. 10 provides details for
four typical data sets: the light curves (area) are the (multiple) augmented Brownian factor «.(%);
the true «a(z) is shown as the thick curves. The data augmentation technique appears to recover
the hidden factor quite well.

5.2. Analysing a real data set with the two-state model

Using the method that was developed in Section 3, we sought to analyse a data set that was
obtained by the Xie laboratory at Harvard University. The data set has 1813 observation pairs.
We obtained 5000 posterior samples for the five key parameters, whose histograms are shown
in Fig. 11. In the analysis we used informative priors to integrate domain (biochemical) knowl-
edge. For example, the knowledge from previous experiments that the signal-to-noise (i.e. donor
photon to background photon) ratio is around from 3/1 to 8/1 leads us to put a wide gamma
prior on Ag with mean 35000 and standard deviation 25000; the knowledge that having a k that
is much larger than 50000 is physically very unlikely leads to an exponential prior on k with
mean 40000; the knowledge that the DNA hairpin switches roughly equally often between the
open and closed states and that the two levels @ and b are physically very unlikely to exceed 4
leads to a beta prior on 7 with mean 0.5 and standard deviation 0.3, and wide gamma priors
on a and b with mean 2 and 1 and standard deviation 2 and 0.8 respectively.
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) for

Fig. 12 shows the posterior distribution of 1/k, which, indicating the height of the energy
barrier between the open and closed states, is termed the decay time constant. The 2.5-percentile
and 97.5-percentile [39, 91] (microseconds) supply a 95% symmetric interval for the decay time
constant 1/k.

Since our method uses the likelihood, it is more efficient than the available method-of-moment
type of estimation methods that are used in the chemistry literature. In the previous approaches
arrival times must first be ‘binned’ together to smooth out the effect of the molecular Brownian
diffusion, and then the binned arrival times are used to fit certain moment equations to estimate
the parameters of interest (Pfluegl ez al., 1998; Brown and Silbey, 1998). Because what happens
inside the binning time window is lost once the arrival times have been binned together, the bin-
ning approaches suffer a significant loss of time resolution. (In a sense, the binning approach is
like measuring a distance by using a certain unit; if the real distance is shorter than the smallest
unit, the measurement will not give a meaningful result.) For the same data set that we analy-
sed, the methods based on binning have a maximum time resolution of 280 us and indicate that
the decay time constant 1/k is less than 280 us. Though qualitatively consistent with the result
from the binning approaches, our analysis provides a much sharper inference with the posterior
median of 1/k being 59 us and a 95% symmetric probability interval [39,91] us.

5.3. Fitting the continuous diffusive model
Since the stationary distribution of the control process (4.2) is N(0, £), we note that the two-state
model corresponds to a degenerate case of the continuous diffusive model with /¢ =0. This
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Fig. 11. Posterior histograms for the experimental data set with 1813 observation pairs: (a) a; (b) b; (C) 71;
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suggests that, if the posterior probability mass of /¢ is sufficiently far from 0, then the data
support the diffusive model.

As an illustration, we apply the algorithm to analyse the same simulated data sets as were
used in Section 5.1, which were generated according to the two-state model. 5000 samples were
drawn from the posterior distribution (4.8) after a burn-in period of 1500 iterations. As shown in
Fig. 13, the algorithm correctly identifies the parameters 6 as before. Furthermore, the posterior
distribution of /¢ suggests that there is no evidence against £ =0, indicating that the two-state
model is indeed sufficient.

Next, we apply the method to the real experimental data set in Section 5.2 (with 1813 obser-
vation pairs) using the continuous diffusive model. Comparing Fig. 14 with Fig. 11, we observe
that the posterior distributions of @, b and 7 remain almost the same, whereas the distributions
of k and Ay shift slightly. Turning to the distribution of /¢, we note that the mode is around
0.25. This comparison appears to offer some evidence in favour of the diffusive model, but
not convincingly. We thus analyse 49 additional data sets that were acquired from the repeated
single-molecule experiments on the same DNA hairpin to obtain a better model assessment.

Fig. 15, showing the results from eight typical data sets, represents the analysis of individual
experiments. The results for 8 appear consistent across the experiments, whereas /¢ appears
to be distinct from 0 for some data sets and not so for others. Since all the 50 (independent)
experiments should be governed by the same set of parameters, we next analyse these data sets
jointly (the Brownian diffusion and the Ornstein—Uhlenbeck control process are augmented
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for each data set). Fig. 16 shows the result from the 50 data sets combined. First we note that
compared with the result from the individual data sets the posterior distributions of the param-
eters become narrower as more data provide more information. Second, and more importantly,
Fig. 16 shows that the posterior samples of /¢ are concentrated far from 0, which indicates
strongly that the two-state model does not fit the data.

Though each individual experiment on its own offers only fragmental information, pooling the
50 experiments indicates that the two-state model is not sufficient to explain the experimental
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data. To describe the detailed conformational dynamics of the DNA hairpin molecule more
involved models appear necessary.

5.4. Monte Carlo estimation of the Bayes factor

To reinforce the intuitive result of Fig. 16, we further compute the Bayes factor between the
two-state and the diffusive models, which is routinely used to aid Bayesian model selections
(Kass and Raftery, 1995). In our case, the Bayes factor can be written as

P, TIMy) /n(@)L(t,TlH, ay) P{B()} d0 dB

>

Pt TIMy) /n/(e, A, @) L(t, 710, o, x1) P{B(t) } P(x, |\, ¢/ \) dO d A dp dB dx

where M| denotes the two-state model and M> denotes the diffusive model. To simplify the
notation, we denote the data as y = (t, 7) and write u = (6, B) and { = (), ¢, x;), using which the
above expression for the Bayes factor can be rewritten as

/P(yIMl,u)P(ulMl)du
BF = —

/P(yIMz,M, Q) P(p, CIMp) dpedg
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where we indicate that in model M» there is an additional set of parameters (¢) in comparison
with M.

Since a direct calculation of these integrals is infeasible, we seek to approximate the Bayes
factor via Monte Carlo sampling. We note that, if the prior distributions of the two models are
consistent, 1.e.

PuIMy) = / P, €|M2) dC,

which is true in our case here, then the Bayes factor can be re-expressed as the posterior mean
of the likelihood ratio:

F:/ P(y| My, 1) P(y|My, )
P(y|M>, 1, Q) P(y|M>, 1, ¢)

This implies that, if we have posterior samples of the parameters (), ¢®), i=1,..., N, drawn
from the larger model M;, we can estimate the Bayes factor by

1N piy®
gE= Ly POl
N 3 Py|lp®,¢D)

P(u, Cly, Mz)dudczE[

y, Mz]. (5.1)
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Fig. 16. Result from analysing 50 experimental data sets together (5000 samples were drawn from the
posterior distribution): (a) a; (b) b; (c) m4; (d) k; (e) Ag; (f) A; (9) V€

Although this approach may not be the most efficient, it worked sufficiently well for all our data.

For the particular experimental data set (with 1813 data pairs) that was analysed in Section
5.2, calculation based on the 5000 posterior samples gives BF =0.81 +0.10, which appears to
favour the diffusive model slightly. To synthesize the available information, we calculate the
Bayes factor on the basis of the combined analysis of the 50 experimental data sets as in Sec-
tion 5.3, which gives BF = (3.43 £0.29) x 10~? (the maximum likelihood ratio among the 5000
posterior samples is 5.79 x 10~7). As a comparison, we also calculated the Bayes factor for
the 50 data sets that were simulated from the two-state model in Section 5.1, and we obtained
BF =2.5140.17. This contrasts sharply with the Bayes factor from the real experimental data
sets, which confirms our impression from Fig. 16.

The results from this subsection and the preceding subsection imply that the diffusive model
describes the experimental data more accurately. From a scientific point of view the implication
is that the energy barrier between the closed and open states of the DNA hairpin has more
complex behaviour than the simple static picture that is depicted in the two-state model. The
fluctuation of the energy barrier in this case may be due to conformational flexibility of the
DNA molecule, which is subject to future investigation.

6. Discussion

This paper studies one type of single-molecule experiment: fluorescence lifetime fluctuation of
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the DNA hairpin molecule. To analyse the experimental data efficiently, we have discussed three
important statistical issues:

(a) synthesizing and comparing various stochastic models that are used in single-molecule
conformational dynamics;

(b) deriving likelihood functions that are associated with the stochastic models involved;

(c) solvingexperimental complications, especially those involving unobserved stochastic pro-
cesses.

The first issue is intrinsic to the nature of single-molecule experiments, whose stochasticity,
unlike the traditional ensemble experiments, fundamentally requires stochastic modelling. Once
the stochastic model has been constructed, efficient inference then relies on formulation of the
likelihood; we demonstrate how to use the discretization and matrix technique to obtain closed
form likelihoods. An important aspect for analysing real experimental data is the handling of
experimental complications. Some complications (such as the time wrapping and negative read-
ing of delay times) are relatively easy to handle, and the resulting modification to the likelihood is
simple. Other complications such as those related to unobserved stochastic processes pose more
difficult challenges, as computable analytical expression is impossible to obtain. Data augmen-
tation techniques, aided with Markov chain Monte Carlo methods, prove to be a very powerful
tool. They are not only conceptually simple but also provide a viable means to circumvent the
analytical intractability.

Our Monte Carlo estimation of the Bayes factor relies on the simple and intuitive identity
(5.1) that the posterior mean of the likelihood ratio (under the larger model) is equal to the
Bayes factor of two nested models. It appears that this identity is well known (two of our col-
leagues, Xiao-Li Meng and Donald Rubin, have used variations of this identity privately before)
and is very closely related to formulae that are used to derive the bridge sampling (Meng and
Wong, 1996) and the ratio importance sampling methods (Chen and Shao, 1997; Chen et al.,
2000). However, we have neither been able to find a reference that explicitly states this result nor
seen much of its use in Monte Carlo computations. In the special case when the smaller model
is a fixed distribution (no unknown parameters), our method is equivalent to the ‘harmonic
mean’ method of Newton and Raftery (1994). Although our method may not be as efficient as
some other more delicate approaches in specific cases (e.g. the techniques that were described in
Chen et al. (2000) and Meng and Wong (1996)), it works effectively for the study that is reported
here—the variances of the likelihood ratios are well in control in all cases. In comparison, Chib’s
(1995) method does not work here because it requires an estimation of posterior density values
at certain points, which is infeasible for our models. The reversible jump method (Green, 1995)
is also unlikely to help because we know of no efficient jumping rules to add or remove a hidden
Ornstein—Uhlenbeck process (i.e. jumping between the two-state and the continuous diffusive
models).

Although the Markov chain Monte Carlo approaches that are illustrated in this paper have
found wide acceptance in the statistics community in the past decade (Liu, 2001), their use in
other scientific disciplines is relatively sparse. In the past, many researchers in physical sciences
did not feel the necessity for delicate and efficient statistical inference methods in that their
data on the ensemble were often overwhelmingly large and ad hoc methods such as moment
matching would be more than sufficient to provide them with needed information. The single-
molecule experiments that have been enabled by the advance of modern technology, as well
as many large scale genomics experiments, seem to alter the landscape significantly. As shown
in this paper, the Bayesian analysis provides much sharper estimates of the parameters that
are associated with DNA hairpin dynamics compared with the existing moment matching and
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binning methods. The data augmentation approach also enables us to study the goodness of fit
of different models to the experimental data, which is especially difficult, if not impossible, for
existing moment-based methods. Neither single-molecule experiments nor data augmentation
(with Markov chain Monte Carlo) methods were thinkable even two decades ago. Therefore, it
is our hope that this paper will generate further interest in applying modern statistical method-
ology to interesting and important scientific problems.

The experimental data sets that were used in this paper can be downloaded from the authors’
Web pages http://www. fas.harvard.edu/~skouand http://www. fas.Harvard.
Edu/~junliu.
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Appendix A: Mathematical derivations

A.1. Computation of L (ty, t1)=P{Y(t{)=Y(tx)=0, ~(t1)|y(to)} in Section 2.1
We first divide the interval (¢, #;) into N infinitesimal pieces: (fy, to + 1), (to + h, to + 2h), ..., (to + (N — 1)h,
t1), where h = (t; — ty)/N. The probability of observing 0 photons in the ith infinitesimal interval is

Ao

1————h h), =0,1,...,N—1.
Yot oW :

This, together with the transition matrix (1.2), implies that with discretization resolution / the probability
of not observing a photon in (#y, ¢;) is

N-1 Ao
111) P(h)(1z0+i/x,1ro+(i+|)h) { 1- mh + O(h)} dv, (A.1)

where I, is equal to 1 if 7, =a and 2 if v, =b, and P(h), ;,) denotes the (i,i>)th entry of the transition
matrix P(h). The integral in expression (A.1) is taken with respect to the hidden ~ process. Letting 7 — 0

gives the probability
) N=1 Ao
L(to, 11) :}112(1) 1_{) P(h)(lzo+i/n1/0+(i+l)I:) 1
i

——————h+o(h) pdy]|. A2
Yy (to +ih) ( )} 7] (A2
By equation (1.2) the individual element in the above product can be written in a simple matrix form

A
1-=2n

0
h+o<h>}= a A, | exp(Qh) +o(h)
0 1-2%h

Ay
P(h)(]r[)+ihvllo+(i+1)lx) {1 - m

Utg i Tt +G+1)h)

Letting

HZ(A(())/a A(?/b)’

we obtain the matrix form of equation (A.2) as
[{( = Hh)exp(Qh) + o)} = ]y, 4, .
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Noting that (I — Hh)exp(Qh) =1+ (Q — H)h + o(h), we have
Lo, ) =im{{7+(Q = F)h+0()} =™y, 1, =[exp{(Q = H) (1 = 10) sty -

A.2. Derivation of expression (4.10)

Liu and Sabatti (2000) considered a general framework: move a sample, say x, to a transformed value
v(x), where the transformation v is drawn from a group. They showed that, to maintain the invariance of
the target distribution 7(x), the distribution on the transformation v should be

pw) xm{vx)}HJ,(x)|pdv), (A.3)

where J,(x) is the Jacobian of the transformation and y is the left-Haar invariant measure on the group.
For scale changes that we consider here, the left-Haar measure z(ds) =s~' ds and the Jacobian is simply
s¢, where s is the scale factor and d is the dimension of the scale change. Plugging them into the general

formula (A.3) and noting that
2 2
{ 5x¢| A, (s9) }:sf("“)P( A, ¢—>

yield expression (4.10).

A.3. Proof of theorem 1
The transition kernel of the group move is given by

-1
K(x. B)= / f) min[l, Mmu)@ j(dv)
{viw(x)eB} m(X) f(l/)

—1
+I5(%) (1 - / f(u)min[l, Mwm} u(dV))-
. 7(x) f0)

Next we verify that [ v TX KX, B)dx= /] 5 T(x) dx for every B so that 7 is invariant under the move.
Direct calculation gives

/ m(x) K (X, B)dx—/ﬂ(x) dx
x B

m{v(x)} f™h

=/ /I{I/(X)EB}TF(X) f(u)min{l, |J,,(X)|:| u(dv) dx

7(x) f)
~1
/ / ©(x) fw) mm{ {0} fv )|J,,(x>|] pu(dv) dx (Ad)
T(x) f)
Applying a one-to-one map
{g=1f',
y=v(x)

and using Fubini’s theorem, the first term on the right-hand side of equation (A.4) becomes

-1
/ /I{Z/(X)EB} 7(x) f(zz)min{l,Muy(x)@ pu(dv) dx
X JT

m(x) f(v)
=// I(yeB)ﬂ{g(y)}f(g’l)min{
gel’ JyeXx

) 3
— / / mm{ﬂ{g(y)}f(g”) =
yeB J gel’
=//min[ﬂ{g(y)}f(g“)llg(y)l,w(y) A9 (g™ dy,
BJT

w(y) f(g)
{9} flg™)

L m(y) f(g)} p(dg™")dy

ay

-1
i dy p(dg™)
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which is exactly the last term on the right-hand side of equation (A.4) on noting that for the Haar measure
p(dv) = p(dv~). This cancellation in equation (A.4), therefore, implies that

/ 7(x) K(x, B) dx :/ w(x)dx, for any B.
x B
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Discussion on the paper by Kou, Xie and Liu

Alan G. Hawkes (University of Wales, Swansea)

I welcome the, perhaps too infrequent, appearance of a stochastic modelling paper at a meeting of the Soci-
ety, although the emphasis is perhaps more on the inferential aspects of the problem. For the simple model,
without diffusion, my inclination would be to use good old-fashioned likelihood methods. However, once
diffusion enters the model, I can well understand the attraction of Bayesian methods using Markov chain
Monte Carlo methods: if you are going to augment the data with randomly generated values then you
might as well generate parameter values also. I am not sufficiently expert in the practicalities of Markov
chain Monte Carlo sampling to make serious comments about the details of that, although it seems to
work out impressively well. From now on I shall restrict myself to discussing the stochastic modelling.

I would like to echo the authors’ introductory remarks about the advantages of single-molecule obser-
vations in reaching an understanding of the structure and function of chemical processes. Together with
David Colquhoun, from University College London, and others, I have been involved with the modelling
of single ion channel behaviour for about 25 years. I would like to draw this briefly to your attention. An
elementary introduction is given in Hawkes (2003).

Ion channels are large protein molecules, embedded in a cell membrane, that control the movement
of electrically charged ions across the membrane. The flow of these charged ions constitutes a flow of
electrical current. All electrical activity in the nervous system appears to be regulated by ion channels,
thus playing a role in many diverse activities including thought processes, the transmission of nerve signals
and their conversion into muscular contraction and controlling the release of insulin. Understanding their
behaviour aids our understanding of normal physiology and the effect of drugs and toxins. It is therefore
an important step towards developing treatments for a wide variety of medical conditions.

Remarkably, since the Nobel Prize winning work of Neher and Sakmann (1976), it has been possible to
observe the current flowing through a single channel. In many cases, apart from a little noise, the current
is either zero when the channel is shut or some constant value when the channel is open. It is usually not
too difficult to extract an idealized signal of a sequence of alternating open—shut periods, as shown in the
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Fig. 17. |deal open—closed sequence extracted from a noisy signal

R ~F——— AR =~y/—= AR =~¥—— AR

AF = AF S AfF

AF* AF* AF*

Fig. 18. Possible model for a glycine receptor: the three states on the bottom row are open states; the other
seven states are closed

example in Fig. 17. In effect, we are lucky to be able to observe this molecule much more directly than is
possible in fluorescence experiments.

Like the present paper, the underlying model is a finite state Markov process that describes various
physical states that the molecule can adopt. Each state may be classified as open or shut. Fig. 18 shows
a recent possible model of a glycine receptor (Burzomato et al., 2004) with seven shut states and three
open states (the three on the bottom row of Fig. 18). From any such model we can derive a description of
the open—shut sequence in terms of a (hidden) semi-Markov process. What we observe is an aggregated
Markov process, because we can observe only which set of states (open or shut) it is in, not the individual
states. Actually, there are some complications concerning intervals that are too short to be resolved: the
semi-Markov formulation can take these into account, but we need not detain you with details here. From
this we can derive a likelihood for such a sequence and it has been shown to be quite effective in obtaining
good maximum likelihood estimates of the parameters and in discriminating between potential underlying
models.

Bayesian methods have also been used to derive parameter estimates directly from the original signal
plus noise measurements, and also in extracting the signal from the noise (Fredkin and Rice, 1992). These
can work quite well even for multilevel observations and quite high levels of noise (see the example in
Fig. 19).

After that diversion, let me return to the model in this paper.

I am puzzled about the basic stochastic model, no doubt because of my weak grasp of physics.
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el L L

L o —T1 L
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Fig. 19. Bayesian restoration: (a) simulated signal with four levels; (b) signal plus noise; (c) restored signal
(four very short events missed)

If you look at the derivation of the likelihood in equation (2.3) you see that the process of photon
observation depends on the underlying gamma process ~(¢), which itself is not dependent in any way on
the sequence of pulses. And yet we are told that it is the pulses that stimulate photon emission: puzzling!

Then the delay times seem to be probabilistically independent of the photon arrival process, and of
each other, and mathematically dependent on the value of the gamma process at the times of arrival, ¢,
only. At first sight these assumptions seem most unlikely. I suppose the answer is that this is a reasonable
approximation if the pulse rate is much faster than the rate at which ~(r) changes and the rate at which
photons arrive.

I would have welcomed more explanation of these points.

There are a couple of minor issues.

In remark 1 on page 474 we are told that the discretized approach to deriving the likelihood, as given in
Appendix A, is much easier to generalize to more complicated underlying Markov models and the intro-
duction of Brownian diffusions than it is if you derive the likelihood from a set of differential equations
involving the infinitesimal generator. I disagree. The differential method is, to my mind, simpler and more
elegant. Morever, using this method, the more complicated model is really no more difficult to solve than
the simple model. A derivation along these lines follows.

To generalize slightly, let X (r) denote the state that the molecule is in at time ¢ and let the Poisson intensity
at that time be a(H) \; if X(7) =i.

Let H=diag(\, A2, ..., A\x) and let the matrix G(¢) have elements

(0 =P{Y() - Y(0)=0NX (1) = jIX(0) =i}.
Then it is easy to see that
G+ 6t)=GO{I—a(0)H 6t +0(6t) H{I+Q 61 +0(60) }
=GO[I1+{Q — a(0)H} 61 + 0(61)]
so that

dG
i G{Q - a(0)H},
t
which is readily solved to give
G() =exp[{Q — a(0)H}1]

as required.
I have another small quibble. In Section 4.1 we are told that, in the two-by-two model, the states A,
and A, are experimentally indistinguishable as are the pair B; and B,, thus forming a so-called aggregated
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Markov process. This is only true if the constants a; =a, and by = b, in the definitions following equation
2.4).
I am pleased to propose a vote of thanks to the authors for presenting their stimulating paper.

Mark Steel (University of Warwick, Coventry)

The authors are to be congratulated for a very interesting and stimulating paper which builds on an emerg-
ing literature in biochemistry on single-molecule experiments. I am afraid that I have no real expertise in
bioinformatics, and, as a consequence, [ will have to limit this discussion to rather more standard issues
in Bayesian statistics.

Bayesian inference with latent processes

The authors propose models that depend on unobserved stochastic processes, and that unsurprisingly
complicates the computational analysis. There is a growing literature (e.g. in finance) on Bayesian infer-
ence with latent stochastic processes, and it would be interesting, in my view, to compare the approach
that is used here with some of the alternative proposals in the literature.

A first issue in this context is that the authors use componentwise updating of the diffusion chains. There
is some mention of ‘blocking’ the sampler on the diffusions in Section 3.2 and a promise of coming back
to these blockwise moves in a later section, but that presumably refers to the group move, rather than a
‘real’ blocking move, in the sense of for example Liu et al. (1994) or Shephard and Pitt (1997). Would the
more usual types of blocking help in this setting?

A second, and possibly more critical, issue is how to deal with the overconditioning (i.e. the high correl-
ation between the latent variables and the parameters). This occurs in the case of the x(7) process that is
introduced in the continuous diffusive model. The solution proposed is the use of a scale transformation
which jointly updates the process and its diffusion parameter. One possible problem with such a scale
transformation is that the whole process is scaled at once, and such moves could be difficult to accept if the
likelihood is particularly informative about certain parts of the process. Here it seems to work, possibly as
a consequence of the ‘generalized Gibbs’ step of Liu and Sabatti (2000), which brings the likelihood into
play. This scaling is somewhat reminiscent of the approach of Roberts and Stramer (2001) who reparam-
eterized the ‘missing data’ in a partially observed diffusion model (although they used a slightly different
transformation to achieve continuity of the sample paths at the observed points). This can be given an
interpretation as a so-called ‘non-centred parameterization’ as explained in Papaspiliopoulos et al. (2003).
Basically, the non-centring resolves the situation where the augmented data contain much more informa-
tion about the parameters than the observed data. Barndorff-Nielsen and Shephard (2001) introduced a
class of stochastic volatility models where the (latent) volatility is modelled as an Ornstein—Uhlenbeck
process, driven by a positive Lévy process without Gaussian component. In the context of these models
non-centring was also proposed to solve the overconditioning problem in Roberts ez al. (2004). For the
same type of models, Griffin and Steel (2003) proposed a sampler where the volatility process is thinned
in line with the parameter values proposed. Griffin and Steel (2003) implemented so-called ‘dependent
thinning’, where the jumps that are added to or deleted from the process tend to be relatively small. This
is achieved by the use of the Ferguson—Class representation of Lévy jump processes, which allows us to
focus on small jumps when proposing changes to the process. Thus, the new process will be ‘close’ to the
previous process, while also being compatible with the new value of the parameters. In fact, Roberts et al.
(2004) mentioned that this approach can also be given an interpretation as a non-centred parameteriza-
tion. Even though the models that were used in the papers mentioned are somewhat different, I wonder
whether similar ideas could be used in the context of the present paper.

Prior issues

The authors mention in Section 1 that ‘we have rather detailed knowledge (prior) on the various parameters
that are involved’. Nevertheless, there is little discussion of prior elicitation or prior issues in general in the
paper. In the simulated data examples a flat prior is used throughout. The authors do not make explicit
what ‘flat’ means, but if it means uniform on (the logarithms of) the parameters defined on R, that makes
the prior improper and raises the familiar spectre of posterior existence. Does the posterior exist with the
chosen prior? In addition, why would uniformity on the particular parameterization that is used (rather
than some other parameterization) be a reasonable choice to reflect a lack of prior information (which
is presumably what the authors intend)? Is there perhaps an invariance argument that can motivate this
choice? Also, it would be useful to have a feeling for the importance of the prior assumptions, through, for
example, a prior sensitivity analysis. Whereas data sets of typical sizes could swamp the prior in certain
directions, I am not convinced that this is necessarily so for all prior dimensions. It would be good to know
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where to concentrate the effort in eliciting a prior for practical problems, and some ideas about how such
elicitation might proceed could be quite valuable for applied users of these methods.

Estimation of the Bayes factor

The identity in equation (5.1) that is used for the estimation of the Bayes factor is interesting, and, as the
authors state, has not been used much in the literature. I wonder whether the reason might be the same as
for the ‘harmonic mean’ estimator, which constitutes the special case if the simpler model has no unknown
parameters. Newton and Raftery (1994) commented that the harmonic mean does not, generally, satisfy
a Gaussian central limit theorem and can be very unstable as a consequence. We would expect that such
problems will be somewhat less severe for a likelihood ratio, but I wonder whether stability of the resulting
estimates is still an issue, especially if the extra parameters in the larger model involve a latent process.

Finally, it gives me great pleasure to second the vote of thanks.
The vote of thanks was passed by acclamation.

Chris Sherlock (Lancaster University)

We comment on the authors’ use of flat priors in their simulation studies and offer a Gibbs sampler (see
Fearnhead and Sherlock (2004)) as an alternative to the Metropolis—Hastings scheme that is described in
Section 2.

Flat priors
We observe that the likelihood has a lower bound that is strictly greater than 0 over the entire range of
certain parameters. For example

P(data) > P(dataNmolecule always closed)

where the right-hand side is independent of the parameter b.
Thus an improper (on standard or log-scales) prior for b will lead to an improper posterior.

Gibbs sampler
In the present context the state of the hidden ( Markov) chain is the DNA molecule being closed or open.
The Gibbs sampler has three stages.

Step I: given parameter values at the end of the previous iteration, sample the state of the hidden Markov
process at photon emission times from its exact conditionl distribution.

Step 2: for each time interval between emissions, given the state of the chain at the end points, sample
a chain from the exact conditional distribution of such chains.

Step 3: given this instance of the full underlying Markov chain, sample from the exact parameter dis-
tribution given the data.

Step 1 uses the forward—backward algorithm and step 3 is simple if we use conjugate priors.

Step 2 is based on an idea from Fearnhead and Meligkotsidou (2004) and involves creating a dominating
Poisson process, the rate of which is the maximum (over states of the chain) of the sum of the intensity
of the state change process and the photon emission process. These dominating events correspond (via
thinning) to possible state changes or photon emissions. Over each interval between two photon emissions
we simulate

(a) the number of dominating events from its true conditional distribution,

(b) the times of each dominating event, which are independent and uniform over the interval, and

(c) the state change (if any) at each dominating event; here we again use the forward-backward algo-
rithm.

We repeated the authors’ simulation from Section 2 (with vague but proper priors). Fig. 20 shows results
for two parameters. Parameter k;; exhibited the worst mixing of any of the five parameters. The simulation
took less than twice as much central processor unit time as an additive random-walk Metropolis scheme
with block updating.

Onmiros Papaspiliopoulos (Lancaster University)

The authors are to be congratulated for this interesting paper. I would like to make some remarks on the
computational methodology and to draw the attention of the authors to important work on inference for
hidden stochastic processes by giving some key references which are missing from the paper.
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The model that is described in Section 2 is a Markov modulated Poisson process, and there has been
much work on fitting these models; see for example Asmussen (2000) and references therein. The likeli-
hood in equation (2.3) is standard and can be derived (as well as equation (3.11)) using a much simpler
(matrix analytic) argument than the approach that is adopted in Appendix A.

If w,y =w;, in equation (3.1) (or if we are willing to assume that the process lives in two dimensions)
we could avoid augmenting the three Brownian motions and instead directly augment the «(f) process,
which would be a transformation of the Bessel process which has known transition density. This might
lead to much more efficient Markov chain Monte Carlo sampling, since there is a large amount of infor-
mation about «, whereas the three processes are partially non-identifiable (all paths with the same dis-
tance from the origin have the same likelihood). Have the authors encountered mixing problems due to
multiple modes in the path space? The time point by time point updating of hidden time series that
is suggested in Section 3.2, although it results in fast updates, is known to lead to very slowly mix-
ing Markov chain algorithms. Pitt and Shephard (1999), building on the results of Roberts and Sahu
(1997), gave some analytic convergence results; see also the discussion in Jacquier et al. (1994) for empir-
ical results from stochastic volatility models, and for example Elerian et al. (2001) for suggestions on
efficient blocking schemes for updating diffusion paths. It is difficult to diagnose graphically on such
high dimensions whether the mixing is good, but still I would be less convinced than the authors by
Fig. 10, since in many cases the ‘true’ path lies well outside the range that is covered by the simulated
paths.

Roberts and Stramer (2001) showed that the Gibbs sampler which updates the diffusion dX, =b(X,) dr +
o(X,, ¢) dW, and the parameters 6 has poor convergence; in fact if all the path is augmented the sampler
is reducible. They suggested a non-centred reparameterization

X, — X, =n(X,; 9),

* 1
0 é) = /O oy

see also Roberts et al. (2004), Papaspiliopoulos et al. (2003) and Papaspiliopoulos (2003). There are close
connections between reparameterizations and marginal augmentation methods, like those which were
used in Section 4.3. In this context the former approach is more flexible since it can easily handle arbi-
trary diffusion functions and discretely observed diffusions, but it is interesting to know whether both
approaches can be combined.

Martin Jacobsen and Michael Serensen (University of Copenhagen)

We congratulate the authors on their interesting and stimulating paper and would like to indicate a rigorous

derivation of their likelihood function in a more general setting (without any extra complication).
Suppose that a marked counting process has been observed in the time interval [0,7]. The data are

the pairs of event times and marks (t,71),. .., (,,7,) (0<t; <... <t, <T). The intensity of the counting
process is A\, = A\(M,_), where M is a continuous time Markov chain with state space {1,...,d}, intensity
matrix Q and stationary distribution 7y, ..., ;. The probability density of a mark at time ¢ conditional

on the past of the marked counting process and on the Markov chain M is f(7|t, M,_). The likelihood
function of the marked counting process conditional on the Markov chain M is

n T
Lc={HAtif(TiltiaMt,-f)}exp(_/ )\x dS)
i=l1 0

(with respect to a suitable dominating measure); see for example Bremaud (1981). Define iteratively
Li(m)=EM{ZiLi+1(Mt,')IMZ,,1=m}5 i:l,,..,n+1,
where E); denotes expectation with respect to the distribution of M, L, .»(m)=1 and
1i
Z; =6Ii(Mti)€Xp{ - / A(M;) dS},
i1

with 10=0,1,., =T, ¢,+1(m) =1 and g;(m) = \(m) f(7;|t;,m). Then, by iterating conditional expectations
and using the Markov property, we obtain the unconditional likelihood

L=Ey(L)=Ey(L)=(m,..., 7))Ly
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where L; =(L;(1), ..., L;(d))" (T denotes transposition). With r;(m) = g;(m) L;;(m),
K
L(m)=Ey (Khm {r,«(M,,.)exp{ — /\(Msr.)h} ‘M,i_l :m] )
—00 j=1 ’

K
:Klim (EM {r,-(M,i) II exp{—/\(MS,.)h}’M,,._] =m:|>
where s;=t,_; + jh, h=(t; —t;,_1)/ K, and where we have used the dominated convergence theorem. Using
the same matrix calculations as the authors, we obtain that

K
Li(m)= ]}1_1)1010 [ Z ri(mg) Hl exp{—)\(m_/)h} P(mj|mj—1)]
my Jj=

K
= lim [ > ri(mg) H{exp(Qh) exp(—Hh)}mj_lm_,}

K—00 |y i mg j=1

=[exp{(Q — H)(t; — ti-1) }HD; L1 1],

for i <n, where p(m |m;_;) is a transition probability for the Markov chain, mo=m, H =diag{\(1),...,
A(d)} and D; =diag{ f(7|t;, 1), ..., f(7|t;,d) }. In conclusion,

L; =exp{(Q — H)(t; — t;_1) }HD;L;,
fori<n,and L, =exp{(Q — H)(t; —t;_1) e, where e=(1,... 1)T, so by iteration

L=(m,....m) f[leXp{(Q — H) (6 — 1) }HD; [ exp{(Q — H)(T — 1) }e.

It was assumed that the function A\(m) is deterministic, but inspection of the proof shows that it holds
also when the intensity is allowed to depend on the behaviour of the marked counting process before the
previous event, whereas between events it depends additionally on the current value of M as above. The
intensity can also depend on other sources of randomness, so the other models in the paper are covered
also, but it is essential that between events the dependence on such extra randomness remains constant.
Observation in the time interval [y, ¢,] is covered by taking t, =0 and T =1,.

Richard J. Boys (University of Newcastle)
The authors are to be congratulated on an impressive paper. Recent developments in biochemical exper-
imentation now provide insight into the biological mechanisms within a single cell. Potentially, these
techniques can give us a much fuller understanding of cellular biological processes than can be obtained
by ensemble average experiments such as microarrays and polymerase chain reaction experiments. At
Newcastle, Darren Wilkinson and I are developing Markov chain Monte Carlo methods for inferring
stochastic kinetic rate constants in biochemical networks by using partially observed time course data on
the numbers of molecules of chemical species within a single cell. This work (Boys e? al., 2004; Wilkinson
et al., 2004) also uses data augmentation, in our case to average over additional uncertainty due to the
partial time course information.

Professor Steel’s comments on model sensitivity, including the use of prior information, are interesting.
It can be quite difficult to assess the influence of prior information, particularly when using diffuse priors
in models with latent structures which are often only weakly identified by the data. In more straightfor-
ward scenarios, sensitivity to the prior specification can be assessed by looking at marginal likelihoods
such as

T(l) o< (ply) /7 (i),

where 7 is an empirical estimate of the marginal posterior density calculated from the Markov chain
Monte Carlo output. In fact, this analysis uses diffuse priors and the model does not appear to suffer
from identifiability problems and so the marginal posteriors are almost normalized marginal likelihoods.
Turning to model sensitivity, one way of assessing the effect of the discretization that is used for their
Ornstein—Uhlenbeck process would be to look at the sensitivity of inferences to models with a finer dis-
cretization, say by inserting time points f;, ..., #; , between each observed time point, and then using data
augmentation techniques to integrate out the additional values x(z; ;).



504 Discussion on the Paper by Kou, Xie and Liu

The authors comment that they have found no previous reference to their Bayes factor calculation (5.1).
This is based on the posterior mean of the likelihood ratio for the hypothesis Hy:(=0. In Aitkin et al.
(2005), we study how this posterior distribution can be used to assess such hypotheses. Instead of using
just the mean value, the strength of evidence against the hypothesis is gauged by using the full distribution.
It would be interesting to hear whether, in this analysis, the posterior distribution of the likelihood ratio
is particularly skewed and to have some measure of variability and some quantiles.

The authors replied later, in writing, as follows.

We thank the discussants for their thoughtful and constructive comments regarding our paper. We
shall first discuss the issues that were most commonly raised and then make (necessarily) brief replies to
questions which were asked by particular discussants.

Bayesian inference, prior specification and model sensitivity

To us, a main advantage of Bayesian inference for stochastic models is that all quantities, be they observed
data, unobserved latent processes or parameters of interest, are given the same footing under a coher-
ent probabilistic framework. The Bayesian approach is thus conceptually straightforward for inferring
stochastic models with latent processes and has been applied in the finance literature to study partially
observed diffusion processes, stochastic volatility models and term structure models, as pointed out by
Steel and Papaspiliopoulos. Although all these models fall under the general umbrella of Markov or hidden
Markov models, our model resembles the more classical hidden Markov models rather than the partially
observed diffusion processes.

An integral part of the Bayesian analysis is to understand the effect of prior specifications. In analysing
most natural science experiments, the prior distribution should be as diffuse as possible so that it is the
scientist’s data that lead to the main inferential conclusion. A ‘good’ experiment usually refers to the one
that provides information easily overwhelming the prior distribution. In our analysis, we use ‘flat’ priors
for all parameters, where the flatness simply implies a uniform distribution over a finite but relatively
large region, which is determined by the domain scientific knowledge. Although our uniform prior is not
transformation invariant, our sensitivity analysis showed that the prior influence is indeed very minimal.
For the simulation study in Section 5.1, we generated 50 data sets, each containing hundreds to thousands
of data pairs. For a wide range of prior distributions, there were essentially no differences in the posterior
distributions.

The excellent point raised by Sherlock regarding the singularity of the likelihood function of our two-
state model is analogous to that in a typical Gaussian mixture model, and can be avoided both practically
and theoretically by using a proper prior.

Boys suggested an interesting way to test model sensitivity especially for the diffusive Ornstein—Uhlen-
beck model. We only demonstrated in the paper that the simple two-state model is not sufficient to describe
the DNA hairpin kinetics. The model sensitivity test that is suggested by Boys could be useful for further
testing the validity of the diffusive model.

Likelihood calculation

We thank Jacobsen and Serensen for providing a rigorous derivation of the likelihood. To us the discreti-
zation and matrix approach is quite straightforward and intuitive, as it provides a natural way to extend
techniques for handling discrete time processes to continuous time ones. Another benefit of the discret-
ization approach is that it can provide answers or insights to both analytical and computational issues:
when the analytical form of the likelihood function exists, one can obtain it by letting the discretization
length shrink to zero (as shown in the paper), whereas, if there is no analytical solution, this approach
corresponds to the numerical ‘Euler method’ that is used in the econometrics literature and is the basis for
the recent data augmentation approach for inferring partially observed diffusion processes (Elerian et al.,
2001).

Markov chain Monte Carlo issues

There are a few suggestions regarding the use of ‘block’ moves in augmenting the latent processes. We
agree that this can be very helpful in the general state space model, especially when we can easily sam-
ple from the joint conditional distribution for the whole block of variables (Carter and Kohn, 1996).
When such conditional block distributions cannot be handled at ease, Shephard and Pitt (1997) sug-
gested some partial updating approaches, such as additive moves, which can improve computational
efficiency. But in our experience these partial updates have a much smaller effect compared with the
true block move. In Liu and Sabatti (2000), we introduced a multilevel partial block update approach
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for partially observed diffusion processes, which further improves Shephard and Pitt’s method, but the
improvement is still not sufficiently large to merit additional programming effort for our current
problem.

We do agree, however, with Papaspiliopoulos that our three-dimensional Brownian paths are uniden-
tifiable—the posterior distribution is invariant under a rotation of the Brownian path around the z-axis. As
a consequence, our single-site update sampler cannot explore the whole path space sufficiently. The reason
that our method still seems to work well is that the likelihood is dependent on only «(¢), and whether the
sampler mixes well in the angular space is not important. On the basis of the invariance argument, we
can also introduce a new move to speed up the convergence: B'(f) = R o B(f), where R is a rotation-like
transformation that leaves a(f) unchanged. Such a move should be easily accepted and should work much
better than the block move.

We also agree with Steel and Papaspiliopoulos that reparameterization can drastically improve the con-
vergence. We feel that the group move is perhaps more intuitive and easier to use than most reparameter-
izations because

(a) it can achieve almost all the effects of a reparameterization without actually changing the original
distribution and

(b) we can do different types of group moves in one Markov chain Monte Carlo iteration easily, but it
is much more involved to do several types of reparameterizations simultaneously.

However, some reparameterizations, such as that in Roberts and Stramer (2001), cannot be easily for-
mulated as group moves, which suggests that there might be a useful and more general mathematical
framework than the generalized Gibbs structure (Liu and Sabatti, 2000) to encompass non-group trans-
formations.

Experimental background

We thank Hawkes for pointing out the connection between the current work and the literature on model-
ling and inferring ion channel behaviour, and for asking clarifying questions regarding the photon arrival
time and delay time. In our experiments, since the laser pulse rate is much faster than the rate at which ~(z)
changes, as Hawkes rightly observed, the photon arrival rate is essentially determined by the underlying
state of the molecule. The power of the laser affects the constant Ay. The photon delay time measures
the length of time that it takes the molecule to emit a photon from the moment it is excited; this length
of time is essentially independent of the laser pulse rate and is determined by the state of the molecule.
In the experiment, the molecule is put in a laser focal volume. The focal volume is ellipsoidal, symmetric
in the x- and y-axes but asymmetric in the z-axis, resulting in w,, =310nm and w, = 1760 nm in equation
(3.1). Consequently, one Bessel process is not sufficient to augment the () process, as Papaspiliopoulos
suggested.

Finally, we thank all the discussants for their insightful contributions. We hope that the reader will enjoy
reading these comments and thinking about various scientific, statistical and computational issues raised
as much as we did.
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