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ABSTRACT: There are more than 3.7 million published articles on the biological
functions or disease implications of proteins, constituting an important resource of
proteomics knowledge. However, it is difficult to summarize the millions of
proteomics findings in the literature manually and quantify their relevance to the
biology and diseases of interest. We developed a fully automated bioinformatics
framework to identify and prioritize proteins associated with any biological entity. We
used the 22 targeted areas of the Biology/Disease-driven (B/D)-Human Proteome
Project (HPP) as examples, prioritized the relevant proteins through their Protein
Universal Reference Publication-Originated Search Engine (PURPOSE) scores,
validated the relevance of the score by comparing the protein prioritization results
with a curated database, computed the scores of proteins across the topics of B/D-
HPP, and characterized the top proteins in the common model organisms. We further
extended the bioinformatics workflow to identify the relevant proteins in all organ
systems and human diseases and deployed a cloud-based tool to prioritize proteins
related to any custom search terms in real time. Our tool can facilitate the prioritization of proteins for any organ system or
disease of interest and can contribute to the development of targeted proteomic studies for precision medicine.
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■ INTRODUCTION

Proteomics studies provide significant insights into the
dynamics of biological processes related to normal physiology
and disease pathology.1 There are more than 3.7 million
published papers describing proteins implicated in various
human health and disease status.2 These studies elucidate the
biological pathways related to diseases,3−7 describe potential
biomarkers,8 and reveal potential drug targets.9 Recently, the
Precision Medicine Initiative launched population-scale studies
of the human genome and proteome, which promoted and
inspired international collaborations to generate high-through-
put biomedical data, to compile health information on millions
of participants, and to publish biomedical insights gleaned from
these studies.10−12 As an illustration, the well-established
Human Proteome Organization (HUPO) Biology/Disease-
driven (B/D)-Human Proteome Project (HPP) is a coordi-
nated international effort to systematically study the human
proteome under different conditions. The goal of the HPP is to
make proteomics a standard companion to other high-

throughput “omics” studies, including genomics, transcriptom-
ics, epigenomics, and metabolomics, in the integrative
investigations of all diseases. It is expected to further expand
our knowledge and scientific literature on the proteomic
landscapes of the 22 targeted fields, including cancer, diabetes,
infectious diseases, the cardiovascular system, the liver,
mitochondria, and plasma.13−15

The accumulation of biomedical publications in the PubMed
database presents an opportunity to identify the important
proteins associated with known human biology and diseases.
However, the distribution of this collective knowledge in
millions of PubMed articles makes it very difficult for
investigators to track and summarize the literature in real
time; currently, there are 27 million publications in total in the
PubMed database, with approximately 800 000 added every
year.16,17 A significant proportion of recent publications
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describes the functions of proteins, genes, and their relations to
phenotypes or diseases.2 As is standard practice in many fields,
many researchers have periodically summarized the most
significant findings in their areas in the form of review articles.
However, as the number of proteomic and other publications
increases rapidly, it is becoming ever more difficult to keep up
with the current literature through conventional approaches. An
automated method for prioritizing proteins of interest for
research in normal biology and diseases is needed.
Previous studies have shown that text mining algorithms can

help prioritize proteins of interest and facilitate biomedical
investigations.18 Several groups of researchers employed text-
mining strategies to extract protein−protein interactions,19 to
identify the relations between human diseases, genes, drugs,
and metabolites,20 and to discover novel drug-gene interactions
and gene−gene interactions.21 A recent study designed
copublication metrics to prioritize proteins in six organ
systems.22 These studies demonstrated the feasibility of
literature mining in retrieving useful and nontrivial information
from published work.
However, very few studies have systematically investigated

and summarized the proteins relevant to organ systems or
diseases or compared the importance of a protein in different
organ systems, which hinders the progress of protein array
design and targeted proteomics studies.18 In the recent decades,
various proteomics platforms were developed for the character-
ization of thousands of proteins.23 However, there are more
than tens of thousands of proteins presented in organisms, and
targeted proteomics assays cannot cover all of the protein
candidates. A comprehensive literature mining tool is needed to
facilitate the development of targeted proteomics assay by
prioritizing the protein candidates for any given biological
system or disease of interest. The development of an effective
literature-based protein prioritization platform will greatly
facilitate biomarker discovery or drug target investigations.
We designed an automated literature mining platform that

systematically retrieves biomedical literature, analyzes the
relations between proteins and any organ system, phenotypes,
or diseases in various species, and generates a ranked list for any
topic of interest. To demonstrate the utility of our platform, we
presented our protein prioritization results of the 22 B/D-HPP
targeted fields, which encompassed 22 prevalent human
diseases and important organ-systems with ongoing systematic
proteomics studies on each of these areas.15 In addition to
publication frequency, our approach quantified the specificity of
a protein to the topic of interest and accounted for the number
of citations of each article. We generated a ranked list of
proteins related to each of the B/D-HPP targeted areas and
compared the protein prioritization results with a curated
database to validate the relevance of the identified proteins to
the B/D of interest. The platform is freely available as a cloud
service, allowing researchers of all fields to query any proteins,
diseases, phenotypes, or other biological entities in human and
the common model organisms of interest. This platform will
facilitate the comprehensive investigations on the key areas of
the B/D-HPP as well as expedite targeted proteomics studies
on human and other organisms, which will promote the
progression from proteomics-based discovery to translational
research for precision medicine. Our approach can also be
generalized beyond proteomics to analyze other areas of
biomedical investigations, such as metabolomics, protein
modifications, and alternative splicing isoforms.

■ MATERIALS AND METHODS

Identification of the B/D-HPP Targeted Fields, Human
Organ Systems, and Human Diseases

B/D-HPP targeted fields, human organ systems, and human
diseases were identified as the target areas for protein
prioritization. The 22 targeted fields of the B/D-HPP were
obtained from the HPP Web site, which include brain, cancer,
cardiovascular, diabetes, extreme conditions, EyeOME, food
and nutrition, glycoproteomics, immune-peptidome, infectious
diseases, kidney and urine, liver, mitochondria, model
organisms, musculoskeletal, pathology, PediOme (the human
pediatric proteome), plasma, protein aggregation, rheumatic
disorders, stem cells, and toxicoproteomics.24 Eleven systems of
the human anatomy, including cardiovascular/circulatory,
digestive/excretory, endocrine, integumentary, lymphatic/im-
mune, muscular, nervous, renal/urinary, reproductive, respira-
tory, and skeletal systems were identified.25 Phenome-wide
association scan (PheWAS) codes were used to identify the
phenotypical groups of human diseases.26 All 1866 PheWAS
codes, which summarized 15 558 International Classification of
Diseases version 9 (ICD-9) codes, were included in our
analysis.26

Retrieval of Publications Associated with Proteins and
Topical Queries

PubTator files were obtained from the National Center for
Biotechnology Information (NCBI) PubTator portal, which
contains annotations of genes, species, and diseases.2 Tagged
genes, diseases, organ systems, and species were extracted from
the PubTator database. Because the PubTator files update every
few weeks, an automated file downloader was implemented to
obtain and process the updated files periodically. The name and
symbol of each protein were retrieved through the NCBI gene
information tool.27 For each protein, the PubMed identifiers
(PMIDs) of the papers tagged with the protein were identified.
The title, authors, journal, publication years, and citation
numbers of the publications were retrieved by the NLM Entrez
Programming Utilities (E-utilities).28 Because older publica-
tions may accumulate more citations than recently published
papers with equal importance, the numbers of citations were
normalized against the number of years the papers had been
published. With this method, the recently discovered protein−
biology associations would not be heavily penalized when
compared with well-established associations. In addition, the
classic protein−biology associations will still receive substantial
weight given their consistent trend of publication and citation.
For each topical query (T), the NLM E-utilities were used to

retrieve the PMIDs associated with T, and the list of PMIDs
retrieved from T was intersected with the PMIDs associated
with each protein tagged by PubTator. A summary of our
method is shown in Figure 1A.

Summarizing Protein Publication and Citation with the
Protein Universal Reference Publication-Originated Search
Engine (PURPOSE) Score

To quantify the strength of the associations between proteins
and topics, a Protein Universal Reference Publication-
Originated Search Engine (PURPOSE) score was designed.
The PURPOSE score is defined as follows
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where nTP is the number of papers related to both the protein
and the topic (TP), Sum(Cit/Yr) is the sum of the annualized
citation number of TP, nU is the number of publications in the
PubMed database, nT is the number of publications regarding

the topic of interest, and nP is the number of publications
regarding the protein of interest. This score is analogous to the
term frequency-inverse document frequency (tf-idf) measure-
ment commonly used in text mining:29 The first part of the
protein prioritization score is proportional to the strength of
TP copublications weighted by the annualized citation, and the
second part penalizes well-published topics and proteins
without significant proportions of copublications, thereby
prioritizing topic-specific proteins with substantial copublica-
tion strengths. The number of citations per year was included
to account for the visibility and importance of each publication.
To avoid potential bias, the number of citations per year was
calculated at the paper level and was not aggregated to the
journal level. The PURPOSE score served as a foundation for
measuring the importance of different proteins associated with
each topic of interest. For any given protein, the score was also
used to compare the relevance of different organ systems or
HPP areas.

Prioritizing Proteins Associated with the 22 B/D-HPP
Targeted Areas and Genetic Variations with Clinical
Significance

To identify the proteins associated with the B/D-HPP targeted
areas, the protein PURPOSE score was calculated for each
human protein in each of the 22 B/D-HPP topics. The query
term associated with each B/D-HPP area is shown in Table S-1.
For each targeted area, the proteins with the highest scores
were identified, and their numbers of publications and citations
were compared.
To characterize the copublication patterns of proteins and

genetic variations of clinical significance in cancers, the most
studied mutated genes in cancers were identified by using
“mutation cancer” as a PubMed search term and ranking the
associated proteins by their PURPOSE scores. For specific
genetic mutations, the associated publications were retrieved by
querying the mutation as a keyword. As an illustration, “EGFR
mutation” was used as the PubMed search term to retrieve
publications associated with EGFR mutation. Thus the search
results would encompass all mutational variants of the queried
gene. For cancer-type-specific analysis, the ten most prevalent
cancers worldwide were identified from the global cancer
statistics,30 and the mutated genes frequently copublished with
each type of cancer were determined. The prevalence rates of
the frequently published genetic mutations in cancer were
obtained from the pan-cancer study in the Memorial Sloan
Kettering Cancer Center.31 The identified mutated genes were
used as a search term, and the PURPOSE scores of the
copublished proteins were calculated and ranked.
Gene Ontology (GO)32 and Kyoto Encyclopedia of Genes

and Genomes (KEGG)33 pathway enrichment analyses were
performed on the retrieved protein list of each topic of interest
to identify the significantly associated biological entities and
pathways. Benjamini−Hochberg procedure was used to correct
for multiple tests in the enrichment analyses. Protein−protein
interactions were visualized using the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING)34 database
tool. Significantly higher numbers of protein−protein inter-
actions indicated that the identified proteins likely participated
in related biological pathways. All analysis results were retrieved
on October 20, 2017.

Figure 1. Protein prioritization for the 22 targeted areas of the
Biology/Disease-driven Human Proteome Project (B/D-HPP). (A)
Developed bioinformatics workflow for real-time literature mining. (B)
Summary statistics of the literature pertaining to the B/D-HPP
targeted fields. The number of publications, the total number of
citations, the number of citations per year (Sum_Cit/Year), and the
number of unique protein counts (#Proteins) are shown. B: brain, Ca:
cancer, CV: cardiovascular, D: diabetes, Ex: extreme conditions, Ey:
EyeOME, FN: food and nutrition, G: glycoproteins, Im: immune-
peptidome, In: infectious diseases, K: kidney and urine, L: liver, Mi:
mitochondria, Mo: model organisms, Mu: musculoskeletal, P:
pathology, Pe: PediOme, Pl: plasma, PA: protein aggregation, R:
rheumatic disorders, SC: stem cells, T: toxicoproteomics. (C)
Correlation matrix of the number of publications, the number of
citations, the number of citations per published years, and the number
of proteins copublished with each of the B/D-HPP fields.
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Protein-based Search across the 22 B/D-HPP Targeted
Areas

To better understand the publication trend of human proteins,
the proteins with the highest number of PubMed publications
in human (Homo sapiens) were identified, and their PURPOSE
scores across the 22 B/D-HPP targeted areas were compared.
The numbers of publications and citations for each B/D-HPP
area were calculated and visualized. The known functions of
these top proteins were retrieved from neXtProt35 and
UniProt36 and compared with the known biological mecha-
nisms associated with the B/D-HPP topics.

Comparison of the Top-Ranked Proteins in Popular Model
Organisms

Many model organisms, including mouse (Mus musculus), rat
(Rattus norvegicus), common fruit fly (Drosophila melanogaster),
roundworm (Caenorhabditis elegans), and yeast (Saccharomyces
cerevisiae), are routinely used in proteomic studies.37−39 To
characterize the publication patterns of proteins in these model
organisms, the proteins with the largest numbers of publication
in each of these organisms were identified. The ortholog
relations among proteins in different species were identified
using the Protein ANalysis THrough Evolutionary Relation-
ships (PANTHER) database.40,41 The associations between the
top proteins in human and those in the model organisms were
quantified using the Spearman correlation coefficient.

Evaluation of the Prioritized Lists

Biologist-curated lists of known protein−topic relations from
the Comparative Toxicogenomics Database (CTD)42 were
used to evaluate the prioritized lists of proteins retrieved from
the PURPOSE system. “Cardiovascular,” “kidney,” “liver,” and
“lung” were selected as targets for evaluation because they are
among the B/D-HPP targeted areas and are terms of general
interest. The CTD gene−disease association table was used,
and diseases associated with the targeted terms were retrieved
by a MeSH tree search. A detailed list of search parameters and
results is included in Data S-1. Precision, recall, and the F1
score were employed to quantify the performance of the
PURPOSE algorithm. The performance of existing tools with
similar functionalities, such as GLAD4U43 and PubPular,22 was
also evaluated and compared with that of the PURPOSE
algorithm. In addition, a variant of PURPOSE algorithm that
did not incorporate citation counts but was otherwise identical
was included in the comparison. To mimic users’ search
behavior, the terms “cardiovascular”, “kidney”, “liver”, and
“lung” were inputted into the systems under evaluation on the
same day (February 2, 2018). The evaluation is restricted to
human proteins due to the fact that the CTD curations are
mostly about human. Because the PubPular tool only shows the
top 500 proteins associated with the search query, the
comparison among PURPOSE, GLAD4U, and PubPular was
limited to the top 500 proteins.

Interactive User Interface

A cloud-based user interface that enables real-time protein
queries was built using the R Shiny application. The R packages
“shinySky”, shiny bootstrap (“shinyBS”), “shinyjs”, and an
interface to Google’s open-source JavaScript engine (“V8”)
were employed to establish an interactive web interface. The
interactive plots were generated by R packages “ggplot2” and
“plotly.” All statistical analysis was performed and visualized
with R version 3.3.3. The established system runs the user-
defined queries in real time, performs on-demand PubMed

searches on the most updated database using a java code
interfaced with PubMed E-utilities, and summarizes and
visualizes the protein prioritization results for each query in
1−30 s. For each protein associated with the query, the number
of publications, number of citations per year, and the
PURPOSE score are calculated and reported. The distribution
of the scores of the proteins is visualized with scatterplots.
Pathway analyses using the Database for Annotation, Visual-
ization and Integrated Discovery (DAVID)44,45 and protein−
protein interaction analysis with the STRING tool34 are
conducted on demand through their application programming
interfaces (APIs). A ranked list of relevant proteins, the
distribution of PURPOSE scores, numbers of publications and
citations, and the most-cited publications associated with the
top proteins are shown in the interactive user interface. The
source codes are avai lable at http://rebrand. ly/
proteinpurposesourcecode.

■ RESULTS

Summary of Publication and Citation Distribution in the
PubMed Database

We designed a fully automated tool to retrieve publications
associated with any topic in the PubMed Database, linked them
with mentions of specific genes and proteins in the titles and
abstracts of the papers, summarized the number of publications
and citations of each topic-protein pair, and calculated the
PURPOSE scores to prioritize the proteins associated with each
topic (Figure 1A).
We first summarized the publication and citation distribution

in the PubMed database. For each of the 22 B/D-HPP topics,
we calculated the number of the associated PubMed
publications mentioning specific proteins and genes (Figure
1B). The 22 topics include brain, cancer, cardiovascular,
diabetes, extreme conditions, EyeOME, food and nutrition,
glycoproteomics, immune-peptidome, infectious diseases,
kidney and urine, liver, mitochondria, model organisms,
musculoskeletal, pathology, PediOme (the human pediatric
proteome), plasma, protein aggregation, rheumatic disorders,
stem cells, and toxicoproteomics. Results showed that the most
published topics among the 22 B/D-HPP targeted areas are
PediOme (3.74 million publications), cancer (3.03 million),
pathology (2.43 million), model organisms (2.22 million), and
musculoskeletal system (2.13 million), demonstrating the scale
of publications in these broad and popular research topics. For
the least studied topics among the 22 B/D-HPP topics, such as
protein aggregation, there are still more than 50 000 associated
publications discussing specific proteins or genes. For all of the
22 B/D-HPP topics, there are more than 1000 human proteins
with at least one publication mentioning both the field and the
protein, indicating the richness of the current PubMed
database. The B/D-HPP topics with the largest number of
copublished proteins are cancer (11 213 proteins), model
organisms (10 936 proteins), and pathology (10 876 proteins).
We observed that topics with more publications generally

had a higher total number of citations (Spearman’s correlation
coefficient = 0.85) and a higher number of citations per year
(Spearman’s correlation coefficient = 0.83). Similarly, the topics
with more publications were associated with more copublished
proteins (Spearman’s correlation coefficient = 0.87). The
number of total citations was strongly correlated with the
number of citations per year (Spearman’s correlation coefficient
= 0.99; Figure 1C). These results indicated that the heavily
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Figure 2. continued
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published topics may represent the popular fields of study and
thus attracted more citations and had more copublished
proteins in the PubMed literature database.

Prioritizing Proteins in the 22 Targeted Fields of the
Biology/Disease-Driven Human Proteome Project

To identify the proteins associated with the 22 targeted fields of
the B/D-HPP, we computed the PURPOSE score for each
protein copublished with each of these fields. The design of the
PURPOSE score follows the weighting principle used by tf-idf,
which balances the strength of copublication and the specificity
of the retrieved associations. (Please see the Materials and
Methods section.) The PURPOSE score accounts for the

specificity of the associations between the protein under
investigation and the topic of interest while integrating the
number of copublications and citations. Our algorithm
calculates the PURPOSE score for thousands of proteins
within seconds once the required bibliographical information is
retrieved through our bioinformatics workflow.
The PURPOSE score effectively identified the proteins

relevant to each topic in the B/D-HPP. Well-established
protein−topic associations were successfully retrieved (Figure
2A and Data S-2). For instance, three well-known oncopro-
teins, EGFR (epidermal growth factor receptor; score = 37.93),
ERBB2 (erb-b2 receptor tyrosine kinase 2; score = 37.45), and
KLK3 (kallikrein related peptidase 3; score = 37.05) were

Figure 2. Distribution of the protein PURPOSE scores in the selected B/D-HPP targeted areas. (A) Protein publication scores of cancer,
cardiovascular, diabetes, and immune-peptidome are shown, and the top three proteins with the highest scores are labeled. (B) Distribution of the
protein PURPOSE score and its components for cancer, cardiovascular, diabetes, and immune-peptidome. nTP: the number of papers related to
both the protein and the topic (TP); nP: the number of publications regarding the protein of interest; Sum_Cit/Year: the sum of the annualized
citation number of TP. Y axis on the left: PURPOSE score; Y axis on the right: log10(value) of all other variables. For each topic, only the top 20
proteins with the highest PURPOSE score are shown. (C) Network analyses revealed significant protein−protein interactions among the identified
proteins, and enrichment analyses confirmed their relevance to the B/D-HPP fields. Selected analyses on cancer, cardiovascular, diabetes, and
immune-peptidome are shown. Please note that the CD24 protein identified in panel B in cancer was not present in the STRING database.
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Figure 3. Distribution of the protein PURPOSE scores in selected genetic mutations with known clinical significance. (A) Distribution of the
numbers of publications for the most frequently published genetic mutations in cancer. EGFR, TP53, BRCA1, and KRAS mutations are the four
most frequently published genetic mutations in cancer. (B) PURPOSE scores of the 100 most published genetic mutations in cancer are moderately
associated with their prevalence rates in the recent pan-cancer study (MSK-IMPACT) (Spearman’s correlation coefficient = 0.64). (C) Distribution
of the protein PURPOSE score and its components for EGFR and BRCA1 mutations. nTP: the number of papers related to both the protein and the
topic (TP); nP: the number of publications regarding the protein of interest; Sum_Cit/Year: the sum of the annualized citation number of TP. Y axis
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found to have the highest copublication scores in the cancer
category; CRP (C-reactive protein; score = 37.16), ACE
(angiotensin I converting enzyme; score = 34.60), and CDH5
(cadherin 5; score = 34.44) occupy the top of the ranked list for
cardiovascular; INS (insulin; score = 42.46), DPP4 (dipeptidyl
peptidase 4; score = 40.26), and GCG (glucagon; score =
38.81) achieve the highest scores for diabetes; and CTLA4
(cytotoxic T-lymphocyte associated protein 4; score = 39.57),
CD274 (score = 39.02), and IFNG (interferon gamma; score =
38.63) are strongly associated with the immune system (Figure
2B).
Enrichment analysis revealed that the proteins with high

PURPOSE scores are highly correlated with the known
biological pathways of the organ system. As an illustration,
the top 20 proteins associated with cancer (Figure 2B) are
significantly enriched in the positive regulation of cell−cell

adhesion, regulation of signal transduction, and regulation of
cell proliferation (corrected P value <0.0001). KEGG pathways
analysis demonstrated that the same set of proteins is associated
with pathways in cancer, microRNAs in cancer, and
proteoglycans in cancer, glioma, and prostate cancer (corrected
P value <0.0001), and these proteins have significant protein−
protein interactions as compared with a random set of proteins
(P < 0.001; Figure 2C). As another example, the 20 proteins
with the highest PURPOSE scores for diabetes are enriched in
the regulation of gluconeogenesis, regulation of cellular ketone
metabolic process, glucose homeostasis, regulation of protein
secretion, and regulation of hormone secretion (corrected P
value <0.0001). These proteins participate in many KEGG
pathways, including insulin secretion, type II diabetes mellitus,
the PPAR signaling pathway, maturity onset diabetes of the
young, and the AMPK signaling pathway (corrected P value

Figure 3. continued

on the left: PURPOSE score; Y axis on the right: log10(value) of all other variables. For each genetic mutation, only the top 20 proteins with the
highest PURPOSE score associated with it are shown. (D) Network analyses identified significant protein−protein interactions among the identified
proteins, and enrichment analysis confirmed their relevance to the genetic mutation.

Figure 4. Well-studied proteins in human and their PURPOSE scores in the B/D-HPP targeted areas. (A) Distribution of the number of
publications associated with each human protein. The top three proteins with the largest numbers of publications are annotated. (B) PURPOSE
scores of the well-studied proteins across the 22 B/D-HPP targeted areas. Sum_Cit/Year: the sum of the annualized citation number of papers
related to both the protein and the topic. Y axis on the left: PURPOSE score; Y axis on the right: log10(value) of all other variables. B: brain, Ca:
cancer, CV: cardiovascular, D: diabetes, Ex: extreme conditions, Ey: EyeOME, FN: food and nutrition, G: glycoproteins, Im: immune-peptidome, In:
infectious diseases, K: kidney and urine, L: liver, Mi: mitochondria, Mo: model organisms, Mu: musculoskeletal, P: pathology, Pe: PediOme, Pl:
plasma, PA: protein aggregation, R: rheumatic disorders, SC: stem cells, T: toxicoproteomics.
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Figure 5. Comparisons among the most published proteins in common model organisms, including mouse (Mus musculus), rat (Rattus norvegicus),
common fruit fly (Drosophila melanogaster), roundworm (Caenorhabditis elegans), and yeast (Saccharomyces cerevisiae). (A) Distribution of the
number of publications associated with each protein in each organism is shown. (B) Comparisons of common proteins in human, mouse, and rat by
their rank of publication numbers in each species. The most-published proteins among the three species have moderate correlations (Spearman
correlation coefficients: human versus mouse = 0.53; human versus rat = 0.51; mouse versus rat = 0.55).
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<0.0005) and have significant protein−protein interactions (P
< 0.001; Figure 2C). The top-ranking proteins in other B/D-
HPP topics, including cardiovascular and immune-peptidome,
were also related to the known pathways associated with the
topic. These results validated the associations between the
prioritized proteins and the queried B/D-HPP targeted areas.

Prioritizing Proteins Associated with Genetic Mutations in
Cancers

Many somatic genetic mutations in cancers are associated with
patients’ prognosis and treatment response. To identify the
proteins commonly copublished with the clinically relevant
mutations, we computed the PURPOSE score for each protein
associated with the gene mutations frequently copublished with
cancer. The phrase “mutation cancer” was used as the search
term to retrieve the commonly mutated genes tagged by
PubTator. The proteins copublished with each of the identified
genetic mutations were retrieved, respectively.
Results showed that EGFR (5378 publications), TP53 (4392

publications), BRCA1 (3039 publications), and KRAS (2445
publications) are the four genes whose mutations had the
highest number of cancer-related publications in the PubMed
database (Figure 3A). Among the 100 most published genetic
mutations in cancer, their PURPOSE scores were moderately
associated with their prevalence rates in a recent pan-cancer
study cohort (MSK-IMPACT) in the Memorial Sloan
Kettering Cancer Center31 (Spearman’s correlation coefficient
= 0.64; Figure 3B). A list of frequently copublished mutations
with specific tumor types is shown in Table S-2.
We demonstrated that the proteins copublished with the

known genetic variations participated in related biological
pathways. As an illustration, KRAS, CDKN2A, BCL2L11, ALK,
and CTNNB1 are frequently copublished with EGFR mutation
(Figure 3C). These proteins are highly enriched in protein
kinase activity and fibroblast growth factor receptor signaling
pathway (adjusted hypergeometric test P value <0.01) and form
a tight protein−protein interaction network (P < 0.0001;
Figure 3D). Known protein−protein interactions, such as the
biological pathway association between EGFR and KRAS46,47

as well as the coexpression between EGFR and CDKN2A,48

were successfully identified in the network. As another example,
CHEK2, PARP1, ERBB2, and RAD50 are commonly
copublished with BRCA1 mutation (Figure 3C). These
proteins are significantly enriched in many molecular functions
including DNA repair and the regulation of the DNA metabolic
process as well as in the KEGG mismatch repair and cancer
pathways (adjusted hypergeometric test P value <0.0001).
These proteins also form a significant protein−protein
interaction network (P < 0.0001; Figure 3D), which involves
known interactions such as the coexpression between BRCA1
and CHEK234 and the regulation of BRCA1 by PARP1.49

Pan-B/D-HPP Analysis on the Well-Studied Proteins

To identify the most well-studied proteins and their relations
with B/D-HPP topics, we first characterized the distribution of
publication frequency for each human protein and determined
the ones with the most publications in PubMed. The results
showed that the number of publications generally follows the
Zipf’s law,50 where the publication frequency of a keyword is
inversely proportional to its rank in the publication frequency
table (Figure 4A).
The 10 most published human proteins were TNF (75 731

publications), CD4 (54 739), IL6 (53 611), TP53 (46 130),
INS (42 836), CRP (36 788), IFNG (34 431), VEGFA

(32 733), EGFR (30 695), and IL2 (30 132). These proteins
had high PURPOSE scores (more than 35) for the known B/
D-HPP areas associated with them and possessed lower
PURPOSE scores (approximately 10 to 15) in the less relevant
fields (Figure 4B). For instance, among all 22 B/D-HPP topics,
CD4 had the highest PURPOSE scores in immune-peptidome
(score = 37.23), infectious diseases (score = 37.00), plasma
(score = 31.77), pathology (score = 30.20), and PediOME
(score = 30.09); similarly, TNF had the highest scores in
glycoproteomics (score = 37.36), rheumatic disorders (score =
31.37), immune-peptidome (score = 30.18), infectious diseases
(score = 28.77), and plasma (score = 28.34); and TP53 had the
highest scores in cancer (score = 33.11), pathology (score =
31.43), extreme conditions (score = 29.99), stem cells (score =
27.99), and mitochondria (score = 27.53). These results
showed that the PURPOSE score is highest in the areas
relevant to the proteins. Areas with relatively fewer
publications, such as glycoproteomics, still have high
PURPOSE scores in the proteins significantly associated with
them.

Identification of Proteins in Model Organisms

We extended our automated analytic platform to include
common model organisms, such as mouse (Mus musculus), rat
(Rattus norvegicus), common fruit fly (Drosophila melanogaster),
roundworm (Caenorhabditis elegans), and yeast (Saccharomyces
cerevisiae).37−39 We compared the results of protein retrieval in
the model organisms with those in human. Figure 5A
summarized the distribution of the number of publications of
each protein in these model organisms. Results showed that
different species had different numbers of proteins presented in
the literature and tagged by PubTator (human: 14 643; rat:
6519; mouse: 11 255, fly: 2371, roundworm: 1778; yeast:
2878), which is consistent with the fact that different species
possess different numbers of genes and proteins.
The most published proteins in mouse are Tnf (32 739

publications), Cd4 (22 385), and Ifng (21 013); the most
popular ones for rat are Tnf (18 872), Agt (14 480), and Ca1
(11 709); in common fruit fly, they are Egfr (679), Pc (625),
and N (Notch) (619); in roundworms, they are daf-16 (677),
daf-2 (416), and ced-3 (254); in yeasts, they are GAL4 (1122),
GAL1 (797), and CDC28 (775).
To investigate the associations among the protein publication

patterns for human, mouse, and rat, we performed a correlation
analysis of the 100 most-published proteins of these species
(Figure 5B). Results showed that the ranks of the most-
published proteins in human, mouse, and rat are moderately
correlated (Spearman correlation coefficients: human versus
mouse = 0.53; human versus rat = 0.51; mouse versus rat =
0.55). Table S-3 shows a comparison of the top 20 proteins
associated with cancer, the cardiovascular system, diabetes, and
the liver in human, rat, and mouse. Correlations between the
most-published proteins in human and common fruit fly and
between human and roundworm were weak. (Spearman
correlation coefficients were 0.19 and −0.02, respectively.)
The negative correlation observed between human and yeast
(Spearman correlation coefficients = −0.39) might be explained
by the fact that many of the well-studied proteins in yeast, such
as GAL1 and GAL4, are involved in the galactose metabolism
pathways of biochemical interest, whereas the most widely
studied proteins in human are disease-oriented, such as TNF,
CD4, IL6, and TP53.
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Evaluation of the Prioritization Performance

To quantify the performance of our PURPOSE algorithm,
precision, recall, and the F1 score were calculated for four
topics with curated protein−topic relations in CTD,42 including
cancer, cardiovascular, liver, and kidney. The performance of
PURPOSE, a variant of PURPOSE without integrating citation
count, and two other methods, GLAD4U43 and PubPular,22

was compared. Results showed that compared with GLAD4U
and PubPular, PURPOSE algorithm had a 2.8−25.6% improve-
ment in precision and recall and a 3.8−21.5% improvement in
the F1 score (Table S-4). In addition, the variant of PURPOSE
without incorporating citation counts performed slightly worse
(1−3.0% decrease in precision, recall, and the F1 score) than
the PURPOSE algorithm in most topics (Table S-4). These
results indicated the improved performance of our methods and
the value of integrating citation counts in the prioritization
algorithm.

Deployment of the Automated Protein Prioritization
System

To accommodate custom searches for any topic and protein of
interest in real time, we deployed an automated protein
prioritization system using the PURPOSE score. The system
effectively summarizes the copublication patterns between
proteins and any topic of interest (such as organ systems,
diseases, and genetic variations), visualizes the distributions of
both the PURPOSE score and the number of publications and
citations, conducts enrichment and protein−protein interaction
analysis on the selected proteins, and shows a summary of the
highly cited publications associated with the top proteins/genes
and the topic of interest. These modules direct interested users
to the original publications and database entries related to their
queries. The cloud-based interactive user interface is freely
available for academic and nonprofit use at http://rebrand.ly/
proteinpurpose.

■ DISCUSSION
To our knowledge, this is the first study to systematically
prioritize proteins in all targeted fields of B/D-HPP. In
addition, we implemented a fully automated and accessible
bioinformatics tool to identify the copublication patterns of
proteins and topics. We further extended the pipeline to
include all human diseases, organ systems, as well as popular
model organisms and deployed the system to the cloud. The
cloud-based user interface enables any custom search in real
time. This bioinformatics workflow can facilitate targeted
proteomics studies in human and in other species.
We demonstrated that there is a great deal of existing

literature associated with the 22 B/D-HPP targeted areas,
which justified the use of literature mining in prioritizing
proteins of interest. In addition, results revealed that the
protein PURPOSE score effectively summarized the relevance
of the protein to the topic of interest by incorporating the
specificity of the association, the strength of copublication, and
the number of citations of those publications. Our PURPOSE
score extends the established works on tf-idf and quantified the
strength of association between two terms, whereas the
convention design of tf-idf only reflects the importance of a
term to a document.29,51,52 Among the top-ranked proteins in
the B/D-HPP targeted areas, many of them were highly specific
to a certain topic but did not necessarily have the most
publications. For instance, the numbers of publications for
IDH1 on cancer (612 publications) or DPP4 on diabetes

(1,613 publications) were less than 1/10 those of many
frequently published proteins on the same topic. However, our
PURPOSE score was able to prioritize them due to their
specificity to the topic. Pathway and network analysis results
validated the pertinence of the identified protein lists of the B/
D-HPP topics. Similar approaches can be applied to identify the
post-translational modifications and alternative splicing iso-
forms53,54 related to the topics. Protein-based searches revealed
that the distribution of PURPOSE scores of a protein in various
topics correlated with the importance of the protein in each
topic. This strategy effectively summarized the relevance of the
selected proteins to each B/D topic in the current literature.
Compared with previous literature mining tools,22,43,55 our

approach leveraged the automated and systematic PubTator
tagging of each PubMed article, which helps us recover many
papers not marked with the MeSH terms of proteins.2 In
addition, our methods account for the number of citations,
which quantified the visibility and popularity of each research
article systematically.56 Although citation frequency could be
biased, it provides a metric for attention to a particular article.
The PURPOSE score is an extension of the tf-idf measurement
that accounts for the popularity and specificity of the proteins
simultaneously and does not require extensive renormalization
after the score is computed. The cloud-based user interface we
built automatically retrieves millions of PubMed publications
on demand and summarizes the importance of thousands of
proteins related to any disease or organ system in seconds,
which informs biomedical researchers and medical practitioners
of the ranked relevance of proteins to their topics of interest.
The enrichment analysis and protein−protein interaction
visualization modules of our cloud-based platform allow
researchers to confirm the relevance of the retrieved lists, and
the “View Publications” module points interested readers to the
data sources of the retrieved protein−topic relations. This
platform will facilitate the development of B/D-HPP and can
be applied to other targeted proteomics studies.
One limitation of our approach is the potential publication

bias in the current literature.57 Our algorithm ranks proteins by
their relevance found in the literature, which would prioritize
the well-published and well-cited proteins (such as AFP and
CYP3A4 in the liver) over the less-discussed ones (such as
HSD11B1 and CYP4F2 in the liver). In extreme cases,
previously undescribed protein−topic associations may not
get a high prioritization score, regardless of their true biological
roles. Similarly, the undescribed protein−topic associations
would not be annotated in CTD or any other curated
databases, which could bias the ground truth we used in
evaluating PURPOSE and other tools. With more data-driven
high-throughput studies being published, the publication bias
could be reduced.58 In addition, CTD only curated the
associations between proteins and a number of diseases. A
comprehensive data set on protein−organ and protein−disease
relations is needed to assess the performance of the PURPOSE
system exhaustively.
Another limitation is that misnomers of a protein or gene will

strongly bias the results. For example, Brain Type Natriuretic
Peptide (NPPB) is one of the top proteins in a coassociation
search with brain, although it plays a more significant role in
many other organ systems, including cardiovascular and
immune systems, than in the brain. As such, we implemented
a manual filter that excludes those instances in which the
coassociations appear in the protein or gene name. Our
platform also allows users to up-vote or down-vote any
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retrieved protein−topic associations. With more voting results
collected from our users, we could further incorporate the
number of upvotes and downvotes into the protein
prioritization score.
Overall, this study demonstrated the utility of prioritizing

proteins using objective bibliographical measurements, and the
results were consistent with the established knowledge on the
proteins in the targeted fields of B/D-HPP. In addition, we
showed the extensibility of our methods in investigating the key
proteins in other organ systems, disease entities, and organisms.
With the exponential growth of biomedical literature, this
method will effectively summarize the current knowledge about
proteins and suggest future research directions. We also note
that our approach can be readily modified to identify proteins
that are expressed but not readily studied in a particular target
area, thus enabling researchers to devote attention to under-
studied proteins. In this way, both popular and under-studied
proteins can be garnered using this general approach.
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