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ABSTRACT
Tomaintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported
to cellularmembranes. Themolecularmechanismbehind such a process, often referred to as protein target-
ing, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms
and reveal the functions of different molecular machineries involved in the process. The experimental data
consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system.
We introduce a Bayesian hierarchical model on top of hiddenMarkovmodels (HMMs) to analyze these data
and use the statistical results to answer the biological questions. In addition to resolving the biological puz-
zles and delineating the regulating roles of different molecular complexes, our statistical results enable us
to propose a more detailed mechanism for the late stages of the protein targeting process.

1. Introduction

In cells, proteins often need to be transported to appropriate
destinations inside or outside of a cell to maintain proper cellu-
lar functions (Rapoport 2007). In fact, over 50% of all proteins
encoded in the genome need to be properly localized from the
site of their synthesis (Rapoport 1991; Lodish et al. 2000). Co-
translational protein targeting is such a process in which pro-
teins still being synthesized on the ribosome (called ribosome
nascent-chain complex or RNC) are transported to the mem-
brane. This is achieved by the collaboration of a signal recogni-
tion particle (SRP) in the cytoplasm and its receptor (SR) located
on the endoplasmic reticulum (ER) membrane. It is known that
the co-translational protein targeting process consists of four
basic steps (Zhang et al. 2009b; Nyathi, Wilkinson, and Pool
2013), as schematically illustrated in Figure 1. First, SRP recog-
nizes and binds the signal sequence on the RNC. Second, SRP
forms a complex with SR on the membrane, bringing the RNC-
SRP complex to the membrane surface (here, an RNC-SRP-SR
ternary complex is formed near themembrane). Third, the RNC
is released from the SRP-SR complex and docks on the protein
conducting channel, known as the translocon. Fourth, SRP and
SR dissociate (through GTP-hydrolysis) to enter a new round
of protein targeting; at the same time, the nascent polypeptide
chain goes through the translocon on the membrane.

While the four steps give the big picture, the detailed molec-
ular mechanisms of the protein targeting process remained
unclear (Shen et al. 2012). One particularly puzzling ques-
tion arises from the earlier observation that SRP and the
translocon bind the same sites on the ribosome and the signal
sequence; thus, the bindings of the targeting and transloca-
tion machineries to RNC are mutually exclusive. How do
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these two machineries exchange on the RNC, and how do
they accomplish this without losing the RNC (which aborts the
pathway)? Recent biochemical, structural, and single-molecule
work (Zhang, Kung, and Shan 2008; Shen and Shan 2010; Ataide
et al. 2011; Voigts-Hoffmann et al. 2013; Nyathi, Wilkinson,
and Pool 2013; Akopian et al. 2013b) offered valuable clues to
this question. These works showed that the SRP-SR complex
can undergo a large-scale structural change and visit an alter-
native state in which the proteins in the SRP-SR complex are
moved away from their initial binding site on the ribosome
(see Figure 4); this provides a potential mechanism to enable a
step-wise exchange with the translocon.

To provide direct evidence for this mechanism and resolve its
molecular details, single-molecule experiments on the prokary-
otic SRP system were conducted by the Shan group. Single-
molecule experiments are one of the major experimental break-
throughs in chemistry and biophysics in the last two decades:
using advanced tools in optics, imaging, fluorescence tagging,
biomolecule labeling, etc., researchers are able to study biolog-
ical processes on a molecule-by-molecule basis (Nie and Zare
1997; Xie and Trautman 1998; Xie and Lu 1999; Tamarat et al.
2000; Weiss 2000; Moerner 2002; Qian and Kou 2014). Under
single-molecule experiments, transient excursions of molecules
to alternative structures can be directly visualized, rather than
lost in the statistical averaging of bulk experiments.

The single-molecule experiments under our study employ an
experimental technique, FRET (Föster resonance energy trans-
fer) (Roy, Hohng, and Ha 2008), which uses resonance energy
transfer as a molecular ruler to track the dynamic movement of
amolecule in distinct conformational states, providing informa-
tion on the pathway, kinetics, and equilibrium of the structural

©  American Statistical Association

http://dx.doi.org/10.1080/01621459.2016.1140050
mailto:kou@stat.harvard.edu
http://www.tandfonline.com/r/JASA


952 Y. CHEN ET AL.

Figure . The four steps of protein targeting.

transitions of molecules. The experimental data consist of hun-
dreds of FRET trajectories, three of which are shown in Figure 2.
Each FRET trajectory is a time series (y1, y2, . . .). These exper-
imental FRET trajectories provide crucial information on the
structural dynamics for us to resolve the questions regarding
the underlyingmechanismof protein targeting.Wewill describe
the experimental details as well as the molecular structures in
Section 2.

From the hundreds of traces collected, we can clearly see a
low FRET state and a high FRET state in each trace, with one
or more possible intermediate states. Several critical questions
arise regarding the correct interpretation of the data.

1. Molecular behavior is inherently stochastic. Ensembles
of molecules that are chemically identical will vary in
their behavior at the single-molecule level (in a manner
predicted by the Boltzmann distribution). Thus, individ-
ual single molecule traces are inherently heterogenous.
In addition, due to the experimental limitations, such as
uneven laser illumination, each FRET trajectory has its
own FRET values and length.Moreover, it is possible that
some observed molecules are partially damaged during
sample preparation or application. Therefore, we want
to carefully examine the homogeneity/heterogeneity of
the dataset: Does the collection of FRET trajectories

represent chemically homogenous molecules or molec-
ular complexes? If not, is the heterogeneity biologically
relevant?

2. How many states are there in these FRET trajectories?
Previous analysis used an arbitrary number of states for
HMM (Shen et al. 2012). However, there is no statisti-
cal analysis to legitimate that number. A careful anal-
ysis is needed to unravel the existence of intermediate
state(s) from the noisy experimental data; this informa-
tion is critical, as it reflects possible pathways through
which the SRP-SR undergoes its structural transitions.

3. Are these intermediates on-pathway or off-pathway? In
other words, during the transition from the low FRET
state to the high FRET state, must or may not the trajec-
tory go through one or more intermediate state(s)? Clar-
ifying the transition pathway will differentiate between
different mechanisms. In one model, often termed trial-
and-error, the intermediate states are “mistakes” made
by the complex as it searches for alternative structures.
This model predicts that the molecules must return
from the intermediate back to the low FRET state before
transitioning to the high FRET state. In an alterna-
tive model, the active-searching model, the intermedi-
ate FRET state(s) represent on-pathway intermediate(s)
through which the SRP-SR complex attains the high
FRET state. Thismodel predicts thatmost of the success-
ful low-to-high or high-to-low FRET transitions occur
via the intermediate state(s).

4. During the protein targeting process, RNC and translo-
con regulate the conformation of the SRP-SR complex.
This was also observed in the single-molecule experi-
ments. Addition of RNC or translocon changes the equi-
librium and kinetics via which the SRP-SR complex
transits between the different FRET states, as reflected
by altered frequency and durations of these transi-
tions. However, as individual single-molecule traces
are stochastic due to a combination of inherent and
experimental limitations (as explained in question 1),
it is not possible to accurately extract kinetic and

Figure . Three sample FRET trajectories.
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equilibrium information from individual trajectories.
Rigorous statistical analysis using the information from
all trajectories is required to extract this information and
understand whether the RNC and translocon change the
conformational space of the SRP-SR complex, and if so,
how.

With these questions posed, we employ a hidden Markov
model (HMM), modeling each trajectory (y1, y2, . . .) as origi-
nated from a hidden Markov chain. The parameters governing
the hidden Markov chain, such as the number of distinct
states and the transition probabilities, capture the molecular
conformations and dynamics of the underlying biological
processes.

We note that the analysis of individual FRET trajecto-
ries based on HMMs has been considered in the biophysi-
cal community (Rabiner 1989; Eddy 1996; Liu et al. 2010).
Software packages HaMMy (McKinney, Joo, and Ha 2006)
and SMART (Greenfeld et al. 2012) give the maximum like-
lihood estimators of parameters for a single trajectory using
the EM/Baum–Welch algorithm (Baum and Petrie 1966; Baum
et al. 1970; Dempster, Laird, and Rubin 1977). Variational Bayes
method is also suggested in the FRETdata analysis, which incor-
porates prior information about the range of parameter values
into the model fitting (Bronson et al. 2009). Empirical Bayes
methods (van de Meent et al. 2014) and bootstrap methods
(König et al. 2013) have also been proposed for the analysis of
FRET data.

The information from individual FRET trajectories is rather
limited, mainly due to the low signal-to-noise ratio and the
limited observation time of each individual molecule (before its
photobleaching). Consequently, the inference based on single
FRET trajectories is highly variable and unreliable in the sense
that even for FRET trajectories recorded under the same exper-
imental condition, heterogeneities of estimated parameters and
the estimated number of hidden states across trajectories are
apparent. Experimentalists address this issue by performing
hundreds of replicate experiments. Quantifying cross-sample
variability has recently drawn attention among the biophysics
community (König et al. 2013; van deMeent et al. 2014). How to
pool information from these replicate experimental trajectories
as well as to account for their heterogeneity is the key statistical
question.

Two statistical questions naturally arise in our analysis of the
FRET trajectories: (1) the determination of the total number of
hidden states and (2) a robust and reliable estimation of model
parameters by pooling information from “seemingly” heteroge-
nous FRET trajectories obtained from the same experimental
condition.

The first question, which is a preliminary step of building
models to pool information frommultiple trajectories, has been
widely studied in the statistics and chemistry literature (Finesso
1990; Leroux 1992; Ryden 1995; Blanco and Walter 2010; Bulla,
Bulla, and Nenadic 2010). We adopt a population approach
based on the Bayesian information criterion, which estimates
the number of hidden states by the majority rule (e.g., if the
majority of the FRET trajectories under the same experimental
condition shows three states, then the method selects three as
the number of hidden states). This approach actually has been
recommended in the chemistry literature (Watkins and Yang

2005) and is described in Section 3, which also discusses our
fitting of HMM to individual FRET trajectories.

Second, we propose a hierarchical model on top of the
HMMs to combine information from multiple trajectories. The
hierarchical model embodies the biological intuition that the
same dynamics underlies all the experimental replicates, but
each replicate is a noisy realization of the common process due
to intrinsic/experimental fluctuation andnoise. The hierarchical
HMM enables us to not only robustly estimate the parameters
from the common dynamics but also fit the individual trajecto-
ries better than if fitted individually. Section 4 describes in detail
our hierarchical HMM and how we use it to combine infor-
mation from individual trajectories. Simulation studies demon-
strating that the hierarchical model can work effectively under
low signal-to-noise ratio, which is very difficult to analyze if one
only fits individual trajectories.

From an applied angle, our statistical analysis of the exper-
imental FRET data leads to a resolution of several questions
about the protein targeting process that are described above.
The model fitting and biological implications are discussed in
Section 5, at the end of which (Section 5.4) we are able to provide
a detailed molecular mechanism of the co-translational protein
targeting process. Model assessment is conducted in Section
6. We conclude this article in Section 7 with a summary. The
appendices contain the technical details of our computation and
Monte Carlo sampling.

2. Single-Molecule Experiments on Co-Translational
Protein Targeting

2.1. Single-Molecule FRET Experiments

The single-molecule experiments use the FRET technique to
study the protein targeting process. FRET tracks in real time the
distance and orientation between twomicroscopic tags, a donor
fluorophore, and an acceptor fluorophore, placed in a molecular
complex (Roy, Hohng, and Ha 2008). It is often the case that the
experimentalists cannot directly observe the structural change
of a bio-molecule. The FRET recording, on the other hand,mea-
sures the distance changes of the two tags on the bio-molecule
and thus reveals the structural changes during a biological
process.

Each experimental FRET trajectory is a time series
(y1, y2, . . .), obtained at every 30 millisecond (ms) in our case.
yi ∈ [0, 1] is calculated as yi = acceptor fluorescence/(donor
fluorescence + acceptor fluorescence). A high FRET value yi
implies that the two tags, the donor and acceptor, are close
to each other, while a low FRET value means the donor and
acceptor are far apart. A sample FRET trajectory is shown
in Figure 3. On the top panel, the red curve is the acceptor
fluorescence and the green curve is the donor fluorescence. The
black curve in the lower panel shows the FRET values, that is,
the ratio of acceptor fluorescence over the total fluorescence.

2.2. FRET on Bacterial SRP System

In this subsection, we give the necessary background on the
molecular structure of our experimental system and how FRET
reveals information about protein targeting.
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Figure . Sample trajectory of FRET observations. The upper panel is the fluorescence of the donor and the acceptor, respectively; the lower panel shows the FRET values.

Single-molecule FRET techniquewas used to study the bacte-
rial SRP system. The bacterial SRP is comprised of two subunits:
an RNA segment (the SRP RNA) and an Ffh protein. Ffh con-
tains two domains connected by a flexible linker: theM-domain
binds tightly to the SRP RNA near its capped (tetraloop) end
and recognizes the signal sequence on the nascent protein; the
NG-domain interacts with the SRP receptor, termed FtsY in bac-
teria, and binds a ribosomal protein at the “exit site” where the
nascent protein emerges from the ribosome. We will use Ffh-M
and Ffh-NG to denote the M- and NG-domains of Ffh (Keenan
et al. 2001; Halic et al. 2004; Akopian et al. 2013b; Zhang, Kung,
and Shan 2008). The SRP RNA has an elongated structure: it
stretches over 100 Å (angstrom) from one end (the capped end)
to the other end (the distal end). Figure 4 illustrates the E. coli
SRP and SR.

When the SRP-SR complex is formed, Ffh-NG binds FtsY
(step 2 in Figure 1). In a single-molecule experiment, we placed
a FRET donor at Ffh-NGor FtsY and a FRET acceptor at the dis-
tal end of RNA. The resulting FRET trajectory tracks the move-
ment of the FtsY-[Ffh-NG] complex along the RNA in real time:
a low FRET value implies the FtsY-[Ffh-NG] complex is far from
the RNAdistal end, whereas a high FRET value implies the FtsY-
[Ffh-NG] complex is close to the RNAdistal end. See Figure 4(c)
and 4(d) for illustration (where the FRET donor is the green
star and the FRET acceptor is the red star). The FRET tracking
provides direct information on the structural change of SRP-SR
complex critical for the biological process. It is known that the
FtsY-[Ffh-NG] complex initially assembles at the RNA capped
end (the low FRET state of Figure 4(c)), where it excludes the

Figure . Molecular details of SRP and SR in E.coli. (a) SRP in E.coli is composed of
RNA, Ffh-M, and Ffh-NG. Ffh-M binds the RNA and the signal sequence (not shown);
Ffh-NG binds the ribosome (not shown) and SR. (b) SR in E.coli is the FtsY protein.
(c) FtsY-[Ffh-NG] complex is near the capped end of the RNA with a low FRET value.
(d) FtsY-[Ffh-NG] complex is near the distal end of the RNA with a high FRET value.
The red and green stars denote the FRET acceptor and donor, respectively.

translocon from binding RNC. When this complex moves to
the RNA distal end (the high FRET state of Figure 4(d)), the
ribosome is vacated to allow translocon binding, and disassem-
bly of the FtsY-[Ffh-NG] complex is triggered (Shen and Shan
2010; Ataide et al. 2011). Therefore, from the FRET trajectory,
we know when the SRP-SR complex is positioned for assem-
bly or disassembly, and when ribosome-translocon contacts are
enabled.

To study how the RNC and translocon regulate the struc-
tural change on the SRP-SR complex, two more sets of single-
molecule FRET experimentswere done: onewithRNC, SRP, and
SR, the other with all four components: translocon, RNC, SRP,
and SR. Together, these experiments reveal the functional role
of RNC and translocon in the protein targeting process. Table 1
summarizes the four sets of data labeled Ffh-Data, FtsY-Data,
RNC-Data, and Translocon-Data obtained from these experi-
ments, and Table 2 summarizes the lengths of the trajectories
in each dataset. We will analyze and discuss these data starting
from Section 3.

2.3. More Experimental Details

This subsection gives the experimental details. A statistics-
oriented reader can skip it and directly go to the statistical anal-
ysis in Section 3.

Table . Datasets and number of recorded trajectories in each set.

Data FRET FRET Complexes in No.
abbreviation donor acceptor experiments trajectories

Ffh-Data Ffh-NG RNA distal end SRP-SR 
FtsY-Data FtsY RNA distal end SRP-SR 
RNC-Data Ffh-NG RNA distal end SRP-SR, RNC 
Translocon-Data Ffh-NG RNA distal end SRP-SR, RNC,

Translocon


Table . Summary of the lengths (number of data points) of the recorded trajecto-
ries in each dataset.

% Quantile Median Mean % Quantile

Ffh-Data    
FtsY-Data    
RNC-Data    
Translocon-Data    



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 955

... Sample Preparations
Single cysteinemutants of FfhandFtsYwere expressed andpuri-
fied in bacterial cells and were subsequently labeled with Cy3-
maleimide by the thiol side chain. Labeling reaction was car-
ried out in 50 mM KHEPES (pH 7.0), 300 mM NaCl, 2 mM
EDTA, 10% glycerol at room temperature for 2 hr. Free dyes
were removed by a gel filtration column. Labeled SRP RNA was
prepared by annealing a Quasar670-labeled DNA splint with a
T7-transcribed RNA. All the labeled protein or RNA was tested
using a well-established GTP hydrolysis assay, and showed no
functional difference with wildtype protein or RNA.

... SingleMolecule Instrument
All the experiments were carried out on a home-built objective-
type TIRF microscope based on an Olympus IX-81 model.
Green (532 nm) and red (638 nm) lasers were aligned and
focused on the sample in a 100 × oil immersed objective. Cy3
and Quasar670 signals were split by a dichroic mirror and were
simultaneously imaged using an Ixon 897 camera through DV2
Dualview. Data points were recorded at 30 ms time resolution.

... SingleMolecule Assay
Before conducting experiments, all protein samples were ultra-
centrifuged at 100,000 rpm in a TLA100 rotor for an hour
to remove possible aggregates. PEGylated slides and coverslips
were assembled into a flowing chamber, in which fluorescent
molecules were attached through biotin–neutravidin interac-
tion.

SRP complexes were assembled in SRP buffer and diluted to
50 picomolar in imaging buffer with oxygen scavenging system
(saturatedTrolox solution containing 50mMpotassium-HEPES
(pH 7.5), 150 mM KOAc, 2 mMMg(OAc)2, 2 mM DTT, 0.01%
Nikkol, 0.4% glucose, and 1% Gloxy), flowed onto the sample
chamber and incubated for 5 min before imaging. Movies were
recorded at 30 ms time intervals for up to 3 min until most flu-
orescent molecules were photobleached.

... Data Acquisition
Single molecule data were initially processed by scripts written
in IDL and Matlab. Fluorescent peaks in the images were iden-
tified and traced throughout the movie. Fluorescent trajecto-
ries that showed a single donor bleaching event, which implied
single-molecule attachment, and no photoblinking event, were
hand-picked for subsequent data analysis. The background was
subtracted using the residual fluorescent intensities in both
channels, after the fluorophore has been photobleached.

3. Preliminary Analysis of Individual Trajectories

Let y = (y1, y2, . . . , yN ) be an observed experimental FRET tra-
jectory. We model it as a hidden Markov model (HMM):

yi | (zi = k) ∼ N(μk, σ
2
k ), (1)

where z = (z1, z2, . . . , zN ) are the hiddenMarkov states, evolv-
ing according to a K-state Markov chain. Although, rigorously
speaking, the FRET value yi is between 0 and 1, the Gaussian
assumption is widely used and accepted in the single-molecule

FRET literature in that withmoderate observational noise Gaus-
sian distribution is a good approximation (Dahan et al. 1999;
McKinney, Joo, and Ha 2006; Liu et al. 2010). The distinct states
of zi,K in total,model the different conformations of a biological
complex. A conformation is a specific three-dimensional struc-
ture of a protein or a protein complex. For example, the low- and
high-FRET states in Figure 4(c) and 4(d) correspond to two dis-
tinct conformations of the SRP-SR complex. LetP = (Pi j) be the
K × K transition matrix of z; it represents the conformational
kinetics of a complex. For each FRET trajectory, the parameters
are θ = (P, μ1, . . . , μK, σ 2

1 , . . . , σ 2
K ), where μk and σ 2

k are the
mean and variance of the FRET value at state k; k = 1, . . . ,K.
Let π = (π1, . . . , πK ) be the probabilities that the first hidden
state z1 is in state 1, . . . ,K. The joint likelihood of observations
y1:N and the hidden states z1:N is

p(y1:N, z1:N |θ) = πz1

N∏
n=2

p(zn|zn−1,P)

N∏
n=1

p(yn|zn,μ, σ2).

Please note that for notational ease, we use ym:n to denote the
vector (ym, ym+1, . . . , yn) form < n throughout this article. The
marginal likelihood L(θ|y1:N ) = ∫

p(y1:N, z1:N |θ)dz1:N is given
by integrating out z1:N in the joint likelihood.

3.1. Infer the Parameters with a Given Number of
Total States

For each FRET trajectory, for a given K, we can use the Baum–
Welch algorithm (Baum and Petrie 1966; Baum et al. 1970), or
equivalently, the EM algorithm (Dempster, Laird, and Rubin
1977), to calculate the maximum likelihood estimator (MLE)
θ̂. The Baum–Welch/EM algorithm, in addition, can yield the
marginal likelihood evaluated at the MLE, L(θ̂|y1:N ). Appendix
A gives the details of our implementation of the algorithm,
which uses the forward–backward algorithm.

Alternatively, taking a Bayesian perspective, we can use the
Gibbs sampler (Geman and Geman 1984) together with data
augmentation (Tanner andWong 1987) to jointly drawposterior
samples of the parameters and the hidden states. This gives the
posterior distribution (instead of point estimates) of the param-
eters. Appendix B gives the details of our implementation of the
Gibbs sampler with data augmentation.

3.2. Detecting the Number of Hidden States

At the molecular level, the total number of states K corresponds
to the number of conformations accessible to the complex in the
experimental duration. The two conformations in Figure 4(c)
and 4(d) have already been identified in previous studies, and
one of our aims is to detect if there are more conformations
involved in the protein targeting process (Shen et al. 2012).
Statistically, we want to find the K that can “best” explain the
variability of the observed FRET trajectories. As an exploratory
analysis, we fit each FRET trajectory with the Baum–Welch/EM
algorithm forK = 1, 2, 3, . . . andfind thatwhenK ≥ 6, the hid-
den states become highly nonidentifiable in that the difference
of the means of neighboring hidden states are less than 10% of
their corresponding standard deviations, which are not experi-
mentally meaningful, and the variance parameters converge to
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zero, the boundary of the parameter space. Thus, the candidates
are K = 1, 2, 3, 4, 5 for our data.

Determining K for each trajectory is a model selection prob-
lem. Akaike Information Criterion (AIC, Akaike 1974) and
Bayesian information criterion (BIC, Schwarz 1978) are two
popular model selection methods. It is well observed in the lit-
erature that AIC has a tendency to overestimate the number
of mixture components (Windham and Cutler 1992; Hawkins,
Allen, and Stromberg 2001; Frühwirth-Schnatter 2006), which
we also observe in our simulations. Thus, we focus on using
the BIC in our study, which is known to be consistent (as the
sample size goes to infinity) for mixture models (Leroux 1992;
Biernacki, Celeux, and Govaert 1998; McLachlan and Peel 2005;
Frühwirth-Schnatter 2006). Though the consistency of BIC for
Gaussian HMMs has not been completely established (Finesso
1990; Ryden 1995; Cappe, Moulines, and Ryden 2005), it has
been shown through simulations that BIC empirically tends to
select the correct model when the sample size is large but could
give highly variable results when the sample size is small or
moderate (Ryden 1995; Keribin 2000; MacKAY 2002; Watkins
and Yang 2005; Frühwirth-Schnatter 2006; Celeux and Durand
2008). In the context of FRET trajectories, the variability of BIC
for HMMs has also been observed (Blanco andWalter 2010; van
de Meent et al. 2014; Keller et al. 2014). The general recom-
mendation in the statistics literature and in the FRET literature
for the state-selection of HMM is to use BIC as a first step of
preliminary analysis and then assess the selection result based
on scientific and experimental insight (McKinney, Joo, and Ha
2006; Celeux and Durand 2008; Bulla, Bulla, and Nenadic 2010;
Greenfeld et al. 2012; Keller et al. 2014). We adopt this recom-
mendation.

In our case of a K-state HMM, the BIC statistic, denoted by
BICK , is

BICK = −2 log L(θ̂|y1:N ) + logN × (K2 + 2K − 1),

where θ̂ is the MLE of θ and K2 + 2K − 1 is the total number of
parameters: K2 − K for the transition matrix, 2K for the mean
and variance parameters, K − 1 for the initial distribution
of the first hidden state. Minimizing BICK over K gives the
BIC selection of K for each trajectory. There are two potential
issues with the computation of the BIC statistics: (i) the Baum–
Welch/EM algorithm converges to local maximum (Baum et al.
1970; Dempster, Laird, and Rubin 1977) and (ii) the likelihood
function is unbounded at the boundary of the parameter space
for Gaussian mixture models (Chen and Li 2009). These prob-
lems make the choice of initial points of the Baum–Welch/EM
algorithm critical (Frühwirth-Schnatter 2006). We treat them
by starting the Baum–Welch/EM algorithm from more than
500 randomly generated initial points: the initial values of the
mean parameters μ are uniformly generated from [0, 1], the
initial values of each row of the transition matrix P, and the dis-
tribution π of the first hidden state are independently generated
from the Dirichlet distribution with concentration parameters
all equal to 1, and the initial values of the standard deviations
σ are independently generated from uniform distribution on
[0.01, 0.3]; these distributions are employed based on the sci-
entific knowledge of the plausible ranges of the parameters. For
each of the 500+ initial values, we run the Baum–Welch/EM

Table . The number of trajectories with hidden states K allocated by minimizing
BICK .

No. of trajectories allocated

Data K = 1 K = 2 K = 3 K = 4 K = 5

Ffh, FtsY-Data   159  
Translocon-Data   75  
RNC-Data 92    

NOTE: Boldface highlights the number of states allocated by the majority of the
trajectories.

algorithm until convergence. The minimum of the BIC statistic
over the 500+ algorithm outputs is taken as the value of the BIC
for model selection. Table 3 tallies the BIC selection of K for the
experimental FRET trajectories. Note that we put the Ffh- and
FtsY-Data together in the first row as they are both designed to
study the SRP-SR interaction by itself.

Based on the mode, we select K = 3 for the Ffh-, FtsY-, and
Translocon-Data andK = 1 forRNC-Data. Using the estimation
mode to select K reflects “majority rule,” that is, using the con-
sensus to capture the behavior in majority of the experimental
replicates. We note that this approach has in fact been proposed
in the chemistry literature: Watkins and Yang (2005) showed
through simulation and real data studies that it gives a highly
robust estimate of K. Note that although we cannot totally rule
out the possibility of 4 or more hidden states for some trajecto-
ries, we have enough evidence that 3 is the minimum number of
K, which the majority of trajectories support. We will see later
(in Section 4.2) that K = 3 is well supported by the fitting of all
the trajectories.

4. Modeling FRET Trajectories with Hierarchical
HiddenMarkovModel

The analysis of individual FRET trajectories reveals that they
could have significantly different θ. For instance, a likelihood-
ratio test on the three trajectories in Figure 2, which are from
the Ffh-Data, gives a p-value smaller than 0.01, soundly reject-
ing the hypothesis that the three trajectories share the same θ.

Biologically, the trajectories from replicate experiments
under the same condition should reflect the common underly-
ing process. Hence, our goal is to account for the heterogene-
ity among the experimental trajectories and at the same time to
pool information from the trajectories under the same exper-
imental condition. We propose a hierarchical HMM. Suppose
{y(l), z(l)} are the observations and hidden states for trajectory l.
We assume that the same transitionmatrix P is shared by all tra-
jectories; for trajectory l, the means (μ

(l)
1 , . . . μ

(l)
K ) come from a

higher level distributionμ
(l)
i ∼ N (μ0i, η

2
0i)with (vector) hyper-

parameters μ0 and η20, and the variances ((σ 2
1 )(l), . . . (σ 2

K )(l))

come from scaled inverse-χ2 distributions with (vector) hyper-
parameters (ν, s2), where ν denotes the degrees of freedom and
s2 are the scale parameters. The intuition behind this hierarchi-
cal HMM is that (i) the transition matrix P represents the con-
formational kinetics, which is intrinsic to the molecule; it thus
should be the same across the trajectories. (ii) The experimental
replicates are subject to equipment noise, thermal fluctuation,
and random variations in experimental samples; the hierarchi-
cal structure on μ(l) and (σ2)(l) reflects it—each trajectory can
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be considered as a noisy version of the underlying truth. Figure 5
diagrams our hierarchical HMM.

We note that the real experimental trajectories have differ-
ent lengths: some are quite short. Within a short experimental
time window, it is possible that not every conformation shows
up—some fast transitions and rare states might be missed in
short trajectories. To accommodate this we incorporate a set of
indicators into our hierarchicalHMM: I(l) indicates which states
are present in trajectory l. For example, if the maximum num-
ber of states is K = 3, I(l) can take four values I(l) = {1, 2, 3},
I(l) = {1, 2}, I(l) = {1, 3}, or I(l) = {2, 3}, corresponding to the
states present in trajectory l. Note that we exclude the single-
tons (such as {1}, {2}, or {3}) in the set of possible states, since
we know from the preliminary analysis of individual trajecto-
ries that there are at least two states in each trajectory of the Ffh-
Data, FtsY-Data, and Translocon-Data.

LetN(l)
i, j be the number of transitions from state i to j in trajec-

tory l;N(l)
i, j = 0 if either state i or j does not appear in trajectory

l. The likelihood for trajectory l is

p(y(l), z(l)|μ(l), σ (l),P, I(l))

=
K∏

i, j=1

(
Pi j∑

k∈I(l) Pik

)N(l)
i, j

·
Nl∏
n=1

N (y(l)
n ;μ

(l)
z(l)
n

, σ
(l)
z(l)
n

)
,

where (
Pi j∑

k∈I(l) Pik
)i, j∈I(l) is the renormalized transition matrix for

trajectory l according to which states are present in I(l), and Nl
is the length of trajectory l . The likelihood function of all the
trajectories (under the same experimental condition) under our
hierarchical HMM is∏
l

p(y(l), z(l)|μ(l), σ(l),P, I(l))p(μ(l)|μ0, η
2
0)p((σ

(l))2|ν, s2).

4.1. Estimation Under the Hierarchical HMM

To obtain the posterior distribution of the parameters in this
model, we use MCMC (Liu 2001) algorithms. The priors are
specified as follows. Each row of the transition matrix P has a
flat prior (i.e., a Dirichlet distribution with all parameters equal
to 1), which is a proper prior. The global parametersμ0, η

2
0 have

flat priors. The categorical variable I(l) also has flat priors, with
equal probability of falling into each category. Similar to the
Bayesian data augmentation (Tanner and Wong 1987) proce-
dure for fitting a single trajectory in Appendix B, we augment
the parameter space (P;μ0, η

2
0; {μ(l), σ(l); I(l)}) with the hid-

den states {z(l)} and sample from the conditional distributions
of these two parts iteratively until convergence. The parameters
(P;μ0, η

2
0; {μ(l), σ(l); I(l)}) are updated one at a time from the

conditional distributions using Metropolis–Hastings (for P) or
Gibbs (forμ0, η

2
0; {μ(l), σ(l); I(l)}). Conditioning on the param-

eters (P, {μ(l), σ (l); I(l)}), the hidden states {z(l)} are updated
sequentially for l = 1, 2 . . . . The details of the sampling pro-
cedure are given in Appendix C.

Figure 6 shows the fitting of our hierarchical HMM with
K = 3 to two representative FRET trajectories: one long tra-
jectory from the Ffh-Data and one short trajectory from the
Translocon-Data. The gray curves on the top two panels are the
observed experimental FRET values. The solid black lines are

Table . Number of trajectories from the Ffh/FtsY-Data and Translocon-Data
assigned to 2, 3, 4 hidden states based on the posterior mode of

∣∣I(l)∣∣. The hierar-
chical HMMwas fitted twice with three states maximum and four states maximum,
respectively. As in Section ., we put the Ffh-Data and FtsY-Data together in the
table.

No. of trajectories allocated

Three states Four states
Hierarchical HMM maximum maximum

No. states     
Ffh, FtsY-Data  294  201 
Translocon-Data  99  60 

NOTE: Boldface highlights the number of states allocated by the majority of the
trajectories.

the fitted values {μ̂ẑn}Nn=1, where μ̂ and ẑn denotes the posterior
modes from our MCMC sampling. The lower panel plots the
histograms of yi, the FRET values, of the two FRET trajectories.
The black curves overlaid on the histograms are the fittings from
our hierarchical HMM, using the posterior mode.

4.2. Assessing the Number of Hidden States with the
Hierarchical HMM

The posterior distribution of the indicator I(l) gives the prob-
ability that a given trajectory l contains a specific collection of
states. This posterior distribution thus provides a hierarchical-
HMM-based method of model selection: we can allocate the
number of hidden states for each trajectory based on the
posterior mode of

∣∣I(l)∣∣, the size of I(l). By combining mul-
tiple trajectories and allowing the sharing of information,
we potentially obtain more stable model selection results—
borrowing information from other trajectories helps identify
rarely occurred hidden states for some trajectories. Table 4
tallies the hierarchical-HMM-based assignment of the number
of hidden states for the experimental FRET trajectories. We
apply the hierarchical HMM separately with K = 3, where the
maximum number of states is three, and with K = 4, where
the maximum number of states is four. Table 4 shows that no
matter we set three or four states as the maximum to begin with,
the majority of the trajectories are assigned three states. The
allocation of states based on the hierarchical HMM, therefore,
corroborates our selection of three total states for the Ffh-,FtsY-,
and Translocon-Data, indicating the robustness of the selection.

4.3. Hierarchical Fitting Versus Individual Fitting

It is worth pointing out that by pooling the information from
the multiple trajectories, we obtain more robust and reliable
estimates. Figure 7 shows what happens if we only fit the indi-
vidual trajectory by itself. The left panel shows the fitting of
the two-state, three-state, and four-state HMMs to the long
trajectory of Figure 6(a) alone; the right panel shows the fitting
to the short trajectory of Figure 6(b) by itself. The individual
fitting is seen to be unstable in that it is quite difficult to judge
which fitting is better. The hierarchical model, in contrast,
allows the information to be pooled from all the trajectories,
resulting in stable estimates.

To further compare the fitting under the hierarchical model
versus the fitting on individual trajectories and to test the limit of
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Figure . Diagram of the hierarchical HMM.

the hierarchical model fitting, we conduct a sequence of simula-
tions. Themean vectorμ = (μ1, μ2, μ3) is generated according
to μ1 ∼ N (0.1, 0.12), μ2 ∼ N (0.4, 0.12), μ3 ∼ N (0.7, 0.12).
The standard deviation vector σ = (σ1, σ2, σ3) is taken to be
σ1 = σ2 = σ3. Trajectories each with length N = 1000 are gen-
erated from a three-state HMM with transition matrix with
diagonal elements equal to 0.9 and off-diagonal elements equal
to 0.05. For each value of σ1 = σ2 = σ3 ∈ {0.05, 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8}, we
repeat the data generation 100 times, so we have 16 sets of simu-
lated data, each set containing 100 trajectories with length 1000.

For each of the 16 sets of simulated data, we apply the hierar-
chical fitting as well as the individual fitting. Intuitively, as the
hierarchical HMM pools information from multiple trajecto-
ries, it is able to handle data with much lower signal-to-noise-
ratio (SNR) than the fitting of HMM to individual trajectories.
Figure 8 provides an illustration, showing the results for the case
of σ1 = σ2 = σ3 = 0.65. The left panel compares the estimation
of the global means μ0 = (0.1, 0.4, 0.7). The right panel com-
pares the estimation of the transition probabilitiesP11,P22,P33. In
each panel, the left half shows the posterior distribution under
the hierarchical HMM, and the right half shows the aggregated

Figure . Two sample FRET trajectories, one long trajectory from the Ffh-Data and
one short trajectory from the Translocon-Data. The trace plots show the fitted hid-
den states. The lower panel shows the histograms of the experimental FRET values
together with the fitted Gaussian mixtures.

posterior distribution based on fitting the three-state HMM to
individual trajectories. It is evident that individual fitting gives
highly variable and biased estimates; in contrast, by pooling the
information from the 100 trajectories together, the hierarchical
fitting gives much more reliable and accurate estimates.

Formally, for each trajectory we can define SNR as SNR =
mink{μk+1−μk

σk
,

μk+1−μk
σk+1

} (Hawkins, Allen, and Stromberg 2001;
Greenfeld et al. 2012). For the 100 trajectories of Figure 8, the
median SNR is 0.3. In contrast, we find from our 16 simulated
datasets that for individual fitting to give meaningful result, the
median SNR has to be as high as 2.0. As the standard deviation
increases, the SNR decreases. Intuitively, as the SNR becomes
smaller and smaller, eventually the hierarchical model fitting
will start to break down. In our simulation, we observe that the
breakdown happens at σ1 = σ2 = σ3 = 0.7, where the median
SNR is less than 0.3. This number is in sharp contrast with
the SNR limit of around 2.0 for the individual trajectory fit-
ting. For the experimental data, the median SNR is 1.47 for the
Ffh-Data, 1.36 for the FtsY-Data, and 1.46 for the Translocon-
Data; all three are below the SNR limit of around 2.0 for reliable
individual-trajectory fitting.

5. Resolving the Biological Questions

Based on our analysis of the single-molecule FRET data, we
will address in this section the unsolved questions regarding the
detailedmechanism of the protein targeting process put forward
in Section 1, delineating the roles of different components in the
protein targeting process. We will consider first the conforma-
tion change of the SRP-SR complex without RNC or translocon,
and then the effect of RNC and translocon in regulating the pro-
tein targeting process. Based on the results of our data analysis,
we will propose a refined mechanism for co-translational pro-
tein targeting process, addressing the biological puzzles.

It is worth pointing out that the hierarchical structure enables
us to include heterogenous trajectories in a single model, cap-
turing common characteristics while allowing for individual
variabilities. Our analysis allows us to distinguish between two
possibilities that could give rise to the heterogenous FRET
trajectories: (i) heterogeneity of sample, meaning that the
SRP-SR complex can exist in distinct populations that have dif-
ferent structural and chemical properties, therefore exhibiting
different kinetic and equilibrium behaviors; and (ii) intrinsic
noise due to the stochastic nature and molecular reactions and
limited time scale for sampling in single-molecule experiments.
Our result supports that the heterogenous trajectories are well
explained by (ii).
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5.1. Conformational Change of the SRP-SR Complex

The Ffh-Data and FtsY-Data are obtained from the single-
molecule FRET experiments on the SRP-SR complex in the
absence of RNC or translocon. The only difference between
these two datasets is the placement of the FRET donor. For the
Ffh-Data the FRET donor is placed at Ffh-NG, while for the
FtsY-Data the FRET donor is placed at FtsY; see Figure 4 and
Table 1. These data reveal the conformational fluctuation of the
SRP-SR complex without RNC or translocon.

As we described in Sections 3.2 and 4.2, three FRET states are
detected, corresponding to three conformations. For these three
conformations, Table 5 lists the 95% posterior intervals of the
global parameters μ0i and η0i for the datasets. The state with a

low FRET value, μ0,1 ≈ 0.1, corresponds to the conformation
where the FtsY-[Ffh-NG] complex is near the capped end of
the RNA (see Figure 4(c)). The state with a high FRET value,

Table . 95% posterior intervals of the global meansμ0i and global standard devi-
ations η0i ; i ∈ {1, 2, 3} for Ffh-Data, FtsY-Data, RNC-Data, and Translocon-Data.

Parameters Ffh-Data FtsY-Data RNC-Data Translocon-Data

μ0,1 [., .] [., .] [., .] [., .]
μ0,2 [., .] [., .] NA [., .]
μ0,3 [., .] [., .] NA [., .]
η0,1 [., .] [., .] [., .] [.,.]
η0,2 [., .] [., .] NA [., .]
η0,3 [., .] [., .] NA [., .]

Figure . Fitting of individual FRET trajectories. The left column (a) shows the fitting of the two-state, three-state, and four-state HMMs to the long trajectory of Figure (a)
alone. The right column (b) shows the fitting of two-state, three-state, and four-state HMMs to the short trajectory of Figure (b) by itself.

Figure . Comparison of fitting of the hierarchical HMM versus the fitting of individual trajectories. The left panel compares the estimation of the global means μ0 . The
right panel compares the estimation of the transition probabilities P11 , P22 , P33 . Both panels use the boxplots. In each panel, the left half shows the posterior distribution
under the hierarchical HMM; the right half shows the aggregated posterior distribution based on fitting the three-state HMM to individual trajectories. The gray horizontal
lines correspond to the true values of the parameters.
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Figure . The posterior distributions of the mean parameters for the Ffh-Data and
FtsY-Data.

μ0,3 ≈ 0.6 ∼ 0.8, corresponds to the conformation where the
FtsY-[Ffh-NG] complex is near the distal end of the RNA (see
Figure 4(d)). It is noteworthy that in addition to these twomajor
conformations, our analysis identifies a “middle” state with the
FRET value μ0,2 around 0.3 to 0.4, suggesting a third confor-
mation of the SRP-SR complex. This conformation might cor-
respond to alternative modes of docking of the FtsY-[Ffh-NG]
complex at the RNA distal end (in which FtsY-[Ffh-NG] is ori-
ented differently relative to the RNA), given the relative large
value of μ0,2, or an alternative binding site of the FtsY-[Ffh-
NG] complex on the RNA (Shen et al. 2012). As we shall see
shortly, this conformation could serve as an intermediate stage
that mediates the large-scale movement of the FtsY-[Ffh-NG]
complex, which travels 100 Å from the RNA capped end to the
distal end.

Figure 9 compares the distributions of the mean parameters
for the Ffh-Data to those for the FtsY-Data. It is also interest-
ing to note from both Table 5 and Figure 9 that the FRET value
μ0,3 of the FtsY-Data is higher than that of the Ffh-Data. This
implies that FtsY is closer to the distal end than Ffh-NG is when
the FtsY-[Ffh-NG] complex docks at the distal end. It thus gives
a fine picture of the relative positions of FtsY and Ffh-NG as
shown in Figure 4. This is consistentwith findings from the crys-
tal structures of the SRP-SR complex (Ataide et al. 2011; Voigts-
Hoffmann et al. 2013).

The conformational change that SRP-SR undergoes on the
RNA is unusually large, spanning over 90 Å. How this large-
scale movement occurs is an interesting question. It is possible
that the complex travels along the RNA via “intermediate” stops.
Alternatively, the complex could constantly sample alternative
potential docking sites on the RNA until it finds the distal site.
The transitions among different states capture the pathways and
mechanisms by which the SRP-SR complex undergoes the large-
scale conformation change. Table 6 shows our estimates of the
transition probabilities {Pi j} for the datasets. We note that the
estimates of the transition probabilities from the Ffh-Data are
similar to those from the FtsY-Data.

We next investigate the functional role of the middle state
based on the posterior distributions of {Pi j} for the Ffh-Data.
First, we obtain the 95% credible interval of di = 1/(1 − Pii),

Table . Posterior estimates of the transition probabilities (mean ± 2× standard
deviations) of Ffh-Data, FtsY-Data, Translocon-Databased on the hierarchicalmodel
fitting.

Data Ffh-Data FtsY-Data Translocon-Data

P11 . ± . . ± . . ± .
P22 . ± . . ± . . ± .
P33 . ± . . ± . . ± .
P12 . ± . . ± . . ± .
P13 . ± . . ± . . ± .
P21 . ± . . ± . . ± .
P23 . ± . . ± . . ± .
P31 . ± . . ± . . ± .
P32 . ± . . ± . . ± .

the mean dwell time at state i. The intervals are [0.966, 1.057]
sec for d1, the low-FRET state; [0.228, 0.249] sec for d2, the mid-
dle state; and [0.465,0.507] sec for d3, the high-FRET state. The
observation that both d1 and d3 are significantly larger than d2
indicates that the SRP-SR complex spends less time at the mid-
dle state than at the low- or high-FRET state, which are more
stable.

Second, it is known that biologically the SRP-SR complex ini-
tially assembles at the RNA capped end and the complex disas-
sembles at the RNA distal end (Shen and Shan 2010). Thus, a
“complete transition” is the one that goes from the low-FRET
state to the high-FRET state (see Figure 4). The observation that
P13 is significantly smaller than P12 suggests that a direct tran-
sition from the low-FRET state to the high-FRET state is quite
infrequent; rather, a “complete transition” more frequently pro-
ceeds through the middle state. In other words, without RNC or
the translocon, the FtsY-[Ffh-NG] complex usually travels from
the capped end to the distal end through an intermediate stage.

In fact, we can calculate the probability that a final passage
from state 1 to state 3 goes through state 2 versus the probabil-
ity that such a final passage does not go through state 2 as fol-
lows. For i, j = 1, 2, let us use P(k)

i→ j to denote the probability of
transition from state i to state j in k steps without ever reach-
ing state 3. Then the probability of going from state 1 to state 3
finally through state 2 is

∑∞
k=1 P

(k)
1→2P23 (i.e., taking any number

of steps between state 1 and 2 and then finally reaching state 3
from state 2 in the last step). The probability of going from state 1
to state 3 not finally through state 2 is P13 +∑∞

k=1 P
(k)
1→1P13. P

(k)
i→ j

satisfies the following recursive formulas, owing to the first-step
analysis:{
P(k+1)
1→2 = P11P(k)

1→2 + P12P(k)
2→2

P(k+1)
2→2 = P21P(k)

1→2 + P22P(k)
2→2

{
P(k+1)
1→1 = P11P(k)

1→1 + P12P(k)
2→1

P(k+1)
2→1 = P21P(k)

1→1 + P22P(k)
2→1.

Summing over k on both sides of the equations yields
∞∑
k=1

P(k)
1→2P23 = P12P23

(1 − P11)(1 − P22) − P12P21

P13 +
∞∑
k=1

P(k)
1→1P13 = (1 − P22)P13

(1 − P11)(1 − P22) − P12P21
. (2)

From these formulas and the posterior distributions of Pi j , we
find that 91.2% of the transitions from state 1 to state 3 occurs
finally through the intermediate state 2 for the Ffh-Data.
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These observations and calculations reveal that (i) the move-
ment of the FtsY-[Ffh-NG] complex from the RNA capped end
to the distal end requires the middle state, which serves as an
on-pathway intermediate to facilitate this large-scalemovement.
(ii) The middle state is quite efficient in facilitating the search
for the RNA distal site: once the SRP-SR complex reaches this
state, over 50% of molecules move on successfully to the distal
site (high-FRET state) (because P23 > P21); this over 50% prob-
ability is much higher than that from the low-FRET state.

5.2. Effect of RNC

Once RNC is added to the SRP-SR complex, the experimen-
tal FRET trajectories, the RNC-data, show the presence of only
one state with a low FRET value: the FRET values are well fit-
ted by yi = const + Gaussian noise, see Table 5. Comparison of
these results with those on SRP-SR alone (theFfh-Data andFtsY-
Data) show that the RNC has a pausing effect: it holds the SRP-
SR complex near the capped end and prevents its movement to
the RNA distal end (see Figure 4(c)). This pausing effectively
prevents premature dissociation of SRP and SR, which happens
at the distal end of the SRP RNA and results in abortive reac-
tions. We thus see that RNC plays an important regulating role
in ensuring the efficiency of a successful protein targeting.

5.3. Role of Translocon

When the translocon is further added to the RNC-SRP-SR com-
plex, single-molecule experiments on the translocon-RNC-SRP-
SR complex yield the Translocon-Data in Table 1. As shown
in Table 5, the high-FRET state (μ0,3 ≈ 0.6) is restored in the
Translocon-Data, which is completely absent in the RNC-Data.
Therefore, the translocon enables the FtsY-[Ffh-NG] complex to
restore movement to the RNA distal end, where disassembly of
SRP-SR (by GTP-hydrolysis) can be initiated.

We also observe that the transition probabilities of the
Translocon-Data, shown in Table 6, differ significantly from
those of the Ffh-Data. This rules out the model that the translo-
con simply awaits for and binds the RNC that has spontaneously
dissociated from the SRP-SR complex. If this were the case, the
FRET trajectories in the presence of both RNC and translocon
(the Translocon-Data) would exhibit nearly identical features as
those for the SRP-SR complex (the Ffh-Data). Instead, these data
strongly suggest that the translocon forms a quarternary com-
plex together with RNC, SRP, and SR, in which attainment of
the distal conformation is favored.

We next consider the role of the middle state. Using formula
(2) derived in Section 5.1, we find that only 40.7% of the transi-
tions from the low FRET to high FRET state occur via the mid-
dle state as an intermediate for the Translocon-Data. This is in
sharp contrast with the 91.2% probability for the Ffh-Data. This
indicates that the translocon alters the pathway via which the
FtsY-[Ffh-NG] complex searches for the RNA distal site, biasing
them toward pathways in which transitions between low FRET
and high FRET states occur directly. We note that it is possible
that in the presence of translocon, the residence in the interme-
diate state could be too fast to be detected within the time reso-
lution (30 ms) of the experiment.

Table . Compare Ffh-Data and Translocon-Data: 95% posterior intervals of mean
values of the states (μ0,1, μ0,2, μ0,3), dwell time at the high-FRET state (d3) and the
probability that a transitions from low- to high-FRET state goes through themiddle
state (pmiddle).

Parameters Ffh-Data Translocon-Data

μ0,1 [0.105, 0.116] [0.097, 0.104]
μ0,2 [0.319, 0.353] [0.380, 0.441]
μ0,3 [0.619, 0.646] [0.619, 0.635]
d3 [0.465, 0.507] [2.058, 2.577]
pmiddle 91.2% 40.7%

To gain further insights into the regulatory role of the
translocon, we asked whether and how it alters the kinetics by
which the SRP-SR complex undergoes the structural change.
To this end, we compare the dwell time of the FtsY-[Ffh-NG]
complex at the high-FRET state, which is d3 = 1/(1 − P33),
between the Translocon-Data and the Ffh-Data. The 95% poste-
rior interval for d3 is [2.058, 2.577] sec for the Translocon-Data
and [0.465, 0.507] sec for the Ffh-Data, respectively. Thus, the
translocon enhances the kinetic stability of the SRP-SR complex
in the distal conformation by four- to five-fold. Table 7 con-
trasts the parameter estimates between the Ffh-Data and the
Translocon-Data.

In summary, our statistical analysis shows that the translo-
con regulates the protein targeting process by (i) restoring the
movements of the FtsY-[Ffh-NG] complex to the RNA distal
end, (ii) promoting alternative pathways for this movement,
in which the FtsY-[Ffh-NG] complex directly transitions from
the low-FRET state to the high-FRET state, and (iii) prolong-
ing the time that FtsY-[Ffh-NG] stays at the RNA distal end. It
is known that movement of the FtsY-[Ffh-NG] complex away
from the RNA capped end is important for vacating the ribo-
some binding site and initiating ribosome-translocon contacts
during the handover of RNC to the translocon. It is also known
that GTP-hydrolysis, which disassembles SRP and SR, occurs at
the RNA distal end (Shen et al. 2013). Our findings thus reveal
that the translocon, via mechanisms (i)–(iii), promotes both of
these molecular events and allows them to be synchronized in
the pathway. Collectively, these results show that the translocon
not only serves as a channel through which the nascent proteins
translocate, but also facilitates the productive handover of the
RNC onto itself to complete the protein targeting reaction.

5.4. A Proposal of DetailedMechanism

Our statistical analysis of the single-molecule experimental
data in combination with the known biological understanding
(Peluso et al. 2001; Pool et al. 2002; Halic et al. 2006; Zhang et al.
2009a; Shen and Shan 2010; Ataide et al. 2011; Estrozi et al. 2011;
Akopian et al. 2013a) suggests the following detailedmechanism
of protein targeting, which was conjectured in Shen et al. (2012),
corresponding to the four steps of Section 1:

1. SRP recognizes the signal sequence on RNC and binds it.
The RNC is delivered to the target membrane where the
SR can localize to.

2. When the SRP-SR complex is initially formed, the FtsY-
[Ffh-NG] complex binds at the RNA capped end near
the ribosome exit site, blocking the site from translocon
binding.
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Figure . The refinedmechanism. Steps  and : SRP binds RNC at the RNA capped
end and carries it to the membrane by forming a complex with SR located at the
membrane. Step : The FtsY-[Ffh-NG] complex goes to thedistal end so that RNC can
be loaded at the translocon. Step : SRP-SR disassembles through GTP-hydrolysis
and the nascent chain goes through the translocon on the target membrane.

3. As the RNC initiates contact with the translocon, the lat-
ter actively facilitates the conformation change of SRP-
SR complex and drives the FtsY-[Ffh-NG] complex from
the capped end to the distal end of RNA.

4. GTP-hydrolysis is initiated at the RNA distal end to dis-
assemble the SRP and SR. Meanwhile, the nascent chain
is released from the Ffh M-domain to the translocon on
the membrane.

Figure 10 illustrates the detailed mechanism. The movement
of the FtsY-[Ffh-NG] complex from the RNA capped end to
the distal end is first negatively regulated by RNC, whose paus-
ing effect keeps the SRP-SR complex from disassembly before
the translocon is identified, and later positively regulated by
the translocon, which actively facilitates the movement of FtsY-
[Ffh-NG] to the RNA distal end. This mechanism allows the
coordinated exchange of SRP and translocon at the RNC and the
effective timing of GTP-hydrolysis, thus minimizing abortive
reactions due to premature SRP-SR disassembly or nonproduc-
tive loss of the RNC.

6. Model Checking

6.1. Check of Detailed Balance

In biophysics, the principle of microscopic reversibility states
that at equilibrium the transition flux between any two states
should be equal. In the familiar probability language, the micro-
scopic reversibility translates into the detailed balance condition
or the reversibility of theMarkov chain:πiPi j = π jPji for all i and
j, where πi is the equilibrium probability of state i. This can be
checked from the posterior samples of the transition matrix P.

Figure 11 compares the distribution of πiPi j (first column)
with that of π jPji (second column) from the Ffh-Data. The third
column shows the distribution of the difference πiPi j − π jPji
compared to zero (the vertical bar), where i, j ∈ {1, 2, 3}, i �= j.
It is clear that πiPi j − π jPji = 0 holds within the experimental
error. The plots on the FtsY-Data and the Translocon-Data give
very similar pictures. We thus confirm that indeed under our
hierarchical HMM the principle of microscopic reversibility is
satisfied.

6.2. Check ofMarkovian Assumption

In our hierarchical HMM, the Markov assumption of the state
transitions (or the conformation changes) plays a fundamental
role. If the Markov assumption is correct, then the waiting time
at the individual state should be exponentially distributed and
that the successive waiting times should be independent of
each other. Both can be checked under our Bayesian sampling
approach, since we can straightforwardly obtain the waiting
time at each state from the posterior samples of the hidden
states z. Figure 12 shows the posterior distribution of the wait-
ing time at each of the low, middle and high FRET state of the
Ffh-Data based on the samples of hidden states z in its original
scale (left column) and the log-scale (right column). It is seen
that on the log-scale the distribution of the waiting time is well
fit by a straight line, supporting the exponential distribution.

Figure . Check of detailed balance for the Ffh-Data. The first column is the posterior distribution of πiPi j , and the second column is that of π jPji , where i, j ∈ {1, 2, 3},
i �= j. The third column shows the distribution of their difference πiPi j − π jPji ; the thick vertical bar is at zero.
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Figure . Posterior distribution of waiting time at the three states of the Ffh-Data on the original scale, the left column (a) and the log scale, the right column (b).

Quantitatively, we performed a chi-squared goodness-of-fit test
for the exponential distribution using 30 evenly spaced bins.
The resulting p-values for the waiting time at the low, middle,
and high FRET states are 0.72, 0.20, and 0.35, respectively.
Figure 13 shows the autocorrelation of the successive waiting
times from the Ffh-Data obtained from the samples of the
hidden states z. It is evident that the successive waiting times are
uncorrelated, as the Markov assumption requires. The posterior
samples from the FtsY-Data and theTranslocon-Data show quite
similar pattern.

7. Summary

The advances in single-molecule experiments enable us to study
the detailed mechanism of the co-translational protein target-
ing process. On the single-molecule level the data are necessar-
ily stochastic. They are often noisy realizations of the underlying
stochastic dynamics. To model the stochasticity of each individ-
ual experimental trajectory, we use HMM.

The experimental time windows in single-molecule trajec-
tories are often of rather limited length, resulting in relatively
short trajectories. As a result, the parameter estimation based on
individual trajectories could be quite variable. Furthermore, the
determination of the total number of states of the HMM based
on individual trajectories is highly unstable. Experimentally,
these issues are mitigated by recording hundreds of trajectories
repeated under the same experimental condition. In this article,
we use the mode of the BIC selection over multiple trajectories

Figure . Autocorrelation of the successive waiting times from the Ffh-Data.

for reliable determination of the number of states of the HMM
as a preliminary analysis. Then we propose a hierarchical HMM
to pool information together from the different trajectories
and at the same time to account for the heterogeneity among
them. The heterogeneity among the different trajectories arises
from the intrinsically stochastic nature of molecular actions,
equipment noise, thermal fluctuation, and random variations
in experimental setups. We find that the proposed hierarchical
HMM is highly robust to low signal-to-noise ratios. Finally,
assessment of the fitting of each individual trajectory based on
parameters estimated from the hierarchical model reassured us
of the model selection at the first stage and the assumption of
the hierarchical model at the second stage.

Biologically, we corroborated many conclusions from the
previous ad-hoc analysis, giving solid quantitative evidence
for the proposed new mechanism of co-translational protein
targeting. Instead of being passively involved in the protein
targeting process, our analysis shows that the RNC and translo-
con play active regulatory roles to facilitate the accurate timing
of the biological steps. Specifically, the RNC and translocon
effectively regulate the movement of the SRP-SR complex
between the capped end and the distal end of the RNA, which
in turn regulates the assembly and disassembly of the SRP-SR
complex and the preference of the RNC for binding the SRP-SR
complex versus the translocon. Compared to the previous
ad-hoc analysis, our statistical analysis clarifies the pathway for
the structural change in the SRP-SR complex, and rigorously
showed that the translocon alters the pathway, kinetics, and
stability of this structural change, providing stronger evidence
that the translocon actively facilitates the loading of RNC onto
itself and drives the completion of protein targeting. From a
modeling perspective, the hierarchical HMMs that we used for
combining information are quite general. They appear effective
for dealing with replicated experiments and can be potentially
used for analyzing other biological or biochemical experiments.
We thus hope that this article would generate further interest
in studying these hierarchical models and in applying them for
general data analysis.
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Appendix A: Baum–Welch/EM Algorithm for HMM

For a given value of K, the total number of states, we can use the
EM algorithm (Dempster, Laird, and Rubin 1977), a.k.a. the Baum–
Welch algorithm for HMM (Baum and Petrie 1966; Baum et al.
1970), to infer θ. For the ease of presentation, we assume here that
the initial distribution of the first hidden state z1 is flat. The full like-
lihood function is

L(θ) =
N∏

n=2

p(zn|zn−1,P)

N∏
n=1

p(yn|zn,μ, σ 2)

=
K∏

j,k=1

PTjk

jk ·
N∏

n=1

N (yn;μzn , σ
2
zn ),

where Tjk denotes the total number of transitions in z from state j
to state k, andN (y;μ, σ 2) denotes the normal density withmeanμ

and variance σ 2 evaluated at y. For the EM algorithm, in the E-step,
the expectation step, we have

E log L(θ|θold) =
K∑

j,k=1

N∑
n=2

vn, j,k log Pjk

+
K∑

k=1

N∑
n=1

un,k logN (yn;μk, σ
2
k ),

where un,k = p(zn = k|y, θold) and vn, j,k = p(zn−1 = j, zn =
k|y, θold) can be expressed in terms of α(zn) := p(y1:n, zn|θold) and
β(zn) := p(y(n+1):N |zn, θold):

un,zn = α(zn)β(zn)/p(y1:N |θold),
vn,zn−1,zn = α(zn−1)β(zn)p(yn|zn, θold)p(zn|zn−1, θ

old)/p(y1:N |θold).

α(zn) and β(zn) can be efficiently calculated by the forward–
backward algorithm (Rabiner 1989), a recursive formula that allows
fast computation: evaluating the α’s forwardly from 1 to N and the
β ’s backwardly from N to 1:

α(zn) = p(yn|zn, θold)
K∑

zn−1=1

α(zn−1)p(zn|zn−1, θ
old), (A.1)

β(zn) =
K∑

zn+1=1

β(zn+1)p(yn+1|zn+1, θ
old)p(zn+1|zn, θold),

β(zN ) ≡ 1. (A.2)

In addition, the forward–backward algorithm gives the marginal
likelihood evaluated at the maximum likelihood estimate p(y|θ̂) =∑

zN α(zN ) = ∑
zN p(y1:N, zN |θ̂).

In the M-step of the EM algorithm, which maximizes
E log L(θ|θold) over θ, we obtain θnew according to

Pjk =
∑N

n=2 vn, j,k∑K
k=1

∑N
n=2 vn, j,k

, μk =
∑N

n=1 ynun,k∑N
n=1 un,k

,

σ 2
k =

∑N
n=1 un,k(yn − μk)

2∑N
n=1 un,k

.

Appendix B: Gibbs Sampling for HMM

In addition to the EM algorithm, which quickly obtains the MLE
of the parameters, we can also use Bayesian MCMC sampling (Liu
2001) to assess the entire (posterior) distribution of the parameters.
Our MCMC sampling can be viewed as a special case of data aug-
mentation (Tanner and Wong 1987): augment the parameter space
θ with the hidden states z, and iteratively sample one given the other
(i.e., sample θ given z and sample z given θ).

Specifically, in our MCMC sampling, we adopt flat priors for
P and μk, k = 1, . . . ,K, and independent inverse-χ2 priors with
parameters ν, s2 for σ 2

k (the prior on μ is flat over the region 0 <

μ1 < · · · < μK < 1). The posterior distribution is

p(θ, z|y) = p(y, z|θ)p0(P)p0(μ)p0(σ2)

∝
K∏
j=1

K∏
k=1

PTjk

jk

N∏
n=1

N (yn;μzn , σ
2
zn )

K∏
k=1

p0(σ 2
k ; ν, s2).

It follows that in our (group Gibbs) sampler, the conditional
distribution of the jth row of the transition matrix Pj· =
(Pj1, Pj2, . . . , PjK ) is a Dirichlet distribution, the conditional dis-
tribution ofμ is a multivariate normal distribution, the conditional
distribution of σ2 is a multivariate inverse-χ2 distribution, and that
the hidden states z can be sampled sequentially from 1 toN through
the following recursion:

p(zn = k|zn−1 = j, θ, y) ∝ Pjk N (yn;μk, σk) p(yn+1:N |zn = k)

= Pjk N (yn;μk, σk) β(k), n = 1, 2, . . . ,N,

where β(k) is the backward probability defined in Equation (A.2).

Appendix C: MCMC Sampling of the Hierarchical HMM

The posterior distribution is proportional to

p(μ0, η
2
0, s

2)
∏
l

p(y(l), z(l)|I(l),μ(l), σ(l),P)

×
∏
l

p(μ(l)|μ0, η
2
0, I

(l))p((σ(l))2|ν, s2, I(l))p(I(l)).

Weuse the Gibbs sampler to update a group of parameters at a time,
conditioning on the others, and iterate until convergence. The sam-
pling details are given below,where I(ω) and Iω denote the indicator
function.

1. Initialization. Fit each trajectory independently using the
EM algorithm in Appendix A and set the initial values of
{μ(l), σ(l)} at the corresponding MLEs. The initial values of
{I(l)} are set to be {1, . . . ,K}.

2. Update global parameters μ0, η
2
0, s2. For 1 ≤ k ≤ K,

Sample μ0,k from N (∑T
l=1,k∈I(l) μ

(l)
k /
(∑T

l=1 Ik∈I(l)
)
,

η2
0,k/

(∑T
l=1 Ik∈I(l)

))
,

Sample η2
0,k from Inv-χ2(∑T

l=1 Ik∈I(l) − 2,
∑T

l=1,k∈I(l)

(μk − μ0,k)
2/
(∑T

l=1 Ik∈I(l) − 2
))

,

Sample s2k from {νk
∑T

l=1 Ik∈I(l) /
(
σ

(l)
k

)2}−1χ2
d f ,

d f = νk
∑T

l=1 Ik∈I(l) + 2.
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3. Update transition probabilities P according to

p(P) ∝
∏
i, j

P
∑

l N
(l)
i, j

i j

/ ∏
I(l) �={1,2,...,K}

∏
i∈I(l)

(∑
k∈I(l)

Pik

)∑
k∈I(l) N

(l)
i,k

.

4. Update parameters for individual trajectories.
� Update {μ(l), σ(l)}. For k ∈ I(l), l = 1, . . . ,T ,

μ
(l)
k ∼ N

(
μ0k/η

2
0k +∑

z(l)
n =k y

(l)
n /(σ

(l)
k )2

1/η2
0k +∑

z(l)
n =k1/(σ

(l)
k )2

,

1
1/η2

0k +∑
z(l)
n =k1/(σ

(l)
k )2

)
;

(σ
(l)
k )2 ∼ Inv − χ2

(
νk +

Nl∑
n=1

I(z(l)
n = k),

νks2k +∑
n(y

(l)
n − μ

(l)
k )2I(z(l)

n = k)

νk +∑
n I(z

(l)
n = k)

)
.

� Update {z(l)}. This is essentially the same as introduced
in Appendix B except that when I(l) �= {1, 2, . . . ,K},
the transition matrix is a renormalized submatrix of P
according to which states are present in trajectory l.

� Update {I(l)}. I(l) is equal toA ⊂ {1, 2, . . . ,K}with prob-
ability proportional to

p(y(l), z(l)|μ(l), σ(l),P, I(l) = A)p(μ(l)|μ0, η
2
0, I

(l) = A)

p((σ(l))2|ν, s2, I(l) = A)

where A stands for {1, 2, 3}, {1, 2}, {1, 3}, or {2, 3}
when K = 3, and {1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, or {3, 4} when
K = 4.

5. Iterate Steps 2 to 4 until convergence.
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