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Observation of a Power-Law Memory Kernel for Fluctuations
within a Single Protein Molecule
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The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was
directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-
reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism,
we experimentally determine the memory kernel K�t�, which is proportional to the autocorrelation
function of the random fluctuating force. K�t� is a power-law decay, t�0:51�0:07 in a broad range of
time scales (10�3–10 s). Such a long-time memory effect could have implications for protein functions.
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FIG. 1 (color). (a) Schematic of the structure of the FL and
anti-FL complex, adapted from Ref. [6]. Tyr37 and FL, ET donor
and acceptor, are highlighted. (b) Monoexponential fluorescence
lifetime decay for a single FL molecule. Multiexponential fluo-
rescence decay for the FL and anti-FL complex at both ensemble
and single-molecule levels. The instrumental response function
with 60 ps FWHM. a.u., arbitrary units.
Understanding the role of a protein’s dynamic motions
on its function has been a problem of long-standing interest
[1]. Single-molecule experiments provide information
about protein dynamics otherwise hidden in ensemble-
averaged studies. Recent single-molecule investigations
of a flavin oxidoreductase [2] indicate that protein confor-
mational fluctuations occur over a broad range of time
scales. Such conformational motion is closely related to
the fluctuations of enzymatic rate constant [3,4]. Kou and
Xie recently showed that this conformational fluctuation
can be modeled by a generalized Langevin equation (GLE)
[5]. Here we report a new single-molecule experiment
probing equilibrium conformational fluctuation in a pro-
tein via photoinduced electron-transfer (ET). Distance
fluctuations between the ET donor (D) and acceptor (A)
within a protein molecule were observed over a broad
range of times (10�3–100 s), and their stationarity, time
reversibility, and Gaussian property were proved by statis-
tical analysis. In the GLE formalism, the autocorrelation
function of the distance fluctuation was used to determine
the memory kernel which turns out to be a remarkable
power-law decay K�t� / t�0:51�0:07. The broad range of
time scales for conformational fluctuations at which pro-
tein reactions normally occur has implications for its bio-
logical functions, such as catalysis and allostery.

The system under study is a protein complex formed
between fluorescein (FL) and monoclonal antifluorescein
4-4-20 (anti-FL). This complex is highly stable, with a
small dissociation constant Kd � 0:1 nM, allowing long-
time observations at the single-molecule level. Figure 1(a)
shows its crystal structure, adapted from Ref. [6]. In our
room temperature experiment, a single FL and anti-FL
complex was first formed in solution, immobilized onto a
quartz surface via the biotin-streptavidin linkage, and then
repetitively excited by a 490 nm, 76 MHz, 100 fs pulse
train from a frequency doubled Ti:sapphire laser.
Fluorescence lifetime ��1 measurements were carried
out using the time-correlated single photon counting tech-
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nique. The detailed experimental setup has been described
previously in Ref. [2].

The fluorescence decay of a single FL molecule is
monoexponential, while that of a single FL and anti-FL
complex is faster and multiexponential [Fig. 1(b)]. The
shorter lifetime results from photoinduced ET from the
closest tyrosine residue (Tyr37, donor) to FL (acceptor)
[7] and is expressed by ��1 � ��0 � �ET�

�1 	 �ET
�1,

where �0 denotes the fluorescence decay rate constant in
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the absence of a quencher, and �ET denotes the ET rate
constant (�ET 
 �0). Figure 1(b) shows the multiexpo-
nential fluorescence decays of the FL and anti-FL complex
at both the ensemble-averaged and single-molecule levels,
the latter implying that fluorescence lifetime fluctuates at
time scales longer than ��1.

We now discuss the origin of ��1 fluctuations.
According to Fermi’s golden rule, the nonadiabatic ET
rate �ET is �4�2=h�V2F, where h is Planck’s constant, V
is the electronic coupling between the two diabatic states
DA and D�A�, and F is the Franck-Condon weighted
density of states. F � �4�kBT��

�1=2 exp����G�
��2=4�kBT� at room temperature, where �G is the free
energy difference between DA and D�A�, and � is the
reorganization energy [8]. For the electronically excited FL
and Tyr37, �ET is close to the maximum rate. Under this
quasiactivationless condition, �ET is relatively insensitive
to thermal fluctuations of �G. However, the electronic
coupling V depends exponentially on the donor and accep-
tor edge-to-edge distance; �ET�t� is therefore given by

�ET
�1�t� � �k0e

���xeq�x�t����1; (1)

where k0 is a constant, xeq is the mean edge-to-edge
distance between FL and Tyr37 (�3:7 �A as determined
from the crystal structure [6]), x�t� denotes the time-
dependent distance fluctuation around xeq, and ��

1:4 �A�1 for proteins [9]. Because of the sensitive expo-
nential dependence, x�t� fluctuation has a much stronger
effect on �ET�t� than the relative donor-acceptor orienta-
tion does. We thus attribute the large ��1 fluctuations
FIG. 2. (a) Segment of the single-molecule x�t� trajectory with
the corresponding probability density function P�x� converted
from ��1�t� using Eq. (1). The dashed line is the Gaussian fit for
P�x�. (b) Potential of mean force U�x� obtained from U�x� �
�kBT ln�P�x��. The dashed line is the best fit to a harmonic
potential U�x� � kBTx

2=2�, where � � 0:22 �A2.
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primarily to x�t� fluctuation. Hence, from the experimen-
tally determined ��1�t�, information about the underlying
x�t� fluctuation can be extracted.

By binning every 100 photons, we used the maximum
likelihood estimation [10] to determine the coarse-grained
��1�t� trajectory by assuming a single exponential fluores-
cence decay within each bin time. The distance fluctuation
x�t� trajectory is then calculated from the ��1�t� by using
Eq. (1). Figure 2(a) shows a segment of the single-
molecule x�t� trajectory with the corresponding probability
density distribution P�x�. The potential of mean force U�x�
is then calculated from U�x� � �kBT ln�P�x��. Figure 2(b)
shows that within the thermally attainable region, U�x� is
well fitted by a harmonic potential U�x� � kBTx2=2�,
where � � 0:22 �A2. � compares favorably with the crystal
structure data, which gives average atomic-mean-square
displacements of 0.12 and 0:26 �A2 for FL and Tyr37,
respectively. This agreement further corroborates our as-
signment of ��1 fluctuation to primarily x�t� fluctuation.

The single-molecule x�t� trajectory exhibits stationarity,
evidenced by the same correlation functions at different
time periods. The time reversibility of the x�t� process is
tested by evaluating hx3�0�x�t�i and hx�0�x3�t�i. If revers-
FIG. 3. (a) hx3�0�x�t�i vs hx�0�x3�t�i for the same single
FL and anti-FL complex for various t. The diagonal
dashed line is the prediction of time reversibility.
(b) hx�0�x�3t�ihx�0�x�t�i � hx�0�x�t�i2 � hx�0�x�2t�i2 vs
hx�0�x�t�x�2t�x�3t�i of the same complex. The diagonal dashed
line is the prediction for a Gaussian process.
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FIG. 4. Autocorrelation function of distance fluctuation Cx�t�
(open circles, average of 13 molecules under the same experi-
mental condition), determined with high time resolution using
Eq. (3), with Cx�0� � kBT=m!2 � � � 0:22 �A2. The solid line
is a fit to Cx�t� � Cx�0�e

t=t0erfc�
����������
t=t0�

p
with parameter

�=m!2 � 0:7 s0:5. The error bounds (dashed line) were esti-
mated by the method described in Ref. [17].
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ibility holds, we expect

hx3�0�x�t�i � hx3��t�x�0�i � hx�0�x3�t�i; (2)

where the first equality is due to stationarity, and the
second to reversibility. Figure 3(a) plots the experimentally
determined hx3�0�x�t�i and hx�0�x3�t�i against each other.
The diagonal line proves the time reversal symmetry.

We now examine the Gaussian property of x�t�. For a
Gaussian process, all correlation functions higher than
second order can be expressed by the second order corre-
lation function. For example, hx�0�x�t�x�2t�i � 0, and
hx�0�x�t�x�2t�x�3t�i� hx�0�x�3t�ihx�0�x�t�i�hx�0�x�t�i2�
hx�0�x�2t�i2. We calculated both hx�0�x�t�x�2t�i and
hx�0�x�t�x�2t�x�3t�i from the experimental x�t� tra-
jectory and found that hx�0�x�t�x�2t�i vanishes within
experimental error and that hx�0�x�t�x�2t�x�3t�i matches
well with hx�0�x�3t�ihx�0�x�t�i�hx�0�x�t�i2�hx�0�x�2t�i2

[Fig. 3(b)]. These results strongly suggest that x�t� is a
Gaussian process.

By virtue of the stationary and Gaussian properties of
x�t�, Cx�t� � hx�t�x�0�i is related to the autocorrelation
function of fluorescence lifetime variations, C��1�t�, by

C��1�t� �
h���1�0����1�t�i

h��1i2
� e�

2Cx�t� � 1; (3)

where ���1�t� � ��1�t� � h��1i. C��1�t� can be obtained
with a high time resolution comparable to the reciprocal of
the average photon count rate (1–2 ms), using the photon-
by-photon method [11] instead of the conventional bin-
ning. Thus, Cx�t� can be obtained from Eq. (3) with the
same high time resolution. Figure 4 shows the averaged
Cx�t� of 13 molecules, and it clearly has fluctuations over a
wide range of time scales. No noticeable power depen-
dence of Cx�t� in the excitation power range from 0.5 to
5 �W was observed, implying that the distance fluctua-
tions are spontaneous rather than photoinduced.

To investigate the underlying dynamics, the fluctuation
was analyzed in the framework of GLE, which can be
derived from the Liouville equation using projection op-
erators [12]. x�t� is modeled as the coordinate of a fictitious
particle diffusing in a potential of mean force. The GLE
governing its equilibrium dynamics is

m
d2x�t�

dt2
� ��

Z t

0
d�K�t���

dx���
d�

�
dU�x�
dx

�F�t�; (4)

where m is the reduced mass of the particle, U�x� �
m!2x2=2 is the harmonic potential with an angular fre-
quency !, � is the friction coefficient, F�t� is the fluctuat-
ing force, and K�t� is the memory kernel related to F�t� by
the fluctuation-dissipation theorem:

K�t� �� � �1=�kBT�hF�t�F���i: (5)

In the overdamped limit where acceleration can be ne-
glected, Eq. (4) can be rewritten as
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m!2x�t� � � �
Z t

0
d�K�t� ��

dx���
d�

� F�t�: (6)

Equation (6) can be converted to an equation for the time
correlation function Cx�t� by multiplying by x�0� and
averaging over the initial equilibrium condition:

m!2Cx�t�� ��
Z t

0
d�K�t���

dCx���
d���

�hF�t�x�0�i: (7)

The last term hF�t�x�0�i � 0 because F is orthogonal to x
in the phase space [12,13]. The Laplace transform of
Eq. (7) gives

~K�s� �
m!2

�

~Cx�s�

Cx�0� � s ~Cx�s�
; (8)

where ~K�s� is the Laplace transform of K�t�. By taking the
Laplace transform of Cx�t� in Fig. 4 (open circles) numeri-
cally, and plugging the resulting ~Cx�s� into Eq. (8) along
with Cx�0� � kBT=m!2 � � � 0:22 �A2, one solves
��=m!2� ~K�s�, which is shown in Fig. 5 after normaliza-
tion. Over at least four decades of time, ~K�s� exhibits a
simple power-law decay, ~K�s� / s!, with ! � � 0:49�
0:07. Inverse Laplace transform of ~K�s� gives the time
domain correspondence K�t� / t�!�1 � t�0:51�0:07, which
is remarkably simple.

The above results have implications for the nature of
F�t�. First, since x�t� is stationary, the fluctuations of F�t�
must likewise be stationary. Second, since GLE is a linear
equation of x�t�, the Gaussianity of x�t� requires F�t� to be
a Gaussian process as well. Third, the long memory be-
havior indicates that F�t� is non-Markovian. Fourth, the
power-law decay of K�t� implies time scaling invariance of
hF�t�F���i [Eq. (5)]. Mathematically, the only process that
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FIG. 5. Normalized ~K�s� calculated from Cx�t� in Fig. 4 using
Eq. (8) (open circles). The full line is the fit of s�0:49. Its inverse
Laplace transform gives K�t� / t�0:51. The dashed lines are error
bounds carried over from the error bounds of Cx�t� in Fig. 4.
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simultaneously satisfies these four properties is fractional
Gaussian noise (fGn) [14], which is the assumption of
Ref. [5].

Following Ref. [5], F�t� is assumed to be fGn defined as

F�t� �
��������������
2kBT�

p dB�H��t�
dt , where B�H��t� is the fractional

Brownian motion process (Hurst coefficient 1=2< H <
1), with hB�H��t�i � 0 and hB�H��t�B�H����i � �jtj2H �
j�j2H � jt� �j2H�=2. Therefore, for t � �,

K�t� �� � 2
�
dB�H��t�

dt
dB�H����

d�

�

� 2H�2H � 1�jt� �j2H�2: (9)

We note that similar theoretical studies about the GLE with
power-law memory kernel have appeared previously [15].

Substituting Eq. (9) into Eq. (7) and solving the resulting
equation via a Laplace transform, we find ~Cx�s� �
Cx�0�=fs� �m!2=���2H � 1��s2H�1g, where ��2H � 1�
is gamma function. Thus, in the time domain,

Cx�t� �
kBT

m!2 E2�2H���t=t0�
2�2H�; (10)

where t0 � �m!2=���2H � 1��1=�2H�2� is a characteristic
time scale of the system, and Ea�z� �

P
1
k�0 z

k=��ak� 1�
is the Mittag-Leffler function. The unit of � here depends
on the H value. From K�t� / t�0:51�0:07, H is determined to
be 0:75� 0:03 using Eq. (9). With H � 3=4, Cx�t� �
Cx�0�e

t=t0 erfc�
��������
t=t0

p
�, where erfc is the complementary

error function. Figure 4 shows the fitting of Eq. (10) using
H � 3=4 and �=m!2 � 0:7 s1=2 with the experimental
Cx�t�. The agreement between the two is excellent. t0 is
determined to be 0.9 s.

Although nonexponential relaxations of protein confor-
mations have been indirectly inferred from ensemble stud-
19830
ies [16], we have directly characterized equilibrium
fluctuations occurring over a broad range of time scales
on which protein reactions usually take place. Our experi-
ments demonstrate that within the experimentally acces-
sible time ranges, the underlying fluctuating force has a
simple power-law autocorrelation function. We suspect
that the existence of the power-law memory kernel in
proteins might be general. Investigation of its microscopic
origins is under way. The fact that a protein is a complex
dynamic entity with long memories on broad-range time
scales leads to dynamic disorder and dispersed kinetics for
biochemical reactions [1,3,4].
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