Supplementary Material: Proofs

To prove Theorem 2.1, we need the following lemma.

Lemma A.1. Under Assumptions 1 and 2,
EGu(to)A() = / FA(rh + to)dr

Var(j\h(to)’)\(')) = / f2 Th+t0)

Proof of Lemma A.1. The following fact of inhomogeneous Poisson processes (Daley and
Vere-Jones 1988) is very useful:
Result A. For a Poisson process with deterministic inhomogeneous arrival rate A(¢), the total
number of points K arriving within the time interval [0, 7] has a Poisson distribution with
parameter fo t)dt, and conditioning on K, the arrival times s;, i = 1,2,..., K, have the
same joint dlstrlbutlon as the order statistics X(y), ..., X (), where X; arei.i.d. with the density

A/ [ A(s)ds

Using Result A and the law of iterated expectation, we have

K
EGam)AC) = EIE (Aalto)AC). ) ()] = E[E (thao,si)M(-),K) A

+oo

= Z%( /0 s> exp|— / As kaT;}(T(’SjLz(S)dS‘
B / falto, s) ds—/ FrA(rh + to)dr

where f,(t, s) is defined in (2.1) and a change of variable r = (s — ty)/h is used. Similarly, the

law of conditional variance gives

K

K
var(An (to)[A()) = E{var[y _ fa(to, si)|A), K]IA()} + var{E| th to, si)[AC), K)JA()}

1=0

T
_ E{K.var(fh(to,s)\A(.),K)\A(-)}+var{K/O Fulto, s) ds// $)ds|A()
Since var(K|A(+)) = E(K|A(+) fo s)ds and

foT fito, s)A(s)ds (fOT fh(to,S)A(S)ds>2

var(fp(to, s)|A(), K) = foT/\ s)ds foT A(s)ds




we simplify var(Ay (o) |A(+)) to
var( A (t0)|A() / fA(t,s) h/ FAr)N(rh + t)dr O

Proof of Theorem 2.1. The MSE of Aj,(t) has the decomposition

N ~ ~ 2
E(Ahuo)—A(to))?=E{var[xh<to>|x<->]+ [EGu(to)A)) = Alto)] } (A1)

where A(-) denotes the full realization of the stochastic arrival rate. Using Lemma A.1, we

obtain
b
B0~ A0} = B[ e+~ + Z5OL [ g

The expectation of the first term equals

/ / f(r) f(ra)C(|r — r2lh) drldr2—2/ f(r)C(|r|h)dr + C(0).

A Taylor expansion on C(t) around 07 simplifies the above expression to hC’(0")y; + o(h)
where 7, is defined in (2.4). This leads to (2.3), from which it is easily seen that the h that
minimize the MSE is h,,; defined in (2.5). O

Proof of Lemma 3.1. Using Result A and following the proof of Lemma A.1, it is straightfor-
ward to establish (3.2). The continuity assumption of C(|(r — m)h + t|) around ¢ for ¢ > 2bh
and around 0 for ¢ < 2bh yields the subsequent results. O

Proof of Lemma 3.2. First, consider var{E( 2un(®)A()}. Using Result A, it is straightfor-
ward to show that E(j\h(s—kt)j\h( = 7 fo dl fo (5= F (2= )N A(m)dm+
o fo (5= S)/\(l)all which 1rnp11es that
E(C,, ()W )) = 2bh rz{fT "t ds fy A
T g 1 0 A — ) — 5 t)f( 3

four change—of—varlables give the detailed expression (3.4). Next, we note that the three terms

PO (52 dl+

2)dm}. A term-by-term expansion and

AZT, BQT and C’t}fT are averages of C, Cs and v over [bh, T — bh — 2. Assumptions 4 and 5 thus
guarantee that var(E(C),,(t)|\(-))) — 0as T — oo.



Now consider E{var(C,, ,(t)|A(-))}. We will demonstrate that in equation (3.5)

D = Wt EIMOAE + (= m)WA(( —m — '+ m)h)})
+Int" i b Z]"; (E{MOA(t + (L — m)R)A(t + (' — m')h)})
+2Tnt'y™ ) g” (E{AMO)A(t + (I —m)R)A2t + (1 —m+ 1 —m')h)})

— —m m m — 43 .
8 //[_b,b]zc““l V) £ (1) f (m)dl dm. — 442 (A2)

2b
hoo_ —m 2 r)f(m)f(m + r)dl dn
Bl / dr //_b,bp[c(”“ V) + @2 f Q)+ r)f (m) f(m + r)did

FATnE (O + (U —m)) F(L+ %)>
+Int; P ?bP([C(t + (I =m)h) + p?1f(l—m+m' + if)> (A.3)

t
Fho= / /{_W FOFA+ 1) Fm)f(m + ) dm, (A4)

Here for notational ease we have used the short hand notation Int;’zl m

(), which stands for

the integral over region A with respect to kernel f. The superscrlpt refers to the dummy vari-

ables in the integral. For example Int ol bb} (gL, 1',m fff b 91V f () f ) f(m)dl dl! dm!
ILm, ' m/

and Int ;" W Wg(l,m, U m)) ffff_b7b]4g (l,m,l',m )f(l)f(m)f(l Vf(m)dl dm dl’ dm/.

To establish these expressions, we first note that

1 - .
warCua®P0) = g ([ eorl Gl 0 —mOnls) — ), (49
(s 1) — i) (ls') — A d’

A term-by-term expansion on cov{ (A (s 4 t) — 1) (An(s) — 1), (An(s" + 1) — 1) (M (s') — w)|A()}
leads to a lengthy linear combination of E{\;,(s + t)An(s) A (s + t)An(s')|A(-)} and the condi-
tional expectations of the product of three M\, terms, two )\, terms, and so on. The derivation,
therefore, boils down to the calculation of E{Ay(s 4+ t)Ay(s)An (s + )An(s)AC)}, E{An(s +
A (5)An(s 4+ t)|A(-)}, etc. By definition,

E{ (s + A ()M (8" + ) An(s)A()}
k k /

i —S—t o~ 85— S sip— 8 — Sjr— 8
- %E{;ﬂ%’f);ﬂ% DI D P [PYO)S

i'=1 j'=1




Depending on whether i, j, i’ and j’ take on distinct values or not, we have

E{ (s + A ()M (8" + ) An(s)A()}

- ) SN ST ST S

all distinct  three distinct, /=5  three distinct, =4’  three distinct, i=7’

D DI D D P D DD

three distinct, j=¢'  three distinct, j=j’/ three distinct, i/=3’ two distinct, 1=7, /=75’

LD D D D P DR D

two distinct, =4/, j=j’  two distinct, t=75’, /=5  two distinct, i=j=4’  two distinct, i=j=75'

+ > + > + >k

two distinct, i=¢'=j’  two distinct, j=i'=j' i=j=i'=j'

Using Result A, we can straightforwardly simplify each term. For example, the third term

/

1 m,m/’ -
S = s+ IRAGs +mR)A(S + mR) (L + TTEY, (A6
three distinct, i=1/
and the term
1 m s—s —t s+t—s
> =3 Inti;;[_b’bp(/\(s +tHUA(s +mh) f(m + ———) [(I + ———)).

two distinct, 1=3/, ¢/=j

(A7)
Applying similar treatment (lengthy but straightforward algebra), we obtain the expres-
sions for E{ A, (s +t)An(s)An(s" + 1)[AC)Y, E{An(s + )M (s’ + )M (s)|A()}, ete. To save space,
we omit the detailed long formulas, which are available upon request. Once the terms of
cov{(An(s + 1) — ) (Mn(s) — ), (s + 1) — ) (Mn(s') — p)|A()} are fully expanded and eval-
uated, we observe many cancellations. Finally, taking an expectation on (A.5) gives us the
formula of E{var(C,, 5 (t)|\(-))}.
To see how the detailed expressions of D}, EI' and F}" arise, let us use (A.6) and (A.7) as an
example. Taking expectation on (A.6) and integrating s and s’ over [bh, T — bh — t]? gives the

expression

o
; ds ds' Tnty ™" (E{IMOA(E + (1 — m)R)A(s' — s + (m' — m))}f (1 + ).
h J Jioh, m—bh—1)2 £il=b] .
A change of variable I’ = [ + (s — s’) /h reduces it to

(T — 2bh — £) Int {7 W (E{AO)AE + (= m)R)A((L = m — '+ m/)h)}) + Dy, (A.8)

)



where

D, = IntlT?b (E{NO)A(t 4+ (I — m)R)A((I —m —1I' +m)h)} -

3bh 14252k T—bh—t b
/ ds / £l + / ds / £l — 4bh])
bh b T—3bh—t  Ji =Tt

Equation (A.8) corresponds to the first term in (A.2). Likewise, taking expectation on (A.7) and

integrating s and s’ over [bh, T — bh — t]? gives the expression

1 9 s—s —t s+t—¢
ﬁ//[m e Wt o (O + (= mh) + 2]+ 204 T2,

A change of variable m' = m + (s — s’ — t)/h reduces it to

T —2bh —t 2t
———n T s ([C(t+(l—m)h)+u2]f(l—m+m’+ﬁ

which corresponds to the third term in (A.3). All the other terms in (A.2), (A.3) and (A.4) arise

via similar calculations. O

)) +O(h),

Proof of Theorem 3.3. From Lemma 3.1, it is transparent that as h — 0, the bias of C,, 5, (t)
goes to zero for any fixed ¢t > 0. For the variance, we note that for h sufficiently small such that
t > 2bh, Fth in Lemma 3.2 is identically zero (see (A.4)). Therefore, for h sufficiently small, the

variance of C, ,(t) is a linear combination of O(%), O(ﬁ), O(ﬁ), O(%), O(£:) and O(%)

terms, each converging to zero as Th — oo and h — 0. The desired result thus follows. O

Proof of Theorem 3.4. Let us first consider E(j1 — p1)?. The law of conditional variance says
E(p—p)® = Var(/fc) = E(var(A[A())) + var(E(i[A()))

= T T2//Cs—s)dsds—>0 as T — oo.

Thus, i —p — 0in probability. Next, consider [, Ibh= YO (s+1) 4+ An(s) —2u)ds. Using Lemma

A.1, we know its expectation is zero. Its variance is equal to

/ / ds ds' cov(An(s 4+ 1) + An(5), An (5" + 1) + 3 (s)
[bh, T—bh—1]2

- //[bh,T—bh—t]2 dsds //[—b,b]z C(s = s + (L =m)h) f(1) f(m)dl dm
2 /[bh,T_bh_tp dsas [ /[_b,bp Os+t ="+ (L= m)) F(O)f (m)d dm

, b s— g s4i—s
o it I+ ———)]dl.
+2//[bh,T—bh_tP sds /_bf()[f( + 7 )+ f(l+ ; 1




Applying L'Hospital’s rule, we know that var (32— bfg bh= "An(s 4 1) + An(s) — 2u)ds) — 0,

as T" — oo, so it, in particular, converges to zero in probability. Using these results together

with Theorem 3.3, we know from

R R w— ﬂ T—bh—t ~
Can(t) = Cun(t) + (i — p)* + ——7— / (An(s+1) + An(s) — 2u)ds.
T —2bh —t Jy,

that CA’[hh(t) — C(t) in probability. O

Proof of Proposition 3.5. From the definition of AZT (Lemma 3.2), it is transparent that

= [
' [bh, T —bh—1]2 bb]4

cov{(MAo(mh +8) — 1) Ng(lh +t +s) — 1), Mg(m'h+ 8') = 1) N(I'h +t+5") — 1)} -
F@fm)fW) f(m')dl dmdl’ dm’ = O(u*),

since the law of {\o(t),t € R} is fixed. On the other hand for fixed T, h and ¢, it is easily seen
that
var((T — 2bh — )Gy n (1) — Ay = O(i°),

from which (3.7) follows. O
To prove Theorem 4.2, we need the following two lemmas.

Lemma A.2. Suppose that Assumptions 1, 2, 4 and 5 hold and that the arrival rate \(s),s € R is
bounded. Then, for fixed t, h > 0, conditioning on the realization of A, with probability one we have

VT [Cunt) = BC.MING)] | AC) B N©O,03(t,h)) as T — oc, (A9)

where the constant o3 (t,h) = D} + El'/h + FJ*/h?, defined in Lemma 3.2 (see also (A.2), (A.3) and
(A.4)), does not depend on \. Furthermore, for fixed t,h > 0,

VI[Coun(t) — E(Cn(t))] 2 N(0,0%(t, h)) as T — oo,

)

where a%(t,h) = limp o, T Var(CA'u,h(t)), if and only if

VIE(Cun®)A() = B(Cun(t))] 2 N(0,73(t,h)) as T — oo, (A.10)
where
72(t,h) = Jim T var(E(Cn(t)|A(-)). (A.11)



Lemma A.2 indicates that the asymptotic distribution of C,, () rests on the stochastic

properties of the underlying arrival rate {\(¢),t € R}.

Lemma A.3. Suppose that Assumptions 1, 2, 4, and 5 hold, and that the arrival rate process {\(t),t €
R} is finite p-mixing. Then for fixed hand t > 0, as T'— oo

VI[E(Cun()IA() — E(Cun(t)] 2 N(0,72(t, b)),

where T2(t, h) is defined in (A.11).

Proof of Lemma A.2. We first introduce some notations that will be used in the subsequent

proofs. Let

bhti R
gi(t.h) = /b () — 1) Gn(s +£) — p)ds,

h+i 1
Sn(tvh) = Zgl t h Zgz t h = Zgi(t7 h) _nE(éu,h(t))y
i=1
vilt, h) = (gi(t, WIAC)) = E(Cun(t)),
Gu(t,h) = > wvi(t,h).
i=1

Since we can write

m(@,w) — B(Cun(t)) = % *

— M5 +1) = ) = B(Cun(t)}ds,  (A12)

Tbht

W bh+n
where n = [T — 2bh — t], and the reminder term (A.12) converges to zero in probability as
T — oo, the asymptotic distributions of /T — 2bh — £(C,, 1, (t)—E(C,,, h( ))) and S, (¢, h)/+/n are
the same. Similarly, the asymptotic distributions of \/W HE(C, n(t)A) — E(Cun(t))]
and G, (t,h)/y/n are the same. Thus, we can focus on the sequences of S,(¢,h)/\/n and
G (t, h)/+/n in the proof.

Next, we need the following result from Corollary 4 of Herrndorff (1984).
Let 8 € (2,00] and r = 2/3. Assume that a sequence of random variables { X, } is m-dependent
and satisfies (i) F(X,) = 0 and E(X?2) < oo, (ii) E(s2/n) — % > 0, where s,, = > 1, X;, and
(iii) sup{E(Smin — sn)?/n : myn € N} < oo and || X,||g = E%(\Xg]) = o(n(1=7)/2). Then
sn/(0y/n) converges to N(0, 1) in distribution.

In our case, each Ay (t) for t € [bh, T — bh] depends only on the arrivals in the interval

[t — bh,t + bh], so the sequence {g;,i = 1,2,- - -} given \(-) is m-dependent (see Herrndorff



(1984) for the definition), where m = [t 4+ 1 + 2bh] + 1. Since the arrival rates A(-) are bounded,
the requirements (i) and (iii) on the sequence {g; — E(g;|A(-)),i = 1,2,- - -} given A(-) are

automatically satisfied. We have shown that

lim Efvar( Sn\(/t;_zh)

in the proof of Lemma 3.2. Thus, owing to the ergodicity of {\(s), s € R}, we have

IA()] = o (t,h)

Spu(t, h)
NG

which tells us that the requirement (ii) is also satisfied. Therefore, (A.9) holds.

ar( IN(-)) — o%(t, h) with probability one, ,

To prove the second statement, we consider the characteristic function of S,, (¢, h)//n

E(exp(irSn(t, h)/v/n)) = E(exp(ik[Sa(t, h) — Gul(t, h) + Gu(t, h)]/V/n))
= E{E [exp{in(Su(t,h) — Gu(t, h))/v/n} — exp{—0i(t, h)x*} [A(-)] exp(ikGin(t, h)/v/n) }
+ exp{—o?(t,h)k*} E(exp{inGn(t,h)/V/n}).

We know from (A.9) that
B [exp{in(Sa(t, h) — Gn(t, 1))/} — exp{—02(t, 1)} [A()] 2 0.as n — oo.

Since both E [exp{i(Sn(t,h) — Gy (t, h))x//n} — exp{—0i(t, h)s*}A(-)] and exp{i(Gy (t, h))x//n}

are bounded, using dominated convergence theorem we have

lim E{E [exp{ic(Sy(t,h) — Gn(t,h))/v/n} — exp{—07 (t, h)r*} |A()] exp(iGy(t, h)/v/n)} = 0.

n—oo

Consequently,

lim E(exp{iS,(t,h)r/\/n}) = exp{—oi(t,h)x* — 72(t, h)K*},

n—oo

if and only if E(exp{iG,(t, h)r//n}) = exp{—7%(t, h)x?}, since we have already shown in the
proof of Lemma 3.2 that

A~

lim var(Gy,(t,h))/n = Th_rgo(T — 2bh — t)var[E(Cy n(t)|A(-)]. O

n—oo

Proof of Lemma A.3. We use the same notations as in the proof of Lemma A.2. Let 7| =
a(vi(t,h) i < k), G = o(vi(t,h) =i > k) and pj, = sup{E(¢&n) : £ € Fj, EC = 0, ¢ <



Lin € Gi\y En = 0,|nl| < 1}. Then F} C Frytio0h, and Gy C Gg—1, 80 pf, < pr—t—20n—1 for
k> t+2bh+1,and

[t+2bh+1] [t+2bh+1]

Zp; Z pk + Z Pr < Z pk + / prdt < +00.
k

>[t+2bh+1]

We thus conclude that if the process {A(t), ¢ € R} is p-mixing, then so is the process {v;(t, h),i =
2,...}. Using Theorem 19.2 in Billingsley (1999), the desired result follows. O

Proof of Theorem 4.3. It is shown in Billingsley (1999, p. 201) that discrete-time finite-state
Markov chains are p-mixing. The proof can be straightforwardly extended to continuous-
time finite-state Markov chains. Using Lemma A.2, Theorems A.3 and 4.1, the desired result

follows. O

Proof of Theorem 4.3. To prove this theorem, we need the following result (Theorem 4) of
Arcones (1994): Let {X; = (X i(l), e, X i(d))};’il be a R%-valued stationary mean-zero Gaussian
sequence, and F be a function on R? with finite rank 7 > 1. Denote »® (k) = E[X,} ® x fnl &)
fork € Zand 1 < p,g < d. If3S2 _ |[r®D(k)” < oo for each 1 < p,q < d, then
T2y (F(X5)—E(F(X;))) % N(0,02%), where 02 = var(F(X1))+2 S he cov(F(Xq), F(X11k))-

In our case, we take X; = (W((i — 1)e), W (ie), -+ ,W([Z2E + i]e))T tobe a d = [(2bh +
t)/e] + 2 dimension vector, and define

bh+ie N N
Atk = PO =B [ () =)0l 1) = wdslAC)

h+(i—1)e
bh+ie
= / / f) A(lh +s) — p)(A(mh + s + t) — p)dldmds
bh+(i—1)e J—
bh+ie
+ —/ f( VU + DN + ¢ + s)dids.
b Joht@-1)e J b h

Without loss of generality, we assume var(W (ic)) = 1. Since g is bounded, E(F?(X;)) <
co. In our case, 7®? (k) = ~(|k + g — ple). Since g(W (ic)) has bounded second moment,
the function g(x) can be expanded in L?(R,1/ 2me=e"/ %) in terms of Hermite polynomials
(Taqqu 1975): g(z) = Y5° 0 L) 1y (2), where J(k) = E(G(Z)Hy(Z)) for Z ~ N(0,1) and
Hy(z) is the kth Hermite polynomial. Thus, 9;(¢, h), which is a polynomial of g(Xi(p )), can

be expanded as a series of polynomials of X Z-(p ),

Therefore, we can always find a polynomial
P(X;) of X; such that P(Xj;) is close (in mean square sense) enough to F'(X;) — E(F(X;)) to
have F [(F(X;) — E(F(X;)))P(X;)] > 0. Thus, the rank 7 of the function is finite (see Arcones

(1994) for the definition of the rank of a function). Since we know > 7%, |7(je)| < oo, it follows

9



that for any v > 1, we also have > "2 |v(je)|” < oo. In particular, it holds for v = 7. Now
using the result that we stated in the beginning of the proof, we know that the asymptotic
normality of 9;(t,h) = F(X;) holds. Let n = [(T' — 2bh — t) /<], then

(T = 20h — )2 (B(Cun(®)AC) = B(Cun()) = Z?ZI((;i(—]t;))h_—Et)(f/iz(t7 O

1 T—bh—t

T — 2bh — 1) Al e [(An(s) = 1) (Au(s + 1) — 1) — E(C,un(t))]ds}. (A.13)

_|_
(
Since term (A.13) converges to zero in probability, (T' — 2bh — t)~'/2 3" (;(t, h) — Et;(t, h))
is asymptotically equivalent to (ne) /23" (%;(t, h) — Ev;(t, h)) as n — oc. Therefore, (A.10)
holds, which gives us the desired result upon using Lemma A.2. O
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