
The Annals of Applied Statistics
2010, Vol. 4, No. 4, 1913–1941
DOI: 10.1214/10-AOAS352
© Institute of Mathematical Statistics, 2010

NONPARAMETRIC INFERENCE OF DOUBLY STOCHASTIC
POISSON PROCESS DATA VIA THE KERNEL METHOD1

BY TINGTING ZHANG AND S. C. KOU

University of Virginia and Harvard University

Doubly stochastic Poisson processes, also known as the Cox processes,
frequently occur in various scientific fields. In this article, motivated primar-
ily by analyzing Cox process data in biophysics, we propose a nonparametric
kernel-based inference method. We conduct a detailed study, including an
asymptotic analysis, of the proposed method, and provide guidelines for its
practical use, introducing a fast and stable regression method for bandwidth
selection. We apply our method to real photon arrival data from recent single-
molecule biophysical experiments, investigating proteins’ conformational dy-
namics. Our result shows that conformational fluctuation is widely present in
protein systems, and that the fluctuation covers a broad range of time scales,
highlighting the dynamic and complex nature of proteins’ structure.

1. Introduction. Poisson processes, fundamental to statistics and probability,
have wide ranging applications in sciences and engineering. A special class of
Poisson processes that researchers across different fields frequently encounter is
the doubly stochastic Poisson process. Compared to the standard Poisson process,
a key feature of a doubly stochastic one is that its arrival rate is also stochastic. In
other words, if we let N(t) denote the process and let λ(t) denote the arrival rate,
then, conditioning on λ(t),

N(t)|λ(t) ∼ inhomogeneous Poisson process with rate λ(t),

where λ(t) itself is a stochastic process [Cox and Isham (1980); Daley and
Vere-Jones (1988); Karr (1991); Karlin and Taylor (1981)]. In the literature such
processes are also referred to as Cox processes in honor of their discoverer [Cox
(1955a, 1955b)].

We consider the inference of Cox processes with large arrival rates in this article.
Our study is primarily motivated by the frequent occurrences of Cox process data
in biophysics and physical chemistry. In these fields, experimentalists commonly
use fluorescence techniques to probe a biological system of interest [Krichevsky
and Bonnet (2002)], where the system is placed under a laser beam, and the laser
excites the system to emit photons. The experimental data consist of photon arrival
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times with the arrival rate depending on the stochastic dynamics of the system
under study (for example, the active and inactive states of an enzyme can have
different photon emission intensities). By analyzing the photon arrival data, one
aims to learn the system’s biological properties, such as conformational dynamics
and reaction rates.

Although we mainly focus on biophysical applications, we note that Cox
processes also appear in other fields. In neuroscience Cox process data arise in
the form of neural spike trains—a chain of action potentials emitted by a sin-
gle neuron over a period of time [Gerstner and Kistler (2002)]—from which re-
searchers seek to understand what information is conveyed in such a pattern of
pulses, what code is used by neurons to transmit information, and how other neu-
rons decode the signals, etc. [Bialek et al. (1991); Barbieri et al. (2005); Rieke
et al. (1996)]. Astrophysics is another area where Cox process data often occur.
For example, gamma-ray burst signals, pulsar arrival times and arrivals of high-
energy photons [Meegan et al. (1992); Scargle (1998)] are studied to gain infor-
mation about the position and motion of stars relative to the background [Carroll
and Ostlie (2007)].

Previous statistical studies of Cox process data in the biophysics and chemistry
literature mainly focus on constructing/analyzing parametric models. For instance,
continuous-time Markov chains and stationary Gaussian processes have been used
to model the arrival rate λ(t) for enzymatic reactions [English et al. (2006); Kou
et al. (2005b); Kou (2008b)], DNA dynamics [Kou, Xie and Liu (2005a)], and
proteins’ conformational fluctuation [Min et al. (2005b); Kou and Xie (2004); Kou
(2008a)].

Although effective for studying the stochastic dynamics of interest when they
are correctly specified, parametric models are not always applicable for data analy-
sis, especially when researchers (i) are in the early exploration of a new phenom-
enon, or (ii) are uncertain about the correctness of existing models, and try to avoid
drawing erroneous conclusions from misspecified parametric models. Owing to its
flexibility and the intuitive appeal of “learning directly” from data, we focus on
the nonparametric inference of Cox process data in this paper. In particular, we
develop kernel based estimators for the arrival rate λ(t) and its autocorrelation
function (ACF). The ACF is of interest because it directly measures the strength
of dependence and reveals the internal structure of the system. For example, for
biophysical data, a fast decay of the ACF, such as an exponential decay, indicates
that the underlying biological process is Markovian and that the biomolecule un-
der study has a relatively simple conformation dynamic, whereas a slow decay of
ACF, such as a power-law decay, signifies a complicated process and points to an
intricate internal structure/conformational dynamic of the biomolecule. Thus, in
addition to discovering important characteristics of the stochastic dynamics under
study, the autocorrelation function can also be used to test the validity of paramet-
ric models.
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Kernel smoothing and density estimates have been extensively developed in the
last three decades; see, for example, Silverman (1986), Eubank (1988), Müller
(1998), Härdle (1990), Scott (1992), Wahba (1990), Wand and Jones (1994), Fan
and Gijbels (1996) and Bowman and Azzalini (1997). Meanwhile, kernel es-
timators of spatial point processes motivated by applications in epidemiology,
ecology and environment studies have been proposed; see Diggle (1985, 2003),
Stoyan and Stoyan (1994), Moller and Waagepetersen (2003), Guan, Sherman and
Calvin (2004, 2006) and Guan (2007). Compared to these spatial applications, the
Cox processes that we encounter in biophysics have some unique features: (i) the
arrival rates are usually large because strong light sources, such as laser, are often
used; (ii) the data size tends to be large, since one can often control the exper-
imental duration; (iii) both short-range and long-range dependent processes can
govern the underlying arrival rate. Consequently, the estimators designed for spa-
tial point processes are not always applicable to biophysical data. For example, the
asymptotic variance formulas derived in the spatial context do not work for high
intensity photon arrival data. The general cross-validation method for bandwidth
selection [Guan (2007)], due to its intense computation, does not work well ei-
ther for large photon arrival data. Furthermore, because of the large arrival rate,
the statistical performance of the kernel estimate depends not only on the Poisson
variation of N(t) given λ(t) but, more importantly, on the stochastic properties of
λ(t). For instance, we shall see in Section 4 that the kernel estimate of ACF will
have asymptotically normal distribution only if λ(t) has short-range dependence.

Similar to classical kernel estimation, there is a bandwidth selection problem
associated with kernel inference of Cox process data. Using the mean integrated
square error (MISE) criterion [Marron and Tsybakov (1995); Jones, Marron and
Sheather (1996); Grund, Hall and Marron (1994); Marron and Wand (1992); Park
and Turlach (1992); Diggle (2003)], we propose a stable and fast regression plug-
in method to choose the bandwidth.

As our study is motivated by the analysis of scientific data, we apply our method
to photon arrival data from real biophysical experiments. The result from our non-
parametric inference helps elucidate the stochastic dynamics of proteins. In par-
ticular, our results show that as proteins (such as enzymes) spontaneously change
their three-dimensional conformation, the conformational fluctuation covers a very
broad range of time scales, highlighting the complexity of proteins’ conforma-
tional dynamics.

The rest of the paper is organized as follows. Section 2 considers kernel esti-
mation of the arrival rate λ(t). Section 3 focuses on estimating the ACF of λ(t),
and provides some guidelines for practical estimation. Section 4 investigates the
asymptotic distribution of our kernel estimates, laying down the results for confi-
dence interval construction. In Section 5 we apply our method to simulated data
and photon arrival data from two biophysical experiments. We conclude in Sec-
tion 6 with some discussion and future work. The technical proofs are provided in
the supplementary material [Zhang and Kou (2010)].
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2. Kernel estimation of the arrival rate.

2.1. The estimator. Suppose within a time window [0, T ] a sequence of arrival
times s1, s2, . . . , sK has been observed from a Cox process N(t), which has sto-
chastic arrival rates λ(t). The goal is to infer from the arrival times the stochastic
properties of λ(t). To do so, we assume the following:

ASSUMPTION 1. The arrival rate λ(t) is a stationary and ergodic process with
finite fourth moments.

Stationarity (i.e., the distribution of {λ(t), t ∈ R} is time-shift invariant) and er-
godicity (i.e., essentially 1

T

∫ T
0 λ(s) ds → E[λ(0)], as T → ∞) are both natural

and necessary for making nonparametric inference of λ(t) from a single sequence
of arrival data. Assumption 1 is particularly relevant for single-molecule biophys-
ical experiments [Kou (2009)] in which the system under study is typically in
equilibrium or steady state.

With Assumption 1, we now construct a kernel based arrival rate estimator

λ̂h(t) =
K∑

i=1

fh(t, si), with fh(t, s) = 1

h
f

(
1

h
(s − t)

)
,(2.1)

where f is a symmetric density function, and h is the bandwidth. When f is taken
to be the uniform kernel, λ̂h(t) amounts to the binning-counting method used in
the biophysics literature [Yang and Xie (2002a, 2002b)], in which λ(t) is estimated
by the number of data points falling into the bin containing t divided by the bin
width [see also Diggle (1985); Berman and Diggle (1989)]. One undesirable con-
sequence of uniform kernel is that, as points move in and out of the bins, λ̂h(t) is
artificially discontinuous. We thus consider general f , and without loss of gener-
ality, we assume the following:

ASSUMPTION 2. f is a density function symmetric around 0 with bounded
support [−b, b].

The assumption of bounded support in fact can be relaxed—essentially all the
results in this paper can be extended to kernels with unbounded supports. However,
to make the theory more presentable and to reduce the length of algebra, we will
work with Assumption 2.

When t is getting too close to the boundaries of the observational time win-
dow [0, T ], there are apparently not enough data to estimate λ(t) accurately.
One method is to use end correction [see Diggle (1985); Berman and Dig-
gle (1989)]: λ̂B(t) = ∑k

i=1 fh(t, si)/
∫ T

0 fh(t, s) ds, which is identical to (2.1) if
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t ∈ [bh,T − bh]. However, the variance of the end-corrected-estimate λ̂B(t) tends
to be large when t is close to 0 or T . We, instead, estimate λ(t) by

λ̂h(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K∑
i=1

fh(t, si), if bh ≤ t ≤ T − bh,

λ̂h(bh), if 0 ≤ t < bh,
λ̂h(T − bh), if T − bh < t ≤ T ,

(2.2)

that is, we use λ̂h(bh) and λ̂h(T − bh) to approximate λ(t) near the boundaries.
We shall see shortly (Table 1) that for typical biophysical data the bandwidth h is
quite small; thus, the bias of (2.2) is also small.

Since the choice of the bandwidth h affects the performance of the kernel es-
timate, we next determine the optimal h that gives the smallest mean integrated
square error (MISE)

MISEf (h) = E

(
1

T

∫ T

0

(
λ̂h(t) − λ(t)

)2
dt

)
.

Owing to the stationarity and ergodicity of λ(t), we have

MISEf (h) = E
(
λ̂h(t0) − λ(t0)

)2 + O(h/T ),

where t0 is any number within [bh,T − bh], say, t0 = T/2, and the O(h/T ) term
arises from the boundary of [0, T ]. Hence, minimizing the MISE amounts to min-
imizing the MSE of λ̂h(t0).

Let C(t) denote the ACF of the arrival rate λ(t): C(t) = cov(λ(0), λ(t)). To
find the optimal bandwidth that minimizes the MSE of λ̂h(t0), we make one more
assumption.

ASSUMPTION 3. The ACF C(t) is twice continuously differentiable for t > 0,
and has nonzero right derivative at 0, that is, C′(0+) = lims→0+(C(s) − C(0))/s

exits and is nonzero.

This assumption reflects the fact that the arrival rate process λ(t) in real exper-
iments is usually not differentiable [Parzen (1962), Chapter 3]; for example, λ(t)

could be a finite-state continuous Markov chain, whose path consists of piecewise
jumps and whose ACF is a mixture of exponential functions, which are nondif-
ferentiable at zero, or λ(t) could be a functional of a stationary nondifferentiable
Gaussian process, such as the Ornstein–Uhlenbeck process (representing a har-
monic oscillator).

THEOREM 2.1. Under Assumptions 1–3, the MSE of λ̂h(t0) is given by

E
(
λ̂h(t0) − λ(t0)

)2 = 1

h
E(λ(0))

∫ b

−b
f 2(r) dr + hC′(0+)γf + R2(h),(2.3)
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where the constant

γf =
∫ b

−b

∫ b

−b
f (r1)f (r2)|r1 − r2|dr1 dr2 − 2

∫ b

−b
f (r)|r|dr < 0,(2.4)

and

R2(h) =
∫ b

−b

∫ b

−b
f (r1)f (r2)

∫ |r1−r2|h
0

(|r1 − r2|h − s)C′′(s) ds dr1 dr2

− 2
∫ b

−b
f (r)

∫ |r|h
0

(|r|h − s)C′′(s) ds dr = o(h).

The optimal h that minimizes the sum of the first two terms (i.e., the main terms)
of the right-hand side of (2.3) is given by

hopt =
[

E(λ(0))

C′(0+)γf

∫ b

−b
f 2(r) dr

]1/2

.(2.5)

The constant γf is strictly negative as long as f is a density function. R2(h) is
the remainder term. For data with large arrival rates, hopt is small, and R2(hopt)

contributes little to the MSE. The proof of the theorem is given in the supplemen-
tary material [Zhang and Kou (2010)].

Since hopt involves unknown quantities, for real applications we use a regression
based plug-in method to estimate it. First, μ = E(λ(0)) is unbiasedly estimated by
μ̂ = K/T , the total number of arrivals divided by the time window length, because

E(μ̂) = 1

T
E{E[k|λ(·)]} = 1

T
E

{∫ T

0
λ(t) dt

}
= E(λ(0)).

Next, we use a regression method to estimate C ′(0+). We will discuss this regres-
sion estimate in detail in Section 3.2 when we study the ACF estimation. Plugging
μ̂ and Ĉ′(0+) into (2.5) yields our estimate ĥopt.

2.2. Numerical illustration. We use two simulation examples to illustrate our
method. In the first example, the arrival rate λ(t) of the Cox process follows a
continuous-time two-state Markov chain, which can be depicted as

A
k1
�
k2

B,(2.6)

where k1 and k2 represent the transition rates between the two states A and B . This
model has been used in the chemistry and biophysics literature [Reilly and Skinner
(1994)] to model spectral and fluorescence data from two-level systems, such as
the open-close of a DNA hairpin [Kou, Xie and Liu (2005a)], and the on-off of ion
channels [Hawkes (2005); Sakmann and Neher (1995)]. We set the transition rates
k1 = 2, k2 = 5 and arrival rates λA = 1000 and λB = 400 respectively at states A

and B in the simulation; the observational time T = 500. These numbers are taken
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FIG. 1. Arrival rate estimation. (a) Two state Markov chain with μ = 828.57 and T = 500. (b) Log
Gaussian λ(t) with γ (t) = 1/(1 + |t |)6 and T = 1500.

to mimic a typical photon arrival experiment in biophysics. We generate a realiza-
tion of λ(t) from the two-state model and then the arrival times si , i = 1, . . . ,K

on top of it. The true mean arrival rate μ = E(λ(0)) = (k2λA + k1λB)/(k1 + k2)

is equal to 828.57 in this case. The simulated data has the empirical mean arrival
rate μ̂ = K/T = 823.11.

Figure 1(a) shows the estimate λ̂
ĥopt

(t), compared with the true λ(t), based on

the Epanechnikov kernel f (t) = 3
4(1 − t2)I (|t | ≤ 1). Figure 1(a) represents a typi-

cal result. We see that λ(t) is well recovered. Table 1 summarizes the results based
on 100 independent simulations for applying our method with four different ker-
nels: the uniform, Epanechnikov, triangular f (t) = (1 − |t |)I (|t | ≤ 1) and quartic
f (t) = 15

16(1 − t2)2I (|t | ≤ 1) kernels. The second and third columns present the
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TABLE 1
Kernel estimates of the arrival rate for the two-state continuous-time Markov chain model. The

second and third columns present the optimal bandwidth hopt and the mean of their estimates ĥopt
based on 100 simulations. The next several columns show the mean of the normalized empirical

MISE 1
T μ̂2

∫ T
0 (λ̂h(t) − λ(t))2 dt for h = hopt, ĥopt, hopt/2 and 2hopt respectively. The numbers in

the brackets are the associated standard deviations

Bandwidth (in 10−2) Normalized empirical MISE (in 10−2)

Kernel f hopt ĥopt hopt ĥopt hopt/2 2hopt

Uniform 4.93 5.19 (0.34) 2.43 (0.057) 2.43 (0.059) 3.05 (0.050) 2.93 (0.092)
Epanechnikov 6.40 6.67 (0.50) 2.23 (0.053) 2.24 (0.055) 2.82 (0.048) 2.70 (0.085)
Quartic 7.74 8.07 (0.66) 2.20 (0.052) 2.21 (0.055) 2.78 (0.047) 2.65 (0.083)
Triangular 7.33 7.64 (0.63) 2.17 (0.052) 2.17 (0.054) 2.74 (0.047) 2.61 (0.082)

optimal bandwidth hopt for each kernel and their estimates ĥopt obtained through
the regression plug-in procedure. The next four columns show the normalized em-
pirical MISE 1

T μ̂2

∫ T
0 (λ̂h(t) − λ(t))2 dt for h = hopt, ĥopt, hopt/2 and 2hopt re-

spectively. It is noticeable that (i) the regression plug-in method for approximating
hopt works well; in particular, the empirical MISE with the estimated ĥopt is close
to that of hopt; (ii) the performance of the kernel method largely depends on the
choice of the bandwidth; if one uses a nonoptimal bandwidth, such as twice or half
hopt, the error can increase as much as 30%; (iii) the choice of the kernel is not as
crucial as that of the bandwidth, which echoes the classical result in kernel density
estimation; and (iv) the widely used binning method, which is equivalent to using
the uniform kernel, gives the largest error.

In the second example, the arrival rate λ(t) follows a log Gaussian process:
λ(t) = M exp(W(t)), where M > 0 and W(t) is a stationary zero-mean Gaussian
process with the autocovariance function γ (t). It is straightforward to obtain μ =
E(λ(t)) = Meγ(0)/2 and C(t) = M2eγ (0)(eγ (t) −1). We take γ (t) = 1/(1+a|t |)H
so that C(t) decreases at the order t−H . Both a and H are positive constants. The
log Gaussian process has been used to model the conformational dynamics and
reactivity of enzyme molecules [Min et al. (2005a); Kou and Xie (2004)]. For
instance, Kou and Xie (2004) showed that an enzyme’s conformational fluctuation
can be modeled by a generalized Langevin equation, in which the λ(t) follows a
log Gaussian process with the ACF having a power law decay C(t) ∼ t−H . Here,
we take H = 6, a = 1, M = 1000 and T = 1500 in our simulation to mimic a
real photon arrival data of this kind. Figure 1(b) compares the estimate λ̂

ĥopt
(t)

to the true λ(t) for the Epanechnikov kernel. We repeat the simulation 100 times.
Figure 1(b) represents a typical outcome. We see that λ(t) is well recovered. The
detailed estimation results are summarized in Table 2. Again, we can see that the
regression plug-in method for estimating hopt works well and that the performance



KERNEL INFERENCE OF COX PROCESS DATA 1921

TABLE 2
Kernel estimates of the arrival rate for the log Gaussian model with C(t) = 10002

× (exp(1/(1 + |t |)6 + 1) − e). The second and third columns present hopt and the mean of the

estimate ĥopt based on 100 simulations. The next four columns show the mean of the normalized

empirical MISE for h = hopt, ĥopt, hopt/2 and 2hopt respectively. The numbers in the brackets are
the associated standard deviations

Bandwidth (in 10−3) Normalized empirical MISE (in 10−2)

Kernel f hopt ĥopt hopt ĥopt hopt/2 2hopt

Uniform 7.49 7.68 (0.27) 8.08 (0.16) 8.20 (0.19) 10.3 (0.17) 10.1 (0.32)

Epanechnikov 9.73 10.1 (0.28) 7.45 (0.15) 7.45 (0.15) 9.33 (0.15) 9.26 (0.30)

Quartic 11.8 12.1 (0.32) 7.34 (0.15) 7.34 (0.15) 9.17 (0.15) 9.14 (0.29)

Triangular 11.1 11.4 (0.30) 7.23 (0.15) 7.23 (0.15) 9.12 (0.15) 8.97 (0.29)

of the kernel method depends largely on the choice of the bandwidth and less so
on the kernels. The widely used binning method again gives the poorest result.

3. Estimating the ACF.

3.1. Kernel estimation. In this section we consider kernel estimation of the
ACF C(t) of the arrival rate. The ACF is useful in exploring the dependence struc-
ture of new stochastic dynamics and identifying appropriate parametric models for
the data.

For example, most ion channel dynamics and most chemical reactions involve
reversible transitions among the various discrete chemical states in which the sys-
tem can exist. In these systems, a fast decay of the ACF, such as an exponential
decay, indicates that the transition among the discrete states has a short memory,
and the underlying biological process has a relatively simple mechanism, such as
having only two or three states. In the case of ion channels, the simplest dynamic
consists of a transition between a single shut state of the ion channel and a single
open state [Sakmann and Neher (1995), Hawkes (2005)], in which the ACF is a
single exponential function over time. In the case of a protein’s conformational
fluctuation, the simplest scenario is a transition between two distinct conformation
states (where the protein reversibly and spontaneously crosses the energy barrier
that separates the two states). In the case of enzyme catalytic fluctuations, the sim-
plest scenario is that the enzyme interconverts among a small numbers of states, in
which the ACF has a near exponential decay [Schenter, Lu and Xie (1999); Yang
and Xie (2002a, 2002b); Kou, Xie and Liu (2005a); Kou et al. (2005b)].

A slow decay of ACF, such as a power-law decay, on the other hand, signifies
a complicated process and points to an intricate internal structure, such as the ex-
istence of a large number of conformation states or the presence of a complicated
energy landscape [Kou and Xie (2004); Min et al. (2005b)].
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To ease the presentation, we first consider the situation where the mean arrival
rate μ = E(λ(0)) is known, and later relax the results for unknown μ. The basic
idea is as follows. If we actually observe the realization of λ(t), then using its
ergodicity property, we have a natural estimate 1

T −t

∫ T −t
0 (λ(s) − μ)(λ(s + t) −

μ)ds for C(t). Now λ(s) is unobserved; we replace it by λ̂h(s). To avoid the bias
at the boundary of the observation window, our kernel estimate of C(t) is

Ĉμ,h(t) = 1

T − 2bh − t

∫ T −bh−t

bh

(
λ̂h(s + t) − μ

)(
λ̂h(s) − μ

)
ds,

(3.1)
t ∈ [0, T − 2bh).

The next two lemmas tell us the bias and variance of Ĉμ,h(t) for estimating C(t)

at a fixed t .

LEMMA 3.1. Under Assumptions 1 and 2,

E(Ĉμ,h(t)) = μ

h

∫ b

−b
f

(
r + t

h

)
f (r) dr

(3.2)

+
∫ b

−b

∫ b

−b
C

(|t + (r − m)h|)f (r)f (m)dr dm.

Furthermore, if Assumption 3 also holds, then

E(Ĉμ,h(t))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(t) + C′′(t)h2
∫ b

−b
r2f (r) dr + o(h2), t ≥ 2bh;

C(0) + μ

h

∫ b

−b
f

(
r + t

h

)
f (r) dr

+ C′(0+)

∫ b

−b

∫ b

−b
|t + (r − m)h|f (r)f (m)dr dm

+ o(h), t ∈ [0,2bh).

The bias of the ACF estimate Ĉμ,h(t) is due to the fact that λ(t) is estimated by
“borrowing” information from the neighboring regions. When t < 2bh, the data
points used to calculate λ̂h(s) and λ̂h(s + t) overlap, resulting in the extra bias
μ

∫ b
−b f (r + t/h)f (r) dr/h.

For notational convenience, we denote

C3(t1, t2) = E
{(

λ(0) − μ
)(

λ(t1) − μ
)(

λ(t2) − μ
)}

,

v(t1, t2, s
′ − s) = cov

{(
λ(s) − μ

)(
λ(s + t1) − μ

)
,
(
λ(s′) − μ

)(
λ(s′ + t2) − μ

)}
.

Because of the stationarity of λ(t), C3(t1, t2) = C3(t2, t1) and v(t1, t2, s
′ − s) =

v(t2, t1, s − s′). The following two technical assumptions are needed to character-
ize the asymptotic behavior of var(Ĉμ,h(t)).
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ASSUMPTION 4. The three-step correlation C3(t1, t2) is continuous and satis-
fies

lim|t2|→∞C3(t1, t2) = 0 for any fixed t1.

ASSUMPTION 5. The cross correlation v(t1, t2, s) is continuous and satisfies

lim|s|→∞v(t1, t2, s) = 0 for any fixed t1 and t2.

These two assumptions reflect the intuitive idea that as time-points move far
away from each other, their dependence should eventually vanish. They are satis-
fied by most stationary and ergodic processes that one encounters in practice, such
as continuous-time finite-state Markov Chains and functionals of stationary and
ergodic Gaussian processes.

LEMMA 3.2. The variance of Ĉμ,h(t) can be decomposed as

var(Ĉμ,h(t)) = var{E(Ĉμ,h(t)|λ(·))} + E{var(Ĉμ,h(t)|λ(·))}.(3.3)

Under Assumptions 1, 2, 4 and 5,

var{E(Ĉμ,h(t)|λ(·))}
(3.4)

= 1

(T − 2bh − t)2

(
Ah

t,T + 2

h
Bh

t,T + 1

h2 Ch
t,T

)
→ 0, as T → ∞,

where

Ah
t,T =

∫∫
[bh,T −bh−t]2

[∫∫∫∫
[−b,b]4

v
(
t + (l − m)h, t + (l′ − m′)h,

s′ − s + (l′ − l)h
)
f (l)

× f (m)f (l′)f (m′) dl dm dl′ dm′
]

ds ds′,

Bh
t,T =

∫∫
[bh,T −bh−t]2

[∫∫∫∫
[−b,b]3

C3
(
t + (l′ − m′)h,

s − s′ + t + (l − m′)h
)
f (l′)

× f (m′)f (l)f

(
l + t

h

)
dl dm′ dl′

]
ds ds′,

Ch
t,T =

∫∫
[bh,T −bh−t]2

[∫∫
[−b,b]2

C
(
s′ − s + (l′ − l)h

)
f (l)

× f

(
l + t

h

)
f (l′)f

(
l′ + t

h

)
dl dl′

]
ds ds′,
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and

E{var(Ĉμ,h(t)|λ(·))} = 1

T − 2bh − t

(
Dh

t + 1

h
Eh

t + 1

h2 Fh
t

)
+ O

(
h

T 2

)
,(3.5)

where the three terms Dh
t ,Eh

t and Fh
t do not depend on T . Their exact but lengthy

expressions, involving multiple integrals, are given in the supplementary material
[Zhang and Kou (2010)].

Equation (3.3) indicates that the variance of the ACF estimate arises from two
sources: the Poisson variation—E{var(Ĉμ,h(t)|λ(·))}—and the variation from λ(t)

– var{E(Ĉμ,h(t)|λ(·))}. Ah
t,T is the main part of var{E(Ĉμ,h(t)|λ(·))}. When t >

2bh, Bh
t,T and Ch

t,T both equal zero.
Based on Lemmas 3.1 and 3.2, the next theorem tells us that as the observation

time T gets larger, Ĉμ,h(t) consistently estimates C(t).

THEOREM 3.3. Suppose that C(t) is a continuous function of t ∈ [0,∞) and
that Assumptions 1, 2, 4 and 5 hold. Then for any fixed t > 0, as T · h → ∞ and
h → 0,

Ĉμ,h(t) → C(t) in L2,

so, in particular,

Ĉμ,h(t) → C(t) in probability.

The assumption of continuous C(t) is satisfied for general continuous-time
stationary and ergodic processes. We note that in the context of spatial point
processes, different estimates of the covariance function have been proposed [see,
e.g., Stoyan and Stoyan (1994) and Diggle (2003)]. We use (3.1) here mainly due
to its internal coherency: an estimate of λ(t) naturally leads to an estimate of C(t).

3.2. Practical consideration. To use the kernel estimate in practice, a few is-
sues arise naturally.

Unknown μ. In real applications, the mean arrival rate μ is unknown. Employ-
ing its unbiased estimate μ̂ = K/T , we use

Ĉμ̂,h(t) = 1

T − 2bh − t

∫ T −bh−t

bh

(
λ̂h(s + t) − μ̂

)(
λ̂h(s) − μ̂

)
ds

to estimate the ACF. A question follows immediately: is Ĉμ̂,h(t) still a consistent
estimator? The next theorem provides a positive answer.

THEOREM 3.4. Suppose that C(t) is a continuous function of t ∈ [0,∞) and
that Assumptions 1, 2, 4 and 5 hold. Then for any fixed t > 0, as T · h → ∞ and
h → 0,

Ĉμ̂,h(t) → C(t) in probability.
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Bias correction for small t . From Lemma 3.1, we see that Ĉμ,h(t) has an extra
bias μ

∫ b
−b f (r + t/h)f (r) dr/h for t < 2bh. A bias correction can be conducted

for t < 2bh, yielding

C̃μ̂,h(t) = Ĉμ̂,h(t) − μ̂

h

∫ b

−b
f

(
r + t

h

)
f (r) dr.(3.6)

Estimating hopt. In Section 2 we briefly described how to estimate hopt to re-
cover the arrival rate, where the key is to estimate the derivative C′(0+). With
Lemma 3.1 established, we now explain our estimate in detail. Lemma 3.1 tells
us that, for small t , the expectation of C̃μ̂,h(t) depends on

∫ b
−b

∫ b
−b |t + (r −

m)h|f (r)f (m)dr dm linearly with C′(0+) as the slope. This suggests that we
can calculate Yi = C̃μ̂,h(ti) for evenly spaced ti ∈ [0,2bh), say, ten points, and

regress Yi on Xi = ∫ b
−b

∫ b
−b |ti + (r − m)h|f (r)f (m)dr dm. The regression slope

is our estimate of C′(0+). Compared to the naive idea of using a numerical deriv-
ative (Ĉ(�) − Ĉ(0))/� for some small � to approximate C′(0+), this regression
estimate is not only easy to implement, but, more importantly, much stabler in
performance (see Figure 2).

For the calculation of C̃μ̂,h(ti), one needs to start from an initial h. We use
h = ρ/μ̂ = ρT/K , where the constant ρ (for example, between 3 and 10) is the
average number of data points falling in an interval of length h. This choice of
initial h ensures that there are enough points in the kernel to give reliable C̃μ̂,h(ti).
Throughout our simulation and real data analysis, where μ̂ is in the hundreds, we
found that taking ρ between 3 and 10 gives almost identical results. Figure 2 shows
how our estimate ĥopt behaves for the two simulation examples of Section 2: the

FIG. 2. Estimating the optimal bandwidth with the Epanechnikov kernel.
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two-state Markov chain and the log Gaussian process model. The dotted vertical
line is the true hopt. The histograms in Figure 2 are based on 1000 i.i.d. replications
of the Cox process. The estimate ĥopt is seen to be stable and close to hopt.

The bandwidth h for estimating C(t). To estimate the ACF C(t), a natural
question is the choice of h. It could be different from that associated with recov-
ering the arrival rate. One approach might be as follows: based on the results of
Lemmas 3.1 and 3.2, find the asymptotic leading terms in bias-square and vari-
ance, and then search for h to optimize their linear combination. Although con-
ceptually “simple”, this approach in fact has several major difficulties that make
it ineffective for practical use: (a) As the equations in Lemmas 3.1 and 3.2 in-
volve fourth moment and covariance of λ(t), one needs to estimate them. Since
the estimates of high moments often have large variability, the resulting h tends
to be highly variable. (b) The bias and variance formulas depend on the specific
value of t , which implies that for each t there is an h. Consequently, if the entire
curve C(t) is of interest (as in many scientific studies), the computation becomes
very intensive. (c) In order for the bias-squared to become comparable to the vari-
ance and in order for the asymptotics to take effect, h needs to be much smaller
than (C(t) + μ2)/(

∫ T
0 v(t, t, s) ds), which in turn requires T to be quite large:

T ∼ O((C(t) + μ2)/(C′′(t)2h5)). However, real biophysical data with large μ

and moderate T hardly satisfy this requirement. (d) In order to identify the asymp-
totic leading terms, more technical assumptions, such as short-range dependence
of λ(t) [i.e.,

∫ ∞
0 C(t) dt < ∞], have to be imposed, which restricts the estimate’s

general applicability.
For these reasons, we recommend using ĥopt for t ≥ 2bĥopt and a smaller band-

width h = min(ρ/μ̂, ĥopt), where ρ ∈ [3,10] for t < 2bĥopt to estimate the ACF
C(t). The reason to use min(ρ/μ̂, ĥopt) instead of ĥopt for t < 2bĥopt is that for
large mean arrival rate μ, ρ/μ̂ can be smaller than ĥopt; in this case Lemma 3.1
tells us that for small t the bias of C̃μ̂,h(t) from h = ρ/μ̂ tends to be smaller than
that of ĥopt, while Lemma 3.2 indicates that the variances of the two are about the
same. Thus, for small t , min(ρ/μ̂, ĥopt) appears to be a better choice. Although our
bandwidth recommendation does not guarantee the smallest MSE for C(t) at every
t , it does offer a stable and easy-to-compute bandwidth. We will demonstrate the
effectiveness of this choice in Section 5 (see Table 3) when we study confidence
interval construction.

Approximating the variance of Ĉμ,h(t). For estimating the variance of Ĉμ,h(t)

(e.g., in confidence interval construction), one can in principle use Lemma 3.2, re-
placing the unknown quantities with their empirical counterparts. However, this
approach does not work well for the real data that we have tried for two reasons:
(a) Multiple integrals on empirical third or higher moments tend to be highly vari-
able. (b) The computing demands are quite high given the many multiple integrals
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involved. Fortunately, we find an efficient shortcut. First, when the mean arrival
rate μ is large, variation from the underlying stochastic arrival rate dominates in
the variance decomposition (3.3): var{E(Ĉμ,h(t)|λ(·))} 	 E{var(Ĉμ,h(t)|λ(·))}.
Proposition 3.5 below gives a theoretical justification. Second, for the real bio-
physical experimental data that we have tried, var{E(Ĉμ,h(t)|λ(·))} accounts for
more than 95% of the total variance var(Ĉμ,h(t)). Furthermore, in these real data,
Ah

t,T /(T − 2bh − t)2 in the decomposition (3.4) of var{E(Ĉμ,h(t)|λ(·))} pro-

vides more than 90% of var(Ĉμ,h(t)). These observations suggest that we can use
Ah

t,T /(T − 2bh − t)2 to approximate var(Ĉμ,h(t)).

PROPOSITION 3.5. Denote λ0(t) = λ(t)/μ, that is, E(λ0(t)) = 1 and λ(t) =
μλ0(t). Suppose the law of {λ0(t), t ∈ R} is fixed. Then under Assumptions 1–3,
for any fixed T , h and t ,

Ah
t,T

(T − 2bh − t)2

/
var(Ĉμ,h(t)) → 1, as μ → ∞,(3.7)

where Ah
t,T is defined in Lemma 3.2.

This proposition directly relates to real experimental data, especially those from
fluorescence biophysical experiments. In such experiments the samples are usually
placed under a laser beam, and the photon arrival intensity is proportional to the
laser strength. To illuminate the sample, experimenters usually use a strong laser.
In this scenario, since the intrinsic molecular dynamics do not change, the law of
{λ0(t)} remains the same, while μ is large.

The approximation of Ah
t,T /(T − 2bh − t)2 can be further simplified for practi-

cal use. First, because the bandwidth h is usually chosen to be small, and v(·, ·, ·)
is a continuous function, Ah

t,T approximately equals
∫ ∫

[bh,T −bh−t]2 v(t, t, s ′ −
s) ds ds′. Second, since the process {λ(s), s ∈ R} is stationary, and to accurately
estimate C(t), t is usually small compared to T (in order to have enough data),∫ ∫

[bh,T −bh−t]2 v(t, t, s ′−s) ds ds′ approximately equals 2
(T −2bh−t)2

∫ T −t−2bh
0 (T −

t − r)v(t, t, r) dr . Third, replacing

v(t, t, r) = E
((

λ(0) − μ
)(

λ(t) − μ
)(

λ(r) − μ
)(

λ(r + t) − μ
)) − C2(t)

with its empirical counterpart ˆcov(t, r), which is

ˆcov(t, r) = max
{

1

T − 2bh − r − t

×
∫ T −bh−r−t

bh

(
λ̂h(s) − μ̂

)(
λ̂h(s + t) − μ̂

)(
λ̂h(r + s) − μ̂

)

× (
λ̂h(r + s + t) − μ̂

)
ds − Ĉ2

μ̂,h(t),0
}
,
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FIG. 3. (a) ̂MSE(h) vs. bandwidth using Diggle’s (1985) method for data from the two-state model.
(b) The bandwidth selected by the subsampling procedure. The histogram is based on 100 i.i.d.
replications of the Cox process from the two-state model.

results in the final approximation of var(Ĉμ,h(t)):

V̂ (t) = 2

(T − 2bh − t)2

∫ T −t−2bh

0
(T − t − 2bh − r) ˆcov(t, r) dr.(3.8)

Note that v(t, t, r) is typically nonnegative, so we force ˆcov(t, r) to be nonnegative
also. We will demonstrate the use of V̂ (t) in Section 5.

Comparison with existing methods. Diggle (1985) provided a procedure for
selecting the bandwidth for estimating the arrival rate λ(t) in the case of f

being the uniform kernel. In this procedure, based on an estimate M̂SE(h) of
E(λ̂h(t) − λ(t))2, the bandwidth is chosen to be the one that gives the smallest
M̂SE(h). Figure 3(a) shows the standardized estimate M̂SE(h)/μ̂2 for the data of
Figure 1(a) by this approach. However, this method is computationally more inten-
sive than our method, since it involves estimating MSE for all the possible band-
widths. Moreover, the MSE estimator provided by Diggle (1985) is only meant for
the uniform kernel and does not generalize to other kernels.

Guan (2007) has proposed a composite likelihood cross-validation approach in
selecting bandwidth for estimating the ACF. However, due to the large data size
in our study (more than two million arrival points), this method is computation-
ally too expensive to use (we found that the C program cannot even finish in an
affordable time).

We also applied the subsampling procedure of Guan, Sherman and Calvin
(2004, 2006) to our data. Figure 3(b) shows the histogram of the bandwidths
selected by the subsampling procedure based on 100 i.i.d. simulations from the
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two-state model in Section 2. We found that this procedure leads to a much larger
bandwidth than ĥopt proposed in Section 2, and, consequently, the estimates of
C(t) have large bias, particularly for t close to zero.

Compared to the existing methods, in terms of computational effort, our pro-
posed method takes no more than five minutes to finish analyzing a process with
more than two million data points, including estimating the arrival rate and the
autocorrelation function and constructing the confidence intervals.

Connection with the classical kernel density estimate. Despite its similarity
with the classical kernel density estimate, the kernel estimates λ̂h(t) and Ĉμ,h(t)

have several distinct features: (i) Since λ(t) is stochastic, a consistent estimate
of λ(t) does not exist. (ii) In classical kernel problems, the number of obser-
vations K does not depend on the underlying density, whereas the total num-
ber of observations in our case is random and depends on the stochastic process
{λ(t), t ∈ [0, T ]}. Consequently, (iii) consistency refers to the observational win-
dow T → ∞. (iv) The asymptotic behavior of the kernel estimate would depend
on the distributional properties of λ(t), as we shall see next.

4. Asymptotic distribution of the kernel estimate. We investigate the lim-
iting behavior of the kernel estimate Ĉμ,h(t) in this section, since the asymptotic
normality plays an important role in confidence interval construction. For well-
behaved λ(t), we can show that the asymptotic normality of Ĉμ,h(t) holds.

ρ-mixing arrival rate. Let Ft = σ(λ(s) : s ≤ t) be the sigma field generated by
λ(s) for s ≤ t , and Gt = σ(λ(s) : s ≥ t) be the tail sigma field generated by λ(s)

for s ≥ t . Define

ρt = sup{E(ξη) : ξ ∈ Fs,Eξ = 0,‖ξ‖ ≤ 1;η ∈ Gs+t ,Eη = 0,‖η‖ ≤ 1}.(4.1)

λ(t) is said to be finite ρ-mixing if
∫ ∞

0 ρs ds < ∞ [Billingsley (1999)].

THEOREM 4.1. Suppose that Assumptions 1, 2, 4 and 5 hold, and that the
arrival rate process {λ(t), t ∈ R} is bounded and finite ρ-mixing. Then for fixed
t, h ≥ 0,

√
T [Ĉμ,h(t) − E(Ĉμ,h(t))] D→ N(0, σ 2(t, h)) as T → ∞,(4.2)

where σ 2(t, h) = limT →∞ T var(Ĉμ,h(t)).

THEOREM 4.2. Suppose that Assumptions 1 and 2 hold and that the sto-
chastic process λ(s) is a continuous-time Markov chain with finite number of
states. Then for fixed t, h ≥ 0, the asymptotic normality (4.2) holds with σ 2(t, h) =
limT →∞ T var(Ĉμ,h(t)).
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Theorem 4.2 covers a large class of arrival rates. Another class of processes,
widely used in the physical science literature, is functionals of stationary Gaussian
processes: λ(s) = g(W(s)), where g is a positive and continuous function, and
{W(s), s ∈ R} is a zero-mean Gaussian process. We will see that as long as the au-
tocorrelation of W(s) decays reasonably fast, the asymptotic normality of Ĉμ,h(t)

remains true.
We consider, in particular, Gaussian processes of the form{

W(t), t ∈ R :W(t) = W(jε) for t ∈ [
jε, (j + 1)ε

)
, j = 0,±1,±2, . . .

}
,(4.3)

where ε > 0 is a fixed constant. In other words, we consider Gaussian processes
generated piecewise by a discrete skeleton: {. . . ,W(−2ε),W(−ε),W(0),W(ε),

W(2ε), . . .}, where W(jε) is a discrete-time stationary zero-mean Gaussian
process. The reason that we focus on this type of Gaussian process is two fold:
first, if ε is small enough, W can essentially approximate any continuous stationary
Gaussian process with arbitrary precision, and this is typically how one simulates
a Gaussian process; second, the theoretical calculations behind continuous-time
Gaussian processes, especially those regarding mixing conditions, are quite deli-
cate [see, e.g., Ibragimov and Rozanov (1978)], so to avoid drifting too much into
the mathematical details and to present our proofs in a concise manner, we work
on (4.3). We have the following result on functionals of Gaussian processes; its
proof is given in the supplementary material [Zhang and Kou (2010)].

THEOREM 4.3. Suppose that Assumptions 1, 2, 4 and 5 hold, and that
λ(s) = g(W(s)), where g is a positive and bounded measurable function, and
{W(s), s ∈ R}, defined in (4.3), is generated from a discrete skeleton {W(jε)}.
If the ACF γ (jε) = cov(W(0),W(jε)) satisfies

∑∞
j=0 |γ (jε)| < ∞, then for any

fixed t and h, the asymptotic normality (4.2) of Ĉμ,h(t) holds with σ 2(t, h) =
limT →∞ T var(Ĉμ,h(t)).

Long-range dependent processes. Stochastic processes with a finite integrated
correlation

∫ ∞
0 C(t) dt < ∞ are said to be short-range dependent. Our results

essentially say that for Cox processes with short-range dependent arrival rates,
we expect the asymptotic normality of Ĉμ,h(t) to hold, which offers a big ad-
vantage in the confidence interval construction. For long-range dependent ar-
rival rates (

∫ ∞
0 C(t) dt = ∞), however, no easy conclusion can be drawn about

the asymptotic behavior of Ĉμ,h(t). Even the form of limiting law varies from
case to case. For example, the limiting process might be a fractional Brown-
ian Motion [Whitt (2002)], a stable Lévy motion [Whitt (2002)] or a Rosen-
blatt process [Taqqu (1975)]. Moreover, the variance of the limiting law, most
likely, will not be the same as the limit of the variance [Taqqu (1975)], that

is, limT →∞ var(Ĉμ,h(t)/

√
var(Ĉμ,h(t))) �= var(limT →∞ Ĉμ,h(t)/

√
var(Ĉμ,h(t))).

Therefore, an interesting open problem is to investigate the asymptotic behavior of
the Cox process estimates with long-range dependent arrival rates.
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5. Numerical study of ACF estimation. We illustrate our method through
several numerical examples—both simulation and real biophysical experimental
data. We use the Epanechnikov kernel throughout this section.

5.1. Simulation examples.

Finite-state Markov chains. Since Theorem 4.2 guarantees the asymptotic nor-
mality of the kernel ACF estimate, we can construct a pointwise 1−α approximate
confidence interval (C.I.) of C(t) via[

C̃μ̂,h(t) − �−1
(

1 − α

2

)√
V̂ (t), C̃μ̂,h(t) + �−1

(
1 − α

2

)√
V̂ (t)

]
,(5.1)

where C̃μ̂,h(t) and V̂ (t) are given in (3.6) and (3.8) respectively. Following the
discussion in Section 3.2, we use h = min(5/μ̂, ĥopt) for t < 2bĥopt and h = ĥopt

for t ≥ 2bĥopt.
We revisit the two-state Markov chain model (2.6) in Section 2. In this case,

the true ACF is exponential: C(t) = (λA −λB)2k1k2 exp(−(k1 + k2)t)/(k1 + k2)
2.

We applied the kernel estimator and (5.1) to the data set simulated in Section 2
[Figure 1(a)]. Figure 4(a) shows C̃μ̂,h(t) as the solid line, and the point-wise 95%
C.I. as the dotted lines. The true ACF C(t), shown as the dashed line, is well re-
covered. Since C(t) usually decays quite fast, to highlight the details, especially
around the tails, we plotted the estimate on the logarithm scale. We see from Fig-
ure 4(a) that log C̃μ̂,h(t) is linear with t , indicating the exponential decay of C(t).

FIG. 4. ACF estimation for two-state Markov chains. The left panel shows C̃μ̂,h(t) (the time t

is in second) and the approximate 95% C.I. [normalized by C̃μ̂,h(0)] based on one sequence of

arrival data. The right panel shows the 2.5 and 97.5 percentiles of C̃μ̂,h(t) calculated from 1000
i.i.d. repetitions from the same model.
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TABLE 3
The coverage probabilities of the 95% C.I. (5.1) at various time points for different models based on
1000 i.i.d. repetitions. For reference, the standard deviation of a binomial proportion with success

probability of 0.95 and 1000 trails is 0.0069

Time tCoverage
probability 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

Two state 0.97 0.97 0.97 0.96 0.93 0.97 0.97 0.96 0.97 0.96
Log-Gaussian H = 6 0.91 0.92 0.92 0.93 0.93 0.94 0.95 0.97 0.95 0.96
Log-Gaussian H = 0.5 0.57 0.58 0.59 0.60 0.62 0.63 0.66 0.66 0.65 0.66

As a check for the accuracy of the C.I., we repeated the data generation 1000
times independently. For each simulated data set, we calculated C̃μ̂,h(t). The 2.5
and 97.5 percentiles of these repeated estimates C̃μ̂,h(t) give the real 95% cover-
age of C̃μ̂,h(t), which is shown on Figure 4(b). Comparing the two panels, we see
that the variance estimate based on just one realization is close to the truth. From
the 1000 i.i.d. repetitions, we calculated the coverage probabilities of the 95% C.I.
(5.1) for various t . Table 3 (the second row) reports the numbers, which are close
to the nominal 95%; Figure 5(a) plots them graphically.

Log Gaussian processes. We next consider examples where the arrival rate
λ(t) follows a log Gaussian process: λ(t) = M exp{W(t)}, where W(t) is a station-
ary zero-mean Gaussian process with the ACF γ (t). As we mentioned in Section 2,
the log Gaussian process has been used to model the conformational dynamics and
reactivity of enzyme molecules [Min et al. (2005a); Kou and Xie (2004)]. As in

FIG. 5. The coverage probabilities of the 95% C.I. (5.1) for t ∈ [0,10] (the time t is in second)
under different models.
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FIG. 6. ACF estimation for a short-range dependent log-Gaussian process with
C(t) = 106(exp(1/(1 + |t |)6 + 1) − e) (the time t is in second). The left panel shows C̃μ̂,h(t) and

the approximate 95% C.I. [normalized by C̃μ̂,h(0)] based on one sequence of arrival data. The right

panel shows the 2.5 and 97.5 percentiles of C̃μ̂,h(t) calculated from 1000 i.i.d. replications from the
same model. The total observational time T equals 1500. Both graphs are plotted on the log–log
scale.

Section 2, we take γ (t) = 1/(1 + a|t |)H so that C(t) = M2(exp(γ (t) + 1) − e)

decreases at the order of t−H . Both a and H are positive constants. The larger the
decay slope H , the faster the C(t) converges to zero and the faster the estimate con-
verges to C(t). H also determines the dependence structure of the Cox process: if
H ≤ 1, the process is long-range dependent. In the simulation, we generate W(t)

through the discrete skeleton (4.3), and then draw the arrival times s1, s2, . . . on
top of λ(t). For each simulated arrival sequence, we calculate the kernel estimate
C̃μ̂,h(t) and the 95% C.I. (5.1).

We consider two log Gaussian processes: one with H = 6 and a = 1, and the
other with H = 0.5 and a = 20. In both cases, the maximum observational time
T = 1500 and the constant M is taken to be 1000 to mimic typical photon arrival
data from a biophysical experiment. For the log Gaussian process with H = 6,
Figure 6(a) plots C̃μ̂,h(t) and the 95% approximate C.I. based on one data set. Fig-
ure 6(b) plots the 2.5 and 97.5 percentiles of C̃μ̂,h(t) from 1000 i.i.d. repetitions.
For easy visual detection of the power law decay, the graph is plotted on a log–log
scale. The similarity between the left and right panels indicates the effectiveness
of our method. The real coverage probabilities of the 95% C.I. (5.1) are shown in
Figure 5(b) and Table 3 (the third row). We see that the real coverage probabili-
ties for the H = 6 case are close to the nominal 95%. Figure 6 also suggests that
logC(t) is roughly linear with log t near the tail of the curve.

The log Gaussian process with H = 0.5 and a = 20 is long-range dependent.
We can still calculate C̃μ̂,h(t) and the C.I. (5.1). However, since even asymptotic
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FIG. 7. ACF estimation for a long-range dependent log-Gaussian process with
C(t) = 106(exp(1/(1 + 20|t |)0.5 + 1) − e) (the time t is in second). The left panel shows
C̃μ̂,h(t) and the approximate 95% C.I. [normalized by C̃μ̂,h(0)] based on one sequence of arrival

data. The right panel shows the 2.5 and 97.5 percentiles of C̃μ̂,h(t) calculated from 1000 i.i.d.
replications from the same model. The total observational time T equals 1500. Both graphs are
plotted on the log–log scale.

normality is no longer valid, one would expect the real coverage to be way off.
Figure 7 contrasts the “C.I.” based on one data set with the true 2.5 and 97.5 per-
centiles of C̃μ̂,h(t) from 1000 i.i.d. replications. It is evident that although C̃μ̂,h(t)

still estimates C(t) reasonably well, the “C.I.” constructed from one data set is
quite narrower than the true percentiles. The last row of Table 3 shows that the real
coverage probabilities of (5.1) in this long-range dependent case are much smaller
than the nominal 95%—clearly the asymptotic variance is underestimated.

Static processes. Our method can be easily applied to detect static processes.
When the underlying biological process is static, the photon arrival rate λ(t) is a
constant, and C(t) ≡ 0 for t > 0. In this case, we would observe that the arrival
rate estimate λ̂

ĥopt
(t) oscillates around a constant, and the ACF estimate C̃μ̂,h(t)

clusters around zero. Figure 8 shows such an example with constant arrival rate
λ(t) ≡ 500 and T = 500.

5.2. Experimental photon arrival data. Studying the conformational dynam-
ics of proteins is of current biophysical interest. For example, scientists have be-
come aware that an enzyme’s conformational fluctuation can directly affect its cat-
alytic activity—certain conformations yield highly active catalysis, whereas oth-
ers lead to less active catalysis [Lu, Xun and Xie (1998); English et al. (2006)].
A recent single-molecule experiment [Yang et al. (2003)] investigates the confor-
mational dynamics of a protein-enzyme compound Fre, which is involved in the
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FIG. 8. Analyzing Cox process data with constant arrival rate λ(t) ≡ 500 and T = 500. (a) Arrival
rate estimate. (b) ACF estimate (normalized by μ̂2).

DNA synthesis of E. Coli. In the experiment, the protein compound is immobi-
lized and placed under a laser beam. Photons from the laser-excited molecule are
collected. Since the photon arrival rate depends on the molecule’s time-varying
three-dimensional conformation (different conformations of Fre generate different
arrival rates), the spontaneous conformation fluctuation of Fre leads to a stochastic
arrival rate. The ACF of the photon arrival rates therefore reflects the time depen-
dence of Fre’s conformational fluctuation [Weiss (2000)].

The experimental photon arrival data has a total observational time T = 354
seconds. The empirical mean arrival rate μ̂ = 534.6 counts/second. We first es-
timated the arrival rate and showed it in Figure 9(a). This plot leads to a natural
question regarding the nature of Fre’s conformational fluctuation: does Fre have
a small number of distinct conformation states or many? Looking at the decay
of C(t) provides one way to address this question. We applied the bias-corrected
C̃μ̂,h(t) to estimate C(t). Figure 9(b) shows C̃μ̂,,h(t) and its approximate 95% C.I.
(5.1). We plotted the estimates on a log–log scale to give a better view of the decay
of the ACF. The apparent linear pattern suggests a power-law relationship. If there
are only two, three or even four conformation states, then C(t) should be a mixture
of no more than three exponential functions. The apparent power-law relationship
indicates a different picture: instead of having two, three or even four discrete con-
formation states, the 3D conformation of Fre appears to fluctuate over a continuum
(as a check, we have attempted to parametrically fit a mixture of three exponentials
to the estimated ACF, but even the best fitting is very poor), so the parametric fi-
nite state Markov Chain model cannot be applied here. The slow decay of the ACF
thus points to a complicated conformation dynamic of Fre, which implies that the
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FIG. 9. Analyzing the photon arrival data from a single-molecule experiment with T = 354.3 and
μ̂ = 534.6. (a) Arrival rate estimate. (b) ACF estimate and its 95% confidence interval plotted on the
log–log scale.

enzyme’s catalytic rate could vary over a broad range, a phenomenon called dy-
namic disorder in the biophysics literature [Min et al. (2005a); Lerch, Rigler and
Mikhailov (2005)].

Another recent single-molecule experiment [Min et al. (2005b)] also investi-
gates protein’s conformational dynamics, studying a protein complex formed by
fluorescein and monoclonal antifluorescein. This protein complex is an antibody-
antigen system. Like the previous compound, the 3D conformation of the molecule
spontaneously fluctuates over time. To study the conformational dynamics, the im-
mobilized protein complex was placed under a laser beam. Photons from the laser-
excited molecule are collected. The photon arrival rate λ(t) depends on the mole-
cule’s time-varying conformation. Figure 10(a) shows the arrival rate estimates for
this data, which have T = 1312.8 and μ̂ = 1523.5. This plot seems to suggest that
there are many conformation states in this antibody-antigen system. To further in-
vestigate, we applied C̃μ̂,h(t) to estimate C(t). Figure 10(b) shows our estimate
and the approximate 95% C.I. (5.1) on a log–log scale. Again, we observed a slow
decay of the ACF. We attempted to parametrically fit a mixture of three exponen-
tials to the estimated ACF but only obtained a very poor result. Like the previous
system, it appears that the 3D conformation of this antibody-antigen system fluc-
tuates over a broad range rather than over just a few, say, three of four, discrete
states.

Since the second experiment is on a totally different system from the first,
our statistical results indicate that (i) conformational fluctuation could be widely
present in protein systems; (ii) the fluctuation appears to be over a broad range of
time scales. Our results thus support the growing understanding in the biophysics
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FIG. 10. Analyzing the photon arrival data from another single-molecule experiment with
T = 1312.8 and μ̂ = 1523.5. (a) Arrival rate estimate. (b) ACF estimate and its 95% confidence
interval plotted on the log–log scale.

community that proteins’ conformational fluctuation is a complex phenomenon,
which in turn affects some crucial functions of proteins, such as enzyme catalysis
[Lerch, Rigler and Mikhailov (2005); English et al. (2006)] and electron transfer
in photosynthesis [Wang et al. (2007)].

6. Conclusion. Motivated by the analysis of experimental data from bio-
physics, we propose a nonparametric kernel based method for inferring Cox
process in this article, complementing existing parametric approaches. An impor-
tant feature of the arrival data in biophysics is that the arrival rate is often large,
which makes the methods developed for analyzing spatial point processes (which
usually have low arrival rates), such as variance estimate, bandwidth selection and
asymptotic theory, not directly applicable for our purpose. In addition to propos-
ing the kernel estimates, we conduct a detailed study of their properties. We show
that the asymptotic normality of our ACF estimates holds for most short-range
dependent processes, which provides the theoretical underpinning for confidence
interval construction. We provide an approximation of the variance of the ACF es-
timate, which accounts for at least 90% of the total variation in our examples. We
can possibly improve this approximation, for example, by taking into account the
Poisson variation E{var(Ĉμ,h(t)|λ(·))} part, which might be particularly beneficial
when λ(t) has a strong short-range dependence.

We applied our nonparametric method to analyze two real photon arrival data
produced in recent (single-molecule) biophysical experiments. Using our kernel
ACF estimate, we examine the conformational dynamics of two different protein
systems. We observed that the conformational fluctuation exhibits a long memory
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and spans a broad range of time scales, confirming the recent experimental dis-
covery that the classical static picture of proteins that researchers used to assume
needs to be revised.

An important open question for future study is to investigate Cox processes with
long-range dependent arrival rates. Another open question for our future investiga-
tion is the estimation of high-order correlations of the arrival rate, as biophysicists
and chemists have used them to discriminate different mechanistic and phenom-
enological models [Mukamel (1995)].
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