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The intermittent emission of fluorescent light from single enzymes, quantum dots, and other nanoscale systems
is often characterized by statistical correlations in the emitted signal. A one-dimensional model of such
correlations in enzymes, based on a model of protein conformational fluctuations developed by Kou and Xie
(Phys. ReV. Lett.2004, 93, 180603), is formulated in the present paper in terms of the dynamics of a particle
moving stochastically between “on” and “off” states under the action of fractional Gaussian noise. The model
yields predictions for the short and long time behavior of the following quantities: the time correlation function,
C(t), of the fluctuations of the signal intensity, the distribution,f(t), of time intervals between intensity
fluctuations, and the Mandel parameter,Q(t), describing the extent of bunching or anti-bunching in the signal.
At short times,C(t) and f(t) are found to decay exponentially, while, at long times, they are found to decay
as power laws, the exponents being functions solely of the nature of the temporal correlations in the noise.
The results are in good qualitative agreement with results from single-molecule experiments on fluorescence
intermittency in the enzyme cholesterol oxidase carried out by Xie and co-workers (Science1998, 282, 1877).
The Mandel parameter,Q(t), for this model is positive at short and long times, indicating super-Poisson
statistics in these limits, consistent with bunching of the fluorescent signal.

I. Introduction

Under suitable conditions of illumination, quantum dots and
other nanoscale objects are known to fluoresce stochastically,
a phenomenon known as blinking or intermittency.1 The
distribution, f(t), of the time intervals between the bright and
dark episodes that characterize the phenomenon generally shows
a power law decay int, as does the time correlation function,
C(t), of the emitted light intensity. The results of Orrit et al.2

on single quantum dots of uncapped CdS, wheref(t) was found
to vary ast-1.65(0.2 for off times andC(t) was found to vary as
t-0.3, are representative of the kinds of experimental findings
that exemplify this behavior. The underlying cause of the power
law statistics in these and related systems remains poorly
understood, though numerous possibilities (many reviewed
critically in ref 3) have been suggested.

At the single-molecule level, blinking has also been observed
in enzymes actively engaged in catalysis.4,5 The effect is
especially striking in the experiments carried out by Xie et al.4

on cholesterol oxidase, an enzyme whose active site (containing
flavin adenine dinucleotide, FAD) toggles between a fluorescent
oxidized form and a nonfluorescent reduced form during the
course of successive catalytic turnovers. Although the fluores-
cence intermittency in this system is a reflection of this cyclic
process of interconversion between states with distinct proper-
ties, the decay of the time correlation function of the emitted
light is highly nonexponential, as in quantum dots.

The nonexponentiality in the enzymatic time correlation
function has been ascribed to dynamic disorder,6 which refers
to fluctuations in the rate at which activation or deactivation of

the enzyme-substrate complex takes place as a result of
fluctuations in the conformation of the enzyme. These fluctua-
tions generally occur on time scales comparable to the rate of
the reaction7 and have recently been characterized in terms of
a simple one-dimensional model, developed by Xie and co-
workers,8 based on the generalized Langevin equation (GLE)
and a stochastic process called fractional Gaussian noise (fGn).9

The model has successfully rationalized other single-molecule
results on enzyme activity,8,10,11but it has not been applied to
a consideration of intermittent behavior itself.

Recent extensions of the model11 suggest how such behavior
may be treated. These extensions (to be described later) are
formulated around equations that are similar to those appearing
in a recent model of quantum dot blinking suggested by Tang
and Marcus,12 in which the effect is rationalized in terms of
the interactions of the system with a thermal reservoir. The
interactions were assumed to cause fluctuations in a reaction
coordinateq corresponding to the vertical distance between
“light” and “dark” state energy parabolas, which intersect at
the energyqc where electron transfer takes place. The trajectory
of q was described by a generalization of the Smoluchowski
equation, in which the electron transfer reaction is described
by an additive sink term located atqc, and the diffusion
coefficient is a time-dependent function,∆(t), of the dielectric
properties of the system. Tang and Marcus showed that for both
Debye and non-Debye media, the “on” or “off” statistics
calculated from this model were well characterized by power
law distributions (at short and long times) that were in broad
agreement with experimental measurements. These results
pointed to a dynamic rather than a static origin for the power
law behavior in blinking quantum dots.

This mechanism of blinking clearly shares similarities with
the mechanism of dynamic disorder based on the conformational
fluctuations mentioned above. The parallels are not entirely
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superficial: the GLE with fGn is actually equivalent to a
generalized Smoluchowski equation,11,13,14and this equation has
the structure of the diffusion equation used in the Tang-Marcus
model, the only difference being the definition of the time-
dependent diffusion coefficient,∆(t). (Indeed, such equations13,15

are “sporadically rediscovered in the literature”, in the words
of J. T. Hynes.16) This suggests that the GLE-fGn formalism
may be an appropriate framework for exploring the connection
between conformational fluctuations and intermittent behavior.
The aim of the present paper is to pursue this possibility and to
use the formalism to construct a model of intermittency
applicable to enzyme dynamics. As a test of the model, its
predictions are compared to experimental results on the enzyme
cholesterol oxidase.4

The model we propose is introduced in the following section.
It is based on the dynamics of a particle moving stochastically
in a one-dimensional harmonic well. The position of the particle,
x(t), models an enzymatic reaction coordinate, and its motion
in the potential is described by a generalized Langevin equation
(GLE) with fractional Gaussian noise (fGn), the noise represent-
ing the effects of conformational fluctuations. Wheneverx(t)
exceeds a certain threshold valueL, the enzyme is assumed to
be in a fluorescent (on) state, and wheneverx(t) is less thanL,
the enzyme is assumed to be in a nonfluorescent (off) state.
The intensity of fluorescence at any instant of time,I(t), is
therefore proportional to the step function,θ(x(t) - L). The
normalized time correlation function of the fluctuations in this
intensity,C(t), are calculated from the model;C(t) is then used
to calculate the distribution of times between the occurrence of
on and off states as well as the Mandel parameter. The results
of these calculations are discussed in the final sections of the
paper.

II. Model of Intermittency

To describe on-off intermittency in fluctuating enzymes, we
shall assume (as in the model of protein conformational
dynamics developed by Xie and co-workers8) that the progress
of a catalytic reaction at timet can be modeled by the position,
x(t), of a particle moving in a one-dimensional harmonic well
under the action of a time-dependent noise process,ê(t). In other
words,x(t) is a one-dimensional reaction coordinate. Physically,
x(t) could correspond to the distance between some pair of
residues located near the active site of the enzyme. The harmonic
well then ensures that the fluctuations of this distance are
bounded, as they typically are in real systems.8,17 We further
assume that the minimum of the well defines the origin of
coordinates, and that every time the position of the particle is
greater thanL, the enzyme is turned on, and every time it is
less thanL, the enzyme is turned off. See Figure 1 for an
illustration. In the on state, the system is assumed to emit a

signal of intensityI(t) at timet. This intensity can therefore be
written as

whereθ(x) is the Heaviside step function andB is some constant
(with units of inverse time) that represents the intensity level.
As a result of the particle’s stochastic motion, the functionI(t)
alternates at random between the values 0 andB, as depicted
schematically in Figure 2.

The dynamics ofx(t) is assumed to be governed by the
following equation8

wherem is the mass of the particle (reaction coordinate),ú is
the friction coefficient of the particle,ê(t) is the noise term
referred to above, and is chosen to correspond to fractional
Gaussian noise (fGn),K(t) is a memory function, which is
related to the noise through a fluctuation-dissipation theorem,
that is,

andU(x) describes the harmonic well, and is given byU(x) )
mω2x2/2, with ω being a frequency. Becauseê(t) in eq 3
corresponds to fGn, the memory function is given by

whereH, the so-called Hurst index,9 is a real number lying
between1/2 and 1 that is a measure of the temporal correlations
in the noise. Equations 1-4 are the defining equations of the
model of intermittency considered here. (Protein conformational
fluctuations are typically slow, so the reaction coordinate,x,
tends to evolve under conditions of high friction. In this
overdamped regime, therefore, it is usual to neglect the inertial
term in eq 2, but in the present calculations, anticipating
experimental results on the early time dynamics of the enzyme
cholesterol oxidase,4 the term is retained.)

We would now like to use this model to calculate the
following quantities: (i) the time correlation function of the
deviation of the intensity from its mean, that is,〈δI(t) δI(0)〉,
whereδI(t) ) I(t) - 〈I(t)〉, the angular brackets referring to an
equilibrium average over initial states, (ii) the distribution,f(t),
of the time interval,t, separating an intensity fluctuation,δI(0),
occurring att ) 0 and a fluctuation,δI(t), occurring att, and
(iii) the time-dependent Mandel parameter,Q (to be defined
shortly), measuring the extent of deviation of the emitted signal
from Poisson statistics.

Figure 1. Illustration of the model of intermittency introduced in
section II. The black circle is a particle moving stochastically in a
harmonic potential well. The distance,L, is a critical control parameter
(see the text for details.)

Figure 2. Schematic diagram of the time dependence of the intensity,
I(t), for the model of intermittency defined in section II.

I(t) ) Bθ(x(t) - L) (1)

m
d2x(t)

dt2
) -ú∫0

t
dt′ K(t - t′) x̆(t′) -

dU(x)
dx

+ ê(t) (2)

K(|t - t′|) ) (1/úkBT)〈ê(t) ê(t′)〉 (3)

K(|t - t′|) ) 2H(2H - 1)|t - t′|2H-2 (4)
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III. General Expression for the Intensity Correlation
Function

The time correlation function of the intensity fluctuations will
be considered first, as it forms the basis for the determination
of other measurable quantities. From its definition above, we
have the relation

where

and

Here,P(x,t|x0,0) is the conditional probability density of finding
the particle atx at timet, given that it was atx0 at time 0, and
Ps(x0) is the equilibrium distribution of particle positions. The
system is assumed to be time-homogeneous, and to be in
equilibrium at timet ) 0. To evaluate eqs 6 and 7, we need
expressions forP(x,t|x0,0) andPs(x0). These expressions may
be found by transforming the GLE of eq 3 to an equivalent
Smoluchowski-like equation for the probability density,P(x,t),
of finding the particle atx at timet and then solving the equation
under the initial conditionP(x,0) ) δ(x - x0). This transforma-
tion may be carried out using methods of functional calculus
discussed by Okuyama and Oxtoby in ref 13. (An application
of these methods to the overdamped limit of eq 2 may be found
in ref 11, while a more general treatment of functional methods
in the study of stochastic processes may be found in ref 14.)
The desired Smoluchowski equation is

whereη(t) ≡ -ø̆(t)/ø(t) andø(t) is the inverse Laplace transform
of the functionø̂(s), which is given by

with K̂(s) being the Laplace transform of the memory kernel,
K(t). WhenK(t) has the power law form of fGn defined by eq
4, K̂(s) becomes

The inversion of eq 9 withK̂(s) given by eq 10 can be obtained
as an infinite series using the approach discussed by Vin˜ales
and Despo´sito.18 The result is

where a ≡ úΓ(2H + 1) and ER,â
(k) (z) stands fordkER,â(z)/dzk,

with ER,â(z) ≡ ∑k)0
∞ zk/Γ(Rk + â) being the generalized

Mittag-Leffler function, whereΓ(z) is the gamma function.
(The generalized Mittag-Leffler function becomes the ordinary
Mittag-Leffler function,19 ER(z) ≡ ∑k)0

∞ zk/Γ(Rk + 1), whenâ
) 1.) Equation 11 is not amenable to numerical calculation.
For numerical work, it is more convenient to calculateø(t) from
the distance correlation function,Cxx(t) ) 〈x(t) x(0)〉, which is
related toø(t) by Cxx(t) ) Cxx(0) ø(t) ) kBTø(t)/mω2. The
distance correlation function in turn can be calculated from its
Fourier integral representation. This representation ofCxx(t),
shown below, is derived in Appendix B.

Equation 8, which has the structure of a diffusion equation
in which the quantity-kBTη(t)/mω2 can be identified with a
time-dependent diffusion coefficient, has the same form as the
equation defining the Tang-Marcus model.12 Related time-
convolutionless equations for non-Markovian dynamics have
been used elsewhere.18,20

The solution of eq 8 under the given initial condition may
be verified to be

This expression evolves to the equilibrium distribution,Ps(x),
in the t f ∞ limit. Since it can be shown thatø(t f ∞) f 0,
we have

From eqs 13 and 14, one readily sees that

In terms of the functionsφ andPs, the correlation,r(t), in eq 5
now becomes

As shown in Appendix A, this expression can be transformed
identically to

r(t) ≡ 〈δI(t) δI(0)〉 ) 〈I(t) I(0)〉 - 〈I(t)〉〈I(0)〉 (5)

〈I(t) I(0)〉 )

B2∫-∞

∞
dx∫-∞

∞
dx0θ(x - L) θ(x0 - L) P(x,t|x0,0) Ps(x0) (6)

〈I(t)〉 ) 〈I(0)〉 ) B∫-∞

∞
dx0θ(x0) Ps(x0) (7)

∂P(x,t)
∂t

) η(t)
∂

∂x
xP(x,t) +

kBT

mωB
2
η(t)

∂
2

∂x2
P(x,t) (8)

ø̂(s) ) 1

s + ω2

s + (ú/m)K̂(s)

(9)

K̂(s) )
Γ(2H + 1)

s2H-1
(10)

ø(t) )
a

m
∑
k)0

∞ (-ω2)k

k!
t2(H+k)E2H,2H+1+2k(1-H)

(k) (-at2H/m) +

∑
k)0

∞ (-ω2 )k

k!
t2kE2H,1+2k(1-H)

(k) (-at2H/m) (11)

Cxx(t)

kBTú/π
) ∫-∞

∞
dν eiνtΓ(2H + 1) sin(πH)|ν|1-2H/

[(mω2 - mν2 - úΓ(2H + 1) cos(πH)|ν|2-2H)2 +

(úΓ(2H + 1) sin(πH)|ν|2-2H)2] (12)

P(x,t|x0,0) )

x mω2

2πkBT(1 - ø2(t))
exp[-

mω2(x - x0ø(t))2

2kBT(1 - ø2(t)) ] (13)

Ps(x) ) x mω2

2πkBT
exp[- mω2x2

2kBT ] (14)

P(x,t|x0,0) Ps(x0) ) mω2

2πkBT
1

x1 - ø2(t)
×

exp[- mω2

2kBT(1 - ø2(t))
(x2 - 2xx0ø(t) + x0

2)]
≡ φ(x,x0;ø(t)) (15)

r(t) ) B2∫L

∞
dx∫L

∞
dx0 φ(x,x0;ø(t)) -

B2∫L

∞
dx∫L

∞
dx0 Ps(x) Ps(x0) (16)

r(t) ) B2

2π ∫0

ø(t)
dz

1

x1 - z2
exp[- mω2L2

kBT(1 + z)] (17)
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Recalling thatU(x) ) mω2x2/2, eq 17 can be rewritten as

whereE ≡ U(L) is a measure of the energy barrier to cross
from an off to an on state (see Figure 1).

It is convenient to introduce a normalized intensity correlation
function,C(t), defined byC(t) ) r(t)/r(0), such thatC(0) ) 1.
Here,

Substituting eq 14 into this relation, and evaluating the integrals,
one finds thatr(0) ) (B2/4)(1 - erf2xE/kBT), where erf(x) )
(2/xπ)∫0

x dt exp(-t2) is the error function. Thus, finally,

This result, which does not appear to be reducible to a simpler
form, is the central equation of these calculations. It will be
combined with eq 12 (which is evaluated numerically) to
determineC(t) for any t, and the results will be compared with
experiment. Before turning to that comparison, however, we
will first derive analytical expressions forC(t), f(t) (the waiting
time distribution), andQ(t) (the Mandel parameter) in the short
and long time limits so as to get an idea of the nature of their
time dependence in these limits.

IV. Short and Long Time Behavior: Analytical Results

A. Intensity Correlation Function. The limiting behavior
of the quantities calculated in the previous section is governed
by the properties of the functionø(t), which can be determined
from eq 11 or 12. For the purposes of extracting analytical
trends, it proves simpler to work with the first of these equations,
eq 11.

In the limit t f 0, the behavior ofø(t) is determined by the
leading order terms in the expansion of the generalized Mittag-
Leffler function. Specifically,

After substituting eq 21b into eq 20,C(t) can be written as

where

The function∆(t) can be evaluated by differentiating eq 22b
with respect tot, retaining the leading order terms in the
expansion ofε(t) aroundt ) 0, and then integrating the resulting

expression between 0 andt, using the condition∆(0) ) 0. The
result is∆(t) ) ωt exp(-E/kBT). Hence,

where λ ≡ 2ω exp(-E/kBT)/π[1 - erf2(xE/kBT)]. Thus, at
very short times, the intensity correlation function is predicted
to decay essentially as a simple exponential.

In the opposite limit,t f ∞, the behavior ofø(t) is determined
by the asymptotic behavior of the derivatives of the generalized
Mittag-Leffler function. In general,

Hence,

With these results, it is readily established (following the
methods of ref 18) that to leading order

where τ ) (úΓ(2H + 1)/mω2)1/(2-2H). [The subdominant
correction to this result varies ast-2HE2-2H,1-2H(-(t/τ)2-2H).]

The expression forø(t) in eq 26 is the result one would have
obtained had the inertial term in eq 2 been discarded at the very
outset and the resulting equation solved directly for〈x(t) x(0)〉.

In the long time limit, therefore, referring to eq 20,C(t) can
be approximated as

Given that the Mittag-Leffler function has the asymptotic
expansionER(-z) ∼ 1/zΓ(1 - R), C(t) itself must scale as

In this regime, therefore, the decay ofC(t) corresponds to a
power law.

B. Waiting Time Distribution. The second quantity of
interest is the distribution,f(t), of the time,t, separating intensity
fluctuations att ) 0 andt. This can be calculated if one knows
the probability density,G(t), that any two such fluctuations are
separated by the time interval,t; these two quantities are related
to each other in the following way:2

Thus, in Laplace space,

where the Laplace transform,ĥ(s), of a function,h(t), is defined
as ĥ(s) ) ∫0

∞ dte-sth(t). G(t) itself can be expressed as2

r(t) ) B2

2π∫0

ø(t)
dz

1

x1 - z2
exp[- 2E

kBT(1 + z)] (18)

r(0) ) 〈I(0)2〉 - 〈I(0)〉2 ) B2∫L

∞
dx Ps(x)[1 - ∫L

∞
dy Ps(y)]

(19)

C(t) ) 2

π[1 - erf2(xE/kBT)]
∫0

ø(t)
dz

1

x1 - z2
×

exp[- 2E
kBT(1 + z)] (20)

ø(t) ≈ 1 - ω2t2

2
+ O(t2+2H) (21a)

≡ 1 - ε(t) + O(t2+2H) (21b)

C(t) ≈ 1 - 2

π[1 - erf2(xE/kBT)]
∆(t) (22a)

∆(t) ) ∫1-ε(t)

1
dz

1

x1 - z2
exp[- 2E

kBT(1 + z)] (22b)

C(t) ≈ exp(-λt) (23)

ER,â(z) ∼ - 1
zΓ(â - R)

, z < 0 (24)

ER,â
(k) (z) ∼ (-1)k+1k!

zk+1Γ(â - R)
(25)

ø(t) ≈ E2-2H(-(t/τ)2-2H)

≡ ø∞(t) (26)

C(t) ∼ 2 exp(-2E/kBT)

π[1 - erf2(xE/kBT)]
ø∞(t) (27)

C(t) ∼ t-(2-2H) (28)

G(t) ) f(t) + ∫0

t
dt1 f(t - t1) f(t1) +

∫0

t
dt1 ∫0

t1dt2 f(t - t1) f(t1 - t2) f(t2) + ... (29)

Ĝ(s) )
f̂(s)

1 - f̂(s)
(30)

G(t) )
〈δI(t) δI(0)〉
〈(δI(0))2〉1/2

(31)
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and since〈(δI(0))2〉 ) 〈(I(0))2〉 - 〈I(0)〉2 ) r(0), it follows that

Combining eq 32 with eq 30, one can relatef̂(s) to Ĉ(s); this
relation is

where t0 ≡ 1/xr(0) ) (2/B)[1 - erf2xE/kBT]1/2 is some
characteristic time scale. Since the time dependence ofC(t) is
known (from eq 20), one can in principle calculateĈ(s) and
from there calculatef(t) by Laplace inversion of eq 33, but this
calculation is difficult to carry out in closed form, and one can
only analytically determinef(t) in the limit of short or long times.

At short times,Ĉ(s) can be calculated from eq 23, yielding
the approximation

The functionf̂(s) therefore becomes

so f(t) itself is given by

a simple exponential.
At long times, corresponding tot f ∞, we have seen that

C(t) ≈ [2e-2E/kBT/π(1 - erf2xE/kBT)]ø∞(t) ≡ σø∞(t). Hence,
from eq 33 and the Laplace transform ofø∞(t) [which is known
to be ø̂∞(s) ) úK̂(s)/[súK̂(s) + mω2]], it follows that

where it may be recalled thata ≡ úΓ(2H + 1) andb ≡ mω2.
The Laplace inverse of this function is obtained as before using
the methods of ref 18, leading to

From the asymptotic expansionER,â(-z) ∼ 1/zΓ(â - R), one
can readily show that

Closed form expressions for derivatives of the Mittag-Leffler
function are not known for arbitrary values of the index, but
they are known when the index can be written as a rational
fraction.19 These special cases will be considered later.

C. The Mandel Parameter. The Mandel parameter,Q, is
defined as21

whereg(t) ≡ 〈I(t) I(0)〉/〈I(0)〉2. This equation can be rewritten
as

where in the second relation the symbolL-1 denotes the
operation of taking the inverse Laplace transform. The behavior
of Q(t) in the short and long time limits can therefore be
determined from the corresponding behavior ofC(t).

At short times, using eq 34 forĈ(s) in eq 41b, and carrying
out the routine Laplace inversions, one finds immediately that

omitting numerical coefficients.
At long times,C(t) reduces approximately toσø∞(t), where

σ was defined just before eq 37. Substituting the Laplace
transform of this expression into eq 41b, along withø̂∞(s) )
úK̂(s)/[súK̂(s) + mω2], and then inverting the Laplace transform
as before using results given in ref 18, one can show that

V. Comparison with Experiment

For purposes of illustration, and as a test of our model of
intermittency, the results we have derived forC(t) and f(t) are
compared with data from the well-studied cholesterol oxidase
system.4 The comparison is shown in Figure 3, for the case of
C(t). The full line is the experimental intensity correlation curve
of one particular cholesterol oxidase molecule, asreconstructed
from Figure 6 of ref 4b, while the dotted line is the theoretical
curve obtained from the numerical evaluation of eqs 12 and 20
by adjusting the frequency,ω, the decay constant,τ ≡ [úΓ(2H
+ 1)/mω2]1/(2-2H), and the barrier,E/kBT, for best fit to the data,

Figure 3. Comparison of the experimental intensity correlation function
reconstructed from Figure 6 of ref 4b (full line) with the corresponding
theoretical curve (dotted line) as a function of time,t (in milliseconds).
The theoreticalC(t) is calculated from eq 20, withø(t) evaluated
numerically from eq 12. The parametersω, τ ≡ [úΓ(2H + 1)/
mω2]1/(2-2H), and E/kBT in these expressions were adjusted for best
fit after fixing H, the Hurst index, at3/4, and kBT/mω2 at 1 Å.2

The best fit values were found to beω ) 5.1 s-1, τ ) 1389 ms, and
E/kBT ) 2.0.

Q(t) ) 2
t

r(0)

〈I(0)〉∫0

t
dt1 ∫0

t1dt2 C(t2) (41a)

) 2
t

r(0)

〈I(0)〉
L-11

s2
Ĉ(s) (41b)

Q(t) ∼ t (42)

Q(t) )
2σr(0)

〈I(0)〉
tE2-2H,3(- b

a
t2-2H) ∼ t2H-1 (43)

G(t) ) xr(0)C(t) (32)

f̂(s) )
Ĉ(s)

t0 + Ĉ(s)
(33)

Ĉ(s) ) 1
s + λ

(34)

f̂(s) ) 1

t0(s + λ + t0
-1)

(35)

f(t) ) 1
t0

exp[-(λ + t0
-1)t] (36)

f̂(s) ) aσ
aσ + t0(as+ bs2H-1)

(37)

f(t) )
σ

t0
∑
k)0

∞ (-1)k

k!
(σt/t0)

kE2-2H,k(2H-1)+1
(k) (-bt2-2H/a) (38)

f(t f ∞ ) ) - ∂

∂t
E2H-1(-aσt2H-1/bt0) (39)

Q(t) ) 2
t
〈I(0)〉∫0

t
dt1 ∫0

t1dt2(g(t2) - 1) (40)
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keepingH fixed at 3/4 andkBT/mω2 fixed at 1 Å2. The best fit
values of these parameters are found to beω ) 5.1 s-1, τ )
1389 ms, andE/kBT ) 2.0. The values ofH andkBT/mω2 were
chosen to coincide with the values used in the model of
conformational fluctuations developed by Xie and co-work-
ers,8,11 where they were found to provide good agreement
between theoretically calculated quantities (such as distance
correlation functions and waiting time distributions) and their
experimentally measured counterparts. In using the same values
here, we are assuming that the temporal correlations in the
fluctuations of the reaction coordinate in different proteins as
well as their amplitudes are largely the same, which seems to
be the case for the proteins that have been studied to date. The
agreement between the experimental and theoreticalC(t) curves
is very close in the short time (less than about 200 ms) and
long time (greater than about 1000 ms) regimes, and less so in
the intermediate time regime.

If one focuses on just the scaling structure ofC(t), one sees
that at long times, withH given by 3/4, the decay ofC(t) is
given by

In this limit, therefore, the nonexponentiality in the correspond-
ing experimental time correlation function is predicted to be
algebraic in character, but this possibility has not been confirmed
independently.

Similar power laws are, however, characteristic of intermit-
tency in the fluorescence of quantum dots: in the experiments
of Orrit et al. on CdS, for instance,C(t) was found to decay
approximately as2a

at long times. If this behavior is the result, ultimately, of thermal
fluctuations in the environment (as it is in the model of Tang
and Marcus, and as is the case in enzymes), then eq 45 may be
seen as a specific instance of the decay law given by eq 28,
which would imply that the noise that drives the phenomenon
in quantum dots is characterized by a value ofH equal to5/6. If
this is so, one can predict what the long time decay off(t) should
be. From eq 39, using the asymptotic resultER(y) ∼ -1/yΓ(1
- R), y < 0, one easily sees that

so if H is 5/6, then f(t) should decay ast-5/3, which coincides
almost exactly with the behavior reported in ref 2a. Thus, with
H varying from3/4 to 5/6, our model of intermittency appears to
capture the long term trend ofC(t) in the cholesterol oxidase
experiment as well as that off(t) in the CdS experiment.

For cholesterol oxidase, the measured waiting time distribu-
tion does not appear to decay as a power law;4a in fact, under
conditions of high substrate concentration, when the catalytic
step of the reaction is rate limiting, the decay appears to be
well described by an exponential, e-k2t, where k2 is a rate
constant with a fairly broad distribution of values, ranging from
about 2 to about 14 s-1 in a collection of 33 individual enzyme
molecules. The expression found forf(t) in the present calcula-
tions (eq 36) at early times (e about 200 ms) has exactly this
exponential structure, e-k2

tht, with k2
th given by λ + t0

-1 (these
parameters are defined after eqs 23 and 33, respectively.) At
longer times (∼1000 ms), we expectf(t) to decay as a power
law, with an exponent of about3/2 [cf. eq 39 withH ) 3/4 and
ER(-x) ∼ 1/x]. However, the experimental data onf(t) only

extend to about 1200 ms, and do not appear to be sufficiently
well-resolved to distinguish such behavior.

If the conformational dynamics associated with enzymatic
reactivity at the relevant time scales were truly slow, such that
the inertial term in eq 2 could be neglected at the outset, one
can easily show that, in the early time regime,C(t) is given by
the following stretched exponential:

whereλ′ ≡ 2e-E/kBTx2/Γ(3-2H)/π(1 - erf2xE/kBT). Interest-
ingly, for the enzyme lipase B, the decay of the experimentally
measuredC(t) also appears to be well characterized by a
stretched exponential, at least over the observation time window,
which spans about 3 decades on a millisecond time scale.5 Here
the stretch exponent is found to be 0.085. If eq 47 were made
to fit this behavior, the indexH would assume the value 0.815.
For cholesterol oxidase, and for all of the other protein systems
to which we have applied the GLE-fGn model,H has always
been assigned the value 0.75. The difference between 0.815 and
0.75 is not large, but whether it is sufficiently small for the
experimental and theoreticalC(t) to be regarded as essentially
the same is unclear. In addition, it is not clear if a stretched
exponential decay continues to describe the experimental system
at asymptotically long times.

In the case of lipase B, there are differences between the
theoretical and experimentalf(t); the best fit to the experimental
data again appears to be provided by a stretched exponential,
with a stretch exponent of 0.15. At early times, the theoretical
f(t) is in general a simple exponential (cf. eq 36). It can be shown
that the decay is similarly exponential if eq 2 is treated with
neglect of inertial corrections at the outset. For the experimental
system, it is unclear if a stretched exponential decay continues
to obtain at times still longer than the approximately 300 ms
for which thef(t) data appear to have been recorded.5a Thus, at
present, little can be definitively said about the degree of
correspondence between the experimental and theoreticalf(t).

Finally, from eqs 42 and 43, one sees thatQ(t) is positive at
both short and long times, so the statistics associated with
intermittent behavior in the enzyme system in these limits is
expected to be super-Poissionian, implying that the on-off
events tend to “bunch” together; that appears to be the case
both in the experiments of Xie et al.4 and in those of de Schryver
et al.5

VI. Conclusion

In this model of intermittency, therefore, on the basis of the
stochastic trajectory of a particle moving between on and off
states in a harmonic well under the action of colored noise (fGn),
both C(t) and f(t) decay exponentially at short times, and as
power laws at long times, with apparently universal decay
exponents (depending only on the Hurst index,H) that are not
necessarily independent, and that may be a reflection, ultimately,
of the kind of correlations often manifested in condensed phase
systems as a result of random processes occurring on multiple
time scales. Time-dependent variations in the distance between
structurally or functionally important residues are among the
processes that can contribute to these dynamical correlations.22

Tang and Lin have recently suggested that fluctuations in
energies of activation may also provide a plausible alternative
scenario of nonexponential relaxation.23 In either case, our model
is intended to suggest that the same stochastic processes that
drive distance or energy fluctuations in large, sluggish molecules
can produce the temporal correlations that characterize fluctua-

C(t) ∼ t-1/2, H ) 3/4 (44)

C(t) ∼ t-1/3 (45)

f(t) ∼ t-2H (46)

C(t) ≈ exp(-λ′(t/τ)1-H) (47)
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tions in light emission during catalysis. Because the generalized
diffusion equation that underlies the model is fairly general, its
conclusions may apply not only to enzymes but also to quantum
dots and other systems whose dynamical evolution is largely
driven by thermal and other environmental fluctuations.

Appendix A. Derivation of the Integral Representation of
r(t) (eq 16)

From the definition of the functionφ(x,x0;ø) given in eq 14,
one has the following identity:

If both sides of the above equation are integrated with respect
to ø between the limits 0 andø, we find, after using the result
φ(x,x0;0) ) Ps(x) Ps(x0), that

This equation in turn is integrated with respect tox and x0

between the limitsL (the threshold value of the stochastic
variable,x(t)) andR (a positive constant), leading to

Passing now to the limitR f ∞, eq A3 becomes

Equation A4 leads directly to eq 14 after elementary algebraic
rearrangements.

Appendix B. Derivation of the Fourier Representation of
Cxx(t) (eq 12)

By virtue of the stationarity of the Gaussian process,x(t),
the nonlocal friction in the GLE of eq 2 may be written as an
integral over the interval-∞ to t, rather than over the interval
0 to t, and the orthogonality for allt of ê(t) with x(0), that is,
the result〈x(0) ê(t)〉 ) 0, need not be invoked. Thus, we can
also write

From eq B1, the equation satisfied byCxx(t) ) 〈x(t) x(0)〉 is seen
to be

Taking the Fourier transform [F̃(ν) ) ∫-∞
∞ dt eiνtF(t)] of both

sides of this equation, we obtain

whereK̃+(ν) ≡ ∫0
∞ dt eiνtK(t) andV(t,s) ≡ 〈x(t) ê(s)〉. To solve

eq B3, an equation forV(t,s) is first derived by multiplying eq
B1 by ê(s), taking the ensemble average of the result, and then
solving the equation so obtained in Fourier space. This yields

Equation B4 implies

Combining eqs B3 and B5, we obtain

which from the resultsK̃(ν) ) 2 sin(πH) Γ(2H + 1)|ν|1-2H and
K̃+(ν) ) Γ(2H + 1)|ν|1-2H[sin(πH) - i cos(πH) sign(ν)] can
be shown to produce eq 12.
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