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Model of Fluorescence Intermittency in Single Enzymes
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The intermittent emission of fluorescent light from single enzymes, quantum dots, and other nanoscale systems
is often characterized by statistical correlations in the emitted signal. A one-dimensional model of such
correlations in enzymes, based on a model of protein conformational fluctuations developed by Kou and Xie
(Phys. Re. Lett.2004 93, 180603), is formulated in the present paper in terms of the dynamics of a particle
moving stochastically between “on” and “off” states under the action of fractional Gaussian noise. The model
yields predictions for the short and long time behavior of the following quantities: the time correlation function,
C(t), of the fluctuations of the signal intensity, the distributid(t), of time intervals between intensity
fluctuations, and the Mandel paramet®(t), describing the extent of bunching or anti-bunching in the signal.

At short times,C(t) andf(t) are found to decay exponentially, while, at long times, they are found to decay
as power laws, the exponents being functions solely of the nature of the temporal correlations in the noise.
The results are in good qualitative agreement with results from single-molecule experiments on fluorescence
intermittency in the enzyme cholesterol oxidase carried out by Xie and co-wofaenel998 282, 1877).

The Mandel paramete(t), for this model is positive at short and long times, indicating super-Poisson
statistics in these limits, consistent with bunching of the fluorescent signal.

I. Introduction the enzyme-substrate complex takes place as a result of
. . ) L fluctuations in the conformation of the enzyme. These fluctua-
Under suitable cqndltlons of illumination, quantum dots .and tions generally occur on time scales comparable to the rate of
other nanoscale objects are known to fluoresce stochastically,ihe reactiof and have recently been characterized in terms of
a phenomenon known as blinking or intermittericfhe a simple one-dimensional model, developed by Xie and co-
dlstrlbu'.uon,f(t), of the time !ntervals between the bright and workers8 based on the generalized Langevin equation (GLE)
dark episodes that characterize the phenomenon generally showgpq 4 stochastic process called fractional Gaussian noise{fGn).

a power law decay in, as does the time correlation fl_Jnctzion, The model has successfully rationalized other single-molecule
C(t), of the emitted light intensity. The results of Orrit et’al.  (oqits on enzyme activi§/%11but it has not been applied to
on single quantum dots of uncapped CdS, wiigjevas found a consideration of intermittent behavior itself.

to vary ast~165:02 for off times andC(t) was found to vary as . .

t703 are representative of the kinds of experimental findings m;egfen:rg;igsprri:seg;tZitrenr?s?iiggiségo(\jlvezgﬁgebderlﬁt\gsr are

that exemplify this behavior. The underlying cause of the power y : . - .
formulated around equations that are similar to those appearing

law statistics in these and related systems remains poorlyin a recent model of quantum dot blinkina suaaested by Tan
understood, though numerous possibilities (many reviewed o 'q . INg sugge: Y 9
and Marcus? in which the effect is rationalized in terms of

crmcarllly |r.1 relf 3) hlavelbtleen flﬁgi?tei’ Iso b b q the interactions of the system with a thermal reservoir. The
At the single-molecule level, blinking has also been observe interactions were assumed to cause fluctuations in a reaction

In enzymes _aP“V‘?'y engageq n cataly_ﬁs.'rhe eﬁe_ct IS coordinateq corresponding to the vertical distance between
especially striking in the experiments carried out by Xie €t al. “light' and “dark” state energy parabolas, which intersect at

on c_holeste_zrol o_X|dase, anenzyme whose active site (contammgthe energyg. Where electron transfer takes place. The trajectory
flavin adenine dinucleotide, FAD) toggles between a fluorescent of q was described by a generalization of the Smoluchowski

oxidized fform and. a no?fllu?retscent redugﬁg forrr?tﬁurll(lng the equation, in which the electron transfer reaction is described
COUrse of successive catalylic Urnovers. ough the fluores- by an additive sink term located ajf, and the diffusion

cence inter_rnittency in this system is a reercFion .Of _this cyclic coefficient is a time-dependent functiofi(t), of the dielectric
process of Interconversion betweer_l states W'th distinct proper- properties of the system. Tang and Marcus showed that for both
ties, the decay of the time correlation function of the emitted Debye and non-Debye media, the “on” or “off’ statistics
light is highly nonexpopen_tlal, as in qua”th _dOtS' ] calculated from this model were well characterized by power

The nonexponentiality in the enzymatic time correlation |y distributions (at short and long times) that were in broad
function has been ascribed to dynamic Q|soﬁje/h|ch refers agreement with experimental measurements. These results
to fluctuations in the rate at which activation or deactivation of pointed to a dynamic rather than a static origin for the power
law behavior in blinking quantum dots.

Ch;goﬁgispcoi’ifci”gm:fitmgj E-)mail: kou@stat-harvard.edu (S.C.K.);  This mechanism of blinking clearly shares similarities with
T |n)éian ﬁ)n'stitu'te of Science. the mechanism of dynamic disorder based on the conformational

*Harvard University. fluctuations mentioned above. The parallels are not entirely
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Figure 1. lllustration of the model of intermittency introduced in
section Il. The black circle is a particle moving stochastically in a
harmonic potential well. The distandse,is a critical control parameter
(see the text for details.)

superficial: the GLE with fGn is actually equivalent to a
generalized Smoluchowski equatibri214and this equation has
the structure of the diffusion equation used in the Fakigrcus
model, the only difference being the definition of the time-
dependent diffusion coefficiem(t). (Indeed, such equatiolig®

are “sporadically rediscovered in the literature”, in the words
of J. T. Hynes'®) This suggests that the GEEGn formalism
may be an appropriate framework for exploring the connection
between conformational fluctuations and intermittent behavior.
The aim of the present paper is to pursue this possibility and to
use the formalism to construct a model of intermittency
applicable to enzyme dynamics. As a test of the model, its

predictions are compared to experimental results on the enzyme

cholesterol oxidasé.

The model we propose is introduced in the following section.
It is based on the dynamics of a particle moving stochastically
in a one-dimensional harmonic well. The position of the patrticle,
X(t), models an enzymatic reaction coordinate, and its motion
in the potential is described by a generalized Langevin equation
(GLE) with fractional Gaussian noise (fGn), the noise represent-
ing the effects of conformational fluctuations. Whenexg}
exceeds a certain threshold valuethe enzyme is assumed to
be in a fluorescent (on) state, and whenex(gris less thart,
the enzyme is assumed to be in a nonfluorescent (off) state.
The intensity of fluorescence at any instant of tinh@), is
therefore proportional to the step functiof(x(t) — L). The
normalized time correlation function of the fluctuations in this
intensity,C(t), are calculated from the modéI{t) is then used
to calculate the distribution of times between the occurrence of

on and off states as well as the Mandel parameter. The results

of these calculations are discussed in the final sections of the
paper.

Il. Model of Intermittency

To describe oroff intermittency in fluctuating enzymes, we
shall assume (as in the model of protein conformational
dynamics developed by Xie and co-work®rhat the progress
of a catalytic reaction at timecan be modeled by the position,
x(t), of a particle moving in a one-dimensional harmonic well
under the action of a time-dependent noise prodgs)n other
words,x(t) is a one-dimensional reaction coordinate. Physically,
X(t) could correspond to the distance between some pair of
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Figure 2. Schematic diagram of the time dependence of the intensity,
I(t), for the model of intermittency defined in section II.

signal of intensityl (t) at timet. This intensity can therefore be
written as
I(t) = BO(X(t) — L) ()

whered(x) is the Heaviside step function aBds some constant
(with units of inverse time) that represents the intensity level.
As a result of the particle’s stochastic motion, the funcii(h
alternates at random between the values 0 Bnds depicted
schematically in Figure 2.

The dynamics ofx(t) is assumed to be governed by the
following equatiof§

d’x(t)

du(x)
" -

g [t K(t — t) x(t) 5 TEO @

wherem is the mass of the particle (reaction coordinatejs

the friction coefficient of the particlei(t) is the noise term
referred to above, and is chosen to correspond to fractional
Gaussian noise (fGnXK(t) is a memory function, which is
related to the noise through a fluctuatiedissipation theorem,
that is,

K(It — t']) = (1/CkgT)LE(Y) E(t)TI 3)
andU(x) describes the harmonic well, and is givenbx) =
mw?x%2, with w being a frequency. Becaust) in eq 3
corresponds to fGn, the memory function is given by
K(jt — t]) = 2H(2H — )|t — ¢ ™2 (4)
whereH, the so-called Hurst indekjs a real number lying
betweent/; and 1 that is a measure of the temporal correlations
in the noise. Equations-14 are the defining equations of the
model of intermittency considered here. (Protein conformational
fluctuations are typically slow, so the reaction coordinate,
tends to evolve under conditions of high friction. In this
overdamped regime, therefore, it is usual to neglect the inertial
term in eq 2, but in the present calculations, anticipating
experimental results on the early time dynamics of the enzyme
cholesterol oxidas&the term is retained.)

We would now like to use this model to calculate the
following quantities: (i) the time correlation function of the

residues located near the active site of the enzyme. The harmonideviation of the intensity from its mean, that i8)(t) 61(0)C

well then ensures that the fluctuations of this distance are
bounded, as they typically are in real systerhsWe further
assume that the minimum of the well defines the origin of
coordinates, and that every time the position of the particle is
greater tharL, the enzyme is turned on, and every time it is
less thanL, the enzyme is turned off. See Figure 1 for an
illustration. In the on state, the system is assumed to emit a

wheredl(t) = I(t) — Oi(t)C] the angular brackets referring to an
equilibrium average over initial states, (ii) the distributid(t),

of the time intervalf, separating an intensity fluctuatiadi,(0),
occurring att = 0 and a fluctuationgl(t), occurring att, and

(i) the time-dependent Mandel paramet€r,(to be defined
shortly), measuring the extent of deviation of the emitted signal
from Poisson statistics.
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Ill. General Expression for the Intensity Correlation
Function

The time correlation function of the intensity fluctuations will
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wherea = {I'(2H + 1) andEX,(2) stands ford“E s(2)/dZ,
with Eqp(2) = Y,q2YI(ak + p) being the generalized
Mittag—Leffler function, wherel'(2) is the gamma function.

be considered first, as it forms the basis for the determination (The generalized MittagLeffler function becomes the ordinary
of other measurable quantities. From its definition above, we Mittag—Leffler function® Ex(2) = ¥, Z/T'(ak + 1), whenp

have the relation

r(t) = BI(1) 81(0)C= () 1(0)T— IMHMO)YI  (5)

where
[(t) 1(0)=
B [ ax [ dxgf(x — L) (%, — L) P(xt]%,,0) P{(x;) (6)

and

(1) 0= 00)0= B [ dxef(xg) Pxo) )
Here,P(x,t|Xo,0) is the conditional probability density of finding
the particle ak at timet, given that it was ako at time 0, and

Ps(x0) is the equilibrium distribution of particle positions. The

= 1.) Equation 11 is not amenable to numerical calculation.
For numerical work, it is more convenient to calculgfg from

the distance correlation functio@x(t) = X(t) x(0O)C] which is
related toy(t) by Cu(t) = Cu(0) x(t) = keTy(t)/mw? The
distance correlation function in turn can be calculated from its
Fourier integral representation. This representatiorCgft),
shown below, is derived in Appendix B.

CXX(t)
ke TC/7
[(mw? — mv? — CT(2H + 1) cosgrH)|v|> )% +

(ET(2H + 1) singzH)|v|* 27 (12)

= (7 dv d"T(2H + 1) singrH) v

Equation 8, which has the structure of a diffusion equation
in which the quantity—kgT(t)/mw? can be identified with a
time-dependent diffusion coefficient, has the same form as the

system is assumed to be time-homogeneous, and to be inequation defining the TargMarcus model? Related time-

equilibrium at timet = 0. To evaluate eqs 6 and 7, we need
expressions foP(x,t|x,0) andPs(Xp). These expressions may
be found by transforming the GLE of eq 3 to an equivalent
Smoluchowski-like equation for the probability densigfx,t),

of finding the particle ak at timet and then solving the equation
under the initial conditionP(x,0) = 6(x — Xg). This transforma-

tion may be carried out using methods of functional calculus
discussed by Okuyama and Oxtoby in ref 13. (An application
of these methods to the overdamped limit of eq 2 may be found
in ref 11, while a more general treatment of functional methods

convolutionless equations for non-Markovian dynamics have
been used elsewhet&?°

The solution of eq 8 under the given initial condition may
be verified to be

P(xtlx,0) =
2, 2
27kgT(1 — (1) 2kgT(1 = (V)

in the study of stochastic processes may be found in ref 14.) This expression evolves to the equilibrium distributi®g(x),

The desired Smoluchowski equation is

KT

I’TICUB2

32
i (t)a—XZP(X,t)

oP(xt)
at

n(t)‘%xP(x,t) + (8)

wheren(t) = —y(t)/x(t) andy(t) is the inverse Laplace transform
of the functionj(s), which is given by

L 1
x(s) = 7

ot (EIMK(9)

9)

with K(s) being the Laplace transform of the memory kernel,
K(t). WhenK(t) has the power law form of fGn defined by eq
4, K(s) becomes

K(s) = —F(Z;:,_t 2

The inversion of eq 9 witlk(s) given by eq 10 can be obtained
as an infinite series using the approach discussed bwpl&$n
and Despsito18 The result is

(10)

2k
aZ ()
20 = ;\(ZTIZ(HH()E(22,2H+1+2k(1—H)(_aIZH/ m) +
P (_CUZ )k

ZDTtZKE(zg,sz(l—H)(_aIZH/ m) (11)
= !

in thet — oo limit. Since it can be shown thaft — «) — 0,

we have
2 2
P00 = ool B

From eqgs 13 and 14, one readily sees that

(14)

P(xt1%,0) P(x) = 2?;";; x
V1=
ex;{— Lzz(x2 — 2xx(1) + %)
2k T(L — 2(1)
= P(X X% (1)) (15)

In terms of the functiong andPs, the correlationr(t), in eq 5
now becomes

r(®) = B? [ dx [t p0xxix(®) —
B [“dx [“dx, P() Py(x;) (16)

As shown in Appendix A, this expression can be transformed

identically to
1 F{ mw?L?
ex

[—2 | kld+2

rt) = %i [z (17)
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Recalling thatU(x) = mw?x4/2, eq 17 can be rewritten as

1
1-7

whereE = U(L) is a measure of the energy barrier to cross
from an off to an on state (see Figure 1).

Itis convenient to introduce a normalized intensity correlation
function, C(t), defined byC(t) = r(t)/r(0), such thaC(0) = 1.
Here,

_ B (o0
0 =>- [Pz ex

2E
“Riirg

r(0) = m(Oy'C- m(0)d = B” [ “dx P()[1 — [ "dy PSQ@]Q)

Substituting eq 14 into this relation, and evaluating the integrals,
one finds that(0) = (B%4)(1 — erf,/E/k;T), where erf§) =
(2/\/J_T)fé dt exp(—t?) is the error function. Thus, finally,

740

B 2 1
 al1 — erP(/ElkgD)] V°

X
1-7
exp[_ 2E ]
ke T(1+ 2)

c(t)

(20)

This result, which does not appear to be reducible to a simpler

form, is the central equation of these calculations. It will be
combined with eq 12 (which is evaluated numerically) to
determineC(t) for anyt, and the results will be compared with
experiment. Before turning to that comparison, however, we
will first derive analytical expressions f@x(t), f(t) (the waiting
time distribution), and)(t) (the Mandel parameter) in the short
and long time limits so as to get an idea of the nature of their
time dependence in these limits.

IV. Short and Long Time Behavior: Analytical Results
A. Intensity Correlation Function. The limiting behavior

Chaudhury et al.

expression between 0 ahdusing the conditiod\(0) = 0. The
result isA(t) = wt exp(—E/ksT). Hence,
C(t) ~ exp(=At) (23)

where 1 = 2w exp(~E/kgT)/z[l — erf(,/Elk;T)]. Thus, at
very short times, the intensity correlation function is predicted
to decay essentially as a simple exponential.

In the opposite limitf — oo, the behavior of(t) is determined
by the asymptotic behavior of the derivatives of the generalized
Mittag—Leffler function. In general,

1

Eop(d ~ — TG—a) 2 <0 (24)
Hence,
oy CDTK
B~ Firg o) (25)

With these results, it is readily established (following the
methods of ref 18) that to leading order

2(t) ~ Ep_pp(— (1))
= X(t)

where (Cr@EH + 1)mw?t@24) [The subdominant
correction to this result varies as?"E,—on 1—21(—(1/7)%72H).]

The expression foy(t) in eq 26 is the result one would have
obtained had the inertial term in eq 2 been discarded at the very
outset and the resulting equation solved directlygt) x(0)C]

In the long time limit, therefore, referring to eq 20(t) can
be approximated as

(26)

2 exp2E/kgT)

C(t) ~
© a[1 — erf(\/ElkgT)]

Zeoll) (27)

of the quantities calculated in the previous section is governed Given that the Mittag-Leffler function has the asymptotic

by the properties of the functigy(t), which can be determined
from eq 11 or 12. For the purposes of extracting analytical
trends, it proves simpler to work with the first of these equations,
eq 11.

In the limitt — O, the behavior of(t) is determined by the
leading order terms in the expansion of the generalized Mittag
Leffler function. Specifically,

yt)~1— “’thz + O(t*"™) (21a)
=1— €(t) + O(t*"2 (21b)

After substituting eq 21b into eq 2@(t) can be written as

CH~1-

A(®) (22a)

2
a[1 — erf(\/ElkgT)]

where

1 2E
A(t) = fll_e(t)dz N exp[— T Z)] (22b)

The functionA(t) can be evaluated by differentiating eq 22b
with respect tot, retaining the leading order terms in the
expansion o€(t) aroundt = 0, and then integrating the resulting

expansiorEy(—2) ~ 1/zZI'(1 — a), C(t) itself must scale as

ct) ~t @2 (28)

In this regime, therefore, the decay Gft) corresponds to a
power law.

B. Waiting Time Distribution. The second quantity of
interest is the distributiori(t), of the time t, separating intensity
fluctuations at = 0 andt. This can be calculated if one knows
the probability density(3(t), that any two such fluctuations are
separated by the time intervélthese two quantities are related
to each other in the following wad/:

G(t) = f(t) + [, f(t — t,) f(t,) +
Sty [ty f(t— t) f(t, — t) f(t) + ... (29)

Thus, in Laplace space,

f(9)
1— f(s)

G(s) = (30)

Whgre the Laplace transford(s), of a function(t), is defined
ash(s) = f, dte~sh(t). G(t) itself can be expressed?as

_ BI() 61(0)0

e [{o1(0))°C?

(31
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and since(01(0))?= [{I(0))20— m(0)@ = r(0), it follows that

G(t) = vr(0)C(t)

Combining eq 32 with eq 30, one can reldts to C(s); this
relation is

(32)

<)

f(s) = t()—l-—é(s) (33)

wherety = 14/r(0) = 2B)1 — er/EksT]*? is some
characteristic time scale. Since the time dependenc&tpfis
known (from eq 20), one can in principle calculd@és) and
from there calculat(t) by Laplace inversion of eq 33, but this
calculation is difficult to carry out in closed form, and one can
only analytically determinét) in the limit of short or long times.

At short times,C(s) can be calculated from eq 23, yielding
the approximation

1
& =77 (34)
The functionf(s) therefore becomes
2 1
f(9=—F— 35
© t(s+ A+t 1) (33)
sof(t) itself is given by
f() = = expl—(i + 1, ) (36)
0

a simple exponential.
At long times, corresponding tb— o, we have seen that

C(t) ~ [2e7®%T/z(1 — erfP\/E/ksT)]x(t) = ox(t). Hence,
from eq 33 and the Laplace transformye{(t) [which is known
to bej(s) = ER(9)/[sEK(s) + mw?]], it follows that

ao
ao + ty(as+ b

f(s) = (37)

where it may be recalled that= ¢I'(2H + 1) andb = mw?.
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Figure 3. Comparison of the experimental intensity correlation function
reconstructed from Figure 6 of ref 4b (full line) with the corresponding
theoretical curve (dotted line) as a function of tirhén milliseconds).
The theoreticalC(t) is calculated from eq 20, witly(t) evaluated
numerically from eq 12. The parametess 7 = [C['(2H + 1)/
mw?Y?-2M and E/kgT in these expressions were adjusted for best
fit after fixing H, the Hurst index, afl,, and keT/mw? at 1 A2
The best fit values were found to be= 5.1 s, 7 = 1389 ms, and
E/kgT = 2.0.

1} 500 2000

whereg(t) = O(t) 1(0)ZI(0)A. This equation can be rewritten
as

0 1
Q) = % E:JE ogmf o, [dt, O(ty) (41a)
_2r1(0
=taoy 32 (410)

where in the second relation the symhot! denotes the
operation of taking the inverse Laplace transform. The behavior
of Q(t) in the short and long time limits can therefore be
determined from the corresponding behavioiCGgf).

At short times, using eq 34 fdz(s) in eq 41b, and carrying
out the routine Laplace inversions, one finds immediately that

Q(t) ~t (42)

The Laplace inverse of this function is obtained as before using omitting numerical coefficients.

the methods of ref 18, leading to

© (1)
f(t) ——ZO—(at/to) ESY aar-1ya(—bt?Va) (38)

From the asymptotic expansidf, s(—2) ~ 1/2°(5 — o), one
can readily show that

flt—o0) = EZH 1(—aot™ bty (39)

Closed form expressions for derivatives of the Mittdgeffler

At long times,C(t) reduces approximately ta@y.(t), where
o was defined just before eq 37. Substituting the Laplace
transform of this expression into eq 41b, along witl(s) =
EK(s)/[SCK(S) + mw?], and then inverting the Laplace transform
as before using results given in ref 18, one can show that

20!’(0) (_ Qtz 2H) ~ f2H-1

Q) = oy E2is

(43)

V. Comparison with Experiment

For purposes of illustration, and as a test of our model of
intermittency, the results we have derived €(t) andf(t) are

function are not known for arbitrary values of the index, but compared with data from the well-studied cholesterol oxidase
they are known when the index can be written as a rational system The comparison is shown in Figure 3, for the case of

fraction® These special cases will be considered later.
C. The Mandel Parameter. The Mandel parameteR, is
defined a3t

QM) = ZmO) e, ['dtat) — 1) (40)

C(t). The full line is the experimental intensity correlation curve
of one particular cholesterol oxidase moleculerea®nstructed
from Figure 6 of ref 4b, while the dotted line is the theoretical
curve obtained from the numerical evaluation of eqs 12 and 20
by adjusting the frequency, the decay constant,= [CT'(2H

+ 1)/mw? Y1) and the barriel/ks T, for best fit to the data,
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keepingH fixed at3/, andksT/mw? fixed at 1 A. The best fit extend to about 1200 ms, and do not appear to be sufficiently
values of these parameters are found tasbes 5.1 s, 7 = well-resolved to distinguish such behavior.

1389 ms, andt/kgT = 2.0. The values off andksT/mw? were If the conformational dynamics associated with enzymatic
chosen to coincide with the values used in the model of reactivity at the relevant time scales were truly slow, such that
conformational fluctuations developed by Xie and co-work- the inertial term in eq 2 could be neglected at the outset, one
ers®1! where they were found to provide good agreement can easily show that, in the early time regin@t) is given by
between theoretically calculated quantities (such as distancethe following stretched exponential:

correlation functions and waiting time distributions) and their

experimentally measured counterparts. In using the same values C(t) ~ exp(A'(tr)* ™) (47)
here, we are assuming that the temporal correlations in the

fluctuations of the reaction coordinate in different proteins as ' e ElGT T (3= _ )
well as their amplitudes are largely the same, which seems toyvherexl =2e 2/0(3—2H)lx(1 — erfy/ElkgT). Interest

be the case for the proteins that have been studied to date. Théngly’ for the enzyme lipase B, the decay of the experimentally

. - measuredC(t) also appears to be well characterized by a
agreement between the experimental and theoreéitaturves : e .
. . . stretched exponential, at least over the observation time window,
is very close in the short time (less than about 200 ms) and

long time (greater than about 1000 ms) regimes, and less so inWhICh spans about 3 qlecades on a millisecond time S¢dtee
. ) . . the stretch exponent is found to be 0.085. If eq 47 were made
the intermediate time regime. o ) .
; . to fit this behavior, the indel would assume the value 0.815.

If one focuses on just the scaling structureGgf), one sees . .

- - ; 3 : For cholesterol oxidase, and for all of the other protein systems
that at long times, wittH given by %4, the decay ofC(t) is . -

iven by to which we have applied the GIﬂQn model,H has always

g been assigned the value 0.75. The difference between 0.815 and
0.75 is not large, but whether it is sufficiently small for the
experimental and theoretic&(t) to be regarded as essentially
the same is unclear. In addition, it is not clear if a stretched
exponential decay continues to describe the experimental system
at asymptotically long times.

In the case of lipase B, there are differences between the
theoretical and experimentit); the best fit to the experimental
data again appears to be provided by a stretched exponential,
with a stretch exponent of 0.15. At early times, the theoretical
f(t) is in general a simple exponential (cf. eq 36). It can be shown
that the decay is similarly exponential if eq 2 is treated with
neglect of inertial corrections at the outset. For the experimental
system, it is unclear if a stretched exponential decay continues
to obtain at times still longer than the approximately 300 ms

cty~t*2 H=3, (44)

In this limit, therefore, the nonexponentiality in the correspond-
ing experimental time correlation function is predicted to be
algebraic in character, but this possibility has not been confirmed
independently.

Similar power laws are, however, characteristic of intermit-
tency in the fluorescence of quantum dots: in the experiments
of Orrit et al. on CdS, for instance&(t) was found to decay
approximately &%

c(t) ~t? (45)

at long times. If this behavior is the result, ultimately, of thermal X
fluctuations in the environment (as it is in the model of Tang fOF Which thef(t) data appear to have been recor&thus, at
and Marcus, and as is the case in enzymes), then eq 45 may paresent, littte can be definitively s_ald about the degree of
seen as a specific instance of the decay law given by eq 28,corr_esponden(:e between the experimental ar_ld the.qré(m):al
which would imply that the noise that drives the phenomenon __Finally, from eqgs 42 and 43, one sees Q) is positive at
in quantum dots is characterized by a valué¢iadqual to%/e. If both short and long times, so the statistics associated with
this is 50, one can predict what the iong time decaytpghould intermittent behavior in the enzyme system in these limits is

be. From eq 39, using the asymptotic re ~ —1NT(1 expected to be super-Poissionian, implying that the-aff
—a),y< Oq one l;a:si?y sees '{haf I $aEy) M events tend to “bunch” together; that appears to be the case

both in the experiments of Xie et d4hnd in those of de Schryver
5
f(t) ~ t*ZH (46) et al:

so if H is %g, thenf(t) should decay as 53, which coincides  VI- Conclusion

almost exactly with the behavior reported in ref 2a. Thus, with  |n this model of intermittency, therefore, on the basis of the
H varying from%, to /6, our model of intermittency appears to  stochastic trajectory of a particle moving between on and off
capture the long term trend @(t) in the cholesterol oxidase  states in a harmonic well under the action of colored noise (fGn),
experiment as well as that éft) in the CdS experiment. both C(t) and f(t) decay exponentially at short times, and as
For cholesterol oxidase, the measured waiting time distribu- power laws at long times, with apparently universal decay
tion does not appear to decay as a power 4&im; fact, under  exponents (depending only on the Hurst indethat are not
conditions of high substrate concentration, when the catalytic necessarily independent, and that may be a reflection, ultimately,
step of the reaction is rate limiting, the decay appears to be of the kind of correlations often manifested in condensed phase
well described by an exponential,*é, wherek, is a rate  systems as a result of random processes occurring on multiple
constant with a fairly broad distribution of values, ranging from  time scales. Time-dependent variations in the distance between
about 2 to about 1474 in a collection of 33 individual enzyme  structurally or functionally important residues are among the
molecules. The expression found f@) in the present calcula-  processes that can contribute to these dynamical correl&fons.
tions (eq 36) at early timess(about 200 ms) has exactly this  Tang and Lin have recently suggested that fluctuations in
exponential structure, &, with k‘zh given by 1 + tgl (these energies of activation may also provide a plausible alternative
parameters are defined after eqs 23 and 33, respectively.) Atscenario of nonexponential relaxati&tin either case, our model
longer times £1000 ms), we exped(t) to decay as a power is intended to suggest that the same stochastic processes that
law, with an exponent of abodf, [cf. eq 39 withH = ¥/, and drive distance or energy fluctuations in large, sluggish molecules
Eo(—X) ~ 1/X]. However, the experimental data d&t) only can produce the temporal correlations that characterize fluctua-
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tions in light emission during catalysis. Because the generalized Taking the Fourier transformf[v) = /%, dt €"F(t)] of both

diffusion equation that underlies the model is fairly general, its

conclusions may apply not only to enzymes but also to quantum ox L .
dots and other systems whose dynamical evolution is largely —mw“C, (v) = —iviC,(v) K, (—v) —

driven by thermal and other environmental fluctuations.

Appendix A. Derivation of the Integral Representation of
r(t) (eq 16)

From the definition of the functiog(x,xo;x) given in eq 14,
one has the following identity:

Po__ mo’ o
oxox, kgT oy

(A1)

sides of this equation, we obtain

mw’C,,(v) +

J7 dte V(o)) (B3)

whereK(v) = /& dt €"K(t) and V(t,s) = X(t) £()] To solve
eq B3, an equation fov(t,s) is first derived by multiplying eq

B1 by &(s), taking the ensemble average of the result, and then
solving the equation so obtained in Fourier space. This yields

ke TCE"K(v)

mw® — mv? — ivZK, (v)

V(v,9) = (B4)

If both sides of the above equation are integrated with respect Equation B4 implies

to y between the limits 0 ang, we find, after using the result
d(x,%0;0) = Pg(X) Ps(x0), that

Fp(xXx')
X 0%,

mo’

i TLO0%67) — P9 Pl = Jody

(A2)
This equation in turn is integrated with respectx@and xo

between the limitsL (the threshold value of the stochastic
variable,x(t)) andR (a positive constant), leading to

2
e f e gt — Sk £ P9 Pl =

Sl [#(RRy) — p(LRy) — p(RLiy) + p(LLix)]
(A3)

Passing now to the limiR — «, eq A3 becomes

Sk [Tdxg pxxe) =[x f[7dxg Py(X) Po(xg) =

.
% [Zdy (LLiy) (Ad)

Equation A4 leads directly to eq 14 after elementary algebraic
rearrangements.

Appendix B. Derivation of the Fourier Representation of
Cu(t) (eq 12)

By virtue of the stationarity of the Gaussian process),
the nonlocal friction in the GLE of eq 2 may be written as an
integral over the intervat-o to t, rather than over the interval
0 tot, and the orthogonality for atl of &(t) with x(0), that is,
the resultx(0) £(t)0= 0, need not be invoked. Thus, we can
also write

2
m O = e ke — 1) x(t) — mod + &

dt? (B1)

From eq B1, the equation satisfied By(t) = X(t) x(0)Cis seen
to be

d’C,(1)
" _

dt?

dCXX(t')
dt’

— mw’C (1) +

[&®) x(0)0(B2)

—¢ " dtKE—t)

ke TEK(v)

mw® — mv? — ivZK, (v)

= [T dse"™V(0;5) (B5)

Combining eqs B3 and B5, we obtain

ke TEK(¥)

Cxx(v) = |mw2 _ mVZ — iVCK+(V)|2

(B6)

which from the result&(v) = 2 singzH) I['(2H + 1)|v|*"?" and
Ki(v) = T(2H + 1)v|t[sin(zH) — i cos@@H) sign)] can
be shown to produce eq 12.
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