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Abstract. This paper concerns the cubic smoothing spline approach to nonparametric regres-
sion. After first deriving sharp asymptotic formulas for the eigenvalues of the smoothing ma-
trix, the paper uses these formulas to investigate the efficiency of different selection criteria
for choosing the smoothing parameter. Special attention is paid to the generalized maximum
likelihood (GML), Cp and extended exponential (EE) criteria and their marginal Bayesian
interpretation. It is shown that (a) when the Bayesian model that motivates GML is true,
using Cp to estimate the smoothing parameter would result in a loss of efficiency with a
factor of 10/3, proving and strengthening a conjecture proposed in Stein (1990); (b) when
the data indeed come from the Cp density, using GML would result in a loss of efficiency of
∞; (c) the loss of efficiency of the EE criterion is at most 1.543 when the data are sampled
from its consistent density family. The paper not only studies equally spaced observations
(the setting of Stein, 1990), but also investigates general sampling scheme of the design
points, and shows that the efficiency results remain the same in both cases.

1. Introduction

Given n observed data points {(xi, yi)}ni=1 in the plane, regression models postulate
that at the design points x1, x2, . . . , xn, the observations yi satisfy

yi = f (xi)+ εi, i = 1, 2, . . . , n, (1.1)

where ε1, ε1, . . . , εn are independently and identically distributed with zero mean.
The goal of regression is to estimate the underlying function f (x). In this paper
we consider the spline smoothing approach to nonparametric regression, where,
to make the theoretical statements clear, throughout this paper we assume that the
design points are distinct and ordered such that x1 < x2 < · · · < xn. For general
nonparametric methods, see, for example, Fan and Gijbels (1996), and the review
papers of Fan (2000) and Hall (2001).
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A cubic smoothing spline minimizes the penalized least square criterion

n∑

i=1

[yi − f (xi)]
2 + λ

∫
f ′′(t)2dt,

over the class of all functionsf for whichf andf ′ are absolutely continuous andf ′′
is square-integrable. The smoothing parameter, λ, balances the fidelity to the data
and the roughness of the curve. This idea of trading-off the faithfulness to the data
against the smoothness of the curve dates back to Whittaker (1923) and Schoenberg
(1964a, 1964b), who coined the name “spline functions”. Through important early
developments such as Reinsch (1967), Kimeldorf and Wahba (1970), Demmler
and Reinsch (1975), Wahba (1975), Craven and Wahba (1979), and Utreras (1979),
nowadays spline smoothing has become a standard statistical technique, widely
used in many scientific disciplines. For references, see, for example, Silverman
(1985), Eubank (1988), Wahba (1990), Härdle (1990), Hastie and Tibshirani (1990),
Rosenblatt (1991), Green and Silverman (1994), Simonoff (1996), and Bowman
and Azzalini (1997).

It is well-known that smoothing splines are linear smoothers, meaning that the
cubic smoothing spline estimate f̂λ of f = (f1, f2, . . . , fn)

′ = (f (x1), f (x2), . . . ,

f (xn))
′ can be written as

f̂λ = Aλy, (1.2)

where f̂λ = (f̂λ1, . . . , f̂λn)
′, y = (y1, . . . , yn)

′. Furthermore, Aλ, the smoothing
matrix, which does not depend on y, has eigen decomposition Aλ = UaλU ′ with
U an n×n orthonormal matrix not depending on λ, and aλ = diag(aλi), a diagonal
matrix whose ith diagonal element has the form

aλi = 1/(1 + λki) i = 1, 2, . . . , n, (1.3)

where the sequence k = (k1, k2, . . . , kn) is solely determined by x = (x1, . . . , xn)

and satisfies

0 = k1 = k2 < k3 < · · · < kn. (1.4)

The first two columns of the eigen matrix U represent linear functions of x, while
the other columns of U behave much like trigonometric functions of increasing
frequency. Intuitively, cubic smoothing splines achieve the goal of smoothing by
maintaining the part of y linear in x while shrinking the parts of y that are of higher
frequencies towards zero; the higher the frequency, the stronger the shrinkage. The
eigenvalue aλi controls the amount of shrinkage. For more details on the eigen
matrix U , see Utreras (1988) and Eubank (1999).

One object of this paper is to study bounds and asymptotic properties of the
eigenvalues aλi . There are two reasons why they are interesting.

(a) Because of the shrinking mechanism of smoothing splines, which is con-
trolled by aλi , obtaining a sharp result of the eigenvalues would help statisticians
have a better understanding of the way smoothing splines work.
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(b) To use smoothing splines in practice, it is necessary to choose a value for λ,
the smoothing parameter. Two popular families of selection criteria are: (i)Cp-type
criteria includingCp (Mallows, 1973), generalized cross validation (GCV) (Craven
and Wahba, 1979) and Akaike Information Criterion (AIC) (Akaika, 1974), and
(ii) empirical Bayes type criteria such as generalized maximum likelihood (GML)
(Wecker andAnsley, 1983, Wahba, 1985). Kou and Efron (2002) introduces another
selection criterion: the extended exponential (EE) criterion. For a problem at hand,
since there are several ways to choose λ, one natural question is then: How do dif-
ferent selection criteria compare with each other? Efron (2001) and Kou and Efron
(2002) geometrically compare Cp with GML in a small-sample, non-asymptotic
setting, and show that the big variability of Cp is closely related to its geometric
instability. In addition, Kou and Efron (2002) show that, under the small-sample
setting, the EE criterion effectively combines the strength of Cp and GML. These
small-sample results are quite applicable in general; however in many contexts, the
large sample properties of selection criteria are also of significant interests. In this
case, knowing the asymptotic behavior of the eigenvalues aλi becomes indispens-
able.

There is a large amount of literature studying the large sample properties of
selection criteria; for references, see, for example, Wahba (1985), Härdle, Hall
and Marron (1988), Hall and Johnstone (1992), Li (1986, 1987), Speckman (1983,
1985), Kneip (1994) and Speckman and Sun (2001). Most of the literature is written
in a frequentist framework. This paper, parallel to these frequentist developments,
focuses the large sample investigation of the selection criteria on their Bayesian
properties.

We first derive sharp asymptotic formulas for the eigenvalues aλi ; then use these
formulas to study the Bayesian efficiency of different selection criteria for choosing
the smoothing parameter. In particular we obtain the following results:

• In a collection of papers, Wahba (1977a, 1977b, 1985) develops some theoretical
results regarding the behavior of Cp (GCV) and GML and suggested that Cp
(GCV) and GML would perform similarly under the Bayesian model for spline
smoothing and that Cp (GCV) would perform better than GML in the frequ-
entist case. Recently Speckman and Sun (2001) reinvestigate the frequentist
setting and illustrate that Cp (GCV) does not necessarily performs better than
GML. The current paper extends Wahba’s conjecture for the Bayesian model
setting; we show that under the Bayesian model using Cp, instead of GML, to
estimate the smoothing parameter would encounter a loss of efficiency of factor
10/3.

• Stein (1990) also compares the performance of Cp (actually GCV) and GML
under the Bayesian model that motivates GML, and conjectures, in the case of
equally spaced observations, that when the Bayesian model that motivates GML
is true, the use of Cp to estimate λ would result in a loss of efficiency with a
factor of 10/3. In this paper, obtaining the sharp asymptotic expressions on aλi
enables us to rigorously prove the conjecture. Furthermore, we show that the
conjecture holds true even if the data are not equally spaced, thus strengthening
the result’s applicability.
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• Efron (2001) gives Cp a marginal Bayesian interpretation. This paper, under
both equally and unequally spaced observations, also investigates what would
happen to GML, if the data indeed are sampled from the Cp marginal density.
The interesting result is that the relative efficiency ofCp versus GML in this case
is ∞, namely, asymptotically Cp will do better than GML, if the data actually
come from the Cp marginal density.

• Kou and Efron (2002), in addition to introducing the extended exponential (EE)
criterion, show that the EE criterion has a marginal Bayesian interpretation. This
paper also studies the Bayesian properties of the EE criterion and shows that the
maximum loss of efficiency of the EE criterion is 1.543 when the data are sam-
pled from its consistent density family, in certain sense suggesting the robustness
of the EE criterion.

In the study, we consider not only the case of (x1, x2, . . . , xn) being equally
spaced, but also the case that they are drawn from a distribution on an interval
[α, β]. Interestingly, all the efficiency results remain the same no matter what the
sampling scheme is, hence suggesting the general applicability of the results in the
current paper.

The paper is organized as follows. Section 2 derives bounds on the eigenvalues
and investigates their asymptotic properties in the case of equally spaced obser-
vations. After an overview of the Cp, GML and EE selection criteria and their
marginal Bayesian interpretation in Section 3, the results of Section 2 are used
to study the large sample properties of these three selection criteria in Section 4.
The study focuses on the relative Bayesian efficiency of these selection criteria.
Section 5 considers general sampling scheme of (x1, x2, . . . , xn), and shows that
essentially all the results established in the previous sections remain the same. The
paper concludes in Section 6 with some discussion.

2. Bounds and limiting behavior of the eigenvalues for equally spaced
observations

In this section, we study the properties of the eigenvalues of the smoothing matrix
Aλ in the case of equally spaced data. That is, the observations are such that xi+1 −
xi = δ, i = 1, 2, . . . , n− 1 for some δ. When δ = n−1, (x1, . . . , xn) are n equally
spaced points in the [x1, x1 +1] interval, a standard setting in considering nonpara-
metric regression problems. In this section we consider more generally δ = n−ρ ,
for 0 < ρ ≤ 1. Compared with δ = n−1, taking 0 < ρ < 1 has the feature that
as n → ∞, not only the observations become denser, but also the range xn − x1
becomes larger. Section 5 considers the situation that (x1, x2, . . . , xn) are sampled
from a distribution on an interval [α, β]. It is worth pointing out that the results in
this section are not special cases of those in Section 5, the main reason being that
we consider not only δ = n−1, but more generally δ = n−ρ , which is not covered
by the setting of Section 5 (see Remark 4).

For δ = n−1, several authors have studied the problem of approximating the
eigenvalues aλi . Utreras (1980, 1981) proposes an approximation by relating the
eigenvalues of the spline matrix to those of the differential operator that one encoun-
ters in classical mechanics when describing the vibration of a rod with free ends.
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Silverman (1984) suggests approximating aλi by taking ki = π4(i − 1.5)4/n for
i ≥ 3 in (1.3). Both approximations are shown to be accurate in the sense of approx-
imating the trace of the smoothing matrix, tr(Aλ) = ∑n

i=1 aλi . Speckman (1983,
1985) and Nussbaum (1985) provide further approximation for aλi .

For general δ, Culpin (1986) gives a semi-explicit formula for the eigenvalues
and eigenvectors of Aλ. In particular, for i ≥ 3, the ki sequence in (1.3) has the
form

ki = 12δ−3 (1 − cos θi)2

2 + cos θi
, (2.1)

where θi (3 ≤ i ≤ n) are the n−2 distinct roots in (0, π) of the equation F(θ) = 0
given by

F(θ) = cos(nθ − ω)− 2e−nφ cosω + e−2nφ cos(nθ + ω) = 0, (2.2)

where

φ = φ(θ) = cosh−1((5 − 2 cos θ)/(2 + cos θ)), (2.3)

ω = ω(θ) = sin−1(2(1 − cos θ)/(5 + cos θ)) (2.4)

The above formulas are quite useful in our study, because (i) we want to consider
general δ, not only δ = n−1, (ii) in order to describe the limiting behavior of the
eigenvalues, as well as to compare different selection criteria, only considering the
trace of the smoothing matrix Aλ is not enough.

The following proposition, giving a tight bound on ki , is the starting point of
our study.

Proposition 2.1. The ki sequence in (1.3) is bounded by

Li ≤ ki ≤ Ui for i ≥ 3

where

Li = 12δ−3(1 − cos i−2
n
π)2

2 + cos i−2
n
π

, Ui = 12δ−3(1 − cos i−1
n
π)2

2 + cos i−1
n
π

. (2.5)

Proof. See the appendix.

Working with trigonometric function sometimes is not very convenient. The
bounds (2.5) can be simplified.

Corollary 2.2. The ki sequence is bounded above and below by

k−
i ≤ ki ≤ k+

i , i ≥ 3 (2.6)

where

k−
i = 1

n4δ3 (i − 2)4π4(1 − (i − 2)2π2

18n2 ), k+
i = 1

n4δ3 (i − 1)4π4. (2.7)

Subsequently the eigenvalues aλi (i ≥ 3) are bounded by

1/(1 + λk+
i ) ≤ aλi ≤ 1/(1 + λk−

i ). (2.8)
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Proof. The result is a simple follow-up of the fact

θ4

12
− θ6

216
≤ (1 − cos θ)2

2 + cos θ
≤ θ4

12
, for all θ ∈ (0, π). ��

Remark 1. When δ = n−1, note that k−
i ≈ 1

n
(i − 2)4π4, k+

i = 1
n
(i − 1)4π4 for

moderate i and large n. The corollary, hence, suggests the effectiveness of Silver-
man’s (1984) approximation.

The bounds (2.6) and (2.8) are very useful to study the limiting behavior of the
eigenvalues — they serve as the basic building block of our large sample investiga-
tion. The following theorem, built upon (2.8), provides a general result regarding the
asymptotic behavior of the eigenvalues in the case of equally spaced observations.

Theorem 2.3. Suppose n4δ3

λ
→ ∞, δ−3λ → ∞, then for any real numbers r > 1

4
and s > − 1

4 ,

n∑

i=3

arλi(1 − aλi)
s = 1

4π
B(r − 1

4
, s + 1

4
)(
n4δ3

λ
)1/4 + o

(
(
n4δ3

λ
)1/4

)
,

where the beta function B(x, y) = �(x)�(y)/�(x + y).

Proof. See the appendix.

This theorem covers a variety of situations. For δ = n−ρ , 0 < ρ ≤ 1, it says
that as long as λ is of o(n4−3ρ) and n3ρλ → ∞, the summation

∑
i a
r
λi(1 − aλi)

s

goes to infinity at the same order O((n4−3ρ/λ)1/4) for all values of r > 1/4 and
s > −1/4. A special case of the theorem concerning the limiting behavior of the
trace of the smoothing matrix for δ = n−1 is readily available by taking r to be 1,
and s to be 0.

Corollary 2.4. Suppose n
λ

→ ∞, n3λ → ∞, then tr(Aλ) = ∑n
i=1 aλi = 2−3/2

( n
λ
)1/4 + o

(
( n
λ
)1/4

)
.

This corollary echoes the well-known results of Utreras (1980, 1981) and Sil-
verman (1984). The following theorem, covering the case of s < − 1

4 , complements
Theorem 2.3.

Theorem 2.5. Suppose n4δ3

λ
→ ∞, δ−3λ → ∞, then for any real numbers r > 1

4
and s < − 1

4 ,

n∑

i=3

arλi(1 − aλi)
s = O

(
(
n4δ3

λ
)−s
)
.

Proof. See the appendix.

The bounds (2.6) and (2.8), together with Theorems 2.3 and 2.5, depict the finite
sample as well as the large sample properties of the eigenvalues aλi : The bounds
(2.6 ) and (2.8) are valid for all values of i ≥ 3 and n, while Theorems 2.3 and 2.5
describe the limiting behavior of aλi . In Section 4 we will see the utility of these
results by applying them to analyze the Bayesian properties of selection criteria for
choosing the smoothing parameter λ.
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3. Selecting the smoothing parameter

3.1. The Cp, GML, and EE criteria

Because the smoothing parameter λ controls the trade-off between the closeness to
the data and the roughness of the curve, in practice the use of a smoothing spline
requires the choice of λ. In this Section, we review three selection criteria for choos-
ing the smoothing parameter: the Cp criterion (Mallows, 1973), the generalized
maximum likelihood (GML) criterion (Wecker and Ansley, 1983, Wahba, 1985),
and the extended exponential (EE) criterion (Kou, 2001, Kou and Efron, 2002). We
start by strengthening (1.1) to the normal sampling model y ∼ N(f, σ 2I ), where
σ 2 is assumed known.

The Cp selection criterion chooses λ as the minimizer of the Cp statistic
Cp(λ) =‖ y − f̂λ ‖2 +2σ 2tr(Aλ) − nσ 2 with f̂λ as in (1.2). It is based on the
fact that the Cp statistic is an unbiased estimate of the total estimation error:
E{Cp(λ)} = E ‖ f̂λ − f ‖2. Let

z = U ′y/σ, g = U ′f/σ, ĝλ = U ′ f̂λ/σ (3.1)

where, recall,U is the orthogonal matrix consisting of the eigenvectors ofAλ. Then
theCp statistic can be succinctly expressed asCp(λ) = σ 2∑n

i=1(b
2
λiz

2
i −2bλi+1)

with bλi = 1 − aλi , and consequently the Cp criterion chooses λ by

λ̂Cp = arg min
λ

∑

i

(b2
λiz

2
i − 2bλi). (3.2)

The transformation (3.1) also provides z ∼ N(g, I ) and ĝλ = aλz.
The GML criterion is another method to choose λ. It is an empirical Bayes esti-

mator. Suppose in addition to the normal model z ∼ N(g, I ), one puts a Gaussian
prior on the curve g ∼ N(0, cλ), where cλ is a diagonal matrix with the iith entry
cλi = aλi/(1 − aλi) = aλi/bλi . Then by Bayes theorem,

z ∼ N(0, 1/bλ), g|z ∼ N(aλz, aλ), (3.3)

where 1/bλ denotes the diagonal matrix with the ith diagonal element being 1/bλi =
1/(1−aλi). The second relationship in (3.3) gives a Bayesian justification for using
the linear smoother (expressed in terms of z and g) ĝλ = aλz — it is the posterior
mean of g given the observation z. The first relationship motivates the GML choice
for λ,

λ̂GML = MLE of λ based on z ∼ N(0, 1/bλ).

Under the distribution z ∼ N(0, 1/bλ), z2 is the minimal sufficient statistic for λ
with the joint density dλ(z2) given by

dλ(z2) = exp(−1

2

∑

i

(bλiz
2
i − log bλi))/

∏

i

√
2πz2

i . (3.4)
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The GML estimate, thus, can be written as

λ̂GML = arg max
λ
dλ(z2) = arg min

λ

∑

i

(bλiz
2
i − log bλi). (3.5)

The extended exponential (EE) selection criterion, studied in Kou (2001) and
Kou and Efron (2002), provides a third way to choose the smoothing parameter. It
is motivated by the idea of combining the strength ofCp and GML while mitigating
their weaknesses, since in practice the Cp selected smoothing parameter tends to
be highly variable, whereas the GML criterion has a serious problem with large
bias (for details, see Kou, 2001, and Kou and Efron, 2002). Expressed in terms of
z, the EE criterion selects the smoothing parameter λ according to

λ̂EE = arg min
λ

∑

i

[ξbλizi
4/3 − 3b1/3

λi ], (3.6)

where the constant ξ =
√
π

22/3�(7/6)
= 1. 203. Kou and Efron (2002) explain the

construction of the EE criterion from a geometric point of view and show, through
a finite-sample non-asymptotic analysis, that the EE criterion effectually combines
the strength of Cp and GML [see Kou and Efron (2002) for details].

An interesting fact about the three criteria (Cp, GML and EE) is that they have
a unified structure. Let p ≥ 1, q ≥ 1 be two fixed constants. Define the function

l
(p,q)
λ (u) =

{ ∑
i[(cqb

1/q
λi )

pui − p
p−1 ((cqb

1/q
λi )

p−1 − 1)] if p > 1
∑
i (cqb

1/q
λi ui − log b1/q

λi ) if p = 1

where

bλi = 1 − aλi, cq =
√
π

21/q�(1/2 + 1/q)
, (3.7)

and a corresponding selection criterion

λ̂(p,q) = arg min
λ

{l(p,q)λ (z2/q)}

=
{

arg minλ
∑
i[cqb

p/q
λi z

2/q
i − p

p−1b
(p−1)/q
λi ] if p > 1

arg minλ
∑
i (cqb

1/q
λi z

2/q
i − log b1/q

λi ) if p = 1
. (3.8)

Then it is easy to verify that
(i) l(p,q)λ (·) → l

(1,q)
λ (·) as p → 1;

(ii) taking p = 1, q = 1 gives the GML criterion; p = 2, q = 1 gives the Cp
criterion; p = q = 3

2 gives the EE criterion.
The class (3.8), therefore, unites the three criteria in a continuous fashion.
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3.2. The marginal Bayesian interpretation of the Cp, GML and EE criteria

GML is motivated from the Bayesian framework (3.3). Actually, like GML, the
Cp and EE criteria also have a marginal Bayesian interpretation [see Efron (2001)
and Kou (2001) for further background]. In general, every member of (3.8) has a
marginal Bayesian interpretation. Suppose instead of the GML marginal density
(3.4), one assumes that u = z2/q comes from

u = z2/q ∼ exp(−C0l
(p,q)
λ )d

(p,q)
0 (u), (3.9)

Then the MLE of (3.9) yields the (p, q)-criterion (3.8). Three special cases of (3.9)
that are of particular interest to us, are the GML marginal density (3.4), the Cp
marginal density

z2 ∼ exp[−C0

∑

i

(b2
λiz

2
i − 2bλi)]d

Cp
0 (z2) (3.10)

and the EE marginal density

ui = z
4/3
i

ind.∼ exp[−C0(ξ
3/2bλiui − 3ξ1/2b

1/3
λi )]d

EE
0 (ui). (3.11)

(The properties of d
Cp
0 (·) and dEE0 (·) will be discussed shortly.) The density (3.9)

forms an exponential family, which means it can be written as

u = z2/q ∼ exp(η′
λu − ψλ)d

(p,q)
0 (u),

where d(p,q)0 (u) is the normalizing (carrier) density, ηλ = −C0(cqb1/q
λ )p is the

natural parameter vector and ψλ is the cumulant generating function given by

ψλ = ψ(ηλ) =
{

−C0
∑
i

p
p−1 (cqb

1/q
λi )

p−1 if p > 1

−C0
∑
i log b1/q

λi if p = 1
. (3.12)

Because of the one-to-one correspondence between a density and its cumulant
generating function, (3.12) in fact completely determines the distribution. For in-
stance, (i) the Cp marginal density (3.10) is inverse Gaussian, which is first shown
in Efron (2001); (ii) in the EE marginal distribution (3.11), the carrier density
dEE0 (ui) follows a positive stable law with order 1/3, and consequently, its expo-
nential tilt gives the EE marginal density. [For reference concerning stable laws, see
Feller (1971).] The cumulant generating function (3.12 ) furthermore determines
the mean µ

(p,q)
λ = Ep,q{u} and the covariance matrix V (p,q)λ of the density (3.9)

in a simple way: for all p ≥ 1,q ≥ 1,

µ
(p,q)
λ = ∂ψ(ηλ)

∂ηλ
= 1/(cqb1/q

λ ) (3.13)

V
(p,q)
λ = ∂2ψ(ηλ)

∂η2
λ

= diag(
1

C0p
(cqb1/q

λ )−(p+1)). (3.14)
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Notice that the right hand side of (3.13) only depends on the value of q, which
reveals an interesting feature about the (p, q) marginal density (3.9): different
(p, q)-densities sharing the same q value have the same expectation. We conclude
this section with another important property of the density family (3.9): Fisher
consistency. Suppose u = z2/q happens to take on the value of its expectation
µ
(p,q)
λ0

for some λ0, then the (p, q)-criterion would choose λ0 to be the smoothing
parameter. That is

λ̂(p,q)
(

1/(cqb1/q
λ0
)
)

= λ0. (3.15)

This property can be easily seen by observing that ∂
∂λ
l(p,q)

(
1/(cqb1/q

λ )
)∣∣∣
λ=λ0

= 0.

4. Marginal Bayesian efficiency

The marginal Bayesian interpretation says that the GML, Cp, and EE criteria are
MLE’s under the densities (3.5), (3.10) and ( 3.11) respectively. It follows that
if the data indeed come from these distributions, then using GML, Cp, and EE
respectively would be most efficient. Now an interesting question is: What would
happen to a specific criterion, if the data, instead of coming from the density of
which it is MLE, actually follow some other distribution?

In this section, we use our earlier results on the eigenvalues to study this problem,
namely the relative Bayesian efficiency. Suppose the data come from the marginal
density corresponding to criterion (p1, q) [see (3.8)], but the (p2, q)-criterion is
used to estimate the smoothing parameter. Then because we are not using the MLE
λ̂(p1,q) of the (p1, q)-density, the loss of efficiency is expected. Investigating the
loss of efficiency under various situations would help us understand and compare
the robustness of different selection criteria.

Theorem 4.1. Under the (p1, q)-density, the estimator λ̂(p2,q) satisfies
[
q2c

1−p1
q λ2

C0p1

∑
i a

2
λib

(2p2−p1−1)/q
λi

(
∑
i a

2
λib

(p2−1)/q
λi )2

]−1/2

(λ̂(p2,q) − λ) 
⇒ N (0, 1) , as n → ∞.

In particular, the asymptotic variance of λ̂(p2,q) under the (p1, q)-density is

varp1,q(λ̂
(p2,q)) ≈ q2c

1−p1
q λ2

C0p1

∑
i a

2
λib

(2p2−p1−1)/q
λi

(
∑
i a

2
λib

(p2−1)/q
λi )2

. (4.1)

We give a heuristic proof here, which itself reveals some interesting features
about the (p, q)-density family. For a rigorous proof, see the appendix.

Heuristic Proof. Since the (p2, q)-criterion chooses λ̂(p2,q) as the minimizer of
l
(p2,q)
λ (u) where u = z2/q , it must satisfy the normal equation

∂

∂λ
[l(p2,q)
λ (u)]

∣∣∣
λ=λ̂(p2,q)

= 0.



On the efficiency of selection criteria in spline regression 163

Applying the implicit function theorem, we can calculate the delta-influence of ui
on λ̂(p2,q)

∂λ̂(p2,q)

∂ui
= −

[
(
∂2

∂λ2 lλ(u))
−1 ∂2

∂ui∂λ
lλ(u)

]∣∣∣∣
λ=λ̂(p2,q)

,

which, by some simple but tedious algebra, is

∂λ̂(p2,q)

∂ui
= − [λ(Qλ(u))−1aλi(cqb

1/q
λi )

p2 ]
∣∣∣
λ=λ̂(p2,q)

where Qλ(u) = ∑
i aλi(cqb

1/q
λi )

p2−1
{

1
q
aλi + [(1 + p2

q
)aλi − 2](cqb

1/q
λi ui − 1)

}
.

Now taking a first order Taylor expansion on λ̂(p2,q) around λ, the smooth-
ing parameter under the Bayesian model that generates the data, we obtain the
approximation

λ̂(p2,q) − λ ≈
∑

i

∂λ̂(p2,q)

∂ui

∣∣∣∣∣
u=1/(cqb1/q

λi )

(ui − 1

cqb
1/q
λi

)

= − qcqλ
∑
i a

2
λib

(p2−1)/q
λi

∑

i

aλib
p2/q
λi (ui − 1

cqb
1/q
λi

). (4.2)

Note that in deriving this approximation, we have used the property of Fisher con-
sistency (3.15).

Since the data are sampled from the (p1, q)-density, (3.13) and ( 3.14) say that
each individual ui independently has mean 1/(cqb

1/q
λi ), and variance varp1,q(ui) =

1
C0p1

(cqb
1/q
λi )

−(p1+1). It follows that the right hand side of (4.2) has mean 0 and
variance

q2c
1−p1
q λ2

C0p1

∑
i a

2
λib

(2p2−p1−1)/q
λi

(
∑
i a

2
λib

(p2−1)/q
λi )2

So from the approximation, the variance of λ̂(p2,q) under the (p1, q)-density is

varp1,q(λ̂
(p2,q)) ≈ q2c

1−p1
q λ2

C0p1

∑
i a

2
λib

(2p2−p1−1)/q
λi

(
∑
i a

2
λib

(p2−1)/q
λi )2

.

and

[
q2c

1−p1
q λ2

C0p1

∑
i a

2
λib

(2p2−p1−1)/q
λi

(
∑
i a

2
λib

(p2−1)/q
λi )2

]−1/2

(λ̂(p2,q) − λ) 
⇒ N (0, 1) , as n → ∞.

��
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An important application of this theorem is

Corollary 4.2. Under the (p1, q)-density, the asymptotic efficiency ratio of λ̂(p2,q)

relative to the MLE λ̂(p1,q) is given by

E(p1, q;p2, q) = lim
n→∞

varp1,q(λ̂
(p2,q))

varp1,q(λ̂
(p1,q))

= lim
n→∞

(
∑
i a

2
λib

(2p2−p1−1)/q
λi )(

∑
i a

2
λib

(p1−1)/q
λi )

(
∑
i a

2
λib

(p2−1)/q
λi )2

. (4.3)

As an example, consider the case that the data come from the GML density
(where p = 1, q = 1), but Cp (p = 2, q = 1) is used to estimate the smoothing
parameter. Then (4.3) tells us that the relative efficiency ratio

E(1, 1; 2, 1) = lim
n→∞

(
∑
i a

2
λib

2
λi)(

∑
i a

2
λi)

(
∑
i a

2
λibλi)

2
.

When (x1, x2, . . . xn) are equally spaced with δ = xi+1 − xi = n−ρ , 0 < ρ ≤ 1,
applying the result of Theorem 2.3 gives

E(1, 1; 2, 1) = B( 7
4 ,

9
4 )B(

7
4 ,

1
4 )

B( 7
4 ,

5
4 )

2
= 10

3
. (4.4)

Remark 2. Wahba (1985) compares GML and Cp (GCV) under the Bayesian set-
ting and conjectures that they perform similarly. Stein (1990) further considers the
above problem — for equally spaced (x1, x2, . . . xn) how much the loss of effi-
ciency would be when Cp (GCV) is used and in fact the GML Bayesian model is
true. He conjectured the above ratio of 10/3. Theorem 2.3 enables us to rigorously
prove the conjecture.

The result of (4.4) can be strengthened (by using Theorem 2.3) to

max
1≤p≤2

E(p, 1; 2, 1) = max
1≤p≤2

B( 7
4 ,

13
4 − p)B( 7

4 , p − 3
4 )

B( 7
4 ,

5
4 )

2
= 10

3
(4.5)

In other words, the use ofCp under the (p, 1) density (1 ≤ p ≤ 2)would encounter
a maximum loss of efficiency of 10/3, which actually occurs at the GML density.

The Cp criterion also has a marginal Bayesian interpretation (3.10). It is, thus,
interesting to ask the question the other way round — what would happen if the
data are sampled from the Cp density but GML is used to estimate the smoothing
parameter? By (4.3), the relative efficiency is equal to

E(2, 1; 1, 1) = lim
n→∞

(
∑
i a

2
λib

−1
λi )(

∑
i a

2
λibλi)

(
∑
i a

2
λi)

2
.

For δ = xi+1 − xi = n−ρ , 0 < ρ ≤ 1, the summations
∑
i a

2
λibλi and

∑
i a

2
λi have

the asymptotic order O(n(4−3ρ)/4) according to Theorem 2.3, while
∑
i a

2
λib

−1
λi is
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of the order O(n4−3ρ) by Theorem 2.5. We, hence, have an interesting result

E(2, 1; 1, 1) = lim
n→∞

(
∑
i a

2
λib

−1
λi )(

∑
i a

2
λibλi)

(
∑
i a

2
λi)

2
= ∞. (4.6)

That is, if the data indeed come from the Cp marginal density, then using GML
asymptotically would not work at all.

A careful reader might notice that in the derivation of (4.3), we assume that
the density from which the data come and the criterion used to choose the smooth-
ing parameter share the same q value. This assumption is needed for studying the
relative efficiency. The reason hinges on the fact that in order for the estimator
λ̂(p2,q2) to be consistent under density-(p1, q1), we must have q1 = q2, which can
be seen from the Taylor approximation (4.2), as it relies on two crucial properties:

(i) λ̂(p2,q)
(

1/(cqb1/q
λ )

)
= λ; and (ii) under the (p1, q1)-density, 1/(cqb1/q

λ ) is the

expectation of u.
If q1 �= q2, although we can still expand λ̂(p2,q2)(u) around u = 1/(cq2 b1/q2

λ ),

however since 1/(cq2 b1/q2
λ ) is no longer the expectation of u under the (p1, q1)-den-

sity, λ̂(p2,q2) could not be consistent. GML and Cp, both having q = 1, provide an
example of this mutual consistency as we have seen. Cp and EE provide a different
example — using Cp on data sampled from EE density would not give a consistent
estimate for λ; conversely, using EE on data sampled from the Cp density would
not be consistent either.

Parallel to (4.6) and (4.5), we have the following result regarding the maximum
loss of efficiency of the EE criterion (where p = 3

2 , q = 3
2 ) in the case of equally

spaced observations

max
1≤p≤2

E(p,
3

2
; 3

2
,

3

2
) = max

1≤p≤2
lim
n→∞

(
∑
i a

2
λib

(4−2p)/3
λi )(

∑
i a

2
λib

(2p−2)/3
λi )

(
∑
i a

2
λib

1/3
λi )

2

= max
1≤p≤2

B( 7
4 ,

19
12 − 2

3p)B(
7
4 ,

2
3p − 5

12 )

B( 7
4 ,

7
12 )

2

= 1.543 (4.7)

Comparing (4.7) with (4.6) and (4.5), it can be seen that the when each estimator
(GML,Cp, EE) is used on data sampled from its own consistent density family, the
maximum loss of efficiency of the EE criterion is the much smaller 1.543, compared
with 10/3 of Cp and ∞ of GML.

Remark 3. Efron (2001) investigates the selection criteria family {λ̂(p,1) : p ≥ 1},
where it is shown that having p > 2 would result in a very unstable criterion. For
this reason, in (4.5) and (4.7) we confine our attention on 1 ≤ p ≤ 2.

5. General sampling schemes of the design points

In the study so far we have focused on equally spaced design points (x1, x2, . . . , xn).
In this section, we will study the case of unequally spaced design points to comple-
ment the results of Sections 2 and 4. More specifically, suppose (x1, x2, . . . , xn)
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are drawn from a continuous distribution on an interval [α, β] such that

xi = G−1(
2i − 1

2n
), (5.1)

where G is the c. d. f. of the distribution. Let p(x) be the density function of G.
For regularity purposes, suppose also that the constant

C∗ =
∫ β

α

p1/4(x)dx (5.2)

is finite and positive. With this setting, one naturally wonders to what extent the pre-
vious results remain valid. Quite interestingly, we shall see that all the early results
stay essentially intact. In particular, we first note that Theorem 4.1 and Corollary
4.2 do not require (x1, x2, . . . , xn) to be equally spaced, and hence are carried
through under (5.1).

To establish the counterparts of Theorems 2.3 and 2.5 for the setting of (5.1),
we need the following handy result of Speckman (1983, 1985): Let ln and un be two
sequence (depending on n) such that ln → ∞, un = o(n2/5), then for ln ≤ i ≤ un,

ki = (
π

C∗ )
4 i

4

n
(1 + εn), (5.3)

where limn→∞ εn = 0. Using this result, we have the parallel results of Theorems
2.3 and 2.5, whose proofs are deferred to the Appendix.

Theorem 5.1. Under the sampling scheme (5.1), suppose both λ log n → ∞, and
n1−ε
λ

→ ∞ for some ε > 0, then for all real numbers r > 5
4 and s > − 1

4 ,

n∑

i=3

arλi(1 − aλi)
s = C∗

4π
B(r − 1

4
, s + 1

4
)(
n

λ
)1/4 + o

(
(
n

λ
)1/4

)
,

where the constant C∗ determined by the sampling distribution is given by (5.2).

Theorem 5.2. For the sampling scheme (5.1), suppose both λ log n → ∞, and
n1−ε
λ

→ ∞ for some ε > 0, then for all r > 1
4 and s < − 1

4 ,

n∑

i=3

arλi(1 − aλi)
s ≥ O

(
(
n4δ3

λ
)−s−η

)
, for any η > 0.

Remark 4. Theorems 5.1 and 5.2, instead of containing Theorems 2.3 and 2.5 as
special cases, complement them in that (i) Theorems 5.1 and 5.2 require stron-
ger conditions, and (ii) Theorems 2.3 and 2.5 work on the general setting of δ =
xi+1 − xi = n−ρ for 0 < ρ ≤ 1, which is not covered by Theorems 5.1 and 5.2
unless ρ = 1.
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Applying Theorems 5.1 and 5.2 to Corollary 4.2 and noting that the constant
C∗ cancels out in the ratios, we have

E(1, 1; 2, 1) = max
1≤p≤2

E(p, 1; 2, 1) = 10

3
E(2, 1; 1, 1) = ∞ (5.4)

max
1≤p≤2

E(p,
3

2
; 3

2
,

3

2
) = 1.543.

It is noteworthy that the relative efficiency ratios remain the same no matter how
the design points (x1, x2, . . . , xn) are placed, making our results quite general in
nature.

6. Discussion

This paper studies the Bayesian large sample properties of the selection criteria,
where, in addition to proving and strengthening Stein’s (1990) conjecture to general
sampling schemes, we obtain the interesting results ( 4.6) and (5.4), which say that
GML can asymptotically perform poorly when its underlying Bayesian structure is
violated. This result parallels that of Speckman and Sun (2001), where the perfor-
mances ofCp (GCV) and GML are compared under the frequentist setting. We also
consider the EE criterion and show that its maximum loss of efficiency is 1.543,
which parallels the small sample analysis of Kou and Efron (2002) and suggests the
robustness of the EE criterion. It is worth noting that in the study we consider both
equally spaced and unequally spaced observation, and thus the results obtained are
of general applicability.

In this paper, working on cubic smoothing splines, the efficiency of different
selection criteria, in terms of estimating the smoothing parameter, is considered.
Several authors (Speckman, 1983 and 1985, and Stein, 1993) have studied higher
and flexible order smoothing splines. We expect, at the expense of more complicated
calculation, the conclusion of the present paper could be qualitatively extended to
these cases as well, since the well established results (Wahba, 1990, Speckman,
1983 and 1985, and Stein, 1990 and 1993) indicate that in the sense of general
properties cubic smoothing splines are representative. Kou and Efron (2002) also
study the relationship between estimating the curve and estimating the smoothing
parameter, and suggest that there is a second order connection between the two and
that comparing different selection criteria based on their performance of estimat-
ing the smoothing parameter is more sensitive. Therefore in terms of estimating the
curve, we expect that under the GML Bayesian model, GML works better than Cp
to the second order, which agrees with the general conclusion of Stein (1990), and
that to the second order the EE criterion would behave more robustly than GML
and Cp as ( 4.7) and (5.4) indicate.

Appendix: Detailed proofs

Proof of Proposition 2.1. We first note that both φ(θ) and ω(θ) defined in (2.3)
and (2.4) are strictly increasing functions of θ for θ ∈ (0, π). In addition, φ(θ) > 0
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and ω(θ) ∈ (0, π/2) for θ ∈ (0, π). Taking θ = i−2
n
π in (2.2) gives

F(
i − 2

n
π) = (−1)i[1 − (−1)ie−nφi ]2 cosωi

where φi = φ( i−2
n
π), and ωi = ω( i−2

n
π). Similarly, letting θ = i−1

n
π yields

F(
i − 1

n
π) = (−1)i+1[1 + (−1)ie−nφi+1 ]2 cosωi+1

where φi+1 = φ( i−1
n
π), and ωi+1 = ω( i−1

n
π). Since φi > 0 and ωi ∈ (0, π/2)

for all i ≥ 3, we have

F(
i − 2

n
π) · F(i − 1

n
π) < 0, for i ≥ 3.

This gives i−2
n
π ≤ θi ≤ i−1

n
π . The monotone relationship between ki and θi

further provides

12δ−3(1 − cos i−2
n
π)2

2 + cos i−2
n
π

≤ ki ≤ 12δ−3(1 − cos i−1
n
π)2

2 + cos i−1
n
π

, for i ≥ 3. ��

Proof of Theorem 2.3. Denote bλi = 1 − aλi for convenience. We shall prove the
theorem by considering two cases.

Case I: − 1
4 < s ≤ 0. In this case, since arλi(1 − aλi)

s = ( 1
1+λki )

r (
λki

1+λki )
s is a

decreasing function of ki , it follows that

n∑

i=3

arλib
s
λi ≤

n∑

i=3

(
1

1 + λk−
i

)r (
λk−
i

1 + λk−
i

)s ≤
∫ n

2
(

1

1 + λk−
x

)r (
λk−
x

1 + λk−
x

)sdx,

(A.1)

where k−
x = 1

n4δ3 (x − 2)4π4(1 − (x−2)2π2

18n2 ). The second inequality is an easy fol-

low-up of a typical graphical argument. Denoting fr,s(λ, k) = ( 1
1+λk )

r ( λk
1+λk )

s ,

and changing the variable in the integral to t = ( n
4δ3

λ
)−1/4(x − 2)π , the last term

of (A.1) becomes

1

π
(
n4δ3

λ
)1/4

∫ (n4δ3/λ)−1/4(n−2)π

0
fr,s(1, t

4(1 − t2δ3/2

18λ1/2 ))dt. (A.2)

Since r > 1
4 , − 1

4 < s ≤ 0, δ−3λ → ∞, by the dominated convergence theorem

(A.2) converges to 1
π
(n

4δ3

λ
)1/4

∫∞
0 ( 1

1+t4 )
r ( t4

1+t4 )
sdt , as n → ∞. Similarly

n∑

i=3

arλib
s
λi ≥

n∑

i=3

fr,s(λ, k
+
i ) ≥

∫ n+1

3
fr,s(λ,

1

n4δ3 (x − 1)4π4)dx

= 1

π
(
n4δ3

λ
)1/4

∫ π(δ−3λ)1/4

2π(n4δ3/λ)−1/4
(

1

1 + t4
)r (

t4

1 + t4
)sdt

→ 1

π
(
n4δ3

λ
)1/4

∫ ∞

0
(

1

1 + t4
)r (

t4

1 + t4
)sdt. (A.3)
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Combining (A.1), (A.2) and (A.3), and noting that
∫∞

0 ( 1
1+t4 )

r ( t4

1+t4 )
sdt = 1

4B(r−
1
4 , s+ 1

4 ) [see formula (3.251.11) of Gradshteyn and Ryzhik (1994)] yield the desired
result.

Case II: s > 0. Break the sum
∑n
i=3 a

r
λib

s
λi into three parts

n∑

i=3

arλib
s
λi =

∑

{i:k+i <s/(rλ)}
+

∑

{i:k−i ≤s/(rλ)≤k+i }
+

∑

{i:k−i >s/(rλ)}
. (A.4)

Note that the index sets {i : k+
i < s/(rλ)} = {i : i < 1 + 1

π
αn} and {i : k−

i >

s/(rλ)} = {i : i > 2 + 1
π
βn}, where αn = ( s

r
n4δ3

λ
)1/4, βn is the solution of

the equation β4(1 − β2

18n2 ) = s
r
n4δ3

λ
, and limn→∞ βn

αn
= 1. It then follows that

∣∣{i : k−
i ≤ s/(rλ) ≤ k+

i }∣∣ = o
(
( n

4δ3

λ
)1/4

)
, which implies

∑

{i:k−i ≤s/(rλ)≤k+i }
arλib

s
λi = o

(
(
n4δ3

λ
)1/4

)
. (A.5)

On the set {k < s/(rλ)}, fr,s(λ, k) is an increasing function of k. So
∑

{i:k+i <s/(rλ)}
fr,s(λ, k

−
i ) ≤

∑

{i:k+i <s/(rλ)}
arλib

s
λi ≤

∑

{i:k+i <s/(rλ)}
fr,s(λ, k

+
i ).

But by dominated convergence theorem, the upper bound

∑

{i:k+i <s/(rλ)}
fr,s(λ, k

+
i ) ≤

∫ 2+ 1
π
αn

3
fr,s(λ,

1

n4δ3 (x − 1)4π4)dx

= 1

π
(
n4δ3

λ
)1/4
∫ π(n4δ3/λ)−1/4+(s/r)1/4

2π(n4δ3/λ)−1/4
(

1

1 + t4
)r (

t4

1 + t4
)sdt

→ 1

π
(
n4δ3

λ
)1/4

∫ (s/r)1/4

0
(

1

1 + t4
)r (

t4

1 + t4
)sdt

and the lower bound

∑

{i:k+i <s/(rλ)}
fr,s(λ, k

−
i ) ≥

∫ 1+ 1
π
αn

2
fr,s(λ, k

−
x )dx

→ 1

π
(
n4δ3

λ
)1/4

∫ (s/r)1/4

0
(

1

1 + t4
)r (

t4

1 + t4
)sdt,

where k−
x = 1

n4δ3 (x − 2)4π4(1 − (x−2)2π2

18n2 ). We thus have

∑

{i:k+i <s/(rλ)}
arλib

s
λi = 1

π
(
n4δ3

λ
)1/4

∫ (s/r)1/4

0
(

1

1 + t4
)r (

t4

1 + t4
)sdt + o

(
(
n4δ3

λ
)1/4
)
.

(A.6)



170 S.C. Kou

Identical treatment of
∑

{i:k−i >s/(rλ)} a
r
λib

s
λi yields

∑

{i:k−i >s/(rλ)}
arλib

s
λi = 1

π
(
n4δ3

λ
)1/4

∫ ∞

(s/r)1/4
(

1

1 + t4
)r (

t4

1 + t4
)sdt + o

(
(
n4δ3

λ
)1/4

)

(A.7)

Combining (A.5), (A.6) and (A.7) yields

n∑

i=3

arλib
s
λi = 1

π
(
n4δ3

λ
)1/4

∫ ∞

0
(

1

1 + t4
)r (

t4

1 + t4
)sdt + o

(
(
n4δ3

λ
)1/4

)

= 1

4π
B(r − 1

4
, s + 1

4
)(
n4δ3

λ
)1/4 + o

(
(
n4δ3

λ
)1/4

)
. ��

Proof of Theorem 2.5. Again let fr,s(λ, k) = ( 1
1+λk )

r ( λk
1+λk )

s , and bλi = 1 − aλi .
Since fr,s(λ, k) is a decreasing function of k,

n∑

i=4

arλib
s
λi ≤ 1

π
(
n4δ3

λ
)1/4

∫ (n4δ3/λ)−1/4(n−2)π

(n4δ3/λ)−1/4π

fr,s(1, x
4(1 − x2δ3/2

18λ1/2 )dx. (A.8)

Break the above integral into two parts
∫ 1
(n4δ3/λ)−1/4π

and
∫ (n4δ3/λ)−1/4(n−2)π

1 . The

second part converges to a constant as n → ∞. Let αn = 1 − δ3/2

18λ1/2 , the first part
is less than

∫ 1

(n4δ3/λ)−1/4π

fr,s(1, αnx
4)dx = α

−1/4
n

∫ α
1/4
n

π(n4δ3/λ)−1/4α
1/4
n

(
1

1 + t4
)r (

t4

1 + t4
)sdt,

which is O
(
( n

4δ3

λ
)−s−

1
4

)
by L’Hôpital’s rule. This together with (A.8) implies

∑n
i=4 a

r
λib

s
λi≤O

(
( n

4δ3

λ
)−s
)

. Note thatarλ3b
s
λ3 =( 1

1+λk3
)r ( λk3

1+λk3
)s isO

(
( n

4δ3

λ
)−s
)

.

Therefore

n∑

i=3

arλib
s
λi = arλ3b

s
λ3 +

n∑

i=4

arλib
s
λi ≤ O

(
(
n4δ3

λ
)−s
)
.

For the lower bound, similar to (A.8), we have

n∑

i=3

arλib
s
λi ≥ 1

π
(
n4δ3

λ
)1/4

∫ (δ−3λ)1/4π

2π(n4δ3/λ)−1/4
fr,s(1, x

4)dx = O

(
(
n4δ3

λ
)−s
)
. ��
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Proof of Theorem 4.1. λ̂(p2,q) satisfies the normal equation ∂
∂λ

[l(p2,q)
λ (u)]

∣∣∣
λ=λ̂(p2,q)= 0, which (by simple algebra) is

{
p2

qλ

∑

i

aλi(cqb
1/q
λi )

p2−1(cqb
1/q
λi ui − 1)

}∣∣∣∣∣
λ=λ̂(p2,q)

= 0. (A.9)

Letting si(λ) = cqaλib
p2/q
λi and ti (λ) = −aλib(p2−1)/q

λi , (A.9) is equivalent to∑
i{si(λ̂(p2,q))ui+ ti (λ̂(p2,q))} = 0. Applying a first order Taylor expansion around

λ on a coordinate by coordinate basis gives

0 =
∑

i

{si(λ̂(p2,q))ui + ti (λ̂
(p2,q))}

=
∑

i

{si(λ)ui + ti (λ)} + (λ̂(p2,q) − λ)
∑

i

{s′i (λ∗
i )ui + t ′i (λ

∗
i )}, (A.10)

where for each i, λ∗
i lies between λ̂(p2,q) and λ. Note that

∑
i{si(λ)ui + ti (λ)} is

a sum of independent mean-zero random variables. It follows from Lyaponouv’s
theorem [Billingsley (1995), page 362],

[
c

1−p1
q

C0p1

∑

i

a2
λib

(2p2−p1−1)/q
λi

]−1/2∑

i

{si(λ)ui + ti (λ)} 
⇒ N (0, 1) .

Therefore by (A.10) we only need to show that
∑
i{s′i (λ∗

i )ui + t ′i (λ
∗
i )}

1
qλ

∑
i a

2
λib

(p2−1)/q
λi

→ 1 in probability,

Denote Tn = 1
qλ

∑
i a

2
λib

(p2−1)/q
λi . Note that s′i (λ) = cq

λ
aλib

p2/q
λi (

p2
q
aλi − bλi),

t ′i (λ) = − 1
λ
aλib

(p2−1)/q
λi (bλi − p2−1

q
aλi), and

∑

i

{s′i (λ∗
i )ui + t ′i (λ

∗
i )} − Tn

=
∑

i

{(s′i (λ∗
i )− s′i (λ))ui + (t ′i (λ

∗
i )− t ′i (λ))} +

∑

i

{s′i (λ)(ui − 1

cqb
1/q
λi

)}

= Term A + Term B.

We need to show that both Term A
T n

→ 0 and Term B
T n

→ 0 in probability. First consider
Term A
T n

. For any ε > 0, θ > 0,

P

(∣∣∣∣
Term A

T n

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣
Term A

T n

∣∣∣∣ > ε,

∣∣∣λ̂(p2,q) − λ

∣∣∣ ≤ θ

)

+ P
(∣∣∣λ̂(p2,q) − λ

∣∣∣ > θ
)
.
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By simple (but tedious) calculation, it can be shown that there exists a constant M
such that

|s′′i (λ̃)| ≤ Mcqaλib
p2/q
λi , |t ′′i (λ̃)| ≤ Maλib

(p2−1)/q
λi for all |λ̃− λ| ≤ θ.

Therefore by the mean value theorem, on the event {
∣∣∣λ̂(p2,q) − λ

∣∣∣ ≤ θ}

|Term A| ≤ Mθ
∑

i

(cqaλib
p2/q
λi ui + aλib

(p2−1)/q
λi ). (A.11)

But using the result of Theorem 2.3, the expectation

E{ 1

Tn
Mθ

∑

i

(cqaλib
p2/q
λi ui+aλib(p2−1)/q

λi )}=θ · (2qλM
∑
i aλib

p2/q
λi ui

∑
i a

2
λib

(p2−1)/q
λi

)≤Cθ,

for some constant C, when n is sufficiently large. Thus we have from ( A.11)

P(

∣∣∣∣
Term A

T n

∣∣∣∣ > ε) ≤ P

(
1

Tn
Mθ

∑

i

(cqaλib
p2/q
λi ui + aλib

(p2−1)/q
λi ) > ε

)

+ P(

∣∣∣λ̂(p2,q) − λ

∣∣∣ > θ)

≤ 1

ε
E{ 1

Tn
Mθ

∑

i

(cqaλib
p2/q
λi ui + aλib

(p2−1)/q
λi )}

+ P(

∣∣∣λ̂(p2,q) − λ

∣∣∣ > θ)

≤ 1

ε
Cθ + P(

∣∣∣λ̂(p2,q) − λ

∣∣∣ > θ).

Let n → ∞,

lim
n→∞ supP(

∣∣∣∣
Term A

T n

∣∣∣∣ > ε) ≤ 1

ε
Cθ + lim

n→∞P(
∣∣∣λ̂(p2,q) − λ

∣∣∣ > θ) = 1

ε
Cθ.

The last equality follows by the Fisher consistency of λ̂(p2,q), which is stronger than
the ordinary consistency. Now sending θ ↓ 0 yields Term A

T n
→ 0 in probability. To

prove Term B
T n

→ 0 in probability, note that

P(
Term B

T n
> ε) = P(

∑

i

s′i (λ)(ui − 1

cqb
1/q
λi

) > Tnε)

≤ E{exp

(
C0θ [

∑

i

s′i (λ)(ui − 1

cqb
1/q
λi

)− Tnε]

)
}, ∀θ > 0

= e−C0θεTn

(
∏

i

e−C0θs
′
i (λ)/(cqb

1/q
λi )

)
∏

i

EeC0θs
′
i (λ)ui .
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The moment generating function of ui , according to (3.12), is

Eeθui = exp(C0
p1

p1 − 1
{(cqb1/q

λi )
p1−1 − ((cqb

1/q
λi )

p1 − θ

C0
)
p1−1
p1 }).

Therefore

logP(
Term B

T n
> ε) ≤ −C0θεTn − C0θ

∑

i

s′i (λ)/(cqb
1/q
λi )+

+
∑

i

C0
p1

p1 − 1
{(cqb1/q

λi )
p1−1

−((cqb1/q
λi )

p1 − θs′i (λ))
p1−1
p1 }

≤ −C0[θεTn + θ
∑

i

s′i (λ)/(cqb
1/q
λi )

− p1

p1 − 1
θ
p1−1
p1

∑

i

|s′i (λ)|
p1−1
p1 ]. (A.12)

Theorem 2.3 says that εTn + ∑
i s

′
i (λ)/(cqb

1/q
λi ) = O((n

4δ3

λ
)1/4) > 0 and

∑
i |s′i (λ)|

p1−1
p1 = O((n

4δ3

λ
)1/4). So for sufficiently large θ , the right hand side

of (A.12) is O((n
4δ3

λ
)1/4) and negative. It follows that P(Term B

T n
> ε) → 0, as

n → ∞. Applying similar method on the inequality

P(
Term B

T n
< −ε) ≤ E{exp

(
−C0θ [

∑

i

s′i (λ)(ui − 1

cqb
1/q
λi

)+ Tnε]

)
}, ∀θ > 0,

we can show that P(Term B
T n

< −ε) → 0, which finally yields Term B
T n

→ 0 in
probability. ��

Proof of Theorem 5.1. Break the sum
∑n
i=3 a

r
λib

s
λi into three parts

∑n
i=3 a

r
λib

s
λi =∑ln

i=3 +∑un
ln

+∑n
un

. Consider the second term first. Using (5.3) provides

un∑

i=ln
arλib

s
λi =

un∑

ln

(
1

1 + λki
)r (

λki

1 + λki
)s

=
un∑

i=ln
(

1

1 + λ( π
C∗ )4

i4

n
(1 + εn)

)r (
λ( π
C∗ )4

i4

n
(1 + εn)

1 + λ( π
C∗ )4

i4

n
(1 + εn)

)s

Applying identical arguments as in the proof of Theorem 2.3, it can be seen that∑un
ln
arλib

s
λi is asymptotically equivalent to

∫ un
ln
( 1

1+λ( π
C∗ )4 x

4
n
(1+εn)

)r
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× (
λ( π
C∗ )4 x

4
n
(1+εn)

1+λ( π
C∗ )4 x

4
n
(1+εn)

)sdx, which, after a change of variable t = [λ
n
(1+εn)]1/4 π

C∗ x,

becomes

[
n

λ(1 + εn)
]1/4C

∗

π

∫ [ λ
n
(1+εn)]1/4 π

C∗ un

[ λ
n
(1+εn)]1/4 π

C∗ ln
(

1

1 + t4
)r (

t4

1 + t4
)sdt. (A.13)

Taking ln = o(nε/4), n2/5−ε/4 < un = o(n2/5), the conditions of Theorem 5.1
together with dominated convergence theorem implies that as n → ∞, (A.13) is
equivalent to C∗

4π B(r − 1
4 , s + 1

4 )(
n
λ
)1/4.

Next consider
∑ln
i=3 a

r
λib

s
λi , it is easily seen (from the proof of Theorem 2.3)

that for i ≤ ln < nε/4, arλib
s
λi is a monotone function of i (for all given s > −1/4).

Therefore,
∑ln
i=3 a

r
λib

s
λi ≤ ln max(arλ3b

s
λ3, a

r
λln
bsλln). Sincearλ3b

s
λ3 = ( 1

1+(λ/n)(nk3)
)r

× (
(λ/n)(nk3)

1+(λ/n)(nk3)
)s , using the result of Speckman (1985, Theorem 2.2 of the paper)

that limn→∞ nk3 = const > 0 gives lnarλ3b
s
λ3 = O(ln(

λ
n
)s). Thus, taking ln suf-

ficiently small guarantees lnarλ3b
s
λ3 = o((n

λ
)1/4). As for lnarλlnb

s
λln

, applying (5.3)

yields lnarλlnb
s
λln

= ln(
1

1+ λ
n
( π
C∗ ln)4(1+εn) )

r (
λ
n
( π
C∗ ln)4(1+εn)

1+ λ
n
( π
C∗ ln)4(1+εn) )

s = O(l1+4s
n ( λ

n
)s) =

o((n
λ
)1/4) for ln sufficiently small. Hence for all fixed s > − 1

4 ,
∑ln
i=3 a

r
λib

s
λi =

o((n
λ
)1/4).

Finally consider
∑n
i=un a

r
λib

s
λi . Following the proof of Theorem 2.3, it can

be seen that for i ≥ un, arλib
s
λi is a monotone decreasing function of i. It then

follows that
∑n
un
arλib

s
λi ≤ (n − un)a

r
λun
bsλun ≤ narλunb

s
λun

, which, by (5.3), is

n( 1
1+ λ

n
( π
C∗ un)4(1+εn) )

r (
λ
n
( π
C∗ un)4(1+εn)

1+ λ
n
( π
C∗ un)4(1+εn) )

s = O(n · ( λ
n
u4
n)

−r ). For any fixed r >

5/4, because λ log n → ∞, taking un = n2/5−η/4 yields
∑n
un
arλib

s
λi ≤ O

(n(n
3
5 −ηλ)−r ) = O

(
( n
λ
)1/4(n(

3
5 (r− 5

4 )−ηr)/(r− 1
4 )λ)

1
4 −r

)
, which is o((n

λ
)1/4) if we

take η to be sufficiently small, for example η = 3
10r (r − 5

4 ).
The proof is terminated by combining the three parts of the sum. ��

Proof of Theorem 5.2. For ln → ∞,un = n2/5−ε,
∑n
i=3 a

r
λi(1−aλi)s ≥ ∑un

i=ln a
r
λi

bsλi , which is
∑un
i=ln (

1

1+λ( π
C∗ )4 i

4
n
(1+εn)

)r (
λ( π
C∗ )4 i

4
n
(1+εn)

1+λ( π
C∗ )4 i

4
n
(1+εn)

)s by (5.3). Since arλi(1 −
aλi)

s is monotone decreasing for i, a simple graphical argument gives
un∑

i=ln
arλib

s
λi ≥

∫ un

ln

(
1

1 + λ( π
C∗ )4

x4

n
(1 + εn)

)r (
λ( π
C∗ )4

x4

n
(1 + εn)

1 + λ( π
C∗ )4

x4

n
(1 + εn)

)sdx

= [
n

λ(1 + εn)
]1/4C

∗

π

∫ [ λ
n
(1+εn)]1/4 π

C∗ un

[ λ
n
(1+εn)]1/4 π

C∗ ln
(

1

1 + t4
)r (

t4

1 + t4
)sdt.

Note that
∫ [ λ

n
(1+εn)]1/4 π

C∗ un
1 ( 1

1+t4 )
r ( t4

1+t4 )
sdt → ∫∞

0 ( 1
1+t4 )

r ( t4

1+t4 )
sdt < ∞; and

that
∫ 1

[ λ
n
(1+εn)]1/4 π

C∗ ln (
1

1+t4 )
r ( t4

1+t4 )
sdt = O(

∫ 1
[ λ
n
(1+εn)]1/4 π

C∗ ln t
4sdt) = O((n

λ
)−s−

1
4

l4s+1
n ). The desired result follows by taking ln = ( n

λ
)

η
−(4s+1) . ��
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