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1. Introduction and background. The recent boom and burst of the “Internet bubble”
present some interesting questions and challenges for financial modeling. First, are growth
stocks still relevant and important enough to study? Second, since growth stocks tend to
have low or even negative earnings and high volatility, traditional valuation framework,
such as the net present value method, cannot be used; a question is then how to derive a
meaningful mathematical model, if possible, for growth stocks. Third, any reasonable model
must incorporate the “boom and burst” phenomenon.
For the first question, it is important to note that although the components of growth

stocks may vary over time (perhaps consisting of railroad and utility stocks in the early
1900s, and biotechnology and Internet stocks in 2003), studying their general properties is
essential to understanding financial markets and economic growth in the past, at present,
and perhaps in the future too.
The goal of the current paper is to provide a model to answer the other two questions. To

do so, we present a continuous-time diffusion model for growth stocks. The model extends
the discrete model, which is based on a birth-death process, in Kou and Kou (2003).
The discrete model gives a relative pricing formula for growth stocks, and only uses the

unique feature of high volatility of growth stocks. Neither earnings (which are not available
for most growth stocks), nor forecasted earnings (which not only are highly unreliable, as
evident in the recent events related to the “Internet bubble,” but also lack clear mathematical
relationships with stock values) are used in the model. The discrete model also shed light
on an empirically observed puzzle that there is an “almost” linear relationship between the
logarithm of the market capitalization of growth stocks and the logarithm of their associated
ranks (which was first reported in the Wall Street Journal, Dec. 27, 1999, p. C1, Column 1
and p. C2, Column 3, only for Internet stocks), and that at the same time this phenomenon,
more interestingly, did not seem to hold for nongrowth stocks. Translating into a proba-
bilistic language, this empirical puzzle means that the size distribution of the growth stocks
almost follows a power law, and it is not so for ordinary stocks.
To introduce our continuous-time diffusion model for growth stocks, we first briefly

review the discrete model, which relies on a linear birth-death process with immigration
and emigration. Suppose at time t a growth stock has total market capitalization T �t�. The
discrete model postulates that T �t�=��t�X�t�, where ��t� represents the overall economic
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and sector trend, and X�t� represents individual stock variation within the sector, so ��t� is
the same for all firms within the same industry sector, and X�t� varies from firm to firm. The
individual variation term X�t� in the discrete model is posed as a linear birth-death process:
Given X�t� being in state i, i= 0�1�2� 	 	 	 (the unit of X�t� could be, for example, millions
or billions of dollars), the instantaneous movements are: (a) i → i + 1� with rate i
+ g,
i ≥ 0, and (b) i → i − 1� with rate i�+ h, i ≥ 1. In other words, the individual variation
term X�t� follows a linear birth-death process with the birth rates 
i = i
+ g �i ≥ 0� and
the death rates �i = i�+ h �i ≥ 1�, �0 = 0. In the discrete model, the two parameters 

and � represent the instantaneous appreciation and depreciation rates of X�t� due to market
fluctuations; the model assumes that they influence the market capitalization proportionally
to the current value. The requirement 
 < � is postulated in the discrete model to ensure
that the birth-death process has a steady-state distribution. The parameter g models the rate
of increase in X�t� due to nonmarket factors, such as the effect of additional shares being
issued through public offerings, or the effect of warranties on the stock being exercised
(resulting in new shares being issued). The parameter h models the rate of decrease in X�t�
due to nonmarket factors, such as the dividend payment; for most growth stocks h≈ 0, as
no dividends are paid.
In the steady state the discrete model leads to an almost linear curve for stocks with high

volatility (such as biotechnology and Internet stocks) when the log-market-capitalization is
plotted against the log-rank; at the same time the model implies that for nongrowth stocks
such a phenomenon should not be expected, primarily because of the very slow convergence
of the birth-death process to its steady state distribution due to a low volatility. Furthermore,
the discrete model also suggests a way to relatively price growth stocks, not just Internet
stocks (as the Wall Street Journal article focused).
In this paper, to construct a continuous-time diffusion model for growth stocks, we first

consider the weak (convergence) limit of the linear birth-death process in the discrete model;
then, guided by the limit, we investigate, rigorously, a general class of diffusion processes
and identify suitable ones that can fit the observed size distribution for Internet and biotech-
nology stocks. The model, thus, shows that a diffusion model for growth stocks can be built
mainly by utilizing the high volatility of their share prices. Since the model also contains
a mean reversion component, it may be useful in understanding the recent boom and burst
of the “Internet bubble.”
The size distribution of growth stocks plays an important role in our model. We shall

point out that studying power law and size distribution has a long history, dating back at
least to Pareto (1896), Yule (1924), Zipf (1949), Simon (1955), and Ijiri and Simon (1977).
It is interesting to see that such a classical probabilistic subject can still provide useful
insight for today’s high-technology markets.
The paper is organized as follows. Section 2.1 provides the weak convergence result,

motivating us to consider a class of diffusion models in §2.2. The properties of the model
are studied in §3. Based on these properties, size distributions are analyzed in §4. Section 5
specializes to the size distribution of biotechnology and Internet stocks and discusses relative
pricing of growth stocks. Some numerical illustrations are given in §6. The last section
offers some discussion. The proofs are deferred to the appendix.

2. The model. This section presents a continuous-time diffusion model for growth
stocks. Instead of working on the price of a growth stock, it makes more sense to study mar-
ket capitalization, defined as the product of the total outstanding shares and the market price
of the stock, because growth stocks tend to have frequent stock splits, which immediately
drops the price significantly but has little effect on market capitalization.

2.1. From the discrete model to a continuous model. An intuitive way to derive
continuous diffusion models for growth stocks is to consider the limit of the discrete model.
Note that in the discrete model the jump size of the linear birth-death process X�t� is 1 and



Kou and Kou: A Diffusion Model for Growth Stocks
Mathematics of Operations Research 29(2), pp. 191–212, © 2004 INFORMS 193

the infinitesimal increment dXt satisfies

dX�t�=



1 with probability �
X�t�+ g�dt+ o�dt��

−1 with probability ��X�t�+h�dt+ o�dt��

0 otherwise.

Now if we let the jump size be �s, then the birth-death process becomes

dX�t�=




�s with probabibility �
X�t�+ g�dt+ o�dt��

−�s with probabibility ��X�t�+h�dt+ o�dt��

0 otherwise.

The conditional mean and variance of dX�t� are, respectively, ��
− ��X�t�+ �g − h�� ·
�s dt + o�dt� and ��
+��Xt + �g + h���s2 dt + o�dt�. Thus, if we let �s → 0 in such a
way that

(2.1)
�
−���s →−b�2 < 0� �g−h��s → a�2 > 0�

�
+���s2 → �2� �g+h��s2 → 0�

then the limiting process will satisfy

E�dX�t� ��t�= �−b�2X�t�+ a�2�dt+ o�dt��

Var�dX�t� ��t�= �2X�t�dt+ o�dt��

(Note that in many cases since the parameter h, which represents the dividend payment, is
zero, the normalization condition �g−h��s → a�2 automatically implies another condition
�g + h��s2 → 0 above.) With this parameterization, as �s ↓ 0, intuitively the birth-death
process X�t� seems to converge to a limiting diffusion process that satisfies the stochastic
differential equation

dX�t�= �−b�2X�t�+ a�2�dt+�
√

X�t�dW�t�� X�0�= x�

where W�t� is a standard Brownian motion. The following theorem makes this intuition
rigorous.

Theorem 2.1. Introduce a sequence of birth-death processes Xn�t�, n≥ 1, with Xn�0�=

nx�/n≥ 0, where x ≥ 0, and state space of �Xn�t� t ≥ 0! being En = �0�1/n�2/n� 	 	 	 !;
i.e., the ith state of �Xn�t� t ≥ 0! is i/n. Let the birth rate and death rate of Xn�t� at the
ith state be 
n�i/n�+ gn, i ≥ 0, and �n�i/n�+ hn, i ≥ 1, respectively. Choose 
n, �n, gn,
and hn in such a way that 
n < �n and as n→�,


n −�n

n
→−b�2 < 0�

gn −hn

n
→ a�2 > 0�


n +�n

n2
→ �2�

gn +hn

n2
→ 0�

Then Xn�t�⇒X�t� on D�0��� (the space of all random functions on �0��� that are right
continuous with left limit existing) with Stone’s topology.

Proof. See Appendix A. �

2.2. Formulation of the model.
The Model. Theorem 2.1 motivates us to consider a general model: the total market

capitalization

(2.2) T �t�=��t�X�t��
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where ��t� represents the overall economic and sector trend, and X�t� represents individual
stock variation, which follows the diffusion process

(2.3) dX�t�= �−b�2X�t�+ a�2�dt+�X#�t�dW�t�� X�0�= x > 0� # > 0�

The parameters in the model have their own economic interpretations: � corresponds to
the stock volatility; the parameter a, as suggested by the limiting relationship (2.1), models
the money inflow to the market capitalization due to nonmarket factors such as exercising
of employee warranties and public offering of new/additional shares, etc.; a/b is the mean
reverting level of X�t� (which implies that the market capitalization T �t� is mean reversion
toward the overall economic trend ��t�). Note that when # = 1

2 , we have the limiting
diffusion process in Theorem 2.1.
Of course, without the previous model based on the birth-death process, it would be

very difficult to imagine a model like (2.3). Therefore, the discrete birth-death process
provides a nice intuition for the continuous diffusion models. (Furthermore, the discrete
model is perhaps more suitable for modeling intra-day tick-by-tick data.) Although, as we
shall see, the steady state distributions of the discrete and continuous models are similar
(thus, the size distributions are similar), the diffusion model has its own merits, which make
it advantageous over the discrete model: (1) Generally speaking, diffusion models can lead
to many closed form solutions, whence they have better analytical tractability than birth-
death processes. (2) It is possible to do riskless hedging for diffusion models, while this is
impossible for many discrete models.
An interesting feature of (2.3) is that it has mean reversion in X�t�, which is quite unusual

for models of stocks. However, since the market cap T �t� = ��t�X�t�, we note that the
mean reversion is actually reversion toward the overall economic trend ��t�. Thus, although
in the long run the market cap would move upward (as ��t� may do), in a relatively short
time period one could observe the mean reverting phenomenon. Thus, the mean reversion
feature of the model may also provide some interesting insight about the recent boom and
burst of the “Internet bubble”—“What goes up must come down eventually.”
To study the cross-sectional size distribution, which is the focus of the current paper, it

is not necessary to model ��t� explicitly, except by assuming that ��t� is bounded away
from 0. However, modeling ��t� explicitly may lead to some dynamic implications, rather
than just cross-sectional implications. Indeed, it can be shown (Kou and Kou 2002) that
the dynamics of the model are also linked to the stochastic endogenous growth theory in
macroeconomics.

3. Properties of the diffusion process X�t�. Although the diffusion process (2.3) has
been used in economics to study interest rates, a rigorous treatment of Equation (2.3) for
the whole range of 0< # <� is missing in the literature, except for the two special cases
of # = 1 (Wong Process, Wong 1964) and # = 1

2 (Feller process, Feller 1951). In particular,
as we shall see in Theorem 3.1, when 0< # ≤ 1

2 , since 0 may be a regular boundary, the
stochastic differential equation (2.3) may not have a unique solution (as the global Lipschitz
and growth conditions for the uniqueness may fail to hold). Indeed, as we shall see in
Theorem 3.1, when 0< # ≤ 1

2 , a proper boundary condition, such as a reflecting boundary
at 0 (see, e.g., Mandl 1968, p. 67, and Chapter 8 in Chung and Williams 1990), must be
imposed to ensure that the solution is unique and that the steady-state distribution exists.
Our rigorous treatment of the diffusion process (2.3) uses the results in Mandl (1968).

The first step is to characterize the boundary behavior of the diffusion (2.3) at 0 and �.
(Note that there are four possible types of boundary behavior: regular, natural, entrance,
and exit; see Karlin and Taylor 1981, §§15.7 and 15.8.)
Following Karlin and Taylor (1981, p. 221 and §15.6), for a general time-homogeneous

diffusion process with drift function ��x� and volatility function �2�x�, to study the bound-
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ary behavior, the scale density s�x� and scale measure S�x� are introduced as

s�x� %= exp
(
−
∫ x 2��y�

�2�y�
dy

)
� S�x� %=

∫ x

s�'�d'�

S�(�)� %= S�)�− S�(�� S�(�)� %= S�)�− S�(+�� S�(�)� %= S�)−�− S�(��

where
∫ x denotes indefinite integral. We also introduce the speed density and speed measure

m�x� %= 1
�2�x�s�x�

�

M�(�)� %=
∫ )

(
m�x�dx� M�(�)� %= lim

x→)−
M�(�x�� M�(�)� %= lim

x→(+M�x�)��

and furthermore,

N�0�1� %=
∫ 1

0

[∫ 1

'
s�-�d-

]
m�'�d'� N �1��� %=

∫ �

x

[∫ '

x
s�-�d-

]
m�'�d'�

(See Karlin and Taylor 1981, pp. 231, 237.)
In our diffusion equation (2.3), the drift and volatility are, respectively, ��x�=−b�2x+

a�2, �2�x�= �2x2# . It follows that

s�x�= exp
{
−2

∫ x −by+ a

y2#
dy

}
�

Depending on the value of #, s�x� has three possible forms:
(a) # �= 1� 1

2 � in which case,

s�x�= exp
{
−2

(
b

2# − 2
x2−2# − a

2# − 1
x1−2#

)}
�

(b) # = 1
2 , which corresponds to the Feller process, and s�x�= e2bxx−2a.

(c) # = 1, under which s�x�= x2be2a/x.
To classify the boundary behavior as well as to study the steady-state distribution, we

need the following lemma.

Lemma 3.1. For the diffusion process (2.3), the following table gives various limiting
results.

# = 1
2
and # = 1

2
and

# > 1 # = 1 1
2
< # < 1 a > 1

2
0< a≤ 1

2
0< # < 1

2

lim
x→0+

� 2�x�s�x� � � � � 0 0

lim
x→0+

S�x�

� 2�x�s�x�
− 1
2a� 2

− 1
2a� 2

− 1
2a� 2

− 1
�2a− 1�� 2

−� 0

S�0� x� � � � � <� <�
M�0� x� <� <� <� <� <� <�
N�0�1� <� <� <� <� <� <�
lim
x→�

� 2�x�s�x�

x
� � � � � �

lim
x→�

S�x�

� 2�x�s�x�/x
0

1
�2b+ 1�� 2

1
2b� 2

1
2b� 2

1
2b� 2

1
2b� 2

S�x��� � � � � � �
M�x��� <� <� <� <� <� <�
N�1��� <� � � � � �
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Proof. See Appendix A. �

Based on this lemma, we have the following result.

Theorem 3.1. (i) The boundaries 0 and � of the diffusion (2.3) are classified as
follows:

0 �
(A) # > 1 entrance entrance
(B) # = 1 entrance natural
(C) 1

2
< # < 1 entrance natural

(D) # = 1
2
and a > 1

2
entrance natural

(E) # = 1
2
and 0< a≤ 1

2
regular natural

(F) 0< # < 1
2

regular natural

(ii) For the cases of (A) # > 1, (B) # = 1, (C) 1
2 < # < 1, and (D) # = 1

2 and a > 1
2 ,

the solution of (2.3) is unique. Furthermore, as t →�, the diffusion (2.3) has a unique
steady-state distribution independent of the initial position X�0� ∈ �0���. The steady-state
density f �x� is given by

(3.1) f �x�= C2

�2�x�s�x�
�

where the normalizing constant C2 makes
∫ �
0 f �x�= 1.

(iii) For the cases of (E) # = 1
2 and 0< a≤ 1

2 , and (F) 0< # < 1
2 , because 0 is a regular

boundary, the solution of (2.3) is not unique and depends on how we impose additional
boundary constraints. If we assume that 0 is a reflecting boundary (similar to the discrete
birth-death model), then the solution of (2.3) is unique, and as t →� the process (2.3)
also has a unique steady-state distribution independent of the initial position X�0� ∈ �0���.
The steady-state density f �x� is again given by

(3.2) f �x�= C2

�2�x�s�x�
�

where C2 is a normalizing constant so that
∫ �
0 f �x�= 1.

Proof. See Appendix A. �

The following theorem calculates the steady-state distribution of X�t� and gives the
asymptotic tail behavior of the steady-state distribution that will be used later.

Theorem 3.2. Let f �x� denote the density of the steady-state distribution.
(1) When # > 1, we have

f �x�=C2x
−2# exp

{
2
(

b

2# − 2
x2−2# − a

2# − 1
x1−2#

)}
�

The tail probability F �z� %= P�X��� > z� asymptotically satisfies F �z��Cz1−2# , as z→�,
where C2 and C are two normalizing constants, and the notation a� b means lim a/b = 1.
(2) When # = 1, we have f �x� = C2x

−2�1+b�e−2a/x, and the tail probability F �z� �
Cz−1−2b, for some constants C2 and C.
(3) When 1

2 < # < 1,

f �x�=C2x
−2# exp

(
− b

1−#
x2−2#

)
exp

(
− 2a
2# − 1

x1−2#
)
�

with the tail probability F �z��Cz−1 exp��b/�# − 1��z2−2#�, for some constants C2 and C.
(4) When # = 1

2 and with 0 being a reflecting boundary if 0 < a ≤ 1
2 , we have f �x� =

C2e
−2bxx2a−1� and the tail probability F �z��Ce−2bzz2a−1, C2 =C = �2b�2a/3�2a�.
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(5) When 0 < # < 1
2 and with 0 being a reflecting boundary, the density f �x� and tail

probability F �z� satisfy

f �x� = C2x
−2# exp

(
− b

1−#
x2−2#

)
exp

(
− 2a
2# − 1

x1−2#
)
�

F �z� � Cz−1 exp
(
− b

1−#
z2−2#

)
exp

(
− 2a
2# − 1

z1−2#
)
�

for some constants C2 and C.

Proof. See Appendix A. �

4. General properties of size distribution. Consider N (an unknown quantity, may be
very large) growth firms within a particular sector governed by the diffusion model, among
which the K largest ones (in terms of their market capitalization) are included in a group to
be studied. Denote the market capitalization of the K observed stocks by Ti�t�, 1≤ i ≤K.
Since all these K firms are from the same sector, we have

Ti�t�=��t�Xi�t��

where ��t�, the overall economic and sector trend, is the same for all K stocks, but the
individual variation terms Xi�t� are different.
Now suppose we rank the market capitalizations such that T�1��t�≥ T�2��t�≥ · · · ≥ T�K��t�,

where T�1��t� denotes the largest firm, T�2��t� the second largest firm, etc. Then we have

(4.1) logT�i��t�= log��t�+ log�X�i��t���

where X�i��t� are the ranked values of Xi�t�, 1≤ i ≤ K. Since the first term � in (4.1) is
common for all firms, the plot of logT�i��t� versus log i and the plot of logX�i��t� versus
log i will display similar patterns. Therefore, we first focus on the relationship between
logX�i��t� and log i.
As X�1��t��X�2��t�� 	 	 	 �X�K��t� are the ordered realizations of X�t�, the empirical tail

distribution �F �x� (the empirical version of F ) evaluated at X�i��t� is simply �F �X�i��t�� =
i/N , i= 1� 	 	 	 �K. Now assume
(A1): The diffusion process has reached the steady state.
(A2): For each stock in the group, the market capitalization is large; even X�K� is large.
Then we can apply the result of Theorem 3.2 to study the size distribution of growth

stocks. It is worth noting that Assumption (A2) implies that the model is only valid for
large-cap growth stocks. To study the size distribution of growth stocks we need to discuss
five cases.
(1) # > 1. According to Theorem 3.2, in the steady state, for large z, logF �z� � C +

�1− 2#� log z� for some constant C. Therefore, empirically, we shall expect that

(4.2) log�i/N �= log �F �X�i��≈ logF �X�i���C + �1− 2#� logX�i��

The notation “≈” here indicates that we want to use the empirical distribution to approx-
imate the true distribution. This is valid if the total sample size N is large enough and
if Xi�t� are independent (note that Ti�t� are still dependent due to ��t�); of course, the
approximation may still be valid if the dependence among Xi�t� is not significant so that
ergodic-type limiting theorems hold. Rearranging the terms in (4.2) yields

logX�i� ≈CN − 1
2# − 1

log i�

for some constant CN that depends on N . Hence, the slope of the size distribution (i.e., the
slope of regressing logX�i� on log i) is −1/�2# − 1�.
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(2) # = 1. In this case logF �z��C − �1+ 2b� log z. The empirical version is, therefore,
log�i/N �≈C − �1+ 2b� logX�i�. Or equivalently,

logX�i� ≈CN − 1
1+ 2b

log i�

So the slope of the size distribution is −1/�1+ 2b�.
(3) 1

2 < # < 1. According to Theorem 3.2, logF �z� � C − log�z� − �b/�1−#��z2−2# .
The empirical version is then log�i/N �≈C − logX�i� − �b/�1−#��X

2−2#
�i� , or equivalently,

logX�i� ≈CN − log i− b

1−#
X

2−2#
�i� �

Without the last term, the linear component in the regression of logX�i� on log i has
slope −1.
(4) # = 1

2 . In this case, logF �z� �−2bz− �1− 2a� log z+C. The empirical version is
log�i/N �≈−2bX�i� − �1− 2a� logX�i� +C, or equivalently,

logX�i� ≈CN − 1
1− 2a

log i− 2b
1− 2a

X�i��

The slope in the size distribution is −1/�1− 2a�.
(5) 0 < # < 1

2 . By Theorem 3.2, logF �z� � C − log z − �b/�1 − #��z2−2# + �2a/�1 −
2#��z1−2# . The empirical version is thus log�i/N � ≈ C − logX�i� − �b/�1 − #��X

2−2#
�i� +

�2a/�1− 2#��X
1−2#
�i� , or equivalently,

logX�i� ≈CN − log i− b

1−#
X

2−2#
�i� + 2a

1− 2#
X

1−2#
�i� �

Since there are two nonlinear terms involved, in general the contribution from the last two
terms is not small, meaning that a plot of logX�i� versus the log-rank log i would not display
a linear pattern.
The table below summarizes the size distribution for the five different cases discussed

above.

Cases: # > 1 # = 1 1
2
< # < 1 # = 1

2
0< # < 1

2

Slope in the size distribution: − 1
2# − 1

− 1
1+ 2b

−1 − 1
1− 2a

Not available

Using the relationship (4.1), we note that the above table also gives the slope of plotting
the log-market-cap logT�i� versus the log-rank log i.

Remark 1. The case of 1
2 < # < 1 may have some interesting applications in city size

distribution, as it is observed empirically that the slope of city size distribution is always
very close to −1; see, for example, Krugman (1996) and Gabaix (1999).

5. Size distribution for biotechnology and Internet stocks.

5.1. Explaining the size distribution puzzle. For biotechnology and Internet stock,
the empirical observation (see §6) reveals that the slope of the size distribution is always
less than −1. Therefore, in view of the result in the table of the previous section, for
biotechnology and Internet stocks # must be 1

2 and 0< a < 1
2 in the diffusion (2.3). In other

words,

(5.1) dX�t�= �−b�2X�t�+ a�2�dt+�
√

X�t�dW�t�� X�0�= x > 0� 0< a < 1
2 �

which corresponds to the Feller process also used in finance as the CIR model (Cox et al.
1985) for the spot interest rate.
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Remark 2. This, however, does not imply that for other growth stocks, such as railroad
and utility stocks back in the 1900s, or for any new groups of growth stocks in the future,
# must be 1

2 . It only says that currently for biotechnology and Internet stocks it appears
that # = 1

2 and 0< a < 1
2 �

Below is a brief review of some properties of this process necessary for further discussion.
Let p�t� x� y�= P�X�t� ∈ dy �X�0�= x� be the transition density of X�t�. It is well known
(Cox et al. 1985, Equation (18)) that

p�t� x� y� = �2b�2ay2a−1e−2by

1− e−�2bt
exp

{
−2be−b�2t�x+ y�

1− e−b�2t

}
(5.2)

· (4b2e−b�2txy
)−�2a−1�/2

I2a−1

(
4b

√
xye−b�2t

1− e−b�2t

)
�

where I2a−1�·� is the modified Bessel function of order 2a − 1 (for references concern-
ing Bessel function, see Szegö 1939). From (5.2), it is seen that p�t� x� y� follows a
rescaled noncentral 72 distribution with the moment generating function M�8� t� x� =∫ �
0 e8yp�t� x� y�dy satisfying

(5.3) M�8� t� x�=
( −2b
−2b+ 8− e�−b�2�t8

)2a

exp
{ −2b8xe−b�2t

−2b+ 8− 8e−b�2t

}
�

The steady-state moment generating function is hence given by

M�8�= lim
t→�M�8� t� x�=

( −2b
−2b+ 8

)2a

� ∀x > 0�

which is exactly the moment-generating function of the gamma distribution 3�2a�1/2b�.
Two immediate results from (5.3) are that the transient mean and variance of Xt are, respec-
tively,

m�t� = E�X�t� �X�0�= x�= xe−b�2t − a

b
�e−b�2t − 1�

t→�−→ a

b
�(5.4)

V �t� = Var�X�t� �X�0�= x�=−x

b
�e−2b�

2t − e−b�2t�+ a

2b2
�e−b�2t − 1�2�(5.5)

With some properties of the process (5.1) reviewed, now we return to the size distribution
study. Recall we have shown in the previous section that for large biotechnology and Internet
stocks (thus satisfying Assumption (A2)),

(5.6) logX�i� ≈CN − 1
1− 2a

log i− 2b
1− 2a

X�i��

where CN is a free parameter, since N is unknown.
Equation (5.6) supplies a link between the ordered values of X�t� and their relative ranks

within the group. However, since it involves a nuisance parameter CN , a better equation can
be obtained by eliminating CN first, as is typical in many standard statistical procedures.
This can be done by taking the difference of logX�i� − logX�1�:

log
X�i�

X�1�

≈− 1
1− 2a

log i− 2b
1− 2a

�X�i� −X�1��� 1≤ i≤K�

Now plugging it into (4.1) we have, for 1≤ i≤K,

(5.7) log
T�i�

T�1�

≈− 1
1− 2a

log i− 2b/��t�

1− 2a

(
T�i� − T�1�

)
�

Equation (5.7) is the key cross-sectional empirical implication in this paper. It will lead
to an “almost” line curve if the third term in (5.7) is small. This can be justified by the
following lemma.
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Lemma 5.1. Suppose that a→ 0 and ��t� > 0. Then in the steady state, the third term
in (5.7) goes to zero in L1. In other words, under these conditions (5.7) is asymptotically
a linear relationship.

Proof. It is enough to prove that

2b
1− 2a

E
(
X�i��t�−X�1��t�

)−→ 0� 1≤ i≤K�

Since 0≤X�i��t�≤X�1��t�, we only need to show that

2b
1− 2a

E�X�1��t��−→ 0�

Noting that E�X�1��t��≤N ·E�X�t��, the problem is further reduced to show that

2b
1− 2a

E�X�t��−→ 0�

In the steady state, using (5.4) this becomes �2b/�1−2a���a/b�→ 0, which is true because
a→ 0. �

As we shall see in §6, a indeed tends to be small in the numerical examples, ranging from
0.06 to 0.19. In fact, the magnitude of a seems to be small enough so that the nonlinear fit
in Figures 1 and 2 seems almost linear. It is worth mentioning that even if a is not small,
the nonlinear, cross-sectional Equation (5.7) still holds.

Remark 3. The cross-sectional Equation (5.7) postulates a relationship between the
logarithm of the normalized (by the largest value) market caps and the logarithm of the
ranks of “large-cap” growth stocks (those satisfy Assumption (A2)). The word “large-cap”
here is used in a loose sense and should not be confused with similar words used in stock
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Figure 1. Empirical and estimated size distribution for Internet stocks.
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Figure 2. Empirical and estimated size distribution for biotechnology stocks.

exchanges; more precisely, it means that the market capitalization is large enough so that
the asymptotic result for the tail distribution in Theorem 3.2, Part (4), holds.

Remark 4. It may be worthwhile to point out the connection between the new cross-
sectional implication (5.7) and the empirical puzzle (only for Internet stocks) reported in the
Wall Street Journal (later summarized in Maubossin and Schay 2000), which amounts to

logT�i��t�≈ a�t�+ b�t� log i�

where a�t� and b�t� do not depend on the index i. The new cross-sectional implication
(5.7) appears to have a better fit to the data, as judged by the high R2 statistic (see §6).
There are two reasons for the improvement: (1) We eliminate the nuisance parameter by
using the relative market caps T�i�/T�1�. (2) We do not require the third term in (5.7) to be
zero or small when we fit the model, thus leading to a better fit.

5.2. The decay parameter. Using the property of steady states, we explained the size
distribution puzzle. However, it is important to note that the size distribution in steady
state is relevant only if the convergence from the transient states to the steady state is fast
enough, i.e., if the convergence can be observed in a timely fashion. There are many ways
to judge the convergence speed. One good way to evaluate the convergence speed of the
whole distribution function is to look at the convergence of density functions. Therefore, we
define the decay parameter, motivated by a similar definition for Markov chains in Kijima
(1997), as

< %= sup�(≥ 0 % p�t� x� y�−p�y�=O�e−(t�� ∀x > 0!�

where p�y� is the steady-state density function.
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Proposition 5.1. For the process in (5.1), the decay parameter <= b�2.

Proof. By Karlin and Taylor (1981, p. 334, Equation (13.15)), we have

p�t� x� y� = �2b�2ay2a−1e−2by
�∑

n=0
e−nb�2tL�2a−1�

n(5.8)

·
(

b�2x

�2/2

)
L�2a−1�

n

(
b�2y

�2/2

)
3�n+ 1�
3�n+ 2a�

�

where L�2a−1�
n �·� is the Laguerre polynomial with parameter 2a − 1 (Szegö 1939). (Note

that there is a typo in the book. We thank the referee for pointing this out.) Since
L

�2a−1�
0 �·�≡ 1, the term corresponding to the term n= 0 is exactly the steady-state density

p�y�. For n ≥ 1, the only term inside the summation involving t is e−nb�2t . Therefore,
<= b�2. �

The decay parameter calculated in Proposition 5.1 agrees well with our intuition gained
from (5.3), (5.4), and (5.5) about the convergence of the moment generating function, the
mean, and the variance. Note that the decay parameter < affects the convergence in an
exponential way. Therefore, a small difference in < can have a remarkable effect on the
speed of convergence, which in turn suggests that the steady-state analysis of the size
distribution in our model is only relevant when the decay parameter is large.
This helps explain why the almost linear relationship between the logarithm of the market

capitalization and the logarithm of the ranks does not appear for nongrowth stocks. There
are at least two reasons. First, the mean reverting diffusion model may not be valid for
nongrowth stocks. Second, even if the model is valid for nongrowth stocks, in order to
empirically observe such a phenomenon as implied by (5.7), the convergence from the
transient states to the steady state must be fast enough, which depends on the magnitude of
the decay parameter <.
It is well known that the volatility for growth stocks is much larger than that of non-

growth stocks. For example, Kerins et al. (2001) show empirically that the volatility of
Internet stocks is at least five times that of traditional stocks. In the model (5.1), if � of
growth stocks is five times larger, then �2 is 25 times larger! This leads to a much larger
decay rate < (which affects the convergence in an exponential way).
Equation (5.7), therefore, also implies that the same cross-sectional phenomenon should

hold not only for large-cap Internet stocks (as reported in the Wall Street Journal article)
but also for other large-cap growth stocks, such as large-cap biotechnology stocks, as long
as the volatility � is large.
For nongrowth stocks due to the slow convergence from the transient states to the steady

state, the steady-state Equation (5.7) may not emerge at all within a reasonable amount of
time. Furthermore, if the convergence rate is slow, many factors can lead the process to
depart away from the original steady state, e.g., change of parameters in the model, etc.

5.3. Further remarks about the cross-sectional implication. Equation (5.7) provides
a way to price a growth stock relative to its peers within the group (the contribution of the
peer group is to provide an estimate of a and b, and the relative ranks) by (a) first running
a regression to obtain the parameters a and b subject to the constraints a > 0 and b > 0,
and (b) once the parameters are obtained, calculating the theoretical market capitalization
of the stock according to (5.7) with the input being its rank. This, subsequently, provides
a theoretical value of the shares price, after dividing the market capitalization by the total
number of outstanding shares.
To use the model to relatively price large-cap growth stocks, it is important to keep in

mind that the stocks within the peer group should have similar parameters a and b (for
example, it may not be sensible to mix biotechnology stocks and Internet stocks together
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Table 1. Estimated parameters for biotechnology stocks from Jan. 1998 to Dec. 2000.

â �̂ R2 �%�

Jan. 2, 1998 0.057 6�64× 10−10 98�2
Aug. 7, 1998 0.099 6�01× 10−10 98�1
Mar. 15, 1999 0.162 5�06× 10−10 97�8
Oct. 15, 1999 0.151 5�24× 10−10 98�9
May 19, 2000 0.115 5�78× 10−10 97�5
Dec. 21, 2000 0.112 8�79× 10−10 96�4

as their parameters may be quite different). However, in principle, the relative pricing does
not require �2 to be the same; the only requirement is that �2 must be very large, as �2

only controls the speed of convergence from transient to steady state and does not enter
Equation (5.7).

6. Numerical illustration. In this section we consider fitting the size distribution
implied by the diffusion model. We use least squares to estimate the parameters in (5.7):

(6.1) �â� �̂�= argmin
a>0��>0

K∑
i=1

[
log

T�i�

T�1�

−
{
− 1
1− 2a

log i− 2�
1− 2a

�T�i� − T�1��

}]2
�

where � = b/�. Tables 1 and 2 report the estimated parameters as well as the R2 in the
fitting of six trading days for 123 biotech stocks (every 150 trading days from January 1998
to December 2000) and 61 Internet stocks in six trading days (every 100 trading days from
January 1999 to December 2000). For a description of the stocks used in this illustration,
see Appendix B.
Note that �̂ are all very small, which hints that � might be quite large. Moreover the

R2 being at least 93% directly supports the prediction power of the model. For the recent
market from January 2001 to December 2002 (every 100 trading days), Tables 3 and 4
report the estimated parameters and the R2; Figures 1 and 2 plot the observed and estimated
size distribution. Again the R2 is at least 95%. The fitting seems to be well even under the
severe market downturn during the period. (Note that the “Internet bubble” had burst then.)

Table 2. Estimated parameters for Internet stocks from Jan. 1999 to Dec. 2000.

â �̂ R2 �%�

Jan. 4, 1999 0.194 8�27× 10−10 97�3
May 27, 1999 0.156 7�70× 10−10 96�6
Oct. 19, 1999 0.142 5�38× 10−10 98�6
Mar. 13, 2000 0.076 5�85× 10−11 93�5
Aug. 3, 2000 0.175 4�87× 10−10 98�0
Dec. 26, 2000 0.163 2�43× 10−10 99�2

Table 3. Estimated parameters for Internet stocks from Jan. 2001 to Dec. 2002.

â �̂ R2 (%)

Jan. 2, 2001 0.176 6�71× 10−10 99�0
May 25, 2001 0.160 1�19× 10−9 98�6
Oct. 23, 2001 0.178 1�23× 10−9 98�7
Mar. 19, 2002 0.155 7�90× 10−10 98�3
Aug. 9, 2002 0.179 4�81× 10−10 98�7
Dec. 31, 2002 0.156 6�10× 10−10 97�1
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Table 4. Estimated parameters for biotechnology stocks from Jan. 2001 to Dec. 2002.

â �̂ R2 (%)

Jan. 2, 2001 0.105 8�26× 10−10 95�9
May 25, 2001 0.106 5�92× 10−10 96�3
Oct. 23, 2001 0.101 5�98× 10−10 96�2
Mar. 19, 2002 0.109 5�86× 10−10 97�3
Aug. 9, 2002 0.143 5�36× 10−10 95�6
Dec. 31, 2002 0.192 4�62× 10−9 96�3

7. Discussion. In this paper, we propose a diffusion model for growth stocks, whose
key feature of mean reversion supplies a useful tool to model the recent boom and burst
of the “Internet bubble,” which is otherwise quite difficult to explain under the traditional
valuation framework.
Three attractive features of the model are: (1) It does not depend on any information

about forecasted earnings or sales data. Some practitioners have used forecasted sales data
from various financial analysts to predict the prices of growth stocks. Yet, there is no clear
mathematical relationship between the sales data and the prices of growth stocks, and the
forecasted sales data in many cases is far from reliable, as is evident during the recent
burst of the “Internet bubble.” (2) The model leads to a cross-sectional Equation (5.7) for
growth stocks, which agrees with the empirical observations very well; in addition, since
fitting the model only requires regression and relative ranks, it is easy to implement. (3) The
cross-sectional implication of the model remains valid irrespective to the market ups and
downs, because the model compares the relative value of a stock to the stocks within its
peer group.
As is common for many cross-sectional studies, Equation (5.7) should only be viewed

as an understanding of growth stocks as a whole rather than as a trading tool, because
we did not provide dynamics of the relative ranks for growth stocks. However, cross-
sectional implications may lead to some useful economic models. In fact, it can be shown
that a dynamic equilibrium model can be built as a result of the model proposed in the
current paper, and the model is also linked to stochastic endogenous growth theory in
macroeconomics; the details of the macroeconomic justification of the current model, being
too long to be included here, are given in Kou and Kou (2002).

Appendix.

A. Proofs. To prove Theorem 2.1, we shall use the following theorem on the weak
convergence of birth-death processes.

Stone’s Theorem (Stone 1963, see also Iglehart 1974). Suppose that Xn�t� is a
sequence of birth-death processes with Xn�0�= xn, state space En, and infinitesimal mean
mn�x�, and variance �2

n �x�, x ∈En. Define a diffusion process X�t�, with the generator

1
2
�2�x�

d2

dx2
+m�x�

d

dx
� 0≤ x <��

and initial value X�0� = x. Then Xn�t� ⇒ X�t� on D�0��� with Stone’s topology, if the
following three conditions are satisfied: (a) xn → x; (b) En becomes dense in �0��� as
n → �; (c) for every compact subinterval I of �0���, limn→� mn�en�y�� = m�y� and
limn→� �2

n �en�y��= �2�y�� uniformly for y ∈ I , where en�y� %= sup�yi ∈En: yi < y!.

Proof of Theorem 2.1. Condition (a) is clearly satisfied. For condition (b), note
that En consists of all the points m/n, for all integers m≥ 0; thus, the limit of En will be
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the set of all rational numbers on �0���, which is dense in �0���. Finally, the infinitesimal
mean and variance of Xn are given by

mn�y�=
�
n −�n�y+ �gn −hn�

n
� y ∈En�

�2
n �y�=

�
n +�n�y+ �gn +hn�

n2
� y ∈En�

Therefore, mn�en�y�� → −b�2y + a�2, and �2
n �en�y�� → �2y both uniformly for y ∈

I , any compact subinterval of �0���. Thus Condition (c) is satisfied, and the proof is
terminated. �

Proof of Lemma 3.1.
(i) Let us first consider the case # �= 1� 1

2 . The result of limx→0+ �2�x�s�x� follows
easily as

lim
x→0+

�2�x�s�x� = �2 lim
x→0+

{
x2# exp

{
1

x2#−2

(
2a

2# − 1
1
x
− b

# − 1

)}}

=



�� if # > 1�

�� if 1
2 < # < 1�

0� if 0< # < 1
2 �

Applying L’Hôpital’s rule gives

lim
x→0

S�x�

�2�x�s�x�
= lim

x→0

s�x�

��2�x�s�x�!′

= 1
�2

lim
x→0

exp��b/�1−#��x2−2#� exp��2a/�2# − 1��x1−2#�
�x2# exp��b/�1−#��x2−2#� exp��2a/�2# − 1��x1−2#�!′

= 1
�2

lim
x→0

1
2#x2#−1 + 2bx− 2a

=




− 1
2a�2

< 0� if # > 1�

− 1
2a�2

< 0� if 1
2 < # < 1�

0� if 0< # < 1
2 �

Hence,

lim
x→0+

S�x�=



−�� if # > 1�

−�� if 1
2 < # < 1�

0� if 0< # < 1
2 �

S�0� x�= S�x�− S�0+�=



�� if # > 1�

�� if 1
2 < # < 1�

<�� if 0< # < 1
2 �

For M�0� y� note that

M�0� y� =
∫ y

0

1
�2�x�s�x�

dx

= 1
�2

∫ y

0

{
x2# exp

{
1

x2#−2

(
2a

2# − 1
1
x
− b

# − 1

)}}−1
dx
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=




<�� if # > 1�

<�� if 1
2 < # < 1�

∼ ∫ y

0 x−2# dx <�� if 0< # < 1
2 �

For N�0�1� note that

N�0�1�=
∫ 1

0

[∫ 1

'
s�-�d-

]
1

�2�'�s�'�
d'=

∫ 1

0

S�1�− S�'�

�2�'�s�'�
d' <��

because ∫ 1

0

1
�2�'�s�'�

d' <��
∫ 1

0

S�'�

�2�'�s�'�
d' >−��

as

lim
x→0+

S�'�

�2�'�s�'�
= const.

The result of limx→� �2�x�s�x�/x follows easily as

lim
x→�

�2�x�s�x�

x
= �2 lim

x→�

{
x2#−1 exp

{
1

x2#−2

(
2a

2# − 1
1
x
− b

# − 1

)}}

= �� if # �= 1
2 �1�

Also, L’Hôpital’s rule gives

lim
x→�

S�x�

�2�x�s�x�/x
= lim

x→�
S ′�x�

��2�x�s�x�/x!′

= 1
�2

lim
x→�

1
�2# − 1�x2#−2 + 2b− 2ax−1

=




0� if # > 1�

1
2b�2

> 0� if 1
2 < # < 1�

1
2b�2

> 0� if 0< # < 1
2 �

Since

S�y�=
∫ y

exp
{
− b

# − 1
1

x2#−2
+ 2a
2# − 1

1
x2#−1

}
dx�

we have
lim
x→�S�x�=�� if # �= 1

2 �1�

Hence, S�x���=�, if # �= 1
2 �1. Furthermore,

∫ �

y

1
�2�x�s�x�

dx = 1
�2

∫ �

y

{
x2# exp

{
1

x2#−2

(
2a

2# − 1
1
x
− b

# − 1

)}}−1
dx

< �� if # �= 1
2 �1�

Thus, M�x��� <�, if # �= 1
2 �1.

For N�1��� note that

N�1���=
∫ �

1

[∫ '

1
s�-�d-

]
1

�2�'�s�'�
d'=

∫ �

1

S�'�− S�1�
�2�'�s�'�

d'�
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The second term inside the above integer is finite as
∫ �
1 1/��2�'�s�'��d' < �. To see

what happens to the first term, note that if # > 1, then L’Hôpital’s rule yields

lim
x→�

S�x�

�2�x�s�x�/�x�logx�2!

= 1
�2

lim
x→�

exp��b/�1−#��x2−2#� exp��2a/�2# − 1��x1−2#�
�x2#−1�1/�logx�2� exp��b/�1−#��x2−2#� exp��2a/�2# − 1��x1−2#�!′

= 1
�2

lim
x→�

�logx�2

x2#−2��2# − 1�− 2�1/ logx�!+ 2b− 2a�1/x�
= 0�

Therefore, when # > 1, as x →�,

S�x�

�2�x�s�x�
= o

(
1

x�logx�2

)
�

∫ �

1

S�'�

�2�'�s�'�
d' <��

In addition, since limx→��S�x�/��2�x�s�x�/x�� = 1/�2b�2� > 0, when 1
2 < # < 1 or 0 <

# < 1
2 , we have as x →�,

S�x�

�2�x�s�x�
=O �1/x� � either 1

2 < # < 1 or 0< # < 1
2 .

Thus,

∫ �

1

S�'�

�2�'�s�'�
d'=




<�� if # > 1�

�� if 1
2 < # < 1�

�� if 0< # < 1
2 �

(ii) The case of # = 1. Observe limx→0+ �2�x�s�x�= �2 limx→0+
{
x2x2be2a/x

}=�, and

lim
x→0+

S�x�

�2�x�s�x�
= 1

�2
lim

x→0+
S�x�

x2x2be2a/x

= 1
�2

lim
x→0+

x2be2a/x

�x2+2be2a/x�′

= 1
�2

lim
x→0+

1
�2+ 2b�x− 2a

=− 1
2a�2

< 0�

Therefore, limx→0+ S�x�=−�, S�0� x�=�, if # = 1�
We also have M�0� x� <�, if # = 1, because∫ y

0

1
�2�x�s�x�

dx = 1
�2

∫ y

0

{
x2+2be2a/x

}−1
dx <��

For N�0�1�, note that

N�0�1�=
∫ 1

0

[∫ 1

'
s�-�d-

]
m�'�d'=

∫ 1

0

S�1�− S�'�

�2�'�s�'�
d' <��

as ∫ 1

0

1
�2�'�s�'�

d' <��
∫ 1

0

S�'�

�2�'�s�'�
d' >−�� lim

x→0+
S�x�

�2�x�s�x�
= const.

Note that limx→� �2�x�s�x�/x = �2 limx→��x2b+1e2a/x!=�, and by L’Hôpital’s rule,

lim
x→�

S�x�

�2�x�s�x�/x
= 1

�2
lim
x→�

S�x�

x2b+1e2a/x

= 1
�2

lim
x→�

S�x�

x2b+1
= 1

�2
lim
x→�

s�x�

�2b+ 1�x2b

= 1
�2

lim
x→�

x2be2a/x

�2b+ 1�x2b
= 1

�2b+ 1��2
> 0�
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which also gives S�x��� = �, because S�y� = ∫ y
x2be2a/x dx, if # = 1. In addition,

M�x��� <� if # = 1, because∫ �

y

1
�2�x�s�x�

dx = 1
�2

∫ �

y

{
x2+2be2a/x

}−1
dx <��

For N�1���,

N�1���=
∫ �

1

[∫ '

1
s�-�d-

]
m�'�d'=

∫ �

1

S�'�− S�1�
�2�'�s�'�

d'�

Note
∫ �
1 1/��2�'�s�'��d' < � and limx→� S�x�/��2�x�s�x�/x� = 1/��2b + 1��2� > 0.

Therefore, when # = 1, as x →�,

S�x�

�2�x�s�x�
=O�1/x��

∫ �

1

S�'�

�2�'�s�'�
d'=��

Thus, N�1���=�, if # = 1.
(iii) The case of # = 1

2 . Observe that

lim
x→0+

�2�x�s�x�= �2 lim
x→0+

{
x1−2ae2bx

}=
{
0� if a≤ 1

2 �

�� if a > 1
2 �

and

lim
x→0+

S�x�= lim
x→0+

∫ x

y−2ae2by dy =
{

>−�� if 0< a≤ 1
2 �

−�� if a > 1
2 �

Hence, if # = 1
2 , then

S�0� x�=
{

<�� if 0< a≤ 1
2 �

�� if a > 1
2 �

If 0< a≤ 1
2 , then clearly

lim
x→0+

S�x�

�2�x�s�x�
=−��

as limx→0+ S�x� >−� and limx→0+ �2�x�s�x�= 0. If a > 1
2 , then by L’Hôpital’s rule,

lim
x→0+

S�x�

�2�x�s�x�
= 1

�2
lim

x→0+
S�x�

x1−2ae2bx

= 1
�2

lim
x→0+

x−2ae2bx

�1− 2a�x−2ae2bx + 2bx1−2ae2bx

= − 1
�2a− 1��2

< 0�

Furthermore, we have M�0� x� <�, if # = 1
2 and a > 0, because∫ y

0

1
�2�x�s�x�

dx = 1
�2

∫ y

0

1
x1−2a

e−2bx dx <��

Also, N�0� x� < � when # = 1
2 and a ≤ 1

2 , because S�0� x� < � and M�0� x� < � (see
Karlin and Taylor 1981, Table 6.1, p. 233). To check N�0�1� when a > 1

2 , note that

N�0�1�=
∫ 1

0

[∫ 1

'
s�-�d-

]
m�'�d'=

∫ 1

0

S�1�− S�'�

�2�'�s�'�
d' <��
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because
∫ 1
0 �1/�2�'�s�'��d' <�, and

∫ 1

0

S�'�

�2�'�s�'�
d' >−�� lim

x→0+
S�x�

�2�x�s�x�
= const., if a > 1

2 �

Observe that when # = 1
2 ,

lim
x→�

�2�x�s�x�

x
= �2 lim

x→��x−2ae2bx!=��

By L’Hôpital’s rule,

lim
x→�

S�x�

�2�x�s�x�/x
= 1

�2
lim
x→�

S�x�

x−2ae2bx

= 1
�2

lim
x→�

e2bxx−2a

�−2a�x−2a−1e2bx + 2bx−2ae2bx

= 1
2b�2

> 0�

In addition,

lim
x→�S�x�= lim

x→�

∫ x

y−2ae2by dy =�� if # = 1
2 �

Hence, S�x���=�, if # = 1
2 � We also have M�x��� <�, if # = 1

2 , because∫ �

y

1
�2�x�s�x�

dx = 1
�2

∫ �

y

{
x1−2ae2bx

}−1
dx <��

For N�1���, note that

N�1���=
∫ �

1

[∫ '

1
s�-�d-

]
m�'�d'=

∫ �

1

S�'�− S�1�
�2�'�s�'�

d'�

The second term is finite as∫ �

1

S�1�
�2�'�s�'�

d'= S�1�
∫ �

1

1
�2�'�s�'�

d' <��

Furthermore,

lim
x→�

S�x�

�2�x�s�x�/x
= 1
2b�2

> 0�

Therefore, as x →�,

S�x�

�2�x�s�x�
=O

(
1
x

)
�

∫ �

1

S�'�

�2�'�s�'�
d'=�� # = 1

2 �

Thus, N�1���=�, if # = 1
2 . The proof is terminated. �

Proof of Theorem 3.1. The table of boundary classification follows from the results
in Lemma 3.1 and Table 6.2 in Karlin and Taylor (1981, p. 234).
Because the drift function �−b�2x+ a�2� and the volatility ��x�= �x#�t� are all con-

tinuously differentiable functions in x and �2�x� > 0 on �0���, the local Lipschitz and
growth conditions are satisfied (although the global Lipschitz condition may not hold).
Aït-Sahalia (1996, p. 551) points out that this is enough to guarantee a unique strong solu-
tion up to the explosion time (the time to reach either 0 or �); this is true because of the
pathwise uniqueness (by the local Lipschitz condition) combined with the existence of a
weak solution up to the explosion time.
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For the four cases of (A) # > 1, (B) # = 1, (C) 1
2 < # < 1, and (D) # = 1

2 and a > 1
2 , since

both 0 and � are inaccessible, the explosion time is infinite almost surely. Therefore, the
solution is unique on �0���. For the remaining two cases of (E) # = 1

2 and 0< a≤ 1
2 , and

(F) 0< # < 1
2 , one has to specify a particular boundary behavior (Karlin and Taylor 1981,

pp. 239, 251) at the boundary 0, as 0 is the regular boundary (and is therefore accessible),
to make sure the solution is unique on �0���. In our approach we impose 0 as a reflecting
boundary (see, e.g., Mandl 1968, p. 67, and Chapter 8 in Chung and Williams 1990). With
this boundary specification, the weak solution can be extended beyond the explosion time
and, hence, the unique strong solution is also extended beyond the explosion time, thanks
to the pathwise uniqueness due to the local Lipschitz condition (Karatzas and Shreve 1991,
Theorem 2.5, p. 287).
Next, we try to study the steady-state distributions. For the cases of (A) # > 1, (B) # = 1,

(C) 1
2 < # < 1, and (D) # = 1

2 and a > 1
2 , because M�0� x� <�, and M�x��� <�, there

exists a unique stationary distribution independent of the initial position x by Theorem 7
on p. 90 in Mandl (1968). The form of the steady-state density in these cases follows from
Theorem 7 on p. 90 in Mandl (1968). For the cases of (E) # = 1

2 and 0 < a ≤ 1
2 , and

(F) 0< # < 1
2 , since M�0� x� <�, and M�x��� <�, Theorem 6 on p. 85 in Mandl (1968)

(with >0 = 0, ?0 = 1, �0 = 0 there, along with the results on p. 67 and Equation (9) on
p. 75 of the book) implies that if we impose 0 as a reflecting boundary, then there exists a
unique stationary distribution independent of the initial position x. The steady-state density
follows from Equation (59) on p. 85 in Mandl (1968) (with >0 = 0, ?0 = 1, �0 = 0 there).
The proof is thus terminated. �

Proof of Theorem 3.2. We consider five cases.
(1) # > 1. In this case, by Theorem 3.1,

f �x�=C2x
−2# exp

{
2
(

b

2# − 2
x2−2# − a

2# − 1
x1−2#

)}
�

For large x, f �x��C2x
−2# , and the tail probability is F �z�= P�X��� > z��Cz1−2# .

(2) # = 1. In this case, f �x�=C2x
−2�1+b�e−2a/x� Note that for large x, f �x��C2x

−2−2b.
It follows easily that the tail probability F �z��Cz−1−2b.
(3) 1

2 < # < 1. Therefore,

f �x�=C2x
−2# exp

(
− b

1−#
x2−2#

)
exp

(
− 2a
2# − 1

x1−2#
)
�

For large x, f �x��Cx−2# exp�−�b/�1−#��x2−2#�. To see the tail probability, we need the
following result:

(A.1)
∫ �

z
x−k exp�−)xc�dx � 1

c)
z1−k−c exp�−)zc�� ) > 0� c > 0�

To show this, note that a change of variable y = )xc gives∫ �

z
x−k exp�−)xc�dx = 1

c

(
1
)

)�1−k�/c ∫ �

)zc
y�1−k�/c−1e−y dy

� 1
c

(
1
)

)�1−k�/c

�)zc��1−k�/c−1 exp�−)zc�= 1
c)

z1−k−c exp�−)zc��

where the last line uses the following asymptotic property of the incomplete gamma function∫ �

z
e−xxk−1 dx = e−zzk−1

(
1+O

(
1
z

))
�

By (A.1), the tail probability is

F �z��C
1−#

b�2− 2#�
z−1 exp

(
b

# − 1
z2−2#

)
�
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(4) # = 1
2 . This is the well-known square-root process, whose steady-state distribution is

known to be a gamma distribution: f �x�=C2e
−2bxx2a−1. It follows that the tail probability

F �z��Ce−2bzz2a−1. Moreover C2 =C = �2b�2a/3�2a�.
(5) 0< # < 1

2 . In this case,

f �x�=C2x
−2# exp

(
− b

1−#
x2−2#

)
exp

(
− 2a
2# − 1

x1−2#
)
�

For 0< # < 1
2 , the tail probability is given by

F �z��Cz−1 exp
(
− b

1−#
z2−2#

)
exp

(
− 2a
2# − 1

z1−2#
)
�

This can be seen by using L’Hôpital’s rule again.

lim
z→�

F �z�

z−1 exp�−�b/�1−#��z2−2#� exp�−�2a/�2# − 1��z1−2#�

= lim
z→�

−f �z�

�z−1 exp�−�b/�1−#��z2−2#� exp�−�2a/�2# − 1��z1−2#�!′

=C2 lim
z→�

−1
−z2#−2 − 2b+ 2az−1

= C2

2b
�

The proof is terminated. �

B. Data description. Except for the stocks (e.g., non-U.S. stocks) that are not included
in the Center for Research in Security Prices (CRSP) historical database and the stocks no
longer exist because of merger or bankruptcy, we use all the biotechnology stocks included
in the NASDAQ Biotech Index (IXBT) and the Amex Biotech Index (BTK); all the Internet
stocks included in the Amex Internet Index (IIX), the Dow Jones Composite Internet Index
(DJINET), the Street.com Internet Index (DOT), the Amex Internet Infrastructure HOLDRS
(IIH), the Amex B2B Internet HOLDRS (BHH), and the Amex Internet HOLDRS (HHH).
The total market capitalization of the stocks are first computed by taking the product

of the number of outstanding shares and the share price; then the stocks with a market
capitalization not smaller than 0.5% of that of the largest stock are plotted. This is because
the size distribution relationship requires large market capitalization, and here “large-cap”
are ad hoc adopted as stocks having market capitalization at least as large as 0.5% of that of
the largest stock. One advantage of categorizing “largeness” relatively is that it automatically
takes into account that different groups of stocks could have different sizes (for example,
even within growth stocks, Internet stocks tend to be larger than biotechnology stocks).
To save space, instead of the full names, we only list the stocks by their ticket symbols.

Internet stocks

adbe agil akam amtd amzn artg beas brcm bvsn ckfr
cmgi cmrc coms cs csco dclk ebay et epny fmkt
goto hlth homs icge imgx inap inkt insp intu issx
itwo iwov jnpr kana lvlt macr navi neta novl pegs
pcln prsf q qcom qrsi retk rnwk rsas sgi spln
sqst sunw tibx tmcs tmpw vert vign vitr vntr vrsn
yhoo
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Biotechnology stocks

adrx aimm alks alxn amgn amln anik apht aria arql astm
atrx avgn avii avxt bcii bcrx bgen blsi blud bste btgc
btrn carn cbst cege ceph cers cgpi chir clgy cnct crxa
ctic cvas cvtx cypb cyph cyto cytr dcrn dige dsco dusa
emis enmd enzn epix gene genz gern gild glfd gnlb gnta
gztc heph hgsi hysq iart iccc icos idph ilxo imcl imgn
immu imnr incy inhl inkp ipic isip kosp lgnd ljpc lynx
mcde medi medx mlnm mogn mygn nabi nbix neot nerx nfld
novn npro npsp nrgn onxx orph osip oxgn pars pcyc pdli
pgnx regn rgen rzym sang scio scln scri sepr sero snap
snus supg teva tgen tktx trms vicl vion virs vphm vrtx
vvus zona
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