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Abstract

The Cp selection criterion is a popular method to choose the smoothing parameter in spline regression.
Another widely used method is the generalized maximum likelihood (GML) derived from a normal-theory
empirical Bayes framework. These two seemingly unrelated methods, have been shown in Efron (Ann. Statist.
29 (2001) 470) and Kou and Efron (J. Amer. Statist. Assoc. 97 (2002) 766) to be actually closely
connected. Because of this close relationship, the current paper studies whether Cp could also have an
empirical Bayes interpretation for smoothing splines as GML does. It is shown that this is not possible.
In addition, necessary conditions for a selection criterion to have an empirical Bayes interpretation are
given, using which it is shown that a large class of selection criteria, including Akaike information crite-
rion, Bayesian information criterion and Stein’s unbiased risk estimate, does not possess an empirical Bayes
explanation.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Model selection is an important problem in statistics. This paper concerns a particular form of
model selection: choosing the smoothing parameter in spline regression. The Cp selection crite-
rion (Mallows, 1973) is a popular method to choose the smoothing parameter (see, for example,
Li, 1986, 1987; Hastie and Tibshirani, 1990; Wahba, 1990). Another widely used method is the gen-
eralized maximum likelihood (GML) (Wecker and Ansley, 1983; Wahba, 1985; Stein, 1990). These
two criteria, from the surface, seem quite diBerent from each other: Cp chooses the smoothing
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parameter by minimizing an unbiased estimate of the prediction error, while GML is motivated
from an empirical Bayes framework. However it is shown in Efron (2001) and subsequently studied
in Kou and Efron (2002) that both GML and Cp are actually maximum likelihood estimates with
respect to two closely related curved exponential families.

With the close link between Cp and GML being delineated, a question arises naturally: since GML
is an empirical Bayes estimate, is that possible that Cp also has some empirical Bayes interpretation?
Such an empirical Bayes explanation, if found, may provide further understanding of the Cp criterion.
For example, it is well known that although the Cp criterion asymptotically works well under the
frequentist setting (see, for example, Li, 1986, 1987; Wahba, 1985; Kou, 2003), Hnite-sample wise
it has the tendency of undersmoothing in that Cp occasionally selects a very wiggly curve even
when the true underlying curve is known to be smooth (see, for example, Hurvich et al., 1998). If a
Bayesian interpretation for Cp is available, then by looking at the prior distribution (of the underlying
regression curve), one may be able to see directly why such a phenomenon is present for Cp—for
instance, if the prior puts a lot of weights on wiggly curves, it would be the case. Furthermore,
obtaining a Bayesian interpretation also oBers the potential to improve the Cp criterion—one might
be able to modify or remedy the prior distribution so as to obtain a selection criterion that has stable
performance both asymptotically and Hnite-sample wise.

The current paper investigates this possibility and shows that such an empirical Bayes explanation,
unfortunately, is not possible, mainly due to the singularity of the Cp density (a function introduced
in Section 2) at zero. In addition, we give necessary conditions for any selection criterion to have
an empirical Bayes interpretation, under both Gaussian and non-Gaussian noise. Employing these
necessary conditions, we show that a large class of selection criteria, which includes Akaike in-
formation criterion (AIC), Bayesian information criterion (BIC) and Stein’s unbiased risk estimate
(SURE), does not possess empirical Bayes explanation.

The paper is organized as follows. Section 2, after reviewing spline regression and the Cp and
GML selection criteria, presents the main result, proving the impossibility of Cp’s having an empirical
Bayes interpretation, as well as giving necessary conditions for a selection criterion to have empirical
Bayes explanation. Section 3 extends the result to non-Gaussian case. All the proofs are deferred to
the appendix.

2. Main results

2.1. Spline regression and the Cp and GML selection criteria

Suppose we have paired observations, {(xi; yi); i = 1; 2; : : : ; n} and want to estimate f(x) =
E(y|x), the regression function of y on x. A linear smoother (Buja et al., 1989) estimates f =
(f(x1); f(x2); : : : ; f(xn))′, the value of f(x) at the design points, by f̂� = A�y, where the en-
tries of the n × n smoothing matrix A� depend on x = (x1; x2; : : : ; xn) and also on a nonnegative
smoothing parameter �. One class of linear smoothers that will be of particular interest in this
paper is spline regression, in which case the class of smoothing matrices {A�; 0¡�¡∞} has
the form

A� = Ua�U ′ (2.1)
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with U an n×n orthogonal matrix not depending on the smoothing parameter �, and a� =diag(a�i),
a diagonal matrix with ith diagonal element

a�i = 1=(1 + �ki); i = 1; 2; : : : ; n; (2.2)

the constants k=(k1; k2; : : : ; kn), solely determined by x, being nonnegative and nondecreasing. (The
cubic smoothing splines f̂ � = argminf

{∑n
i=1 [yi − f(xi)]2 + �

∫
f′′(t)2 dt

}
are a special case of

(2.1) and (2.2); see Green and Silverman, 1994, Chapter 2.)
To use spline regression in practice, one typically has to infer the value of the smoothing

parameter � from the data. The Cp criterion chooses � to minimize an unbiased estimate of total
squared-error risk. Suppose that the yi are uncorrelated, with mean fi and constant variance �2. Then
the Cp estimate of � is �̂Cp=argmin�{C�(y)} where the Cp statistic C�(y)=‖y−f̂�‖2+2�2 tr(A�)−n�2

is an unbiased estimate of E‖f̂� − f‖2, the squared prediction error. The notation C�(y) assumes that
x is Hxed (as usual in regression problems), and that �2 is known. GML, the Generalized Maximum
Likelihood criterion (Wecker and Ansley, 1983), has a normal-theory empirical Bayes motivation. If
one strengthens the likelihood to y ∼ N(f ; �2I), and puts a Gaussian prior on the underlying curve:
f ∼ N(0; �2A�(I − A�)−1), then according to Bayes theorem,

y ∼ N(0; �2(I − A�)−1); f |y ∼ N(A�y; A�): (2.3)

The second relationship shows that f̂� = A�y is the Bayes estimate of f under squared error loss.
The Hrst relationship motivates the GML choice for the smoothing parameter: �̂GML is the maximum
likelihood estimate of � based on y ∼ N(0; �2(I − A�)−1).
The setting of spline regression (2.1) allows a rotation of coordinates for the model y ∼ (f ; �2I),

f̂� = A�y to

z = U ′y=�; g= U ′f=�; ĝ� = U ′f̂�=� (2.4)

putting the smoother family f̂� = A�y into diagonal form: z ∼ (g; I); ĝ� = a�z. Let b�i = 1 − a�i,
b� = (b�1; b�2; : : : ; b�n). In the new coordinate system, the Cp statistic can be expressed as a function
of z2

C�(z2) = ‖y − f̂�‖2 + 2�2 tr(A�)− n�2 = �2
n∑

i=1

(b2�iz
2
i − 2b�i) + n�2:

By deHning w= z2 = (z21 ; z
2
2 ; : : : ; z

2
n)

′, the Cp choice of � is

�̂Cp = argmin
�

∑
i

(b2�iwi − 2b�i): (2.5)

Under the coordinate system of z and g, the GML selection criterion also has a simple form, since
(2.3) becomes

z ∼ N(0; diag(b−1
� )); g|z ∼ N(a�z; a�); (2.6)

which gives

�̂GML =MLE of z ∼ N(0; diag(b−1
� )) =MLE of w ∼ �21=b

2
�

=argmin
�

∑
i

(b�iwi − log b�i); (2.7)
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since the density of w= z2 ∼ �21=b
2
� is

d�(w) = exp

(
−1
2

∑
i

(b�iwi − log b�i)

)/∏
i

√
2�wi: (2.8)

Because of the eQcacy of using z and g in obtaining simpler expressions, we will be working on
them instead of y and f whenever possible.

Comparing (2.5) with (2.7) gives an interesting observation: despite the diBerent motivations of
Cp and GML, they have similar forms. In addition, if one replaces the GML marginal density (2.8)
by a density having the form

dCp

� (w) = exp

(
−C

∑
i

(b2�iwi − 2b�i)

)∏
i

h(wi); (2.9)

where h(·) is a function not depending on �, then the MLE of (2.9) leads to the Cp criterion (2.5).
Density (2.9), interestingly, forms an exponential family just as (2.8) does, which means that it can
be written as dCp

� (w) = exp(�′
�w −  �)h(w), where �� = −Cb2� is the natural parameter vector and

 �=−2C
∑

i b�i is the cumulant generating function, which, furthermore, implies that h(·) is inverse
Gaussian:

h(w) =
(
2C
w3

)1=2
’((2C=w)1=2); (2.10)

due to the one-to-one correspondence between a density and its cumulant generating function. (’(·)
in (2.10) is the standard normal density.)

2.2. Cp and empirical Bayes

The Bayesian framework (2.3), or equivalently (2.6), provides the empirical Bayes motivation of
GML. The similarity between (2.5) and (2.7)–(2.9) naturally raises one question: Can Cp also be
interpreted from an empirical Bayes point of view? Such an interpretation, if found, will further our
understanding of Cp in that the prior distribution (of the underlying curve) not only directly points
out Cp’s strength and weakness, but also oBers the potential to improve it.
However we will show that this is not possible. In other words, there does not exist a prior

distribution �(·) on the curve g such that the Bayesian structure

g ∼ �(g); z|g ∼ N(g; I)

would give w = z2 the marginal distribution w = z2 ∼ dCp

� (w), where dCp

� (w) is given by (2.9) and
(2.10). For convenience we will call dCp

� (w) the Cp density.
To show the nonexistence of the prior, we Hrst note that the independence of wi in dCp

� (w)
and the independence structure in the likelihood z|g ∼ N(g; I) make it suQcient to consider only
the one-dimensional case—one only needs to show that no density function �(·) fulHlls these two
requirements:

(i) g ∼ �(g), z|g ∼ N(g; 1) and
(ii) marginally w = z2 ∼ dCp

� (w) = e−C(b2w−2b)(2C=w3)1=2’((2C=w)1=2).
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Theorem 2.1. A proper prior �(·) on g that satis9es both (i) and (ii) does not exist.

The proof of the theorem, shown by contradiction, is deferred to the appendix. The basic idea is
that the Cp density has a singularity at zero (dCp

� (w) → 0, as w → 0), making it impossible to be
the marginal density from any prior distribution on the curve g.

At this point, with the hope of Cp’s having an empirical Bayes interpretation being rejected, one
might wonder: What kind of criterion, then, could have such an explanation? The following theorem
generalizes the result of Theorem 2.1, supplying a simple way to check whether a given distribution
could be the marginal distribution of z from some prior.

Theorem 2.2. In order for a density function p(z) to be the marginal density of z from a proper
prior with likelihood z|g ∼ N(g; 1), it must satisfy

(a) limz→0 p(z)¿ 0; and
(b) p(z) is in9nitely di;erentiable at z = 0.

Proof. See the appendix.

AIC, BIC and SURE, besides Cp, are three widely used selection criteria. Since Cp cannot be
interpreted from an empirical Bayes angle, it is interesting to ask if AIC, BIC or SURE can be viewed
as an empirical Bayes method. In the context of linear smoothers, it can be shown (Efron, 1986)
that Cp is identical to AIC and SURE. The BIC chooses the smoothing parameter � according to

�̂BIC = argmin
�
{‖y − f̂�‖2 + �2(log n) tr(A�)};

where n is the sample size. To incorporate both AIC (thus Cp and SURE) and BIC in a uniHed
framework, we consider a class of selection criteria

�̂(D) = argmin
�
{‖y − f̂�‖2 + �2D tr(A�)}: (2.11)

Taking the constant D = 2 in (2.11) gives AIC (Cp and SURE), whereas taking D = log n results
in BIC.

Under the coordinate system of z and g, (2.11) is equivalent to �̂(D) = argmin�

∑
i (b

2
�iwi −Db�i),

which, similar to the case of Cp, gives the corresponding density function

d(D)
� (w) = exp

(
−C

∑
i

(b2�iwi − Db�i)

)∏
i

h(D)(wi): (2.12)

Like the Cp density, (2.12) is an exponential family, whose cumulant generating function determines
h(D) to be inverse Gaussian:

h(w) =
(
D2C
2w3

)1=2
’

(√
D2C
2w

)
: (2.13)

Combining (2.12) with (2.13), we note that limw→0 d
(D)
� (w)=0. Applying Theorem 2.2, we conclude

that entire class (2.11), which includes the popular Cp, AIC, BIC and SURE, cannot be interpreted
from an empirical Bayes point of view. This, in certain sense, indicates that the gap between Cp

and empirical Bayes is not small.
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3. Extension to non-Gaussian case

We have been working on the normal likelihood z|g ∼ N(g; I) in the previous section. This section
extends our investigation to study whether the results hold if we change the normal assumption to

z|g= g+ �;
where � = (!1; !2; : : : ; !n) and the !i are i.i.d. according to some distribution that has zero mean. It
turns out that the previous results are qualitatively correct—Cp still cannot have an empirical Bayes
explanation even under non-Gaussian case.

Let f(·) denote the density function of !i. Again it suQces to consider only the one-dimensional
case. The following theorem extends the Cp result of Theorem 2.1 to non-Gaussian situation.

Theorem 3.1. Suppose the density function f(·) is bounded from above (e.g. normal density,
t density, gamma density, etc.). Then there does not exist a proper prior �(·) on g that satis9es

(i) g ∼ �(g) and z|g= g+ !, with ! ∼ f(!);
(ii) marginally w = z2 ∼ dCp

� (w) = e−C(b2w−2b)(2C=w3)1=2’((2C=w)1=2).

The proof is deferred to the appendix, which still hinges on the singularity of the Cp density at
zero. Complementing Theorem 2.1, we give the necessary condition for a selection criterion to have
empirical Bayes interpretation for the non-Gaussian case.

Theorem 3.2. Suppose z|g= g+ !, where ! has bounded density function f(·). Then in order for a
given distribution to be the marginal distribution of z from some prior, its density function p(z)
must satisfy limz→0 p(z)¿ 0.

As we have seen for the selection criteria (2.11) limw→0 d
(D)
� (w) = 0, it follows from Theo-

rem 3.2 that they, including AIC, BIC and SURE, do not have empirical Bayes interpretation even
under non-Gaussian noise.
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Appendix: proofs

Proof of Theorem 2.1. We prove the theorem by contradiction.
Suppose there does exist a �(·) for which both (i) and (ii) are true. Then requirement (i) informs

us that w given g has a noncentral �2 distribution with 1 degree of freedom and noncentrality
parameter g2. So w given g has density function f(w|g) = (2

√
w)−1(’(

√
w − g) + ’(−√

w − g)),
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where as before ’(·) is the standard normal density. Since
∫∞
−∞ �(g)f(w|g) dg = dCp

� (w), simple
algebra after rearranging its terms gives∫ ∞

−∞
(e

√
wg + e−

√
wg)e−1=2g2�(g) dg=

√
8C

1
w
exp
((

1
2
− Cb2

)
w + 2Cb− C

w

)
: (A.1)

Dominated convergence theorem says the left-hand side of (A.1) satisHes

lim
w→0+

∫ ∞

−∞
(e

√
wg + e−

√
wg)e−1=2g2�(g) dg= 2

∫ ∞

−∞
e−1=2g2�(g) dg¿ 0; (A.2)

where the last inequality is a direct consequence of the fact
∫∞
−∞ �(g) dg=1. However letting w → 0

on the right-hand side of (A.1) yields

lim
w→0+

√
8C

1
w
exp
((

1
2
− Cb2

)
w + 2Cb− C

w

)
= 0: (A.3)

The proof is completed by noting the clear conRict between (A.2) and (A.3).

Proof of Theorem 2.2. Let �(g) denote the prior for g. Then we must have

1√
2�

∫ ∞

−∞
exp
(
−1
2
(z − g)2

)
�(g) dg= p(z):

Rearranging the terms yields∫ ∞

−∞
exp(zg)

[
exp
(
−1
2
g2
)

�(g)
]
dg=

√
2� exp

(
1
2
z2
)

p(z): (A.4)

It is easy to see that

0¡c =
∫ ∞

−∞
e−1=2g2�(g) dg¡∞:

Therefore the left-hand side of (A.4) is the moment generating function of the distribution (1=c)e−1=2g2

�(g) up to a normalizing constant. (a) and (b) are now immediate consequences of the basic
properties of moment generating functions.

Proof of Theorem 3.1. Suppose there does exist such a prior �(·). Then from (i), w given g has
density f(w|g)=(2

√
w)−1(f(

√
w−g)+f(−√

w−g)). So we must have
∫∞
−∞ �(g)f(w|g) dg=dCp

� (w),
which is equivalent to∫ ∞

−∞
�(g)[f(

√
w − g) + f(−√

w − g)] dg=
(
4C
�

)1=2 1
w
exp

(
−Cb2

w

(
w − 1

b

)2)
:

Letting w → 0, the limit of the left-hand side is positive, while the right-hand side goes to 0. This
contradiction concludes the proof.

The proof of Theorem 3.2 is almost identical to that of Theorem 3.1, and is hence omitted.
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