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CORRELATION ANALYSIS OF ENZYMATIC REACTION OF
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BY CHAO DU AND S. C. KOU
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New advances in nano sciences open the door for scientists to study
biological processes on a microscopic molecule-by-molecule basis. Recent
single-molecule biophysical experiments on enzyme systems, in particular,
reveal that enzyme molecules behave fundamentally differently from what
classical model predicts. A stochastic network model was previously pro-
posed to explain the experimental discovery. This paper conducts detailed
theoretical and data analyses of the stochastic network model, focusing on
the correlation structure of the successive reaction times of a single enzyme
molecule. We investigate the correlation of experimental fluorescence inten-
sity and the correlation of enzymatic reaction times, and examine the role
of substrate concentration in enzymatic reactions. Our study shows that the
stochastic network model is capable of explaining the experimental data in
depth.

1. Introduction. In a chemical reaction, the number of molecules involved
can drastically vary from millions of moles—a forest devastated by a fire—to
only a few—reactions in a living cell. While most conventional chemical exper-
iments were designed for a large ensemble in which only the average could be
observed, chemistry textbooks tend to explain what really happens in a reaction
on a molecule-by-molecule basis. This extrapolation certainly requires the homo-
geneity assumption: each molecule behaves in the same way, so the average also
represents individual behavior. To verify this assumption, the kinetic of a single
molecule must be directly observed, which requires rather sophisticated technol-
ogy not available until the 1990s. Since then, the development of nanotechnology
has enabled scientists to track and manipulate molecules one by one. A new age
of single-molecule experiments began [Nie and Zare (1997), Xie and Trautman
(1998), Xie and Lu (1999), Tamarat et al. (2000), Weiss (2000), Moerner (2002),
Flomembom et al. (2005), Kou, Xie and Liu (2005), Kou (2009)].

Such experiments offer a greatly amplified view of single-molecular dynam-
ics over considerably long time periods from seconds to hours, a time scale that
far exceeds what can be achieved by computer based molecular dynamic simu-
lation (even with a super computer, molecular dynamic simulation cannot reach
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beyond milliseconds). The single-molecule experiments also provide detailed in-
formation on the intermediate transition steps of a biological process not available
in traditional experiments. Not surprisingly, these experiments reveal the stochas-
tic nature of nanoscale particles long masked by ensemble averages: rather than
remain rigid, those particles undergo dramatic conformation change driven by ex-
ternal thermal motion. Future development in this area will provide us a deeper
understanding of biological processes [such as molecular motors, Asbury, Fehr
and Block (2003)] and accelerate new technology development [such as single-
molecule gene sequencing, Pushkarev, Neff and Quake (2009)].

Among bio-molecules, enzymes play an important role: by lowering the en-
ergy barrier between the reactant and product, they ensure that many life essential
processes can be effectively carried out in a living cell. An aspiration of bioengi-
neers is to artificially design and produce new and efficient enzymes for specific
use. Studying and understanding the mechanism of existing enzymes, therefore,
remains one of the central topics in life science. According to the classical litera-
ture, the kinetic of an enzyme is described by the Michaelis–Menten mechanism
[Atkins and de Paula (2002)]: an enzyme molecule E could bind with a reactant
molecule S, which is referred to as a substrate in the chemistry literature (hence
the symbol S), to form a complex ES. The complex can either dissociate to enzyme
and substrate molecules or undergo a catalytic process to release the product P .
The enzyme then returns to the original state E to start another catalytic circle.
This process is typically diagrammed as

E + S
k1[S]
�
k−1

ES
k2→ E0 + P, E0 δ→ E,(1.1)

where [S] is the substrate concentration (E0 is the release state of the enzyme),
k1 is the association rate per unit substrate concentration, k−1 and k2 are, respec-
tively, the dissociation and catalytic rate, and δ is the returning rate. All the transi-
tions are memoryless in the Michaelis–Menten scheme, so the whole process can
be modeled as a continuous-time Markov chain consisting of three states E, ES
and E0 for an enzyme molecule.

A recent single-molecule experiment [English et al. (2006)] conducted by the
Xie group at Harvard University (Department of Chemistry and Chemical Biology)
studied the enzyme β-galactosidase (β-gal), which catalyzes the breakdown of the
sugar lactose and is essential in the human body [Jacobson et al. (1994), Dorland
(2003)]. In the experiment a single β-gal molecule is immobilized (by linking to a
bead bound on a glass coverslip) and immersed in buffer solution of the substrate
molecules. This setup allows β-gal’s enzymatic action to be continuously moni-
tored under a fluorescence microscope. To detect the individual turnovers, that is,
the enzyme’s switching from the E state to the E0 state, careful design and special
treatment were carried out (such as the use of photogenic substrate resorun-β-D-
galactopyranoside) so that once the experimental system was placed under a laser
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FIG. 1. Fluorescence intensity reading from one experiment (the substrate concentration is 100
micro-molar). Each fluorescence intensity spike is caused by the release of a reaction product.

beam the reaction product and only the reaction product was fluorescent. This set-
ting ensures that as the β-gal enzyme catalyzes substrate molecules one after an-
other, a strong fluorescence signal is emitted and detected only when a product is
released, that is, only when the reaction reaches the E0 +P stage in (1.1). Record-
ing the fluorescence intensity over time thus enables the experimental determina-
tion of individual turnovers. A sample fluorescence intensity trajectory from this
experiment is shown in Figure 1. High spikes in the trajectory are the results of
intense photon burst at the E0 + P state, while low readings correspond to the
E or ES state. The time lag between two adjacent high fluorescence spikes is the
enzymatic turnover time, that is, the time to complete a catalytic circle.

Examining the experimental data, including the distribution and autocorrela-
tion of the turnover times as well as the fluorescence intensity autocorrelation, re-
searchers were surprised that the experimental data showed a considerable depar-
ture from the Michaelis–Menten mechanism. Section 2 describes the experimental
findings in detail. Figure 2 illustrates the discrepancy between the experimental
data and the Michaelis–Menten model in terms of the autocorrelations. The left
two panels show the experimentally observed fluorescence intensity autocorrela-
tion and turnover time autocorrelation under different substrate concentrations [S].
The right two panels show the corresponding autocorrelation patterns predicted by
the Michaelis–Menten model. Comparing the bottom two panels, we note that un-
der the classical Michaelis–Menten model the turnover time autocorrelation should
be zero (hence the horizontal line at the bottom-right panel), which clearly contra-
dicts the experimental result on the left. From the top two panels we note that under
the Michaelis–Menten model the fluorescence intensity autocorrelation should de-
cay exponentially and should decay faster with larger substrate concentration, but
the experimental result shows the opposite: the intensity autocorrelations decay
slower with larger substrate concentration, and they do not decay exponentially.
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FIG. 2. Left column: experimentally observed fluorescence intensity and turnover time autocorre-
lations under different substrate concentrations [S] (20, 100 and 380 micromolar). Right column: the
autocorrelations predicted by the classical Michaelis–Menten model. Under the Michaelis–Menten
model, the turnover time autocorrelation should be zero and the intensity autocorrelations should
decay exponentially and decay faster under larger concentration. All contradict the experimental
findings.

To explain the experimental puzzle, a new stochastic network model was in-
troduced [Kou et al. (2005), Kou (2008b)], and it was shown that the stochastic
network model well explained the experimental distribution of the turnover times.
The autocorrelation of successive turnover times and the correlation of experimen-
tal fluorescence intensity, however, were not investigated in the previous articles.

This paper further explores the stochastic network model, concentrating on the
correlation structure of the turnover times and that of the fluorescence intensity.
The rest of the paper is organized as follows. Section 2 reviews the preceding work,
including the experiment observation and the new stochastic network model. Sec-



954 C. DU AND S. C. KOU

tion 3 analytically calculates the turnover time autocorrelation and the fluorescence
intensity autocorrelation based on the stochastic network model. These analytical
results give an explanation of the multi-exponentially decay pattern of the auto-
correlation functions. Section 4 discusses how to fit the experiment data within the
framework of the stochastic network model. The paper ends in Section 5 with a
summary and some concluding remarks.

2. Modeling enzymatic reaction.

2.1. The classical model and its challenge. Under the classical Michaelis–
Menten model (1.1), an enzyme molecule behaves as a three-state continuous-time
Markov chain with the generating matrix (infinitesimal generator)

QMM =
⎛
⎝−k1[S] k1[S] 0

k−1 −(k−1 + k2) k2
δ 0 −δ

⎞
⎠ .

We can readily draw two properties from this continuous-time Markov chain
model.

PROPOSITION 2.1. The density function of the turnover time, the time that
it takes the enzyme to complete one catalytic cycle (i.e., to go from state E to
state E0), is

f (t) = k1k2[S]
2p

(
e−(q−p)t − e−(q+p)t ),

where p =
√

(k1[S] + k2 + k−1)2/4 − k1k2[S] and q = (k1[S] + k2 + k−1)/2.

PROPOSITION 2.2. The successive turnover times have no correlation.

The first proposition implies that the density of turnover time is almost an expo-
nential, since the term e−(q−p)t easily dominates the term e−(q+p)t for most values
of t ; see Kou (2008b) for a proof. The second proposition is a consequence of the
Markov property: each turnover time, which is a first passage time, is indepen-
dently and identically distributed.

The third property concerns the autocorrelation of the fluorescence intensity.
As we have seen in Figure 1, the experimentally recorded fluorescence intensity
consists of high spikes and low readings. The high peaks correspond to the release
of the fluorescent product (when the enzyme is at the state E0), whereas the low
readings come from the background noise. We can thus think of the fluorescence
intensity reading as a record of an on–off system: E0 being the on state, E and ES
being the off states.

PROPOSITION 2.3. The autocorrelation function of the fluorescence intensity
is proportional to exp(−t (k−1 + k2 + k1[S])).
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The proof of the proposition will be given in Corollary 3.11. This proposition
says that under the Michaelis–Menten model the intensity autocorrelation decays
exponentially and faster with larger substrate concentration [S].

The results from the single-molecule experiment on β-gal [English et al. (2006)]
contradict all three properties of the Michaelis–Menten model:

(1) The empirical distribution of the turnover time does not exhibit exponential
decay; see Kou (2008b) for a detailed explanation.

(2) The experimental turnover time autocorrelations are far from zero, as seen
in Figure 2.

(3) The experimental intensity autocorrelations decay neither exponentially nor
faster under larger concentration. See Figure 2.

2.2. A stochastic network model. We believe these contradictions are rooted
in the molecule’s dynamic conformational fluctuation. An enzyme molecule is not
rigid: it experiences constant changes and fluctuations in its three-dimensional
shape and configuration due to the entropic and atomic forces at the nano scale
[Kou and Xie (2004), Kou (2008a)]. Although for a large ensemble of molecules,
the (nanoscale) conformational fluctuation is buried in the macroscopic population
average, for a single molecule the conformational fluctuation can be much more
pronounced: different conformations could have different chemical properties, re-
sulting in time-varying performance of the enzyme, which can be studied in the
single-molecule experiment. The following stochastic network model [Kou et al.
(2005)] was developed with this idea:

S + E1
k11[S]
�
k−11

ES1
k21→ P + E0

1, E0
1

δ1→ E1,

↓↑ ↓↑ ↓↑ · · ·

S + E2
k12[S]
�
k−12

ES2
k22→ P + E0

2, E0
2

δ2→ E2,(2.1)

· · · · · · · · · · · ·
↓↑ ↓↑ ↓↑ · · ·

S + En

k1n[S]
�
k−1n

ESn
k2n→ P + E0

n, E0
n

δn→ En.

This is still a Markov chain model but with 3n states instead of three. The enzyme
still exists as a free enzyme E, an enzyme–substrate complex ES or a returning
enzyme E0, but it can take n different conformations indexed by subscripts in each
stage. At each transition, the enzyme can either change its conformation within the
same stage (such as Ei → Ej or ESi → ESj ) or carry out one chemical step, that
is, move between the stages (such as Ei → ESi , ESi → Ei or ESi → E0

i ). Since
only the product P is fluorescent in the experiment, in model (2.1) any state E0

i
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is an on-state, and the others are off-states. Consequently, the turnover time is the
traverse time between any two on-states E0

j and E0
k .

To fully specify the model, we need to stipulate the transition rates. For i �= j ,
we use αij , βij and γij to denote, respectively, the transition rates of Ei → Ej ,
ESi → ESj and E0

i → E0
j . k1i[S], k−1i , k2i and δi are, respectively, the transition

rates of Ei → ESi , ESi → Ei , ESi → E0
i and E0

i → Ei . Define QAA, QBB and
QCC to be square matrices:

QAA = [αij ]n×n, QBB = [βij ]n×n, QCC = [γij ]n×n,

where αii = −∑
j �=i αij , βii = −∑

j �=i βij and γii = −∑
j �=i γij . They correspond

to transitions among the Ei states, among the ESi states and among the E0
i states,

respectively. Define diagonal matrices

QAB = diag{k11[S], k12[S], . . . , k1n[S]},
QBA = diag{k−11, k−12, . . . , k−1n},

(2.2)
QBC = diag{k21, k22, . . . , k2n},
QCA = diag{δ1, δ2, . . . , δn}.

They correspond to transitions between the different stages. The generating matrix
of model (2.1) is then

Q =
⎛
⎝ QAA − QAB QAB 0

QBA QBB − (QBA + QBC) QBC

QCA 0 QCC − QCA

⎞
⎠ .(2.3)

Under this new model, the distribution of the turnover time, the correlation of
turnover times and the correlation of the fluorescence intensity can be analyzed
and compared with experimental data. This paper studies the autocorrelation of
turnover time and the autocorrelation of fluorescence intensity.

3. Autocorrelation of turnover time and of fluorescence intensity.

3.1. Dynamic equilibrium and stationary distribution. In the chemistry liter-
ature, the term “equilibrium” often refers to the state in which all the macroscopic
quantities of a system are time-independent. For the microscopic system studied in
single-molecule experiments, macroscopic quantities, however, are meaningless,
and microscopic parameters never cease to fluctuate. Nonetheless, for a micro-
system, one can talk about dynamic equilibrium in the sense that the distribution
of the state quantities become time-independent, that is, they reach the stationary
distribution. The single-molecule enzyme experiment that we consider here falls
into this category, since the enzymatic reactions happen quite fast. We cite the
following lemma [Lemma 3.1 of Kou (2008b)], which gives the stationary distri-
bution of the Markov chain (2.1):
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LEMMA 3.1. Let X(t) be the process evolving according to (2.1). Sup-
pose all the parameters k1i , k−1i , k2i , δi, αij , βij , and γij are positive. Then
X(t) is ergodic. Let the row vectors πA = (π(E1),π(E2), . . . , π(En)), πB =
(π(ES1), . . . , π(ESn)), and πC = (π(E0

1), . . . , π(E0
n)) denote the stationary dis-

tribution of the entire network. Up to a normalizing constant, they are determined
by

πA = −πCQCAL, πB = −πCQCAM,

πC(QCC − QCA − QCAMQBC) = 0,

where the matrices

L = [QAA − QAB − QAB(QBB − QBA − QBC)−1QBA]−1,

M = [QBB − QBC − (QBB − QBA − QBC)Q−1
ABQAA]−1.

Under the stochastic network model (2.1), a turnover event can start from any
state Ei and end in any E0

j . It follows that the overall distribution of all the turnover
times is characterized by a mixture distribution with the weights given by the sta-
tionary probability of a turnover event’s starting from Ei . The following lemma,
based on Lemma 3.4 of Kou (2008b), provides the stationary probability.

LEMMA 3.2. Let w be a row vector, w = (w(E1),w(E2), . . . ,w(En)), where
w(Ei) denotes the stationary probability of a turnover event’s starting from
state Ei . Then up to a normalizing constant, w is the nonzero solution of

w(I + MQBC − Q−1
CAQCC) = 0.(3.1)

3.2. Autocorrelation of turnover time.

Expectation of turnover time. The enzyme turnover event occurs one after an-
other. Each can start from any Ei and end in any E0

j . The next turnover may start

from Ek (k �= j ) when the system exits the E0 stage from E0
k . To calculate the cor-

relation between turnover times, it is necessary to find out the probabilities of all
these combinations and the expected turnover times. We introduce the following
notation.

Let TEi
and TESi

denote the first passage time of reaching the set {E0
1,E0

2, . . . ,

E0
n} from Ei and ESi , respectively. Let PEiE

0
j

and PESiE
0
j

be the probability that

a turnover event, starting, respectively, from Ei and ESi , ends in E0
j . Let PE0

i Ej

denote the probability that, after the previous turnover ends in E0
i , a new turnover

event starts from Ej . Finally, let TEiE
0
j

and TESiE
0
j

be the first passage time of

reaching the state E0
j from Ei and ESi , respectively.

For the values of E(TEi
) and E(TESi

), we cite the following lemma [Corol-
lary 3.3 of Kou (2008b)].
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LEMMA 3.3. Let the vectors μA = (E(TE1),E(TE2), . . . ,E(TEn))
T and

μB = (E(TES1), . . . ,E(TESn))
T denote the mean first passage times. Then they

are given by (
μA

μB

)
=

(−(L + M)1
−(N + R)1

)
,(3.2)

where the matrices N and R are given by

N = [QAA − (QAA − QAB)Q−1
BA(QBB − QBC)]−1,

R = [QBB − QBA − QBC − QBA(QAA − QAB)−1QAB]−1.

For the probabilities PEiE
0
j
, PESiE

0
j

and PE0
i Ej

, we have the following lemma:

LEMMA 3.4. Let PAC , PBC and PCA be probability matrices PAC =
[PEiE

0
j
]n×n, PBC = [PESiE

0
j
]n×n and PCA = [PE0

i Ej
]n×n. Then they are given by

PAC = −MQBC, PBC = −RQBC, PCA = (I − Q−1
CAQCC)−1.(3.3)

For the expectation of TEiE
0
j

and TESiE
0
j
, we have the following.

LEMMA 3.5. Let

EAC = [PEiE
0
j
E(TEiE

0
j
)]n×n and EBC = [PESiE

0
j
E(TESiE

0
j
)]n×n

be two n × n matrices. Then they are given by

EAC = (LM + MR)QBC, EBC = (NM + RR)QBC.

We defer the proofs of Lemmas 3.4 and 3.5 to the Appendix.

Correlation of the turnover times. Let T i denote the ith turnover time. The
next theorem, based on Lemmas 3.1 to 3.5, obtains the autocorrelation of the suc-
cessive turnover times. We defer its proof to the Appendix.

THEOREM 3.6. The covariance between the first turnover and the mth
turnover (m > 1) is given by

cov(T 1, T m) = −w
(
L + M(I − Q−1

ABQAA)
)[(PACPCA)m−1 − 1w]μA,

where PACPCA = −MQBC(I − Q−1
CAQCC)−1.

The matrix PACPCA is the product of two transition-probability matrices, so
it is a stochastic matrix. Given that all the states in the stochastic network model
communicate with each other, PACPCA is also irreducible, and all its entries are
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positive. According to the Perron–Frobenius theorem [Horn and Johnson (1985)],
such a matrix has eigenvalue one with simplicity one, and the absolute values of
the other eigenvalues are strictly less than one. We therefore obtain the following
corollary of Theorem 3.6.

COROLLARY 3.7. Suppose that PACPCA is diagonalizable:

PACPCA = UλU−1 = 1w +
n∑

l=2

λlϕlψ
T
l ,

where the diagonal matrix λ = diag(1, λ2, . . . , λn) consists of the eigenvalues of
PACPCA with |λi | < 1; the columns, 1, ϕ2, . . . , ϕn, of matrix U are the correspond-
ing right eigenvectors; and the rows, w,ψ2, . . . ,ψn, of U−1 are the corresponding
left eigenvectors. Then we have

cov(T 1, T m) =
n∑

i=2

σiλ
m−1
i ,(3.4)

where σi = −w(L + M(I − Q−1
ABQAA))ϕiψ

T
i μA.

Although the matrix PACPCA may have complex eigenvalues, these complex
eigenvalues and corresponding eigenvectors always appear as conjugate pairs so
that the imaginary parts in (3.4) cancel each other. As a result, we could treat all
λi and σi as if they were real numbers.

Theorem 3.6, along with Corollary 3.7, provides an explanation of why the
correlation of turnover times is not zero. At first sight, it seems to contradict the
memoryless property of a Markov chain. What actually happens is that the state
must be explicitly specified for the memoryless property to hold (i.e., one needs
to exactly specify whether an enzyme is at state E1 or E2), whereas in the single-
molecule experiment we only know whether the system is in an “on” or “off” state
(e.g., one only knows that the enzyme is in one of the on-states E0

1, . . . ,E0
n). When

there are multiple states, this aggregation effect leads to incomplete information
that prevents the independence between successive turnovers; consequently, each
turnover time carries some information about its reaction path, which is correlated
with the reaction path of the next turnover, resulting in the correlation between
successive turnover times.

Corollary 3.7 also states that since |λi | < 1, the autocorrelation is a mixture
of exponential decays. Thus, depending on the relative scales of the eigenvalues,
the actual decay might be single-exponential when one eigenvalue dominates the
others or multi-exponential when several major eigenvalues jointly contribute to
the decay.
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Fast enzyme reset. In most enzymatic reactions, including the one we study,
the enzyme returns very quickly to restart a new cycle once the product is released
[Segel (1975)]. Those enzymes are called fast-cycle-reset enzymes. To model this
fact, we let δi (i = 1,2, . . . , n), the transition rate from E0

i to Ei , go to infinity.
Then any enzyme in state E0

i will always return to state Ei instantly, and the related
transition probability matrix PCA, defined in (3.3), becomes the identity matrix.

3.3. Autocorrelation of fluorescence intensity.

Correlation of intensity as a function of time. In the single-enzyme experi-
ments, the raw data are the time traces of fluorescence intensity, as shown in Fig-
ure 1. The time lag between two adjacent high fluorescence spikes gives the en-
zymatic turnover time. The fluorescence intensity reading, however, is subject to
detection error: the error caused by the limited time resolution �t of the detec-
tor. Starting from time 0, the detector will only record intensity data at multiples
of �t : 0,�t,2�t, . . . , k�t , . . . . The intensity reading at time k�t is actually the
total number of photons received during the period of ((k − 1)�t, k�t). Thus, the
detection errors of turnover time are roughly �t . When the successive reactions
occur slowly, the average turnover time is much longer than �t , and the error is
negligible. But when the reactions happen very frequently, the average turnover
time becomes comparable to �t , and this error cannot be ignored. In fact, when
the substrate concentration is high enough, the enzyme will reach the “on” states
so frequently that most of the intensity readings are very high, making it impos-
sible to reliably determine the individual turnover times. Under this situation, it is
necessary to directly study the behavior of the raw intensity reading.

There are two main sources of the photons generated in the experiment: the
weak but perpetual background noise and the strong but short-lived burst. The
number of photons received from two different sources can be modeled as two in-
dependent Poisson processes with different rates. We can use the following equa-
tion to represent I (t), the intensity recorded at time t :

I (t) = Nt(Ton(t)) + N0
t (�t),(3.5)

where Nt(s) and N0
t (s) represent the total number of photons received due to the

burst and background noise, respectively, within a length s subinterval of (t −
�t, t); Ton(t) is the total time that the enzyme system spends at the “on” states
(any E0

i ) within the time interval (t − �t, t). Nt(s) and N0
t (s) are independent

Poisson processes with rates ν and ν0, respectively. With this representation, we
have the following theorem, whose proof is deferred to the Appendix.

THEOREM 3.8. The covariance of the fluorescence intensity is

cov(I (0), I (t)) ∝
3n∑
i=2

Cie
μi(t−�t),(3.6)



CORRELATION ANALYSIS OF SINGLE-MOLECULE ENZYMATIC REACTION 961

where μi are the nonzero eigenvalues of the generating matrix Q defined in (2.3),
and Ci are constants only depending on Q.

Since −Q is a semi-stable matrix [Horn and Johnson (1985)], it follows that the
real parts of all μk (k > 1) are negative. For a real matrix, the complex eigenvalues
along with their eigenvectors always appear in conjugate pairs; thus, the imaginary
parts cancel each other in (3.6) and only the real parts are left. Therefore, we
know according to Theorem 3.8 that the covariance of intensity will decay multi-
exponentially.

Fast enzyme reset and intensity autocorrelation. A fast-cycle-reset enzyme
jumps from state E0

i to Ei with little delay. A short burst of photons is released
during the enzyme’s short stay at E0

i . For fast-cycle-reset enzymes, the behavior of
the whole system can be well approximated by an alternative system, where only
states Ei and ESi (i ∈ 1,2, . . . , n) exist: the transition rates among the E’s, among
the ES’s, and from Ei to ESi are exactly the same as in the original system, but
the transition rate from ESi to Ei is changed from k−1i to k−1i + k2i , since once
a transition of ESi → E0

i occurs, the enzyme quickly moves to Ei . We can thus
think of lumping E0

i and Ei together to form the alternative system, which has
generating matrix

K =
(

QAA − QAB QAB

QBA + QBC QBB − (QBA + QBC)

)
.(3.7)

K is also a negative semi-stable matrix with 2n eigenvalues, one of which is zero.
The following theorem details how well the eigenvalues of K approximate those
of Q.

THEOREM 3.9. Assume QCA = δ diag{q1, . . . , qn}, where q1, . . . , qn are fixed
constants, while δ is large. Let κi (i = 2,3, . . . ,2n) denote the nonzero eigenvalues
of K, then for each κi , there exists an eigenvalue μi of Q such that

|μi − κi | = O(δ−1/2).

The other n eigenvalues of Q satisfy

|μi + δqi−2n| = O(1), i = 2n + 1, . . . ,3n.

The proof is deferred to the Appendix. This theorem says that for fast-cycle-
reset enzymes with large δ, the first 2n − 1 nonzero eigenvalues of Q can be ap-
proximated by the eigenvalues of K, while the other n eigenvalues μ2n+1, . . . ,μ3n

of Q are of the same order of δ. Since all the eigenvalues have negative real parts,
according to (3.6), the terms associated with μ2n+1, . . . ,μ3n decay much faster
so their contribution can be ignored. Thus, we have the following results for the
intensity autocorrelation.
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COROLLARY 3.10. For fast-cycle-reset enzymes (δ → ∞),

cov(I (0), I (t)) ∝
2n∑
i=2

Cie
κi(t−�t),

where κi are the nonzero eigenvalues of matrix K defined in (3.7).

COROLLARY 3.11. For the classic Michaelis–Menten model, where n = 1,

K =
( −k1[S] k1[S]

k2 + k−1 −k2 − k−1

)
.

The only nonzero eigenvalue is −(k−1 + k2 + k1[S]). We thus have, for fast-cycle-
reset enzymes,

cov(I (0), I (t)) ∝ e−(k−1+k2+k1[S])(t−�t).

4. From theory to data. We have shown in the preceding sections that the
autocorrelation of turnover times and the correlation of intensity follow

cov(T 1, T m) ∝ ∑
λm−1

i σi, cov(I (0), T (t)) ∝ ∑
eκi(t−�t)Ci.

Before applying these equations to fit the experimental data, the following prob-
lems must be addressed. First, we know so far that the decay patterns must be
multi-exponential, but we do not yet know how the eigenvalues are related to the
rate constants (k1i , k−1i , k2i , etc.) and the substrate concentration [S], which is
the only adjustable parameter in the experiment. Second, we do not know the ex-
pressions of the coefficients (σi and Ci ). Third, we do not know the number of
distinct conformations n. We only know that it must be large: each enzyme con-
sists of hundreds of vibrating atoms, and, as a whole, it expands and rotates in
the 3-dimensional space within the constraint of chemical bonds. We next address
these questions before fitting the experimental data.

4.1. Eigenvalues as functions of rate constants and substrate concentration.
In the enzyme experiments, the transition rates are intrinsic properties of the en-
zyme and the enzyme–substrate complex; they are not subject to experimental con-
trol. The only variable subject to experimental control is the concentration of the
substrate molecules [S]. The higher the concentration, the more likely that the
enzyme molecule could bind with a substrate molecule to form a complex. This
is why the association rate k1i[S] (the rate of Ei → ESi) is proportional to the
concentration. The experiments were repeated under different concentrations, re-
sulting in different decay patterns of the autocorrelation functions as in Figure 2.
A successful theory should be able to explain the relationship between concentra-
tion and autocorrelation decay pattern.

The concentration only affect the transition rates between Ei and ESi , which
are denoted by QAB in (2.2). Define Q̃AB = diag{k1i , k2i , . . . , kni}, which is inde-
pendent of [S]; then QAB = [S]Q̃AB .
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Four scenarios for simplication. To delineate the relationship between [S] and
the autocorrelation decay pattern, we next simplify the generating matrices. Below
are four scenarios that we will consider. Each of the scenarios guarantees the clas-
sical Michaelis–Menten equation, a hyperbolic relationship between the reaction
rate and the substrate concentration,

v = 1

E(T )
= 1

wμA

∝ [S]
[S] + C

with some constant C,(4.1)

which was observed in both the traditional and single-molecule enzyme experi-
ments [see Kou et al. (2005), English et al. (2006) and Kou (2008b) for detailed
discussion]. Each scenario has its own biochemical implications.

Scenario 1. There are no or negligible transitions among the Ei states, that is,
αij → 0 for i �= j .

Scenario 2. There are no or negligible transitions among the ESi states, that is,
βij → 0 for i �= j .

Scenarios 1 and 2 correspond to the so-called slow fluctuating enzymes (whose
conformation fluctuates slowly over time).

Scenario 3. The transitions among the Ei states are much faster than the others,
that is, QAA = τ Q̃AA and the scale τ 	 1 is much larger than other transition rates.

Scenario 4. The transitions among the ESi states are much faster than the others,
that is, QBB = τ Q̃BB and the scale τ 	 1 is much larger than other transition rates.

Scenarios 3 and 4 correspond to the so-called fast fluctuating enzymes (whose
conformations fluctuate fast).

REMARK. In the previous work [Kou (2008b)], there are two other scenarios,
which can also give rise to the hyperbolic relationship (4.1): primitive enzymes,
whose dissociate rate is much larger than their catalytic rate [Albery and Knowles
(1976), Min et al. (2006), Min et al. (2005a)], and conformational-equilibrium
enzymes, whose energy-barrier difference between dissociation and catalysis is
invariant across conformations [Min et al. (2006)]. But our analysis based on those
two scenarios does not lead to any meaningful conclusion, so we omit them here.

The effect of concentration on turnover time autocorrelation. Based on the
four scenarios, we have the following theorem for autocorrelation of turnover
times.

THEOREM 4.1. For enzymes with fast cycle reset, the transition probability
matrix governing the autocorrelation of turnover times is

PACPCA = −MQBC(I − Q−1
CAQCC)−1 = −MQBC.

Its eigenvalues λi , under the four different scenarios, satisfy the following:
Scenario 1. λi do not depend on [S], the substrate concentration. Thus, the

autocorrelation decay should be similar for all concentrations.
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Scenario 2. λi depend on [S] hyperbolically. More precisely, if we use λi([S])
(i = 1,2, . . . , n) to emphasize the dependence of the eigenvalues on [S], we have

λi([S]) = 1

1 − (1 − λ−1
i (1))/[S] .

Thus, the autocorrelation decay should be slower under larger concentration.
Scenarios 3 or 4. The nonone eigenvalues are of order τ−1, so the autocorrela-

tion should decay extremely fast for all concentrations.

This theorem tells us that for fast fluctuation enzymes (scenarios 3 or 4), the
turnover time correlation tends to be zero. Intuitively, this is because the fast fluc-
tuation enzymes prefer conformation fluctuation rather than going through the
binding-association-catalytic path that leads to the product, so in a single turnover
event, the enzyme undergoes intensive conformation changes, which effectively
blurs the information on the reaction path carried by the turnover time, resulting in
zero correlation. Under scenario 1, the autocorrelation decay pattern does not vary
when the concentration changes. This is because when the enzyme does not fluctu-
ate, it goes from Ei to ESi directly, and the change of concentration consequently
does not alter the distribution of the reaction path. Thus, the correlation between
turnover times does not depend on the concentration.

The result from scenarios 1, 3 or 4 contradicts the experimental finding: corre-
lation exists between the turnover time and is stronger under higher concentration
(see Figure 2). Only scenario 2 fully agrees with the experiments, suggesting that
the enzyme–substrate complex (ESi ) does not fluctuate much. This is supported
by recent single-molecule experimental findings [Lu, Xun and Xie (1998), Yang
et al. (2003), Min et al. (2005b)] where slow conformational fluctuation in the
enzyme–substrate complexes were observed.

The effect of concentration on fluorescence intensity autocorrelation. We now
consider the intensity autocorrelation under each of the four scenarios. We write
QAA = Iα + Jα , where Iα = diag{α11, . . . , αnn}, and QBB = Iβ + Jβ , where Iβ =
diag{β11, . . . , βnn}. For scenarios 1 and 2, we assume that both the enzyme and
the enzyme–substrate complex fluctuate slowly: αij and βij (i �= j) are negligible,
but the sums αii = −∑

j �=i αij and βii = −∑
j �=i βij are not. Furthermore, we

assume that in scenario 1 the enzyme fluctuation is much slower than the enzyme–
substrate complex fluctuation (so QAA = 0 and QBB = Iβ in scenario 1), and in
scenario 2 the enzyme–substrate complex fluctuation is much slower (so QBB = 0
and QAA = Iα scenario 2).

THEOREM 4.2. For enzymes with fast cycle reset, the matrix governing the
intensity autocorrelation is K. Its eigenvalues and the autocorrelation decay, under
the four different scenarios, satisfy the following:
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Scenario 1 (QAA = 0 and QBB = Iβ ). The autocorrelation decay is slower un-
der lower concentration, and the dominating eigenvalues are given by

κi = 1
2

(−([S]k1i −βii +k−1i +k2i )+
√

([S]k1i − βii + k−1i + k2i )2 + 4βii[S]k1i

)
.

Scenario 2 (QBB = 0 and QAA = Iα). The autocorrelation decay is faster under
lower concentration, and the dominating eigenvalues are given by

κi = 1
2

(−([S]k1i − αii + k−1i + k2i )

+
√

([S]k1i − αii + k−1i + k2i )2 + 4αii(k−1i + k2i )
)
.

Scenario 3. The autocorrelation decay does not depend on the concentration.
Scenario 4. The autocorrelation decay is slower under lower concentration.

The proof of the theorem is given in the Appendix. Our results of the depen-
dence of turnover time autocorrelation and fluorescence intensity autocorrelation
on the substrate concentration show that in order to have slower decay under higher
substrate concentration (as seen in Figure 2), fluctuation of both the enzyme and
the enzyme–substrate complex cannot be fast; furthermore, the fluctuation of the
enzyme–substrate complex needs to be slower than the fluctuation of the enzyme.

In summary, each of the four scenarios yields a different autocorrelation pattern,
but only the one under scenario 2 matches the experimental finding. Therefore, we
will focus on scenario 2 from now on.

4.2. Continuous limit. To simplify the coefficients σi and Ci and to address
the number of distinct conformations n, we adopt the idea in the previous work
[Kou et al. (2005), Kou (2008b)] by utilizing a continuous limit. First, we let n →
∞ and in this way model the transition rates as continuous variables with certain
distributions. Consequently, we treat the eigenvalues also as continuous variables.
Second, we assume that all the coefficients (σi and Ci ) are proportional to the
probability weight of the conjugate eigenvalues. This assumption is partly based
on the fact that all the observed experimental correlations are positive. With these
two assumptions, the covariance can be represented by

cov(T 1, T m) ∝
∫

λmf (λ)dλ, cov(I (0), I (t)) ∝
∫

eκ(t−�t)g(κ) dκ,

where f and g are the corresponding distribution functions.
λ and κ are functions of the transition rates. Since the transition rates are always

positive, a natural choice is to model the transition rates as either constants or fol-
lowing Gamma distributions. In the previous work [Kou (2008b)] on the stochas-
tic network model, the association rate k1 and dissociation rate k−1 are modeled
as constants while the catalytic rate k2 follows a Gamma distribution �(a, b). We
adopt them in our fitting.
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We know from Section 4.1 that scenario 2 matches the experimental finding, so
we take QBB = 0 and QAA = Iα . Then the eigenvalue λ (based on Theorem 4.1
and its proof in the Appendix) is given by

λ = 1

1 + α∗(k−1 + k2)/([S]k1k2)
,(4.2)

and the eigenvalue κ (based on Theorem 4.2) is

κ = 1
2

(−([S]k1 + α∗ + k−1 + k2)
(4.3)

+
√

([S]k1 + α∗ + k−1 + k2)2 − 4α∗(k−1 + k2)
)
,

where α∗ stands for a generic −αii (since we are taking the continuous version).
For the distribution of α∗ (i.e., the distribution of −αii), we note that, first, its
support should be the positive real line, and, second, −αii = ∑

j �=i αij is a sum
of many random variables αij from a common distribution, so we expect that the
distribution of α∗ should be infinitely divisible. These two considerations lead us
to assume a Gamma distribution �(aα, bα) for α∗.

4.3. Data fitting. The data available to us include the intensity correlation un-
der three concentrations: [S] = 380, 100 and 20 μM (micro molar), and turnover
time autocorrelation under two concentrations [S] = 100 and 20 μM . We calcu-
lated eigenvalues based on (4.2) and (4.3), where k1 and k−1 are constants, α∗ and
k2 follow distributions �(aα, bα) and �(a, b), respectively. The parameters of in-
terests are k1, k−1, a, b, aα and bα . The best fits are found through minimizing
the square distance between the theoretical and observed values. The parameters
are estimated as follows: k1 = 1.785 × 103 (μM)−1s−1, k−1 = 6.170 × 103 s−1,
a = 13.49, b = 2.279 s−1, aα = 0.6489, and bα = 1.461 × 103 s−1 (s stands for
second). Figure 3 shows the fitting of the autocorrelation functions and the distri-
butions of the eigenvalues.

Figure 3 shows that our model gives a good fit to the turnover time autocorrela-
tion and an adequate fit to the fluorescence intensity autocorrelation, capturing the
main trend in the intensity autocorrelation. The distributions of the eigenvalues in
the right panels clearly indicate that higher substrate concentration corresponds to
larger eigenvalues, which are then responsible for the slower decay of the autocor-
relations.

Our model thus offers an adequate explanation of the observed decay patterns of
the autocorrelation functions. The stochastic network model tells us why the decay
must be multi-exponential. It further explains why the decay is slower under higher
substrate concentration. Our consideration of the different scenarios also provides
insight on the enzyme’s conformational fluctuation: slow fluctuation, particularly
of the enzyme–substrate complex, gives rise to the experimentally observed auto-
correlation decay pattern.
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FIG. 3. Left: data fitting to the intensity and turnover time autocorrelations based on (4.2) and
(4.3). Right: the corresponding distributions of the eigenvalues λ and κ .

5. Discussion. In this article we explored the stochastic network model pre-
viously developed to account for the empirical puzzles arising from recent single-
molecule enzyme experiments. We conducted a detailed study of the autocorrela-
tion function of the turnover time and of the fluorescence intensity and investigate
the effect of substrate concentration on the correlations.

Our analytical results show that (a) the stochastic network model gives multi-
exponential autocorrelation decay of both the turnover times and the fluorescence
intensity, agreeing with the experimental observation; (b) under suitable con-
ditions, the autocorrelation decays more slowly with higher concentration, also
agreeing with the experimental result; (c) the slower autocorrelation decay under
higher concentration implies that the fluctuation of the enzyme–substrate complex
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should be slow, corroborating the conclusion from other single-molecule experi-
ments [Lu, Xun and Xie (1998), Yang et al. (2003), Min et al. (2005b)]. In addition
to providing a theoretical underpinning of the experimental observations, the nu-
merical result from the model fits well with the experimental autocorrelation as
seen in Section 4.

Some problems remain open for future investigation:

(1) When we discussed the dependence of intensity autocorrelation on substrate
concentration in Section 4.1, we approximated the fluctuation transition matrix
with its diagonal entries. This simple approximation provides useful insight into
the decay pattern under different concentration. A better approximation that goes
beyond the diagonal entries is desirable. It might lead to a better fitting to the
experimental data.

(2) We used Gamma distribution to model the transition rates. This is purely
statistical. Can it be derived from a physical angle? If so, the connection not only
will lead to better estimation, but also provides new insight into the underlying
mechanism of the enzyme’s conformation fluctuation.

(3) We used the continuous limit n → ∞ to do the data fitting so that the number
of parameters reduces from more than 3n to a manageable six. Obtaining the stan-
dard error for the estimates is open for future investigation. The main difficulties
are the lack of tractable tools to approximate the standard error of the autocorre-
lation estimates and the challenge to carry out a Monte Carlo estimate (n needs to
be quite large for an ad hoc Monte Carlo simulation, but such an n will bring back
a large number of unspecified parameters).

Single-molecule biophysics, like many newly emerging fields, is interdisci-
plinary. It lies at the intersection of biology, chemistry and physics. Owing to
the stochastic nature of the nano world, single-molecule biophysics also presents
statisticians with new problems and new challenges. The stochastic model for
single-enzyme reaction represents only one such case among many interesting op-
portunities. We hope this article will generate further interest in solving biophysi-
cal problems with modern statistical methods; and we believe that the knowledge
and tools gained in this process will in turn advance the development of statistics
and probability.

APPENDIX: PROOFS

PROOF OF LEMMA 3.4. Using the first-step analysis, we have

G
(

PAC

PBC

)
= −

(
0

QBC

)
,

where

G =
(

QAA − QAB QAB

QBA QBB − (QBA + QBC)

)
=

(
L M
N R

)−1
.
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Only the diagonal elements of G are negative, and its row sums are either 0 or
negative. Thus, −G is a stable matrix [Horn and Johnson (1985)], which always
has an inverse. Thus, we have(

PAC

PBC

)
= −G−1

(
0

QBC

)
=

(−MQBC

−RQBC

)
.

For PE0
i Ej

, similarly, we have

PCA = −(QCC − QCA)−1QCA = (I − Q−1
CAQCC)−1. �

PROOF OF LEMMA 3.5. For E(TEiE
0
j
), when the first-step analysis is applied,

the first-step probability should be conditioned on the exit state E0
j , that is, P(Ei

returns to Ek first | exit at E0
j ) = P(Ei returns to Ek first)PEkE

0
j
/PEiE

0
j
. Thus, we

have the following equation:

E(TEiE
0
j
) =

(
1 + k1i[S]

PESiE
0
j

PEiE
0
j

E(TESiE
0
j
) + ∑

k �=i

αik

PEkE
0
j

PEiE
0
j

E(TEkE
0
j
)

)

/(
k1i[S] + ∑

k �=i

αik

)
.

Similar expression can be derived for E(TESiE
0
j
). Together we have

(
EAC

EBC

)
= −G−1

(
PAC

PBC

)
=

(
LMQBC + MRQBC

NMQBC + RRQBC

)
. �

PROOF OF THEOREM 3.6. cov(T 1, T m) = E(T 1T m) − E(T 1)E(T m). The
first term E(T 1T m) can be expressed as

E(T 1T m) = ∑
i,j,k,l

w(Ei)PEiE
0
j
E(TEiE

0
j
)PE0

j Ek
P

(m−2)
EkEl

E(TEl
),

that is, the system starts the first turnover event from Ei , ends it in E0
j , then starts

the second from Ek , repeats this procedure for m − 2 times, and finally starts the
last turnover from El . Note that [P (m−2)

EkEl
]n×n = (PACPCA)m−2. Thus, using the

matrices defined in Lemmas 3.1 to 3.5, we have

cov(T 1, T m) = wEACPCA(PACPCA)m−2μA − (wμA)2.

Applying the results of Lemmas 3.4 and 3.5 and the facts that R = (I −
Q−1

ABQAA)M and (wμA)2 = −w(L + M)1wμA = −w(L + M(I − Q−1
ABQAA)) ×

1wμA, we can finally arrange the covariance as

cov(T 1, T m) = −w
(
L + M(I − Q−1

ABQAA)
)[(PACPCA)m−1 − 1w]μA. �
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PROOF OF COROLLARY 3.7. We only need to prove that 1 and w are, respec-
tively, the right and left eigenvectors of PACPCA associated with the eigenvalue 1.
The first is a direct consequence of the fact that PACPCA is a stochastic matrix.
The second can be verified by observing that −wMQBC(I − Q−1

CAQCC)−1 = w
through (3.1). �

PROOF OF THEOREM 3.8. In (3.5), the second term N0
t (�t) represents the

independent background noise during period (t − �t, t). Thus,

cov(I (0), I (t)) = E[Nt(Ton(t))N0(Ton(0))] − E[Nt(Ton(t))]E[N0(Ton(0))]
= ν2[E(Ton(t)Ton(0)) − E(Ton(t))E(Ton(0))].

Let S = {E1, . . . ,En,ES1, . . . ,ESn,E
0
1, . . . ,E0

n} be the set of all possible states.
Let Xt be the process evolving according to (2.1). Let πi be the equilibrium prob-
ability of state i and Pij (s) be the transition probability from state i to state j after
time s. We have

E(Ton(t)Ton(0)) − E(Ton(t))E(Ton(0))

= ∑
i,j,k,l∈S

πiPij (�t)Pjk(t − �t)Pkl(�t)E
(
Ton(0)|X−�t = i,X0 = j

)

× E
(
Ton(t)|Xt−�t = k,Xt = l

)
− ∑

i,j,k,l∈S
πiPij (�t)πkPkl(�t)E

(
Ton(0)|X−�t = i,X0 = j

)

× E
(
Ton(t)|Xt−�t = k,Xt = l

)
= ∑

i,j,k,l∈S
πiPij (�t)Pkl(�t)E

(
Ton(0)|X−�t = i,X0 = j

)

× E
(
Ton(t)|Xt−�t = k,Xt = l

){Pjk(t − �t) − πk}.
The probability transition matrix [Pij (t)]3n×3n is the matrix exponential of the

generating matrix (2.1): [Pij (t)]3n×3n = exp(Qt). Zero is an eigenvalue of Q with
right eigenvector 1 and left eigenvector π , the stationary distribution. Assume Q is
diagonalizable. Let μi , i = 2,3, . . . ,3n, denote the other eigenvalues, and ξ i and
ηT

i be the corresponding right and left eigenvectors. We have

exp(Qt) = 1π +
3n∑
i=2

eμi tξ iη
T
i .

Therefore, we can rewrite

cov(I (0), I (t)) ∝
3n∑
i=2

Cie
μi(t−�t).

�
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To prove Theorem 3.9, we need the following two useful lemmas on the eigen-
values of a matrix.

LEMMA A.1 [Theorems 6.1.1 and 6.4.1 of Horn and Johnson (1985)]. Let
A = [aij ] ∈ Mn, where Mn is the set of all complex matrices. Let α ∈ [0,1] be
given and define R′

i and C′
i as the deleted row and column sums of A, respectively,

R′
i = ∑

j �=i

|aij |, C′
i = ∑

j �=i

|aji |.

Then, (1) all the eigenvalues of A are located in the union of n discs
n⋃

i=1

{z ∈ C : |z − aii | ≤ R′α
i C′1−α

i }.(A.1)

(2) Furthermore, if a union of k of these n discs forms a connected region that is
disjoint from all the remaining n − k discs, then there are precisely k eigenvalues
of A in this region.

LEMMA A.2 [pages 63–67 of Wilkinson (1988)]. Let A and B be matrices
with elements satisfying |aij | < 1, |bij | < 1. If λ1 is a simple eigenvalue (i.e., an
eigenvalue with multiplicity 1) of A, then for matrix A+ εB , where ε is sufficiently
small, there will be a eigenvalue λ1(ε) of A + εB such that

|λ1(ε) − λ1| = O(ε).

Furthermore, if we know that one eigenvector of A associated with λ1 is x1, then
there is an eigenvector x1(ε) of A + εB associated with λ1(ε) such that

|x1(ε) − x1| = O(ε).

Note that since dividing a matrix by a constant only changes the eigenvalues
with the same proportion, the condition that the entries of A and B are bounded
by 1 can be relaxed to that the entries of A and B are bounded by a finite positive
number.

PROOF OF THEOREM 3.9. According to Lemma A.1, all the eigenvalues of
Q must lie in the union of discs centered at Qii with radii defined by (A.1). If
we take α = 1/2 in (A.1), then the first n discs corresponding to the diagonal
entries of QAA − QAB have centers O(1) and radii O(δ1/2); the second n discs
corresponding to the diagonal entries of QBB −QBC −QBA have centers O(1) and
radii O(1); the third n discs corresponding to the diagonal entries of QCC − QCA

have centers O(δ) and radii O(δ1/2). Thus, for δ large enough, the union of the
first 2n discs does not overlap with the union of the last n discs, so we know from
Lemma A.1 that Q has 2n eigenvalues with order O(δ1/2) in the union of the first
2n discs and n other eigenvalues with order O(δ) in the union of the last n discs.
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For the n eigenvalues with order O(δ), consider the following two matrices:

Y =
⎡
⎢⎣

0 0 0
0 0 0

1

δ
QCA 0 −1

δ
QCA

⎤
⎥⎦ ,

Z =
⎡
⎣ QAA − QAB QAB 0

QBA QBB − QBA − QBC QBC

0 0 QCC

⎤
⎦ .

We have 1
δ
Q = Y + 1

δ
Z. Zero is an eigenvalue of Y with multiplicity 2n, and

the other n eigenvalues of Y are −q1,−q2, . . . ,−qn. For large δ, according to
Lemma A.2, there exists n eigenvalues of 1

δ
Q that satisfy

μ2n+i/δ = −qi + O(δ−1), i = 1,2, . . . , n,

that is,

|μi + δqi−2n| = δO(δ−1) = O(1), i = 2n + 1,2n + 2, . . . ,3n.

Now for the 2n − 1 nonzero eigenvalues of Q with order O(δ1/2), they are the
solutions of

|Q − μiI3n| = 0, i = 2, . . . ,2n.

For large δ, the matrix QCC −QCA −μiIn is invertible, since it is strictly diagonal
dominated. We can decompose the determinant as

|Q − μiI3n| = |U(μi)||QCC − QCA − μiIn| = 0,

where

U(μi) =
⎡
⎣ QAA − QAB − μiIn QAB

QBA − QBC(QCC − QCA − μiIn)
−1QCA QBB − QBA

− QBC − μiIn

⎤
⎦ .

Therefore, μi , i = 2, . . . ,2n, is also the eigenvalue of the matrix[
QAA − QAB QAB

QBA − QBC(QCC − QCA − μiIn)
−1QCA QBB − QBA − QBC

]
= K + S

with

S =
[

0 0
−QBC − QBC(QCC − QCA − μiIn)

−1QCA 0

]
.

We note that In + QBC(QCC − QCA − μiIn)
−1QCA = (W − In)

−1W, where
W = Q−1

CA(QCC − μiIn). Since QCA is of the order O(δ) and μi is of the or-
der O(δ1/2), the entries of W are of the order O(δ−1/2), so are the entries of S.
Applying Lemma A.2 to K+S tells us that for each μi there must be an eigenvalue
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κi of K, which has the property that

μi = κi + O(δ−1/2), i = 2, . . . ,2n. �

PROOF OF THEOREM 4.1. We know from Lemma 3.1 that

M = [QBB − QBC − (QBB − QBA − QBC)Q−1
ABQAA]−1.

Scenario 1. When QAA = 0, M = (QBB − QBC)−1, so the eigenvalues and
eigenvectors of −MQBC have nothing to do with [S].

Scenario 2. When QBB = 0, (−MQBC)−1 = In − 1
[S]Q

−1
BC(QBA +QBC)Q̃−1

AB ×
QAA. Thus, if −MQBC has eigenvalue λi(1) when [S] = 1, then for general [S],
−MQBC has eigenvalue

λi([S]) = 1

1 − (1 − λ−1
i (1))/[S] .

Scenario 3. We write QAA = τ Q̃AA, where τ is large. Then −MQBC is

(−MQBC)−1 = I − Q−1
BCQBB + Q−1

BC(QBB − QBA − QBC)Q−1
ABQ̃AA · τ

= τ

[
1

τ
(I − Q−1

BCQBB) + Q−1
BC(QBB − QBA − QBC)Q−1

ABQ̃AA

]
.

Suppose the eigenvalues of Q−1
BC(QBB − QBA − QBC)Q−1

ABQ̃AA are 0, λ∗
2, . . . , λ

∗
n.

Then according to Lemma A.2, the eigenvalues of 1
τ
(In − Q−1

BCQBB) + (QBB −
QBA − QBC)Q−1

ABQ̃AA are

O(τ−1), λ∗
2 + O(τ−1), . . . , λ∗

n + O(τ−1).

Thus, the eigenvalues of −MQBC are

1,
1

τλ∗
2 + O(1)

, . . . ,
1

τλ∗
n + O(1)

,

namely, all the nonone eigenvalues of −MQBC are of order τ−1.
Scenario 4. Using an identical method as in scenario 3, we can show that all the

nonone eigenvalues of −MQBC are of order τ−1. �

PROOF OF THEOREM 4.2. The matrix K can be written as

K =
(

Iα − QAB QAB

QBA + QBC Iβ − QBA − QBC

)
+

(
Jα 0
0 Jβ

)

= T +
(

Jα 0
0 Jβ

)
.
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We thus know from Lemma A.2 that the eigenvalues of K can be approximated by
the eigenvalues of T. If |Iα − QAB − κIn| is invertible, then

|T − κIn| = |Iα − QAB − κIn|
× |Iβ − QBA − QBC

+ (QBA + QBC)(−Iα + QAB + κIn)
−1QAB − κIn|;

we know that any eigenvalue κ of T must make the second determinant on the
right-hand side zero. This determinant only involves diagonal matrices, so we have

κ − βii + k2i + k−1i = [S]k1i (k2i + k−1i )

κ − αii + [S]k1
.(A.2)

If |Iα − QAB − κIn| is not invertible, then there is at least one j so that κ =
αjj −k1j [S]. But it can be verified that in order to make κ an eigenvalue of T, there
must exit another i �= j such that (A.2) holds for this κ . Therefore, any eigenvalue
must be a root of (A.2).

Equation (A.2) has two negative roots for each i, but we only need to consider
the root closer to 0, since it dominates the decay.

Scenario 1. αii = 0. The root is

κi = 1
2

(−([S]k1i −βii + k−1i + k2i )+
√

([S]k1 − βii + k−1i + k2i )2 + 4βii[S]k1
)
,

which is monotone decreasing in [S].
Scenario 2. βii = 0. The root is

κi = 1
2

(−([S]k1i − αii + k−1i + k2i )

+
√

([S]k1 − αii + k−1i + k2i )2 + 4αii(k−1i + k2i )
)
,

which is monotone increasing in [S].
Scenario 3. QAA = τ Q̃AA, where τ is large. Following the same method as we

used in the proof of Theorem 3.9, we can show that n eigenvalues of K are of
the order O(τ) and they will not contribute much to the correlation. The other
eigenvalues governing the decay pattern can be approximated by the eigenvalues
of QBB − QBA − QBC , which do not depend on the concentration [S].

Scenario 4. QBB = τ Q̃BB , where τ is large. Using the same method as in the
proof of Theorem 3.9, we can show that the dominating eigenvalues of K can be
approximately by the eigenvalues of QAA − QAB . Since we know that QAA ≈ Iα ,
the eigenvalues of QAA − QAB is approximately αii − [S]k1i , which is monotone
decreasing in [S]. �
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