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A catalytic prior distribution is designed to stabilize a high-
dimensional “working model” by shrinking it toward a “simplified
model.” The shrinkage is achieved by supplementing the observed
data with a small amount of “synthetic data” generated from
a predictive distribution under the simpler model. We apply
this framework to generalized linear models, where we propose
various strategies for the specification of a tuning parameter
governing the degree of shrinkage and study resultant theoret-
ical properties. In simulations, the resulting posterior estimation
using such a catalytic prior outperforms maximum likelihood esti-
mation from the working model and is generally comparable
with or superior to existing competitive methods in terms of fre-
quentist prediction accuracy of point estimation and coverage
accuracy of interval estimation. The catalytic priors have simple
interpretations and are easy to formulate.

Bayesian priors | synthetic data | stable estimation |
predictive distribution | regularization

The prior distribution is a unique and important feature of
Bayesian analysis, yet in practice, it can be difficult to quan-

tify existing knowledge into actual prior distributions; thus, auto-
mated construction of prior distributions can be desirable. Such
prior distributions should stabilize posterior estimation in situa-
tions when maximum likelihood behaves problematically, which
can occur when sample sizes are small relative to the dimension-
ality of the models. Here, we propose a class of prior distributions
designed to address such situations. Henceforth, we call the com-
plex model that the investigator wishes to use to analyze the data
the “working model.”

Often with real working models and datasets, the sample sizes
are relatively small, and a likelihood-based analysis is unstable,
whereas a likelihood-based analysis of the same dataset using
a simpler but less rich model can be stable. Catalytic priors*

effectively supplement the observed data with a small amount of
synthetic data generated from a suitable predictive distribution,
such as the posterior predictive distribution under the simpler
model. In this way, the resulting posterior distribution under the
working model is pulled toward the posterior distribution under
the simpler model, resulting in estimates and predictions with
better frequentist properties. The name for these priors arises
because a catalyst is something that stimulates a reaction to take
place that would not take place (or not as effectively) without
it, but only an insubstantial amount of the catalyst is needed.
When the information in the observed data is substantial, the
catalytic prior has a minor influence on the resulting inference
because the information in the synthetic data is small relative to
the information in the observed data.

We are not the first to suggest such priors, but we embed
the suggestion within a general framework designed for a broad
range of examples. One early suggestion for the applied use of
such priors is in ref. 1, which was based on an earlier proposal by
Rubin in a 1983 report for the US Census Bureau (reprinted as
an appendix in ref. 2). Such a prior was also used in a Bayesian
analysis of data with noncompliance in a randomized trial (3).

As in both of these earlier references, consider logistic
regression as an example:

yi | xi ,β∼Bernoulli
(

1/(1 + exp(−x>i β))
)

, i = 1, . . . ,n,

where, for the i th data point (yi , xi), yi ∈{0, 1} is the
response, and xi = (1, xi1, . . . , xi,p−1)> represents p covariates,
with unknown coefficients β= (β0,β1, . . . ,βp−1)>. The maxi-
mum likelihood estimate (MLE) of β is infinite when there is
complete separation (4, 5) of the observed covariate values in the
two response categories, which can occur easily when p is large
relative to n . Earlier attempts to address this problem, such as
using Jeffrey’s prior (6–9), are not fully satisfactory. This prob-
lem arises commonly in practice: for example, ref. 1 studied the
mapping of industry and occupation (I/O) codes in the 1970 US
Census to the 1980 census codes, where both coding systems had
hundreds of categories. The I/O classification system changed
drastically from the 1970 census to the 1980 census, and a sin-
gle 1970 code could map into as many as 60 possible 1980 codes.
For each 1970 code, the 1980 code was considered as missing
and multiply-imputed based on covariates. The imputation mod-
els were nested (dichotomous) logistic regression models (10)
estimated from a special training sample for which both 1970
and 1980 codes were known. The covariates used in these mod-
els were derived from nine different factors (sex, age, race, etc.)
that formed a cross-classification with J = 2, 304 categories. The
sample available to estimate the mapping was smaller than 10
for some 1970 codes, and many of these logistic regression mod-
els faced complete separation. The successful approach in ref. 1
was to use the prior distribution

π(β)∝
J∏

j=1

(
ex∗j
>β

1 + ex∗j
>β

)pµ̂/J(
1

1 + ex∗j
>β

)p(1−µ̂)/J

, [1]

Significance

We propose a strategy for building prior distributions that sta-
bilize the estimation of complex “working models” when sam-
ple sizes are too small for standard statistical analysis. The sta-
bilization is achieved by supplementing the observed data with
a small amount of synthetic data generated from the predictive
distribution of a simpler model. This class of prior distributions
is easy to use and allows direct statistical interpretation.
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where each x∗j is a possible covariate vector of the cross-
classification; p is the dimension of β; and µ̂=

∑n
i=1 yi/n is

the marginal proportion of ones among the observed responses.
In this example, the simpler model has the responses yi
independent of the covariates:

yi | xi ,µ∼Bernoulli (µ) (i = 1, . . . ,n),

where µ∈ (0, 1) is a probability estimated by µ̂. If we supple-
ment the dataset with pµ̂/J synthetic data points (y∗j = 1, x∗j )
and p(1− µ̂)/J synthetic data points (y∗j = 0, x∗j ) for each x∗j (j =
1, . . . , J ), then the likelihood function of the augmented dataset
has the same form as the posterior distribution with the prior in
Eq. 1:

π(β | {(yi , xi)}ni=1) [2]

∝
J∏

j=1

(
ex∗j
>β

1 + ex∗j
>β

)Nj ,1+pµ̂/J(
1

1 + ex∗j
>β

)Nj ,0+p(1−µ̂)/J

,

where Nj ,1,Nj ,0 are the numbers of (1, x∗j ) and (0, x∗j ), respec-
tively, in the observed data. In this construction, the total amount
of synthetic data is taken to be p, the dimension of β (SI
Appendix, Remark 2.2 has more discussion). The resulting MLE
with the augmented dataset equals the maximum posterior esti-
mator (the value of β that maximizes the posterior distribution),
and it will always be unique and finite when µ̂∈ (0, 1).

How to use the synthetic data perspective for constructing
general prior distributions, which we called catalytic prior dis-
tributions, is our focus. We mathematically formulate the class
of catalytic priors and apply them to generalized linear models
(GLMs). We show that a catalytic prior is proper and yields sta-
ble estimates under mild conditions. Simulation studies indicate
the frequentist properties of the model estimator using catalytic
priors are comparable, and sometimes superior, to existing com-
petitive estimators. Such a prior has the advantages that it is
often easier to formulate and it allows for simple implementation
from standard software.

We also provide an interpretation of the catalytic prior from
an information theory perspective (detailed in SI Appendix,
section 4).

Related Priors
The practice of using synthetic data (or pseudo data) to define
prior distributions has a long history in Bayesian statistics (11).
It is well known that conjugate priors for exponential families
can be viewed as the likelihood of pseudo observations (12).
Some authors have suggested formulating priors by obtaining
additional pseudodata from experts’ knowledge (13–15), which
is not easy to use in practice when data have many dimensions or
when numerous models or experts are being considered. Refs. 16
and 17 proposed to use a conjugate Beta-distribution prior with
specifically chosen values of covariates to approximate a multi-
variate Gaussian prior for the regression coefficients in a logistic
regression model. A complication of this approach is that the
augmented dataset may contain impossible values for a covari-
ate. Another approach is the expected-posterior prior (18–20),
where the prior is defined as the average posterior distribution
over a set of imaginary data sampled from a simple predictive
model. This approach is designed to address the challenges in
Bayesian model selection. Other priors have been proposed to
incorporate information from previous studies. Particularly, the
power prior (21–23) formulates an informative prior generated
by a power of the likelihood function of historical data. One
limitation of this power prior is that its properness requires the
covariate matrix of historical or current data to have full col-
umn rank (22). Recently, the power-expected-posterior prior was

proposed to alleviate the computational challenge of expected-
posterior priors for model selection (24, 25). It incorporates the
ideas of both the expected-posterior prior and the power prior,
but it cannot be applied when the dimension of the working
model is larger than the sample size. Some other priors suggested
in the literature have appearances similar to catalytic priors. Ref.
26 proposed the reference prior that maximizes the mutual infor-
mation between the data and the parameter, resulting in a prior
density function that looks similar to that of a catalytic prior but
is essentially different. Ref. 27 proposed a prior based on the
idea of matching loss functions, which although operationally
similar to the catalytic prior, is conceptually different because
it requires a subjective initial choice for the distribution of the
data. In ref. 28, the class of penalized complexity priors for hier-
archical model components is based on penalizing the complexity
induced by the deviation from a simpler model. The simpler
model there needs to be nested in the working model, which is
not required by the catalytic prior.

Generic Formulation of Catalytic Priors
Catalytic Prior in the Absence of Covariates. Consider the data, Y =

(Y1, . . . ,Yn)>, being analyzed under a working model Yi
i.i.d.∼

f (y | θ) governed by unknown parameter θ, where i.i.d. stands
for independent and identically distributed. Suppose a model
g(y |ψ) with unknown parameter ψ, whose dimension is smaller
than that of θ, is stably fitted from Y and results in a predictive
distribution g∗(y

∗ | Y) for future data drawn from g(y |ψ). The
synthetic data-generating distribution g∗(y

∗ | Y) is used to gener-
ate the synthetic data {Y ∗i }Mi=1, where M is the synthetic sample
size and the asterisk superscript is used to indicate synthetic data.

The synthetic data-generating distribution can be specified
by fitting a model simpler than f (y | θ), but it does not nec-
essarily have to be. Examples: (1) If a Bayesian analysis of
the simpler model can be carried out easily, g∗(y∗ | Y) can be
taken to be the posterior predictive distribution under the sim-
pler model. (2) Alternatively, one can obtain a point estimate
ψ̂, and g∗(y

∗ | Y) = g(y∗ | ψ̂) can be the plug-in predictive dis-
tribution. (3) If two simpler estimated models are g

(1)
∗ (y∗ | Y)

and g
(2)
∗ (y∗ | Y), then g∗(y

∗ | Y) can be taken to be a mixture
w g

(1)
∗ (y∗ | Y) + (1−w) g

(2)
∗ (y∗ | Y) for some w ∈ (0, 1).

The likelihood function of θ under the working model based
on the synthetic data {Yi

∗}Mi=1 is `(θ |Y ∗) =
∏M

i=1 f (Y ∗i | θ).
Because these synthetic data are not really observed data, we
down-weight them by raising this likelihood to a power τ/M ,
where τ > 0 is a tuning parameter called the prior weight. This
leads to the catalytic prior that has an unnormalized density:

πcat,M(θ | τ) ∝

{
M∏
i=1

f (Y ∗i | θ)

}τ/M
, [3]

which depends on the randomly drawn synthetic data {Yi
∗}Mi=1.

The population catalytic prior is formally the limit of Eq. 3 as M
goes to infinity:

πcat,∞(θ | τ) ∝ exp [τEg∗ {log f (Y ∗ | θ)}]. [4]

Here, the expectation Eg∗ {log f (Y ∗ | θ)} in Eq. 4 is taken
with respect to Y ∗∼ g∗(Y

∗ | Y). The dependence of g∗(Y ∗ | Y)
on the observed Y emphasizes that the catalytic prior is data
dependent, like that used in Box and Cox (29) for power
transformations.

The posterior density using the catalytic prior is mathemat-
ically proportional to the likelihood with both the observed
data and the weighted synthetic data. Thus, we can implement
Bayesian inference using standard software. For instance, the
maximum posterior estimate (posterior mode) is the same as the

Huang et al. PNAS | June 2, 2020 | vol. 117 | no. 22 | 12005

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ne

 2
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920913117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920913117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920913117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920913117/-/DCSupplemental


MLE using the weighted augmented data and can be computed
by existing MLE procedures, which can be a computational
advantage, as illustrated in ref. 1.

Catalytic Prior with Covariates. Let {(Yi , X i)}ni=1 be the set of n
pairs of a scalar response Yi and a p-dimensional covariate vec-
tor X i ; Yi depends on X i in the working model with unknown
parameter β:

Yi | X i ,β∼ f (y | X i ,β), i = 1, 2 . . . ,n. [5]

Let Y be the vector (Y1, . . . ,Yn)> and X be the matrix
(X1, . . . , Xn)>. The likelihood of these data is f (Y |X,β) =∏n

i=1 f (Yi | X i ,β).
Suppose a simpler model g(y | X,ψ) with unknown param-

eter ψ is stably fitted from (Y ,X) and results in a synthetic
data-generating distribution g∗(y | x, Y ,X). Note that g∗(·) here
is analogous to its use earlier except that now, in addition to the
observed data, it is also conditioned on x. The synthetic covari-
ates X∗ will be drawn from a distribution Q(x), which we call the
synthetic covariate-generating distribution. We will discuss the
choice of Q(x) shortly.

Given the distributions Q(x) and g∗(y | x, Y ,X), the catalytic
prior first draws a set of synthetic data {(Y ∗i , X∗i )}Mi=1 from

X∗i
i.i.d.∼ Q(x), Y ∗i | X∗i ∼ g∗(y | X∗i , Y ,X).

Hereafter, we write Y∗ for the vector of synthetic responses
(Y ∗1 , . . . ,Y ∗M )> and X∗ for the matrix of synthetic covariates
(X∗1, . . . , X∗M )>. The likelihood of the working model based
on the synthetic data `(β | Y∗,X∗) equals

∏M
i=1 f (Y ∗i | X∗i ,β).

Because these synthetic data are not really observed, we down-
weight them by raising this likelihood to a power τ/M , which
gives the unnormalized density of the catalytic prior with
covariates:

πcat,M(β | τ)∝

{
M∏
i=1

f (Y ∗i | X∗i ,β)

}τ/M
. [6]

The population catalytic prior (when M →∞) has unnormalized
density:

πcat,∞(β | τ)∝ exp (τEQ,g∗ [log f (Y ∗ | X∗,β)]), [7]

where the expectation EQ,g∗ averages over both X∗ and Y ∗.
Denote by Zτ ,M and Zτ ,∞ the integrals of the right-hand sides
of Eqs. 6 and 7 with respect to β. When these integrals are finite,
the priors are proper, and Zτ ,M and Zτ ,∞ are their normalizing
constants.

An advantage of the catalytic prior is that the corresponding
posterior has the same form as the likelihood

π(β|X, Y , τ)∝πcat,M(β|τ)f (Y |X,β)

∝ exp

(
τ

M

M∑
i=1

log(f (Y ∗i |X∗i ,β)

+

n∑
i=1

log(f (Yi |X i ,β)

)
,

which makes the posterior inference no more difficult than other
standard likelihood-based methods. For example, the posterior
mode can be easily computed as a maximum weighted likelihood
estimate using standard statistical software. Full posterior infer-
ence can also be easily implemented by treating the synthetic
data as down-weighted data.

Catalytic Prior for GLMs. A GLM assumes that, given a covariate
vector X , the response Y has the following density with respect
to some base probability measure:

f (y | X,β) = exp (t(y)θ− b(θ)), [8]

where t(y) is a sufficient statistic, and θ is the canonical param-
eter that depends on η= X>β through θ=φ(η), where β is the
unknown regression coefficient vector and φ(·) is a monotone
differentiable function. The mean of t(Y ) is denoted by µ(η)
and is equal to b′(φ(η)).

When the working model is a GLM, from Eqs. 7 and 8, we
have

EQ,g∗ [log f (Y ∗ | X∗,β)]

=EQ

{
φ(β>X∗)Eg∗ [t(Y ∗) | X∗]− b(φ(β>X∗))

}
, [9]

so that the expectation of the log likelihood does not depend
on particular realizations of the synthetic response but rather,
on the conditional mean of the sufficient statistic under the syn-
thetic data-generating distribution. Thus, in the case of a GLM
(and exponential family models), instead of a specific realization
of the synthetic response, one only needs to use the conditional
mean of the sufficient statistic Eg∗ [t(Y

∗) | X∗] to form a catalytic
prior. This simplification reduces the variability introduced by
synthetic data.†

As a concrete example, consider a linear regression model
Y =Xβ+ ε, where ε∼Nn(0,σ2In) with known σ. Suppose the
synthetic data-generating model is a submodel with the esti-
mated parameter β∗0, and X∗ is the synthetic covariate matrix.
In this case, the catalytic prior with any positive τ has a normal
distribution:

β∼N

(
β∗0,

σ2

τ

(
1

M
(X∗)>X∗

)
−1

)
.

If limM→∞
1
M

(X∗)>X∗= ΣX , the population catalytic prior is

β∼N

(
β∗0,

σ2

τ
(ΣX)−1

)
.

More details about this example can be found in SI Appendix.

Specifications of the Catalytic Prior
Generating Synthetic Covariates. The synthetic covariate vectors
are generated such that (X∗)>X∗ has full rank. Moreover, a
synthetic covariate should have the same sample space as a
real covariate. The simple choice of resampling the observed
covariate vectors would not guarantee the full rank of (X∗)>X∗;
for example, if the observed covariates are rank deficient,
resampling would still give rank-deficient (X∗)>X∗.

Instead, we consider one option for generating synthetic
covariates: resample each coordinate of the observed covariates
independently. Formally, we define the independent resampling
distribution by the probability mass function

Q0(x) :=
∏
j

(
1

n
#{1≤ i ≤n : (X i)j = xj}

)
,

for all x∈X , where X is the sample space of X . We use this
distribution for simplicity. Alternatively, if historical data are
available, synthetic covariates can be sampled from the historical

†Note that in the previous example of 1970 to 1980 I/O code mapping, instead of the raw
counts of synthetic responses, their expected values pµ̂/J and p(1− µ̂)/J were used.

12006 | www.pnas.org/cgi/doi/10.1073/pnas.1920913117 Huang et al.
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covariates. Furthermore, if some variables are naturally grouped
or highly correlated, one may want to resample these grouped
parts together. Other examples are discussed in SI Appendix.

Generating Synthetic Responses. The synthetic data-generating
distribution can be specified by fitting a simple model GΨ =
{g(y | x,ψ) :ψ ∈Ψ} to the observed data. The only requirement
is that this simple model can be stably fit by the observed data
in the sense that the standard estimation of ψ, using either a
Bayesian or frequentist approach, can lead to a well-defined pre-
dictive distribution for future data. Examples include a fixed
distribution and an intercept-only model. GΨ can also be a
regression model based on dimension reduction, such as a princi-
pal components analysis; SI Appendix has a numerical example,
which also suggests to keep GΨ as simple as possible when the
observed sample size is small. For a working regression model
with interactions, a natural choice of GΨ is the submodel with
only main effects. If the main-effect model is overfitted as well,
we could use a mixed synthetic data-generating distribution,
such as g∗(y | x, Y ,X) = 0.5 g∗,1(y | x, Y ,X) + 0.5 g∗,0(y | x, Y ,X),
where g∗,1 and g∗,0 are the predictive distributions of the pre-
liminarily fitted main-effect model and intercept-only model,
respectively. GΨ can also be chosen using additional knowledge,
such as a submodel that includes a few important covariates that
have been identified in previous studies, or if domain experts
have opinions on the range of possible values of certain model
parameters, then the parameter space Ψ can be constrained
accordingly.

Sometimes it is beneficial to draw multiple synthetic responses
for each sampled synthetic covariate vector. We name this sam-
pling the stratified synthetic data generation. It could help reduce
variability introduced by synthetic data.

Sample Size of Synthetic Data. Theorem 4 below quantifies how
fast the randomness in the catalytic prior diminishes as the syn-
thetic sample size M increases. One implication is that for linear
regression with binary covariates, if M ≥ 4p3

ε2
log( p

δ
), then the

Kullback–Leibler (KL) divergence between the catalytic prior
πcat,M and its limit πcat,∞ is at most ε with probability at least
1− δ. Such a bound can help choose the magnitude of M .
When the prior needs to be proper, we suggest taking M larger
than four times the dimension of β (based on Theorem 1 and
Proposition below).

Weight of Synthetic Data. The prior weight τ controls how much
the posterior inference relies on the synthetic data because it
can be interpreted as the effective prior sample size. Here, we
provide two guidelines for systematic specifications of τ .
Frequentist Predictive Risk Estimation. Choose a value of τ using
the following steps. (1) Compute the posterior mode β̂(τ) for
various values of τ . (2) Choose a discrepancy function D(y0, µ̂)
that measures how well a prediction µ̂ predicts a future response
y0. (3) Find an appropriate criterion function Λ(τ) that estimates
the expected (in-sample) prediction error, for a future response
Y0 based on β̂(τ), and (4) pick the value of τ that minimizes
Λ(τ). SI Appendix, section 2.C.1 has a detailed discussion.

The discrepancy D(y0, µ̂) measures the error of a prediction
µ̂ for a future response Y0 that takes value y0. We consider here
discrepancy functions of the form

D(y0, µ̂) := a(µ̂)−λ(µ̂)y0 + c(y0) [10]

and define D(Y0, µ̂) := 1
n

∑n
i=1 D(Y0,i , µ̂i). This class is gen-

eral enough to include squared error, classification error, and
deviance for GLMs: (a) squared error: D(y0, µ̂) = (y0− µ̂)2 =
µ̂2− 2y0µ̂+ y2

0 ; (b) classification error: D(y0, µ̂) = 1y0 6=µ̂ =
µ̂− 2y0µ̂+ y0 for any y0 and µ̂ in {0, 1}; (c) deviance

for GLMs: D(y0, µ̂) = b(θ̂)− y0θ̂+ sup
θ

(y0θ− b(θ)), where θ̂=

(b′)−1(µ̂).
The criterion function Λ(τ) is an estimate of the expectation

of the (in-sample) prediction error. Such an estimate can be
obtained by using the parametric bootstrap. Take a bootstrap
sample of the response vector Yboot from the distribution f (y |
X, β̂

0
), where β̂

0
= β̂(τ0) is a preliminary estimate, and denote

by β̂
boot

(τ) the posterior mode based on data (Yboot,X) with the
catalytic prior. The bootstrap criterion function is given by

Λ(τ) = D(Y , µ̂τ ) +
1

n

n∑
i=1

Cov(λ(µ̂boot
τ ,i ),Y boot

i ), [11]

where µ̂τ ,i =µ(X>i β̂(τ)) and µ̂boot
τ ,i =µ(X>i β̂

boot
(τ)). SI

Appendix has a detailed derivation. In practice, the term
Cov(λ(µ̂boot

τ ,i ),Y boot
i ) is numerically computed by sampling Yboot

repeatedly. Based on our experiments with linear and logistic
models, the default choices of the initial values can be τ0 = 1 for
linear regression and τ0 = p/4 for other cases. SI Appendix has
a mathematical argument.

The costly bootstrap repetition step to numerically compute
Cov(λ(µ̂boot

τ ,i ),Y boot
i ) can be avoided in two special cases (SI

Appendix has more discussion).
1. If Yi follows a normal distribution and λ(µ̂τ ,i) is smooth in

yi , then the Stein’s unbiased risk estimate yields

Λ(τ) = D(Y , µ̂τ ) +
1

n

n∑
i=1

Var(Yi)E
∂λ(µ̂τ ,i)

∂yi
. [12]

In particular, when squared error is considered and if µ̂τ can be
written as µ̂τ = Hτ · Y + cτ , the risk estimate is

Λ(τ) = ‖Y − µ̂τ‖
2 +

2

n

n∑
i=1

Var(Yi)Hτ (i , i). [13]

2. When responses are binary, say 0 or 1, let Y4i be a copy of
Y but with Yi replaced by 1−Yi , and let β̂

4i
(τ) be the poste-

rior mode based on data (X, Y4i) with the catalytic prior. The
Steinian estimate (30) is given by

D(Y , µ̂τ ) +
1

n

n∑
i=1

µ̂0
i (1− µ̂0

i )(2Yi − 1)
(
λ(µ̂τ ,i)−λ(µ̂4i

τ ,i )
)

,

[14]
where µ̂0

i =µ(X>i β̂
0
), and µ̂4i

τ ,i =µ(X>i β̂
4i

(τ)).
Bayesian Hyperpriors. An alternative way to specify the prior
weight τ is to consider a joint catalytic prior for (τ ,β):

πα,γ(τ ,β)∝Γα,γ(τ)

{
M∏
i=1

f (Y ∗i | X∗i ,β)

}
τ/M , [15]

where Γα,γ(τ) is a function defined as follows for positive scalar
hyperparameters α and γ. Denote

κ := sup
β∈Rp

1

M

M∑
i=1

log f (Y ∗i | X∗i ,β).

For linear regression, the function Γα,γ(τ) can be taken to be

Γα,γ(τ) = τ
p+α
2
−1e−τ(κ+γ−1) [16]

and for other models,

Γα,γ(τ) = τp+α−1e−τ(κ+γ−1). [17]
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The form of Γα,γ(τ) is chosen mainly for practical conve-
nience; by separating the dependence on p and κ, we have mean-
ingful interpretations for α and γ. For GLMs, prior moments
of β up to order α exist, and γ controls the exponential decay
of the prior density of τ (Theorem 3). For linear regression, the
marginal prior for β induced by Eq. 15 is a multivariate t dis-
tribution centered around the MLE for the synthetic data with
covariance matrix 2σ2

αγ
· ( 1

M
(X∗)>X∗)−1 and degrees of freedom

α. The analysis in Theorem 3 reveals how the parameters α
and γ affect the joint prior. Roughly speaking, a larger value
of α (or γ) tends to pull the working model more toward the
simpler model. Admittedly, it appears impossible to have a sin-
gle choice that works the best in all scenarios. We recommend
(α, γ) = (2, 1) as a simple default choice based on our numerical
experiments.

Illustration of Methods
Logistic Regression. We illustrate the catalytic prior using logistic
regression. Another example using linear regression is presented
in SI Appendix. Here, the mean of Y depends on the linear
predictor η= X>β through µ= eη/(1 + eη). Suppose the syn-
thetic data-generating model includes only the intercept, so it
is Bernoulli(µ0), where a simple estimate of µ0 is given by
µ̂0 = (1/2 +

∑
i≤n Yi)/(1 +n). The synthetic response vector

Y∗ can be taken to be µ̂0 · 1M , and each synthetic covariate vec-
tor X∗i is drawn from the independent resampling distribution;
this prior is proper when (X∗)>X∗ is positive definite according
to Theorem 1.
Numerical Example. We first generate the observed covariates X i

by drawing a Gaussian random vector Zi whose components have
mean 0, variance 1, and common correlation ρ= 0.5; set

X i,j =

{
2 · 1Zi,j>0− 1, 2j < p

Zi,j , 2j ≥ p.

This process yields covariate vectors that have dependent com-
ponents and have both continuous and discrete components
as one would encounter in practical logistic regression prob-
lems. We consider three different sparsity levels and three
different amplitudes of the regression coefficient β in the under-
lying model. More precisely, β is specified through scaling
an initial coefficient β(0) that accommodates different levels
of sparsity. Each coordinate of β(0) is either one or zero.
ζ proportion of the coordinates of β(0) is randomly selected
and set to 1, and the remaining 1− ζ proportion is set to 0,
where ζ is the level of nonsparsity and is set at 1/4, 1/2,
3/4. This factor controls how many covariates actually affect
the response. Then, the amplitude of β is specified indirectly:
β0 = c1, β1:(p−1) = c2β

(0)

1:(p−1), where parameters (c1, c2) are
chosen such that the oracle classification error r (the expected
classification error of the classifier given by the true β) is equal
to 0.1, 0.2, 0.3. Here, r =EX (min(Pβ(Y = 1), Pβ(Y = 0)))=
EX
(
1 + exp(|X>β|)

)−1 is numerically computed by sampling
2,000 extra covariate vectors. The value of r represents how far
apart the class Y = 1 is from the class Y = 0, and small values of
r correspond to large amplitudes of β.

In this example, the number of covariates is 16, so the dimen-
sion of β is p = 17, and the sample size is n = 30. We use
the predictive binomial deviance, EX0

[
D(µ(X>0 β),µ(X>0 β̂))

]
,

where D(a, b) = a log(a/b) + (1− a) log((1− a)/(1− b)) mea-
sures the discrepancy between two Bernoulli distributions with
probability a and b to evaluate the predictive performance of β̂.
The expectation EX0 is computed by sampling 1,000 extra inde-
pendent copies of X0 from the same distribution that generates
the observed covariates.

To specify catalytic priors, we use the generating distribu-
tions for synthetic data just described and fix M at 400. The
first estimator of β is the posterior mode of β with τ = τ̂boot
selected by predictive risk estimation via the bootstrap with
deviance discrepancy (denoted as Cat. Boot.). This estimator can
be computed as the MLE with the weighted augmented data. The
second estimator of β is the coordinatewise posterior median of
β with the joint prior πα=2,γ=1 (denoted as Cat. Joint). The pos-
terior median is used here because there is no guarantee that the
posterior distribution of β is unimodal in this case. These esti-
mators are compared with two alternatives: the MLE and the
posterior mode with the Cauchy prior (31) (calculated by the
authors’ R package bayesglm).

Table 1 presents the average predictive binomial deviance
over 1,600 simulations in each cell. The column Comp. Sep.
shows how often complete separation occurs in the datasets;
when complete separation occurs, the MLE does not exist, but
a pseudo-MLE can be algorithmically computed if the change in
the estimate is smaller than 10−8 within 25 iterations. The col-
umn of MLE averages across only the cases where either MLE
or pseudo-MLE exists. In Table 1, bold corresponds to the best-
performing method under each simulation scenario. Based on
this table, the catalytic prior with τ̂boot predicts the best and the
MLE predicts the worst in all cases considered. Although the
Cauchy prior seems to perform close to the joint catalytic prior,
Table 2 shows that the prediction based on the joint catalytic
prior is statistically significantly better than that of the Cauchy
prior (Table 2 directly calculates the difference of the prediction
errors between the Cauchy prior and the joint catalytic prior and
shows that the difference is significantly positive with Bonferroni-
corrected P value smaller than 0.02). Tables 1 and 2 focus on

Table 1. Mean and SE of predictive binomial deviance of
different methods

Performance of methods

Setting Comp. Mean Cat. Cat. MLE

ζ r Sep.,% and SE Boot. Joint Cauchy (pseudo)

1/4 0.1 100 Mean 1.692 1.772 1.793 2.081
1/4 0.1 SE ×103 (6.8) (6.7) (6.7) (8.7)
1/4 0.2 98 Mean 0.675 0.769 0.802 1.123
1/4 0.2 SE ×103 (5.2) (5.0) (5.0) (7.2)
1/4 0.3 91 Mean 0.297 0.399 0.445 0.751
1/4 0.3 SE ×103 (2.3) (2.0) (1.9) (7.3)
2/4 0.1 100 Mean 1.661 1.742 1.749 2.048
2/4 0.1 SE ×103 (3.9) (3.8) (3.8) (5.0)
2/4 0.2 98 Mean 0.648 0.743 0.771 1.107
2/4 0.2 SE ×103 (2.5) (2.2) (2.0) (3.4)
2/4 0.3 92 Mean 0.287 0.392 0.438 0.748
2/4 0.3 SE ×103 (2.1) (1.8) (1.7) (7.1)
3/4 0.1 100 Mean 1.664 1.746 1.749 2.052
3/4 0.1 SE ×103 (4.0) (3.9) (3.8) (4.9)
3/4 0.2 99 Mean 0.649 0.745 0.771 1.104
3/4 0.2 SE ×103 (2.5) (2.2) (2.0) (3.4)
3/4 0.3 91 Mean 0.287 0.391 0.435 0.738
3/4 0.3 SE ×103 (2.1) (1.9) (1.7) (7.3)

The first two columns are the settings of the simulation: ζ is the nonspar-
sity, and r is the oracle prediction error. The column of Comp. Sep. shows
how often complete separation occurs in the datasets. The last four columns
report the mean and SE of the predictive binomial deviance of the differ-
ent methods, which are the catalytic posterior mode with τ̂boot , denoted by
Cat. Boot.; the posterior median under joint catalytic prior, denoted by Cat.
Joint; the Cauchy posterior mode, denoted by Cauchy; and the MLE. Bold
corresponds to the best-performing method in each simulation scenario.
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Table 2. Mean and SE of the difference in predictive binomial
deviance between the Cauchy posterior mode and the joint
catalytic posterior median

Difference between the error of Cauchy and that of Cat. Joint

ζ r Mean SE ×103

1/4 0.1 0.021 0.98
1/4 0.2 0.033 0.91
1/4 0.3 0.047 0.86
1/2 0.1 0.007 0.79
1/2 0.2 0.028 0.85
1/2 0.3 0.046 0.84
3/4 0.1 0.003 0.76
3/4 0.2 0.026 0.83
3/4 0.3 0.044 0.82

ζ is the nonsparsity; r is the oracle prediction error.

predictive binomial deviance. SI Appendix, section 3.D consid-
ers other error measurements, including the classification error
and the area under curve, where a similar conclusion can be
drawn regarding the performance of different methods: predic-
tions based on catalytic priors are generally much better than
those based on the MLE and are often better than those based
on the Cauchy prior.

Table 3 presents the average coverage probabilities (in per-
centage) and widths of the 95% nominal intervals for βj aver-
aging over j . Because all of the intervals given by the MLE have
widths too large to be useful (thousands of times wider than those
given by the other methods), we do not report them in this table.
The intervals from the other three priors are reasonably short in
all cases and have coverage rates not far from the nominal lev-
els. Specifically, the intervals given by the Cauchy prior and the
joint catalytic prior tend to overcover when the true β has small
amplitudes (r = 0.2 or 0.3) and tend to under-cover when β has
large amplitudes (r = 0.1), whereas the intervals given by the cat-
alytic prior with τ̂boot perform more consistently. This example,
together with more results given in SI Appendix, illustrates that,
for logistic regression, the catalytic prior is at least as good as
the Cauchy prior. SI Appendix also illustrates the performance
of the catalytic prior in linear regression, where it is at least as
good as ridge regression. Catalytic priors thus appear to provide
a general framework for prior construction over a broad range of
models.

Theoretical Properties of Catalytic Priors
We show the properness and the convergence of a catalytic prior
when the working model is a GLM. Without loss of generality,
we assume that the sufficient statistic in the GLM formula Eq.
8 is t(y) = y ; otherwise, we can let the response be Y ′= t(Y )
and proceed. We assume that every covariate has at least two
different observed values. Denote by Y the nonempty interior of
the convex hull of the support of the model density in Eq. 8. Our
results apply to any positive prior weight τ .

Properness. A proper prior is needed for many Bayesian infer-
ences, such as model comparison using Bayes factors (32).
We show that catalytic priors, population catalytic priors, and
joint catalytic priors are generally proper, with proofs in SI
Appendix.

Theorem 1. Suppose (1) φ(·) satisfies infη 6=0 |φ(η)/η|> 0, (2)
the synthetic covariate matrix X∗ has full column rank, and (3)
each synthetic response Y ∗i lies in Y or there exists a linearly inde-
pendent subset {X ∗ik }

p
k=1 of the synthetic covariate vectors such that

the average of synthetic responses with the same X ∗ik lies in Y . Then,
the catalytic prior is proper for any τ > 0.

The condition infη 6=0 |φ(η)/η|> 0 is satisfied for the canoni-
cal link for any GLM and also, for the commonly used probit
link and the complementary log–log link in binary regression.
The condition that X∗ has full column rank holds with high
probability according to the following result.

Proposition. If each synthetic covariate vector is drawn from the
independent resampling distribution, then there exists a constant
c> 0 that only depends on the observed X such that for any M > p,
with probability at least 1− 2exp(−cM ), the synthetic covariate
matrix X∗ has full column rank.

Population catalytic priors are also proper.
Theorem 2. Suppose (1) φ(·) satisfies infη 6=0 |φ(η)/η|> 0, (2)

the synthetic covariate vector is drawn from the independent resam-
pling distribution, and (3) there exists a compact subset Ycom⊂Y
such that P(Y ∗ ∈Ycom) = 1. Then, the population catalytic prior is
proper for any τ > 0.

The following result shows the properness of the joint prior
πα,γ(τ ,β) in Eq. 15 and the role of the hyperparameters.

Theorem 3. Suppose α and γ are positive. If Γα,γ(τ) equals
Eq. 16 for linear regression or equals Eq. 17 for other GLMs,
then under the same condition as Theorem 1, (1) the joint prior
is proper; (2) for any m ∈ (0,α), the mth moment of β exists;
(3) limτ→∞

1
τ

log hα,γ(τ) =−1/γ < 0, where hα,γ(τ) denotes the
marginal prior on τ .

Convergence to the Population Catalytic Prior. When synthetic
sample size, M , is large enough, the randomness in the syn-
thetic data will not affect the catalytic prior regardless of the
observed real sample size because, as a distribution of the param-
eters, the catalytic prior converges to the population catalytic
prior.

We can quantify how fast the catalytic prior, as a random distri-
bution, converges to the population catalytic prior by establishing
an explicit upper bound on the distance between these two dis-
tributions in terms of M . This result shows how large M needs to
be so that the randomness in the synthetic data no longer influ-
entially changes the prior. We present here a simplified version
of the theoretical result; precise and detailed statements are in
SI Appendix.

Table 3. Average coverage probability (percentage) and width
of 95% posterior intervals under the catalytic prior with τ̂boot ,
the joint catalytic prior, and Cauchy prior

Setting Performance of methods

ζ r Cat. Boot. Cat. Joint Cauchy

1/4 0.1 Cover 90.5% 88.1% 90.1%
1/4 0.1 Width 3.5 2.9 3.3
1/4 0.2 Cover 93.3% 97.2% 98.0%
1/4 0.2 Width 2.8 2.7 3.0
1/4 0.3 Cover 95.0% 97.6% 97.6%
1/4 0.3 Width 2.2 2.4 2.8
2/4 0.1 Cover 89.8% 85.7% 86.2%
2/4 0.1 Width 3.5 2.9 3.2
2/4 0.2 Cover 93.4% 97.5% 98.4%
2/4 0.2 Width 2.7 2.7 3.0
2/4 0.3 Cover 95.7% 97.7% 97.7%
2/4 0.3 Width 2.1 2.4 2.8
3/4 0.1 Cover 89.4% 85.6% 86.1%
3/4 0.1 Width 3.5 2.9 3.2
3/4 0.2 Cover 93.9% 97.6% 98.6%
3/4 0.2 Width 2.7 2.7 3.0
3/4 0.3 Cover 95.9% 97.8% 97.8%
3/4 0.3 Width 2.1 2.4 2.7

ζ is the nonsparsity; r is the oracle prediction error.
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Theorem 4. Under mild regularity conditions,
1. For any given τ and p, there exists a constant C1, such that for

any small positive ε0, ε1, and any M ≥C1

(
1 + log2( 1

ε1
)
)

1
ε21

log( 1
ε0

), with probability at least 1− ε0 the total variation distance
between the catalytic prior and the population catalytic prior is
bounded by

dTV (πcat,∞,πcat,M)≤ ε1.
2. If the working model is linear regression with Gaussian noise,

then there exists a constant C2 that only depends on the observed
covariates, such that for any ε0 > 0 and any M > 16

9
C 2

2 p log( p
ε0

),
with probability at least 1− ε0, the KL divergence between the cat-
alytic prior and the population catalytic prior with any τ > 0 is
bounded by

KL(πcat,∞,πcat,M)≤ 2C2

√
1

M
p3 log

(
p

ε0

)
.

Data Availability. All of the data used in the article are simu-
lation data. The details, including the models to generate the
simulation data, are described in Illustration of Methods and SI
Appendix, section 3.

Discussion
The class of catalytic prior distributions stabilizes the estima-
tion of a relatively complicated working model by augmenting

the actual data with synthetic data drawn from the predictive
distribution of a simpler model (including but not limited to
a submodel of the working model). Our theoretical work and
simulation-based evidence suggest that the resulting inferences
using standard software, which treat the augmented data just
like actual data, have competitive and sometimes clearly superior
frequency operating characteristics, compared with inferences
based on alternatives that have been previously proposed. More-
over, catalytic priors are generally easier to formulate because
they are based on hypothetical smoothed data that resemble
the actual data. Two tuning constants, M and τ , require selec-
tion, and wise choices for them appear to be somewhat model
dependent: for example, differing for linear and logistic regres-
sions, both of which are considered here. We anticipate that
catalytic priors will find broad application, especially as more
complex Bayesian models are fit to more and more complicated
datasets. Some open questions for future investigation include
(1) how to apply the catalytic priors to model selection and (2)
how to study the asymptotic properties when both the sample
size and the dimension of the working model go to infinity—
in such a regime, it is also interesting to investigate what the
simple model should be in order to achieve good bias–variance
tradeoffs.
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20. J. M. Pérez, J. O. Berger, Expected-posterior prior distributions for model selection.
Biometrika 89, 491–512 (2002).

21. J. G. Ibrahim, M. H. Chen, Power prior distributions for regression models. Stat. Sci.
15, 46–60 (2000).

22. M. H. Chen, J. G. Ibrahim, Q. M. Shao, Power prior distributions for generalized linear
models. J. Stat. Plann. Inference 84, 121–137 (2000).

23. J. G. Ibrahim, M. H. Chen, D. Sinha, On optimality properties of the power prior. J.
Am. Stat. Assoc. 98, 204–213 (2003).

24. D. Fouskakis, I. Ntzoufras, D. Draper, Power-expected-posterior priors for
variable selection in Gaussian linear models. Bayesian Anal. 10, 75–107
(2015).

25. D. Fouskakis, I. Ntzoufras, K. Perrakis, Power-expected-posterior priors for general-
ized linear models. Bayesian Anal. 13, 721–748 (2018).

26. J. M. Bernardo, Reference posterior distributions for Bayesian inference. J. Roy. Stat.
Soc. B 41, 113–128 (1979).

27. P. J. Brown, S. G. Walker, Bayesian priors from loss matching. Int. Stat. Rev. 80, 60–82
(2012).

28. D. Simpson, H. Rue, A. Riebler, T. G. Martins, S. H. Sørbye, Penalising model compo-
nent complexity: A principled, practical approach to constructing priors. Stat. Sci. 32,
1–28 (2017).

29. G. E. Box, D. R. Cox, An analysis of transformations. J. Roy. Stat. Soc. B 26, 211–243
(1964).

30. B. Efron, The estimation of prediction error: Covariance penalties and cross-
validation. J. Am. Stat. Assoc. 99, 619–632 (2004).

31. A. Gelman, A. Jakulin, M. G. Pittau, Y. S. Su, A weakly informative default prior dis-
tribution for logistic and other regression models. Ann. Appl. Stat. 2, 1360–1383
(2008).

32. R. E. Kass, A. E. Raftery, Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

12010 | www.pnas.org/cgi/doi/10.1073/pnas.1920913117 Huang et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ne

 2
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920913117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920913117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1920913117


Supplementary Information for

Catalytic Prior Distributions with Applications to Generalized

Linear Models

Dongming Huang, Nathan Stein, Donald B. Rubin, S.C. Kou

Corresponding Authors: S. C. Kou, Donald Rubin.
E-mails: kou@stat.harvard.edu, dbrubin@me.com

This PDF file includes:

Supplementary text
Tables S1 to S9
References for SI reference citations

Dongming Huang, Nathan Stein, Donald B. Rubin, S.C. Kou 1 of 36



Supporting Information Text

Here is an outline of the supplementary materials.
Section 1 shows the catalytic priors for linear regression, in which case they have closed-form expressions.
Section 2 gives details about the prior specification.
Section 3 provides additional simulation results.
Section 4 provides an information theory/optimization viewpoint and discusses an interesting extension.
Section 5 studies the theoretical properties of catalytic priors and proves the theorems of the main text.

1. Analytic Form of Catalytic Prior for Linear Regression

Consider a linear regression model Y = Xβ + ε, where ε ∼ Nn(0, σ2In) with known σ. The first column of X,
say X0, is a vector of 1’s. The other columns Xj (1 ≤ j ≤ p − 1) are centered at 0. Suppose the synthetic-data
generating model is a sub-model whose design matrix is a sub-matrix of X, say XP>S , where the matrix PS ∈ Rs×p

have rows {e>i : i ∈ S}. If the simpler model is fitted by the MLE, then the synthetic-data generating distribution is
Y ∗|(X∗ = x) ∼ N(x>β̃0, σ

2), where β̃0 = P>S (PSX>XP>S )−1PSX>Y .
As a special case of GLM, one can use X∗β̃0, the expected value of the synthetic response vector Y ∗, in the

catalytic prior formula (i.e., replacing Y ∗ by its predictive mean X∗β̃0) as explained in the section Catalytic Prior for
GLM (see Eq. (9)) of the main text. The catalytic prior then has an analytic form

πcat,M (β | τ) = exp
(
−τ2

{
log(2πσ2) + 1

σ2 (β − β̃0)>
(

1
M

(X∗)>X∗
)

(β − β̃0)
})

/Zτ,M , [1.1]

where the normalizing constant is

Zτ,M =
(

2πσ2

τ

)p/2
det−1/2

(
1
M

(X∗)>X∗
)
exp

(
−τ2 log(2πσ2)

)
. [1.2]

This prior is proper when (X∗)>X∗ is positive definite, which is easily satisfied for M > p even if the observed
sample size is small. For any fixed value of τ > 0, this catalytic prior is Gaussian:

β ∼ N
(
β̃0,

σ2

τ
( 1
M

(X∗)>X∗)−1
)
.

In the limit of M →∞, the population catalytic prior is

β ∼ N
(
β̃0,

σ2

τ
(ΣX)−1

)
,

where ΣX = limM→∞
1
M (X∗)>X∗. The key difference between the population catalytic prior and the commonly used

Gaussian prior is that its mean β̃0 is determined by fitting the synthetic-data generating model to the observed data.
If each synthetic covariate vector X∗i is drawn from the independent resampling distribution, then ΣX becomes a
diagonal matrix with the jth entry being σ̂2

X,j := n−1X>j Xj .
According to Bayes rule, the posterior distribution for β under the catalytic prior is:

β|(Y ,X) ∼N(β̂, Σ̂), [1.3]

where β̂ := (X>X + τ

M
(X∗)>X∗)−1(X>Y + τ

M
(X∗)>X∗β̃0), [1.4]

Σ̂ := σ2(X>X + τ

M
(X∗)>X∗)−1. [1.5]

Since X∗β̃0 = AY , where A := X∗P>S (PSX>XP>S )−1PSX>, β̂ can be written as

β̂ = (X>X + τ

M
(X∗)>X∗)−1(X> + τ

M
(X∗)>A)Y .
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The predictive mean vector for the response given the observed covariates is µ̂ = Xβ̂ and can be written as µ̂ = HY

for a matrix H. More generally, the form µ̂ = HY + c holds for any synthetic-data generating distribution as long
as the conditional mean of Y ∗ depends linearly on Y . This result is used in the section Frequentist Predictive Risk
Estimation of the main text when we specify the weight parameter τ using Eq. (13) of the main text.

As a specific example, if the prior generating model is the intercept-only model, then XPS = 1n, Eg∗ [Y ∗ | X∗] =
Ȳ 1M = n−11M1>nY and

µ̂ = Xβ̂ = X(X>X + τ

M
(X∗)>X∗)−1(X> + τ

Mn
(X∗)>1M1>n )Y .

2. Details about Prior Specification

A. Synthetic-Covariate Generation. In addition to drawing the synthetic covariates from the independent resampling
distribution, we discuss three other variants.

The first variant aims at reducing the skewness in a continuous covariate Xj by the idea of symmetrizing.
Suppose the covariate (X0)j is drawn from the empirical distribution of Xj , we randomly flip (X0)j around the
observed sample mean X̄.j . Formally, let ξj be independently drawn from −1 and 1 with equal probability, then set
(X∗)j = X̄.j + ξj((X0)j − X̄.j). We call this proposal the symmetrizing resampling.

The second variant aims at increasing the diversity of the sampling distribution for a continuous covariate by
smoothing. An example of smoothing is to perturb each resampled covariate value by adding a small noise centered at
zero (with the noise variance chosen appropriately). This variant allows a synthetic covariate to take values different
from the observed ones and thus avoids potential rank deficiency in the working model when higher-order terms of
the covariate(s) are used.

The third variant aims at balancing a categorical covariate by the idea of flattening. A categorical covariate Xj

is called imbalanced if some of its observed frequency counts are smaller than n/(2 ·#Kj), where Kj is the set of
all categories of Xj . Such imbalance would cause problem in practice, as a categorical variable is often coded into
dummy variables that take the value 0 or 1 and then are standardized to have mean 0 and variance 1. In an extreme
case when some category only has frequency count being 1, the corresponding standardized dummy variable will take
values

√
n− 1 and −1/

√
n− 1. Such an extreme case would make the catalytic prior behaves poorly. In cases like

this, a simple remedy is to mix the empirical distribution with the uniform distribution on Kj to generate a synthetic
covariate. Suppose (X0)j is drawn from the empirical distribution of Xj , then with probability 1/2, we either keep
(X0)j or draw a new (X∗)j uniformly from Kj . Formally, this sampling can be expressed as

Pj(X∗j = x) = 1
2n#{1 ≤ i ≤ n : (Xi)j = x}+ 1

2 ·#Kj
, ∀x ∈ Kj .

We call this proposal the flattening resampling. It guarantees that the standardized dummy variables for X∗j are
uniformly bounded by

√
2 ·#Kj − 1 regardless of n.

In general, in the independent sampling, if the observed Xj is neither skewed nor imbalanced and the discreteness
of its empirical distribution does not cause rank deficiency of the working model, the coordinate X∗j is drawn from
the empirical distribution of Xj ; otherwise, it is recommended to draw X∗j by using one of the above variants (the
symmetrizing, smoothing, and flattening resampling) accordingly.

We want to emphasize that the independent resampling and its variants discussed here are by no means exhaustive.
Other ways can be used to generate synthetic covariates. For example, if historical data are available, a synthetic
covariate vector can be resampled from the historical covariates. One can also generate synthetic covariates through
block resampling: grouping the covariates into disjoint blocks and sampling the covariates within the same block jointly
(i.e., sampling the covariate vector in a block). This sampling scheme allows one to accommodate the correlations
among the covariates.

B. Synthetic-Responses Generation. The synthetic responses are generated from a stably fitted simple model. The
only requirement for a simple model is that the standard estimation for it using either Bayesian or frequentist approach
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can lead to a well-defined predictive distribution for future data. Let q be the dimension of the simple model and n be
the observed sample size. When q/n is small, different fitting procedures often make little difference in the predictive
distribution.

We have suggested several choices of the simple model in the main paper: a fixed distribution, an intercept-only
model, and also a regression model based on the first few principal components. We present an experiment that
compares these choices in Section 3.E. Among candidate simple models, we did not suggest a single choice so that
users can also incorporate extra information, such as previous study and domain knowledge.

As discussed in section Catalytic Prior for GLMs of the main text, in GLMs and exponential families a synthetic
response may be replaced by the expectation of the sufficient statistic. However, sometimes such expectations may not
be easy to compute, and in these cases we suggest to sample multiple synthetic responses for each sampled synthetic
covariate vector. In the main text, this sampling scheme is termed the stratified synthetic data generation. The
stratified synthetic data generation is especially useful for binary regression because it usually ensures the properness
of the catalytic prior. See Corollary 5.15.

C. Selection of the Prior Weight via Frequentist Predictive Risk Estimation. In this section, we provide details of
the prior weight selection via the frequentist approach presented in the main text.

C.1. Λ(τ) in Eq. (11). The discussion here closely follows Ref. (1).
Given a discrepancy D(y0, µ̂), the conditional prediction error of a prediction rule r(x) is define as the expected

discrepancy between a new response Y0 and the predictive value r(x0) given the covariate x0, i.e., EY0|x0 [D(Y0, r(x0))].
The in-sample prediction error of a prediction rule r(·) is defined as the average conditional prediction error with

x0 being uniformly sampled from the observed covariate vectors, i.e.,

Err(r) := 1
n

n∑
i=1

EY0,i|(x0=Xi)[D(Y0,i, µ̂i)],

where Y0,i|(x0 = Xi)
d= Yi|Xi and µ̂i := r(Xi) is the prediction given by r(·). In reality, the prediction rule r(·) itself

and thus Err depend on the observed response Y , we need to estimate the expectation of Err. First, consider the
plug-in estimate D(Y , r(X)) = 1

n

∑n
i=1D(Yi, µ̂i). For the class of discrepancy functions in Eq. (10) of the main text,

the bias of this plug-in estimate is

EY |X[D(Y , r(X))]− EY |X[Err(r)] = −EY |X

(
1
n

n∑
i=1

λ(µ̂i)
(
Yi − EY0|(x0=Xi)(Y0,i)

))

= − 1
n

n∑
i=1

CovY |X(λ(µ̂i), Yi), [2.1]

where we have used the fact that EY0|(x0=Xi)(Y0,i) = EY |X(Yi) and EY0|(x0=Xi)[c(Y0,i)] = EY |X[c(Yi)], since Y0 is an
independent copy of Y . Following Ref. (2), define covariance penalty Ω(r) as

Ω := 1
n

n∑
i=1

Cov(λ(µ̂i), Yi).

Once an estimate Ω̂ for Ω is found, Eq. (2.1) suggests to use D(Y , r(X)) + Ω̂ as an estimate for E[Err], which leads to
the criterion function Λ(τ) in Eq. (11) of the main text, where Ω is estimated by parametric bootstrap.

C.2. Posterior Mode. We focus on the prediction given by the posterior mode because of its computational simplicity:
the posterior mode can be computed using the MLE procedure in many statistical software by weighting each synthetic
data point with weight τ/M . Other predictions involving the posterior distribution, such as the plug-in estimate with
the posterior mean

Pθ̂(·), where θ̂ =
∫
θ π(θ|Y )dθ,
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and the Bayesian posterior prediction ∫
Pθ(·)π(θ|Y )dθ,

usually rely on intensive Monte Carlo sampling and take a long time to compute due to the high dimensional integrals.

C.3. Computation of Λ(τ). Once a criterion function Λ(τ) to estimate the (expected) prediction error is determined, we
choose the value of τ that minimizes Λ(τ). The computation of Λ(τ) is often conducted on a pre-determined fixed
grid, either a linear grid or a geometric grid. For example, in our simulation example with linear regression, we choose
a grid like {c0θk : 0 ≤ k ≤ 100} for some θ ∈ (0, 1) and integer k; in our experiments with logistic regression, the grid
is taken as {kp/4 : k = 1, . . . , 8} for the ease of computation.

C.4. Parametric Bootstrap. To estimate Ω for general prediction rules, the parametric bootstrap begins with a preliminary
estimator β̂0 and samples Y b from the distribution f(Y |X, β̂0). The bootstrap estimate of Ω is

Ω̂boot := 1
n

n∑
i=1

Cov(λ̂i(Y b), Y bi ).

For each i ∈ {1, . . . , n}, Cov(λ̂i(Y b), Y bi ) can be numerically approximated by repeatedly sampling Y b for B times:

1
B

B∑
k=1

λ̂i(Y b,k)(Y b,ki − Ȳ bi ), where Ȳ bi = 1
B

B∑
k=1

Y b,ki .

The preliminary estimator β̂0 is important for Ω̂boot to approximate Ω well. A simple choice is the posterior mode
under catalytic prior with some small τ0.

C.5. Steinian Estimate. Ref. (1) introduced the Steinian estimate of Ω for binary observations. First, define the
conditional covariance penalty cov(i) := EYi|X

(
λ(µ̂i) · (Yi − µi)

∣∣Y(−i),X
)
, where Y(−i) is the response vector that

excludes Yi. Then Ω can be rewritten as the expected summation of cov(i)

Ω =
∑
i

E cov(i).

Second, we can estimate cov(i) by flipping the observed response as explained next.
Given i, let us write λ(µ̂i) = λ̂i(Y(−i), Yi). Noting that P(Yi = 1|Y(−i),X) = P(Yi = 1|X) = µi, it follows that

cov(i) = µi(1− µi)
(
λ̂i(Y(−i), 1)− λ̂i(Y(−i), 0)

)
.

For any y ∈ {0, 1} and any function f , it always holds that f(1)− f(0) = (2y − 1)[f(y)− f(1− y)]. Hence,

cov(i) = µi(1− µi)(2Yi − 1)
(
λ̂i(Y(−i), Yi)− λ̂i(Y(−i), 1− Yi)

)
.

Here λ̂i(Y(−i), Yi) is simply λ(µ̂i), and λ̂i(Y(−i), 1−Yi) can be computed by first obtaining the posterior mode β̂4i(τ)
based on data (X,Y 4i), where Y 4i is a copy of Y but with only Yi replaced by 1− Yi, and then computing the
predictive mean µ̂4iτ,i = µ(X>i β̂4i(τ)), yielding λ̂i(Y(−i), 1− Yi) = λ(µ̂4iτ,i ).

Using a plug-in estimate for µi(1− µi), say µ̂0
i (1− µ̂0

i ), where µ̂0
i = µ(X>i β̂0), we obtain the Steinian estimate:

Ω̂stein := 1
n

n∑
i=1

µ̂0
i (1− µ̂0

i )(2Yi − 1)
(
λ(µ̂τ,i)− λ(µ̂4iτ,i )

)
,

arriving at Eq. (14) of the main text. Note that calculating the Steinian estimate requires n extra fitting procedures,
each of which uses a different response vector Y 4i. The computational advantage of the Steinian estimate over the
bootstrap estimate is significant when n is much smaller than the number of bootstrap replications.
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C.6. The Initial Value τ0. Both the parametric bootstrap and the Steinian estimates for Ω require a small τ0 to begin
with. On the one hand, we want τ0 to be small so that the prior does not make Ω̂ biased. On the other hand, it cannot
be too small in order to provide reasonable initial estimate. Consider logistic regression with complete separation,
where the model fits the data perfectly, as an example. If τ0 is too small, the parametric bootstrap distribution
degenerates and the bootstrap sample Y b will always be identical to the observed Y . In this case Ω̂boot ≈ 0 and is
not a good estimate of Ω. Similarly, the Steinian with too small τ0 results in σ̂2

i ≈ 0 and Ω̂stein ≈ 0.
The choices of τ0 = p/4 for logistic regression and τ0 = 1 for linear regression works well empirically. An intuitive

explanation is to look at the non-singularity of H , the Hessian matrix of the negative log likelihood, at the posterior
mode with the augmented data set, which roughly represents the stability of the posterior mode. For linear regression
and any value of τ > 0, as long as the synthetic covariate matrix has full column rank, H is strictly positive definite,
and its smallest singular value is no smaller than τ/σ2 times the smallest singular value of (X∗)>X∗/M . Therefore we
choose τ0 = 1 for a heuristic interpretation of adding effectively one synthetic data point. This is not the case for
logistic regression. For logistic regression,

H =
n∑
i=1

µ(X>i β̂(τ))(1− µ(X>i β̂(τ)))XiX
>
i

+ τ

M

M∑
i=1

µ((Xi
∗)>β̂(τ))(1− µ((Xi

∗)>β̂(τ)))X∗i (Xi
∗)>,

where µ(t) = 1/(1+e−t). When complete separation occurs and τ is small, β̂(τ) can be so large that all µ((Xi
∗)>β̂(τ))

and all µ(X>i β̂(τ)) are close to either 0 or 1. In this case, H can be nearly degenerated regardless of (X∗)>X∗/M .
Choosing τ0 = p/4 effectively adds 1/4 synthetic data points for estimating each parameter and thus prevents such a
degenerate situation from occuring in logistic regression.

C.7. Other Prediction Error Estimate. There are other estimates for prediction errors discussed in the literature. Here
we briefly mention the cross-validation. A comprehensive introduction can be found in Ref. (3).

The K-fold Cross-validation randomly divides the data into K disjoint subsets. For every k ≤ K, the model is
fitted from all data except those in the kth fold y(k), and prediction µ̂(k) for the omitted data y(k) is made based on
this fitted model. The kth test error is defined by D(y(k), µ̂(k)). The cross-validation estimate is the average of all K
test errors, and can be used as a criterion function to select tuning parameters. Note that the cross-validation estimate
is based on the idea of making the validation dataset independent of the training dataset and is thus different from
the criterion function Λ(τ) introduced in the main text. When we tried to use cross-validation to select τ , we found
that it gave poor result. The primary reason is than in the cases of small sample size, the variance of cross-validation
estimate is too large. The small-sample-size case is in fact the case when priors, such as catalytic priors, are preferred
to be used. Thus, we instead use other model-based methods in the main text. Our experience echoed the discussion
in Ref. (3, Chapter 12.3) and Ref. (4).

C.8. Connection with other practices in the literature. We conclude our discussion of the prior weight selection via the
frequentist approach by remarking its connection with other practices in the literature.

Remark 2.1. In the power prior development (see Ref. (5)), the weight on the historical data is often taken to be
less than 1. Although this is not required by catalytic priors, the weight we put on each synthetic data point, τ/M , is
often less than 1 because M (in the order of hundreds of thousands) is typically much larger than τ . �

Remark 2.2. In the example of 1970-1980 I/O code mapping (see Ref. (6)) discussed in the main text, the prior
weight there was chosen to be the same as the dimension of β, and this choice was found to work well in practice. In
light of the catalytic priors, we can now give a justification for this observation. The synthetic responses used in this
example were the sample mean µ̂, and the synthetic covariate vectors satisfied M−1∑M

i=1X
∗
i (Xi

∗)> = Σ∗ ∈ Rp×p.
Let β∗0 = log( µ̂

1−µ̂ ). Then β∗ = (β∗0 , 0, . . . , 0)> is the parameter of the distribution that generates the synthetic
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responses. If we approximate the log-density in Eq. (1) in the main text by its second order expansion, then the prior
distribution is approximately a normal distribution N(β∗,H−1

0 ), where

H0 = τ

M

M∑
i=1

µ̂(1− µ̂)X∗i (Xi
∗)> = τ µ̂(1− µ̂)Σ∗.

Hence, the average prior variance of (X∗)>β is approximately

1
M

M∑
k=1

(X∗)>kH−1
0 X∗k = 1

τ µ̂(1− µ̂)
1
M

M∑
k=1

(X∗)>k Σ−1
∗ X

∗
k

= 1
τ µ̂(1− µ̂)Tr

(
Σ−1
∗

1
M

M∑
k=1

X∗k(Xk
∗)>
)

= 1
τ µ̂(1− µ̂)Tr (Ip) = p

τµ̂(1− µ̂) .

This expression gives a justification for choosing τ = p as in Ref. (6). By doing so, the average prior variance of
(X∗)>β is approximately constant across models that include different covariates, and we, therefore, expect robust
performance of this specific choice. �

D. Bayesian Joint Priors.

D.1. Computation. The Gibbs algorithm can be used to sample from the posterior distribution under the joint prior
πα,γ(τ,β). The Gibbs algorithm iteratively samples one component from the conditional distribution holding the
other component fixed.

Given β, an update of τ can be sampled from the Gamma distribution

πα,γ(τ |β,Y ,X) ∝ Γα,γ(τ)exp( τ
M

M∑
i=1

log(f(Y ∗i |β>Xi
∗))

= τ c−1exp
(
−τ(κ+ 1

γ
− 1
M

M∑
i=1

log(f(Y ∗i |β>Xi
∗)))

)
,

where c = (p+ α)/2 for linear regression, and c = p+ α for other models.
Given τ , an update of β should be drawn from π(β|τ, Y,X) ∝ f(Y ∗|X∗,β)τ/Mf(Y |X,β). It can be sampled by

various methods such as the Metropolis-Hasting algorithm and the Hamiltonian Monte Carlo (HMC). We recommend
to use HMC with random step size and with adaptive variances for the momentum variables. Before running HMC
within Gibbs, the adaptive variances are set at the diagonal entries of the inverse Hessian matrix of the negative log
density at the posterior mode. The initial point of such a MCMC step should be the most recent sample of β.

D.2. Default Choice of (α, γ). It is generally difficult to find a specification of (α, γ) that works optimally in all cases.
Nevertheless, a guideline for a reasonable choice of (α, γ) is: (i) The posterior distribution will give meaningful answer
about the estimand in most cases; (ii) the predictive performance is not significantly worse than the alternative
methods for finite sample within the range of population that we are mostly interested in, and (iii) the coverage
rate of the interval estimate should be close to or higher than the nominal coverage within the range of interesting
populations.

We recommend the simple choice of (α, γ) = (2, 1) as the default based on our numerical experiments on linear
regression and logistic regression models. We found this choice yields competitive estimation in most cases. Of course,
our experiments were not exhaustive and did not cover all possible underlying distributions.

3. Additional Simulations

We provide additional numerical experiments on synthetic data and compare the performance of catalytic prior to
other methods.
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A. Logistic Regression with Interaction Terms. In this simulation, we consider logistic regression with interaction
terms. Suppose there are q covariates. Then there are q main effects and q(q − 1)/2 two-way interaction terms in
total, so the total number of regression coefficients (i.e., the number of parameters) is p = 1 + q + q(q − 1)/2. In
this example, we generate the covariates as described in the Illustration of Methods Section of the main text. The
regression coefficient β is specified similarly to the main text but with a different β(0). We first randomly select half
of the main effect terms in β(0) to be 1 with the rest to be 0, and then randomly select bq(q − 1)/2× ζc interaction
terms to be 1 with the rest to be 0, where ζ is the level of non-sparsity and is set at 0.1, 0.2, 0.4. The amplitude of β
is specified through the oracle prediction error r in the same way as the main text, whose levels are 0.1, 0.2, 0.3. We
set q = 8, which gives p = 37, and the observed sample size n = 60 in this example. Following the experiment in the
main text, we use the predictive binomial deviance to evaluate the prediction performance of an estimator β̂.

Setting Performance of Methods
Comp. Cat. Cat. Cauchy MLE

ζ r Sep. Boot. Joint (pseudo)

0.1 0.1 97% Mean 1.759 1.851 1.846 2.058
SE ×103 (5.4) (5.3) (5.3) (21.9)

0.2 85% Mean 0.704 0.827 0.842 1.166
SE ×103 (2.9) (2.5) (2.4) (8.1)

0.3 70% Mean 0.305 0.440 0.480 0.838
SE ×103 (1.7) (1.5) (1.3) (2.1)

0.2 0.1 96% Mean 1.756 1.846 1.848 2.119
SE ×103 (4.9) (4.8) (4.8) (22.7)

0.2 86% Mean 0.708 0.826 0.849 1.171
SE ×103 (2.6) (2.3) (2.2) (5.4)

0.3 71% Mean 0.306 0.438 0.483 0.843
SE ×103 (1.7) (1.5) (1.3) (2.0)

0.4 0.1 96% Mean 1.772 1.861 1.868 2.163
SE ×103 (4.9) (4.8) (4.8) (22.0)

0.2 84% Mean 0.713 0.829 0.858 1.180
SE ×103 (2.5) (2.2) (2.2) (5.0)

0.3 69% Mean 0.307 0.439 0.487 0.845
SE ×103 (1.7) (1.5) (1.4) (2.1)

Table S1. (Logistic regression with interaction terms) Mean and standard error of average predictive binomial deviance of the
catalytic posterior mode with τ̂boot, the posterior median under the joint catalytic prior, the Cauchy posterior mode, and the
MLE. ζ is the non-sparsity. r is the oracle prediction error. The column of Comp.Sep. shows how often complete separation
occurs in the data sets. The boldface corresponds to the best performing method in each simulation scenario.

Table S1 presents the average predictive binomial deviance over 1600 simulations in each cell. The first column
shows how often complete separation occurs in the datasets; when complete separation occurs, the MLE does not
exist but a pseudo-MLE can be algorithmically computed if the change in the estimate is smaller than 10−8 within 25
iterations; the column of MLE averages across only the cases where either MLE or pseudo-MLE exists. Table S1
shows that the catalytic posterior mode with τ̂boot predicts the best in all cases considered, and the posterior median
under the joint catalytic prior predicts better than the Cauchy prior except the cases when r = 0.1 (in these cases it
still predicts comparably to the Cauchy prior). These three estimators all predict much better than the MLE.
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Setting Performance of Methods
ζ r Cat.Boot Cat.Joint Cauchy

0.1 0.1 Cover 94.3 92.3 95.4
Width 3.0 2.4 3.3

0.2 Cover 94.0 97.7 99.3
Width 2.0 2.1 3.0

0.3 Cover 95.3 97.1 98.2
Width 1.4 1.9 2.8

0.2 0.1 Cover 91.7 88.7 94.3
Width 2.9 2.3 3.2

0.2 Cover 93.3 97.4 99.3
Width 2.0 2.1 3.0

0.3 Cover 95.0 97.1 98.4
Width 1.4 1.9 2.8

0.4 0.1 Cover 89.4 85.0 94.3
Width 2.9 2.3 3.2

0.2 Cover 92.7 97.3 99.3
Width 2.0 2.1 3.0

0.3 Cover 95.0 97.1 98.4
Width 1.4 1.9 2.8

Table S2. (Logistic regression with interaction terms) Average coverage probability (%) and width of 95% posterior intervals
for β under the catalytic prior with τ̂boot, the joint catalytic prior, and the Cauchy prior. ζ is the non-sparsity. r is the oracle
prediction error.

Table S2 presents the average coverage probabilities (in percentage) and widths of the 95% posterior intervals for
βj averaging over j. It is seen that that the coverage probabilities of the posterior intervals given by catalytic priors
are close to the nominal probability in most cases except for (ζ, r) = (0.2, 0.1) and (ζ, r) = (0.4, 0.1). In contrast, the
intervals given by Cauchy prior tend to have higher coverage probability but are much wider (about 1.5 times as
wide). Note that because all the intervals associated with the MLE have widths too large to be useful (thousands of
times wider than those given by the other methods), we do not report them in this table.

B. Model Misspecification. In this simulation, the settings, including the covariates distribution, regression coefficients
and the sample size, are the same as those in the main text (i.e., without the interaction terms), but the response Y
is actually generated from P(Y = 1 |X>β) = Fc(X>β), where Fc(·) is the CDF of a standard Cauchy distribution.
The working model, however, is still the logistic regression, so this is a case of model misspecification. Although the
estimated parameters no longer have clear interpretations due to the model misspecification, we can still evaluate the
prediction performance of various methods using the predictive binomial deviance as before.
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Setting Performance of Methods
Comp. Cat. Cat. Cauchy MLE

ζ r Sep. Boot. Joint (pseudo)

1/4 0.1 100% Mean 0.988 1.073 1.097 1.401
SE ×103 (4.3) (4.3) (4.1) (5.3)

0.2 97% Mean 0.524 0.620 0.655 0.984
SE ×103 (3.0) (2.7) (2.6) (3.8)

0.3 90% Mean 0.272 0.375 0.422 0.715
SE ×103 (2.2) (1.9) (1.8) (7.2)

2/4 0.1 100% Mean 0.963 1.049 1.062 1.377
SE ×103 (2.3) (2.3) (2.0) (2.2)

0.2 97% Mean 0.508 0.607 0.638 0.970
SE ×103 (2.3) (2.0) (1.8) (3.7)

0.3 91% Mean 0.265 0.370 0.416 0.717
SE ×103 (2.1) (1.8) (1.7) (7.0)

3/4 0.1 100% Mean 0.965 1.051 1.060 1.377
SE ×103 (2.4) (2.4) (2.1) (2.2)

0.2 98% Mean 0.510 0.609 0.639 0.972
SE ×103 (2.3) (2.0) (1.8) (3.4)

0.3 89% Mean 0.262 0.367 0.412 0.706
SE ×103 (2.1) (1.8) (1.7) (7.6)

Table S3. (Model misspecification) Mean and standard error of predictive binomial deviance of the catalytic posterior mode
with τ̂boot and the posterior median under the joint catalytic prior, the Cauchy posterior mode, and the MLE. ζ is the non-
sparsity. r is the oracle prediction error. The column of Comp.Sep. shows how often the complete separation occurs in the
data sets. The boldface corresponds to the best performing method in each simulation scenario.

Table S3 shows that both catalytic prior specifications (the catalytic posterior mode with τ̂boot and the posterior
median under the joint catalytic prior) predict better than Cauchy and MLE in all cases considered. The stable
performance of the catalytic prior estimators under model misspecification illustrates the robustness of the catalytic
priors.

C. Linear Regression. In this simulation, we consider the linear regression model. The covariates and the vector
β(0) are generated as in the Illustration of Methods Section of the main text. The only difference in specifying the
regression coefficient β is that β = r×β(0), where r is a scaling factor and is set at 1, 2 or 4. The sample size n = 30.

For the catalytic prior, we generate the synthetic data using the generating distributions described in Section 1
and fix M at 400. The first two estimators of β with the catalytic prior are the posterior modes of β with τ = τ̂cp

and τ = τ̂boot selected from the estimated predictive risk via Cp and bootstrap respectively (denoted as Cat.Cp and
Cat.Boot). The third estimator of β with the catalytic prior is the coordinate-wise posterior median of β under the
joint catalytic prior (denoted as Cat.Joint). These catalytic prior based estimators are compared to two alternative
methods: the MLE and the Ridge estimator. The Ridge estimate is computed by

argmin
β

(
‖Y − Xβ‖2 + λ‖β‖2

)
,

where the penalty parameter λ is tuned by 10-fold cross-validation. Note that the Ridge estimator is identical to
the posterior mode under an independent normal prior: βj ∼ N(0, λ−1). We refer to this prior as the Ridge prior
throughout this section. We use the predictive squared error, EX0(X>0 β−X>0 β̂)2, to evaluate the performance of an
estimator β̂, where the expectation is computed by sampling 1000 extra independent copies of X0 from the same
distribution that generates the observed covariates.
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Setting Performance of Methods
Cat. Cat. Cat. Ridge MLE

ζ r Cp Boot. Joint

0.25 1 Mean 0.228 0.228 0.217 0.236 0.282
SE ×103 (2.8) (2.8) (2.6) (3.0) (3.4)

2 Mean 0.264 0.264 0.264 0.270 0.282
SE ×103 (3.2) (3.2) (3.2) (3.4) (3.4)

4 Mean 0.277 0.277 0.277 0.281 0.281
SE ×103 (3.4) (3.4) (3.4) (3.5) (3.5)

0.5 1 Mean 0.246 0.246 0.241 0.253 0.279
SE ×103 (3.0) (3.0) (2.9) (3.3) (3.6)

2 Mean 0.270 0.270 0.270 0.275 0.280
SE ×103 (3.1) (3.1) (3.1) (3.2) (3.3)

4 Mean 0.277 0.277 0.278 0.281 0.280
SE ×103 (3.2) (3.2) (3.2) (3.3) (3.3)

0.75 1 Mean 0.256 0.256 0.254 0.260 0.277
SE ×103 (3.3) (3.3) (3.3) (3.3) (3.5)

2 Mean 0.272 0.272 0.273 0.274 0.276
SE ×103 (3.6) (3.6) (3.6) (3.6) (3.6)

4 Mean 0.276 0.276 0.277 0.279 0.277
SE ×103 (3.4) (3.4) (3.4) (3.4) (3.4)

Table S4. (Linear regression) Mean and standard error of the average predictive squared errors of the catalytic posterior mode
estimates with τ̂cp and τ̂boot, the posterior median estimate under joint catalytic prior, the Ridge estimate, and the MLE. ζ is
the non-sparsity factor. r is the scaling factor. The boldface corresponds to the best performing method in each simulation
scenario.

Setting Performance of Methods
ζ r Cat.Cp Cat.Boot Cat.Joint Ridge MLE

0.25 1 Cover 92.2 92.4 95.4 91.9 95.2
Width 1.0 1.0 1.1 1.0 1.4

2 Cover 94.0 93.7 94.1 93.2 95.2
Width 1.2 1.2 1.2 1.2 1.4

4 Cover 94.8 94.5 94.6 94.4 95.2
Width 1.3 1.3 1.3 1.3 1.4

0.5 1 Cover 93.3 93.3 94.1 92.7 95.4
Width 1.1 1.1 1.1 1.1 1.4

2 Cover 94.5 94.4 94.3 93.9 95.4
Width 1.3 1.3 1.3 1.3 1.4

4 Cover 95.0 95.1 94.9 94.9 95.4
Width 1.4 1.4 1.4 1.4 1.4

0.75 1 Cover 94.0 93.9 94.1 93.3 95.1
Width 1.2 1.2 1.2 1.2 1.4

2 Cover 94.7 94.8 94.8 94.5 95.2
Width 1.3 1.3 1.3 1.3 1.4

4 Cover 95.1 94.8 95.1 94.6 95.1
Width 1.4 1.4 1.4 1.4 1.4

Table S5. (Linear regression) Average coverage probability (%) and width of 95% posterior intervals under the catalytic prior
with τ̂Cp , τ̂boot, the joint catalytic prior, Ridge prior, and the confidence intervals associated with MLE. ζ is the non-sparsity. r
is the oracle prediction error.

Table S4 compares the predictive squared error of different methods. We conclude that the estimates given by
catalytic prior have generally better prediction performance to the Ridge estimate, and are generally much better
than MLE.

Table S5 shows the average coverage probabilities (in percentage) and width of the 95% interval estimates for
βj averaging over j. The first 4 columns show the results for the posterior intervals under the catalytic priors and
the Ridge prior, while the last column shows the confidence interval based on MLE. It is seen that the coverage
probabilities given by all interval estimates considered here are reasonably close to the nominal in most cases, but
when the coefficient vector is sparse (ζ = 0.25) and weak (r = 1), the intervals given by both the Ridge estimator and
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the catalytic prior with τ selected by risk estimation tend to be narrow and do not achieve the nominal coverage.
The intervals given by the joint catalytic prior and MLE have coverage probabilities close to the nominal level.

D. Other Error Measurements. In the Illustration of Methods section of the main text, we used the predictive binomial
deviance to evaluate the performance of different estimators. The conclusion drawn there is in fact robust to the choice
of error measurement: below we present the results in that experiment in terms of two alternative error measurements
and draw a similar conclusion as stated in the main text.

1. Expected classification error is defined as EX0,Y0,Ŷ0
[1Y0 6=Ŷ0

], that is, the expected classification for a future
data point (X0, Y0) using a probabilistic prediction Ŷ0:

Ŷ0 =
{

1 w.p. µ̂0

0 w.p. 1− µ̂0
[3.1]

where µ̂0 = µ(X>0 β̂) is the estimated probability for the future response being 1.

2. Area Under Curve (AUC) is often used in practice to evaluate the discrimination accuracy (7). It is defined
as the area under the Receiver Operating Characteristic (ROC) curve, which is created by drawing the true
positive rate against true negative rate for all possible cut-off points from 0 to 1. For a binary classifier, a higher
AUC evaluated on the test data set means a better prediction.

Setting Performance of Methods
Comp. Cat. Cat. Cauchy MLE

ζ r Sep. Boot. Joint (pseudo)

1/4 0.1 100% Mean 0.217 0.215 0.208 0.266
SE ×103 (1.2) (1.2) (1.1) (1.8)

0.2 98% Mean 0.304 0.301 0.306 0.345
SE ×103 (1.1) (1.1) (1.1) (2.1)

0.3 91% Mean 0.394 0.393 0.401 0.427
SE ×103 (1.0) (1.0) (1.0) (2.2)

2/4 0.1 100% Mean 0.216 0.215 0.221 0.266
SE ×103 (1.1) (1.1) (1.1) (1.7)

0.2 98% Mean 0.302 0.300 0.310 0.347
SE ×103 (1.1) (1.0) (1.0) (2.2)

0.3 92% Mean 0.394 0.393 0.403 0.427
SE ×103 (1.0) (1.0) (0.9) (2.4)

3/4 0.1 100% Mean 0.215 0.215 0.226 0.269
SE ×103 (1.1) (1.1) (1.1) (1.7)

0.2 99% Mean 0.302 0.299 0.312 0.344
SE ×103 (1.1) (1.0) (1.0) (2.0)

0.3 91% Mean 0.392 0.392 0.402 0.427
SE ×103 (1.0) (1.0) (0.9) (2.4)

Table S6. (Logistic regression with main effect) Mean and standard error of average predictive classification error of the
catalytic posterior mode with τ̂boot, the posterior median under the joint catalytic prior, the Cauchy posterior mode and the
MLE. ζ is the non-sparsity. r is the oracle prediction error. The column of Comp.Sep. shows how often complete separation
occurs in the data sets. The boldface corresponds to the best performing method in each simulation scenario.
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Setting Performance of Methods
Comp. Cat. Cat. Cauchy MLE

ζ r Sep. Boot. Joint (pseudo)

1/4 0.1 100% Mean 0.875 0.876 0.882 0.809
SE ×103 (1.2) (1.2) (1.1) (2.1)

0.2 98% Mean 0.775 0.776 0.767 0.710
SE ×103 (1.2) (1.2) (1.3) (2.8)

0.3 91% Mean 0.657 0.654 0.641 0.602
SE ×103 (1.3) (1.3) (1.3) (3.1)

2/4 0.1 100% Mean 0.877 0.877 0.869 0.811
SE ×103 (1.1) (1.1) (1.1) (2.0)

0.2 98% Mean 0.777 0.778 0.763 0.710
SE ×103 (1.2) (1.2) (1.2) (2.9)

0.3 92% Mean 0.658 0.654 0.639 0.601
SE ×103 (1.3) (1.3) (1.3) (3.4)

3/4 0.1 100% Mean 0.877 0.877 0.864 0.807
SE ×103 (1.0) (1.0) (1.1) (2.0)

0.2 99% Mean 0.777 0.778 0.760 0.713
SE ×103 (1.2) (1.2) (1.2) (2.7)

0.3 91% Mean 0.660 0.656 0.640 0.601
SE ×103 (1.3) (1.2) (1.2) (3.3)

Table S7. (Logistic regression with main effect) Mean and standard error of average predictive AUC. A higher predictive AUC
means a better prediction. See the caption of Table S6. The boldface corresponds to the best performing method in each
simulation scenario.

Tables S6 and S7 present the average predictive classification error and the average predictive AUC of the same
experiment as in the Illustration of Methods section of the main text. Both measurements are evaluated on a
independent test data set of size 1, 000 from the true data population. Based on these tables, both catalytic prior
specifications predict better than MLE in all cases considered. Only in the case when the true β are very sparse
(ζ = 0.25) and have large amplitude (r = 0.1), the Cauchy prior works slightly better. In all other cases, the
predictions given by catalytic priors are better than those of the Cauchy prior. Together with Table 1 of the main
text, we conclude that catalytic priors provide much better prediction than MLEs and generally predicts better than
or comparable to the Cauchy prior.

E. Synthetic-Data Generating Models with Different Input Dimensions. In this simulation experiment, we examine
how the dimensionality/complexity of the synthetic-data generating model affects a catalytic prior, under the
experimental setup in the Illustration of Methods Section of the main text with varying dimensions of the synthetic-
data generating model.

To specify a synthetic-data generating model with dimension k, we use principal components of the covariate
matrix to reduce the dimension of the covariate input. For k > 1, we can use logistic regression with the first (k − 1)
principal components plus the intercept, and use maximum likelihood to generate the synthetic response vector Y ∗.
The case with k = 1 only includes the intercept and is the same as the synthetic-data generating model of the main
text. For k = 0, we use the fixed Bernoulli distribution with equal probability. To simplified the analysis, we discard
the simulations where complete separation occurs in the first three principal components.
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Setting Dimension of the Simple Model
ζ r 0 1 2 3 4

1/4 0.1 Mean 1.676 1.684 1.712 1.736 1.767
SE ×103 (6.7) (6.7) (6.7) (6.9) (6.9)

0.2 Mean 0.661 0.668 0.689 0.704 0.725
SE ×103 (5.1) (5.1) (5.1) (5.2) (5.4)

0.3 Mean 0.280 0.289 0.302 0.312 0.327
SE ×103 (2.1) (2.1) (2.3) (2.4) (2.6)

2/4 0.1 Mean 1.655 1.662 1.689 1.713 1.740
SE ×103 (4.0) (4.0) (4.0) (4.2) (4.3)

0.2 Mean 0.645 0.652 0.672 0.687 0.706
SE ×103 (2.5) (2.5) (2.7) (2.9) (3.1)

0.3 Mean 0.281 0.289 0.302 0.312 0.325
SE ×103 (2.1) (2.1) (2.3) (2.4) (2.5)

3/4 0.1 Mean 1.664 1.672 1.701 1.720 1.749
SE ×103 (4.1) (4.1) (4.2) (4.3) (4.5)

0.2 Mean 0.649 0.655 0.678 0.692 0.712
SE ×103 (2.5) (2.5) (2.7) (2.8) (3.0)

0.3 Mean 0.282 0.289 0.303 0.312 0.326
SE ×103 (2.1) (2.1) (2.3) (2.4) (2.5)

Table S8. Mean and standard error of predictive binomial deviance of the catalytic posterior mode with τ̂boot using various
synthetic-data generating models with different covariate input dimensions. ζ is the non-sparsity. r is the oracle prediction
error.

Setting Dimension of the Simple Model
ζ r 0 1 2 3 4

1/4 0.1 Cover 90.8% 90.7% 90% 88.8% 84.8%
Width 3.4 3.5 3.8 4.3 5.2

0.2 Cover 94.3% 93.3% 92.8% 91.3% 88.6%
Width 2.7 2.7 2.9 3.0 3.3

0.3 Cover 96.1% 95.1% 94.6% 93.7% 92%
Width 2.1 2.1 2.2 2.2 2.3

2/4 0.1 Cover 89.4% 89.5% 88.7% 87.4% 84.5%
Width 3.4 3.5 3.8 4.2 5.3

0.2 Cover 94.2% 93.3% 92.7% 91.1% 88.5%
Width 2.7 2.8 2.9 3.1 3.4

0.3 Cover 96.2% 95.5% 95.1% 94.1% 92.3%
Width 2.1 2.1 2.1 2.2 2.3

3/4 0.1 Cover 89.2% 89.4% 88.6% 87.1% 84%
Width 3.4 3.5 3.9 4.3 5.3

0.2 Cover 94.4% 94% 92.9% 91.4% 88.4%
Width 2.7 2.8 2.9 3.1 3.3

0.3 Cover 96.3% 95.6% 95.1% 94% 92.1%
Width 2.1 2.1 2.2 2.2 2.3

Table S9. Average coverage probability (%) and width of 95% posterior intervals under the catalytic prior with τ̂boot using
various synthetic-data generating models with different covariate input dimensions. ζ is the non-sparsity. r is the oracle
prediction error.

Table S8 presents the average predictive binomial deviance, and Table S9 shows the average coverage probabilities
(in percentage) and width of the 95% interval estimates for βj averaging over j, both using the posterior mode
under a catalytic prior whose τ is the minimizer of the parametric bootstrap risk estimate. As the dimension of
the synthetic-data generating model increases, the prediction tends to get worse, and the interval estimates become
wider and have lower coverage probabilities. We notice that such degeneration in performance disappears when the
observed sample is relatively large, say 10 times larger than the dimension of the working model. This indicates that
when the observed sample size is small, one should keep the synthetic-data generating model simple.
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4. An Information Theory/Optimization Perspective

A. Interpretation from Information Theory. The Kullback-Leibler (KL) divergence is a measure of how far apart two
distributions are. Suppose g(y) and f(y) are the densities of Pg and Pf over Y with respect to a base measure ν, the
KL divergence between Pg and Pf is defined as

KL (g(·), f(·)) = KL (Pg,Pf ) =
∫
Y
g(y) log

(
g(y)
f(y)

)
dν(y).

It is straightforward that
KL (g(·), f(·)) = EY∼Pg log

(
g(Y )
f(Y )

)
. [4.1]

The population catalytic prior can be mathematically rewritten as exponentiating the KL divergence between the
working model and the synthetic-data generating distribution, which is

KL (g∗(· | Y ), f(· | θ)) = EY ∗
[
log g∗(Y

∗ | Y )
f(Y ∗ | θ)

]
,

as (ignoring the terms that do no involve θ) one can rewrite Eq. (4) of the main text as

πcat,∞(θ | τ) ∝ exp (−τ KL (g∗(· | Y ), f(· | θ))) .

This formulation is mathematically similar to that of the PC prior (8), but the key differences are (i) the catalytic
prior is primarily motivated from the synthetic-data perspective, (ii) the PC prior requires the simpler model to
be nested in the working model, whereas the catalytic prior has no such restrictions, and (iii) mathematically, the
KL divergence is not symmetric, and the PC prior is penalizing KL (f(· | θ), g∗(· | Y )); this leads to a different
construction.

In the presence of covariates, we can also mathematically formulate the population catalytic prior in terms of the
expected KL divergence:

EX∗ [KL (g∗(· |X∗,Y ,X), f(· |X∗,β))] = EX∗,Y ∗
[
log g∗(Y

∗ |X∗,Y ,X)
f(Y ∗ |X∗,β)

]
,

where the expectation is averaging over both the synthetic response and the synthetic-covariates. Eq. (7) of the main
text can be written as

πcat,∞(β | τ) ∝ exp {−τ EX∗ [KL (g∗(· |X∗,Y ,X), f(· |X∗,β))]} .

This formulation suggests the resultant posterior mode is the solution of the following optimization

min
β
{ − log f(Y | X,β) + τ EX∗ [KL (g∗(· |X∗,Y ,X), f(· |X∗,β))] } . [4.2]

We now further show that the posterior mode under a population catalytic prior can be viewed as the maximum of
the likelihood function with the constraint that the expected KL divergence between the corresponding distribution
and the synthetic-data generating distribution is bounded by a budget.

Consider the following constrained optimization problem

min
β

− log f(Y | X,β) [4.3]

s.t. EX∗ [KL (g∗(· |X∗,Y ,X), f(· |X∗,β))] ≤ C.

The Lagrange associated with this problem is

min
β

max
τ>0
{ − log f(Y | X,β) + τ EX∗ [KL (g∗(· |X∗,Y ,X), f(· |X∗,β))]− τ C } .
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If both the objective function and the constraint function are convex and the original optimization problem is strictly
feasible, namely, there exists some β] such that

EX∗
[
KL
(
g∗(· |X∗,Y ,X), f(· |X∗,β])

)]
< C, [4.4]

then the optimization is equivalent to its dual problem: there exists some τC > 0 depending on C such that the
minimum of the original problem is the minimum of the following problem

min
β
{ − log f(Y | X,β) + τC EX∗ [KL (g∗(· |X∗,Y ,X), f(· |X∗,β))]− τC C } ,

where we have used the KL divergence formula Eq. (4.1). Note that the convexity of the objective function and the
constraint function is guaranteed when the working model is a GLM with the canonical link.

Ignoring the terms that do no involve β, the last optimization is equivalent to Eq. (4.2). Therefore, we have shown
the equivalence of the posterior mode under the population catalytic prior and the optimization problem in Eq. (4.3).

B. Effect of the synthetic covariate Generating Distribution and the Connection to L1 Estimators. The equivalent
form of the posterior mode under a catalytic prior in Eq. (4.3) suggests us to study how the synthetic covariate
generating distribution Q(x∗) affects the posterior mode, which would provide additional insight on choosing the
synthetic-covariate generating distribution. This section considers finding the optimal design for sampling X∗ so that
the posterior mode has desirable frequentist properties.

Note that only the constraint on the expected KL divergence in Eq. (4.3) relies on Q(x∗). To understand how
Q(x∗) affects the constraint, we first define the projected parameter of the synthetic-data generating distribution as
the β in the predictive model that minimizes the expected KL divergence

β̃0 = argmin
β

EX∗ {KL [g∗(· |X∗,Y ,X), f(· |X∗,β)]} . [4.5]

For the selection of Q(x∗), let us consider the Fisher information, which is a measure of the amount of information
contained in the data about the parameters in a model, and a choice of Q(x∗) is preferable if it maximizes the
Fisher information matrix at the true regression coefficient β† (or the best projected parameter in the case of model
misspecification). Since Q(x∗) should be selected at the stage of specifying a prior, we instead consider maximizing
the “prior” Fisher information matrix that depends only on the synthetic dataset.

One precise and convenient way to capture this idea is to minimize the trace of inverse “prior” Fisher information
matrix. This leads to the following optimization

min
Q

Tr
{ (

τEX∗∼QEY ∗
[
−∇2 log f(Y ∗|X∗,β†)

])−1 }
, [4.6]

which is known as A-optimality in the optimal design literature. To integrate such an optimization and the optimization
in Eq. (4.3), we consider the minimization that combines the likelihood function, the constraint on the expected
KL-divergence from the simplified model and the trace of the inverse prior Fisher information matrix simultaneously
as follows

min
β,Q

{
− log f(Y |X,β) + τEX∗∼Q (EY ∗(− log f(Y ∗|X∗,β)) + λTr

{(
τEX∗∼QEY ∗ −∇2 log f(Y ∗|X∗,β†)

)−1} }
.

[4.7]

Since β† is unknown, such a optimization is unsolvable in general. However, in the special case of linear regression
with known noise level, the Hessian of the log likelihood does not depend on the parameter and the optimization
becomes possible, as we will discuss soon in Example 1. In addition, optimizing over all possible sampling schemes
can be too ambitious, so in Example 1 we restrict ourselves to only the sampling distributions that affinely transform
data from a fixed distribution Q0(x∗). By simplifying the problem, we obtain an interesting connection between
catalytic prior and other estimators in the regression literature.
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Example 1. Let us consider the linear regression in Section 1. When the simplified model is a sub-model, say,
Y ∗ |X∗ g∗∼ N(β̃>0 X∗, σ2), we have

EY ∗∼g∗ log
(
g∗(Y ∗ |X∗,Y ,X)
f(Y ∗ |X∗,β)

)
= EY ∗∼g∗

(
− 1

2σ2 (Y ∗ − β̃>0 X∗)2 + 1
2σ2 (Y ∗ − β>X∗)2

)
= 1

2σ2 [(β − β̃0)>X∗]2,

which implies that the expected KL divergence is

EX∗
{

1
2σ2 [(β − β̃0)>X∗]2

}
= 1

2σ2 (β − β̃0)>ΣQ(β − β̃0), [4.8]

where ΣQ = EX∗ [X∗(X∗)>] is the covariance matrix under Q(x∗). From Eq. (4.8), it is clear that a large variability
in X∗ (mathematically, it means the eigenvalues ΣQ are large) leads to a restrictive constraint on the KL divergence.

Now consider the following class of sampling distribution

X∗ = AX∗0 , X∗0 ∼ Q0(·) [4.9]

where Q0(x∗) is the the independent resampling distribution and A belongs to the set of all p × p non-singular
matrices. Some elementary calculation deduces Eq. (4.7) to

min
β,A

{
1
2 · ‖Y −Xβ‖

2 + τ

2 · (β − β̃0)>(A>DXA)(β − β̃0) + λσ2

τ
Tr(A>DXA)−1

}
, [4.10]

where DX = diag(1, σ̂2
X,1, . . . , σ̂

2
X,p−1).

• If we further assume A to be positively diagonal, i.e., A = diag(1,√s1, . . . ,
√
sp−1), we are equivalently scaling

the synthetic covariate components separately. Then the optimization reduces to

min
β,s1:(p−1)

1
2 · ‖Y −Xβ‖

2 + τ

2 · (β0 − β̃0,0)2 + τ

2 ·
p−1∑
j=1

sj σ̂2
X,j(βj − β̃0,j)2 + λσ2

τ

p−1∑
j=1

1
sj σ̂2

X,j

 . [4.11]

Minimizing w.r.t. sj ’s is straightforward and the minimizer is

sj =


√

2λσ2

σ̂2
X,j

τ |(βj−β̃0,j)|
, if (βj − β̃0,j) 6= 0

∞ if (βj − β̃0,j) = 0

Thus the optimization further reduces to

min
β

1
2 · ‖Y −Xβ‖

2 + τ

2 · (β0 − β̃0,0)2 +
√

2λσ2 ·
p−1∑
j=1
|βj − β̃0,j |

 . [4.12]

If the simplified model is the intercept-only model, then β̃0,j = 0 and β̃0,0 = Ȳ , and the optimization is the
same as the formulation for the LASSO estimator (9).

• More generally, assume A to be a non-singular linear transformation. Suppose the spectral decomposition of
A>DXA is U>diag(1, s1, . . . , sp−1)U where U is an orthonormal matrix with its first column U1 parallel to 1.
Optimizing Eq. (4.7) w.r.t. A reduces the problem to

min
β

{
1
2 · ‖Y −Xβ‖

2 + τ

2 · (β0 − β̃0,0)2 +
√

2λσ2‖β−0‖
}
. [4.13]

Note that the penalty on β−0 is in the `2 norm rather than its square, and is thus different from the classic
Ridge regression. The same penalty is also used to define an estimator in Ref. (10) (see Eq (33) therein).

�

For a general model, the Hessian of the log density may change with the parameter, so optimizing Eq. (4.7) may
be infeasible. One possible solution is to replace β† by an estimate β̂0 and iteratively update β̂ and Q(x∗). We left
this idea for future investigation.
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5. Theoretical Properties

We begin with some notations. In Section A and Section B, we use the generic u for a value of the response variable,
W for a covariate random vector, W for a covariate random matrix, and m for the number of data points. In
Section C and Section D, we denoted by X∗ / X∗ / X∗ a synthetic covariate variable/vector/matrix, Y ∗ / y∗ a
synthetic response variable/vector, and M the synthetic-sample size. Throughout, p is the number of parameters
including both the covariates and the intercept term.

We adapt some notations and terminologies for exponential family from the classical reference (11). Let ν be a
fixed σ-finite measure on Borel sets of R, and Y be the interior of the convex hull of the support set of ν. Assume Y
is nonempty and open. For any θ ∈ R, define b(θ) = log

∫
eyθdν(y), and Θ = {θ : b(θ) <∞}. Assume Θ is nonempty

and open. It can be shown that Θ is convex and b′(θ) ∈ Y, for any θ ∈ Θ. The exponential family is defined by

dPθ(y) = eyθ−b(θ)dν(y). [5.1]

Without loss of generality, we assume the sample mean and the sample variance of each observed covariate are 0 and
1, i.e., the observed covariates are standardized. Please note that without loss of generality, we assume the sufficient
statistic t(y) = y in the GLM formula dPθ(y) = eθt(y)−b(θ)dν(y) throughout this section; otherwise we can redefine
the response as Y ′ = t(Y ) and proceed.

The structure of this theoretical section is as follows. Section A quantifies the tail integral for catalytic priors
under certain conditions, and Section B shows these conditions are satisfied if the synthetic covariates are drawn from
the the independent resampling distribution. The results in these two sections will be used in Section C to establish
bounds on the integrals of the catalytic priors. These bounds will be used to show the properness of catalytic priors.
Section D quantifies two types of divergence between the catalytic prior and the population catalytic prior.

A. Upper Bounds on the Integrals of Tails. We will derive upper bounds on the integrals of the tails (i.e., for ‖β‖ > K)
of the unnormalized density function for both the catalytic prior and the population catalytic prior, provided a
condition called norm-recovery holds.

We begin with an elementary lemma that bounds the integral of a multivariate tail for exp(−a‖x‖).

Lemma 5.1. For K > 0, a > 0,∫
‖x‖>K

exp(−a‖x‖)dx ≤ Γ(p)sp−1

ap
min

(
1, ep−aK(aK

p
)p
)
,

where the constant sp−1 = 2πp/2

Γ(p/2) is the surface area of a (p − 1)-dimension sphere. Furthermore, Γ(p)sp−1
ap ≤

CStirling
(2πp/e)p/2

ap , where CStirling is a universal constant. Thus we also have∫
‖x‖>K

exp(−a‖x‖)dx ≤ CStirling min
(

(2πp/e)p/2
ap

, ep−aK(
√

2πK
√
pe

)p
)
. [5.2]

Proof. Using the p-dimensional spherical coordinates, the integral is equal to∫
‖x‖>K

exp(−a‖x‖)dx =
∫
r>K

rp−1sp−1exp(−ar)dr = Γ(p)sp−1

ap
P(G > aK),

where G ∼ Gamma(p). By the Chernoff inequality and the moment generating function of G, for any t > 0, we have

P(G > aK) ≤ exp(−taK)EetG = exp(−taK)/(1− t)p.

Minimizing the right-hand side of the last inequality with respect to t > 0, we obtain

P(G > aK) ≤ min(1, exp(p− aK + p log(aK/p))),
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which is the first part of the lemma. By Stirling’s formula, Γ(z) =
√

2π
z ( ze )z(1 +O( 1

z )), and

Γ(p)
Γ(p/2) =

√
2π
p (pe )p(1 +O( 1

p ))√
2π
p/2 (p/2e )p/2(1 +O( 1

p ))
= 2p/2−1/2pp/2

ep/2
1 +O(1/p)
1 +O(1/p) ≤ CStirling

2p/2−1pp/2

ep/2
,

where CStirling is a universal constant. Hence we conclude the second part. The third part follows by combining the
first and second parts.

The following two theorems bound the tail integrals for catalytic priors under two conditions. These results will be
used later in Section C.

The first condition says that all responses are at least δ away from the boundary of the sample space. The second
condition is referred to as norm-recoverability and will be studied in Section B.

Theorem 5.2. Let u1, · · · , um ∈ Y, w1, · · · , wm ∈ Rp. Suppose

(1) there exist u−, u+ ∈ Y, δ > 0, such that u− ≤ ui − δ < ui + δ ≤ u+, for i = 1, · · · ,m;

(2) there is a positive constant c1 such that 1
m

∑m
i=1 |φ(w>i β)| ≥ c1‖β‖ for all β ∈ Rp.

Then there exists a constant C that only depends on u−, u+ and the exponential family Eq. (5.1), such that

(a) sup
β∈Rp

max
1≤i≤m

(
uiφ(w>i β)− b(φ(w>i β))

)
≤ logC;

(b) there exists a universal constant CStirling, such that for any K > p/(αδc1)∫
‖β‖>K

exp
(
α

m

m∑
i=1

(uiφ(w>i β)− b(φ(w>i β))
)
dβ ≤ CStirlingCαexp(p− c1αδK)(

√
2πK
√
pe

)p;

(c) ∫
‖β‖∈Rp

exp
(
α

m

m∑
i=1

(uiφ(w>i β)− b(φ(w>i β))
)
dβ ≤ CStirlingCα

(2πp)p/2
(c1αδ)p

.

Proof. By Condition (1) and Eq.(2.4) in Ref. (11), there are two compact convex subsets A− and A+ of R and
uA+ , uA− ∈ Y such that

uA− ≤ ui − δ, uA+ ≥ ui + δ, [5.3]

and
e−b(θ) ≤ (µ(A))−1e−θuA , A ∈ {A−, A+}. [5.4]

Let C = max(µ(A−)−1, µ(A+)−1). For a given β, denote θi = φ(w>i β) and let Si be the sign of θi, either +
or −. By Eq. (5.3), it holds that (uiθi − uASi θi) ≤ −δ|θi| regardless of Si. Together with Eq. (5.4), we have
uiθi − b(θi) ≤ logC − δ|θi|, which yields the result of part (a). Now the integral can be bounded as∫

‖β‖>K
exp

(
α

m

m∑
i=1

(uiθi − b(θi)
)
dβ

≤
∫
‖β‖>K

exp
(
α

m

m∑
i=1

(logC − δ|θi|)
)
dβ ≤ Cα

∫
‖β‖>K

exp (−c1αδ‖β‖) dβ, [5.5]

where the second inequality uses Condition (2). By Lemma 5.1, the last inequality can be bounded from above by
CStirlingC

αexp(p− c1αδK)(
√

2πK√
pe )p, which is part (b). Note that Eq. (5.5) actually also holds for K = 0 and can be

bounded from above by CStirlingCα (2πp/e)p/2

(c1αδ)p using Lemma 5.1, which gives part (c).
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Theorem 5.3. Suppose (W , U) are jointly random, and

(1) there exist u−, u+ ∈ Y, δ > 0, such that u− ≤ E(U |W )− δ < E(U |W ) + δ ≤ u+;

(2) there is a positive constant c0 such that E|φ(W>β)| ≥ c0‖β‖, for all β ∈ Rp;

then there exists some constant C that only depends on u−, u+ and the exponential family, such that

(a) E[Uφ(W>β)− b(φ(W>β))] ≤ logC

(b) There exists a universal constant CStirling, such that for any K > p/(αδc0), we have∫
‖β‖>K

exp
{
αE[Uφ(W>β)− b(φ(W>β))]

}
dβ ≤ CStirlingCαexp(p− c0αδK)(

√
2πK
√
pe

)p;

(c) ∫
‖β‖∈Rp

exp
{
αE[Uφ(W>β)− b(φ(W>β))]

}
dβ ≤ CStirlingCα

(2πp)p/2
(c0αδ)p

.

Proof. The proof follows the same argument as that of Theorem 5.2.

B. Synthetic-Covariate Generation with Norm-Recoverability. This section focuses on the synthetic-covariate gener-
ating distribution. Both Theorem 5.2 and Theorem 5.3 can be used to bound the tail integrals as long as we have the
following two lower bounds

∀β ∈ Rp, E|φ(W>β)| ≥ c0‖β‖,
1
m

m∑
i=1
|φ(W>

i β)| ≥ c1‖β‖. [5.6]

Note that the first inequality is deterministic while the second one is stochastic.

Definition 5.4. If Eq. (5.6) holds with high probability for a synthetic-covariate generating distribution, then we
call this distribution norm-recoverable.

We will focus on the case where the θ-link function is the identity, that is φ(η) = η, because, with the condition in
the main text that

inf
η 6=0
|φ(η)/η| > 0,

if Eq. (5.6) holds for the identity link, then it holds for φ(·).
A sufficient condition for norm-recoverability is given below.

Condition 5.5. The random vector X = (X1, X2, · · · , Xp) satisfies (1) X1 ≡ 1; (2) X2, · · · , Xp are independent;
(3) EXj = 0, V ar(Xj) = 1 for j = 2, · · · , p; (4) |Xj | ≤ B1, a.s. for j = 2, · · · , p.

Remark 5.6. X1 ≡ 1 corresponds to the intercept (constant) term in a GLM. �

Theorem 5.7. If X satisfies Condition 5.5, then there exist positive constants ρ0, η0, c and C that only depend on
B1 such that

(a) P
(
|X>β| > η0

)
≥ ρ0 for any β with ‖β‖ = 1

(b) E(|X>β|) ≥ η0ρ0, for any β with ‖β‖ = 1

(c) if {Xi}Mi=1 are i.i.d. copies of X, then with probability at least

1− e−cM − exp
(
−Mρ2

0
2 + p log(1 + 8C

η0ρ0
)
)
,

X has full column rank and

inf
‖β‖=1

1
M

M∑
i=1
|X>i β| ≥

η0ρ0

4 .
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We will establish several results that serve as the basis for Theorem 5.7, and the proof of Theorem 5.7 will be
deferred to the end of this section. The first result shows that the small ball probability, P(|X>β| > η), being bounded
away from 0 is a sufficient condition for X to be norm-recoverable.

Lemma 5.8. Suppose X1, . . . ,Xm are i.i.d. copies of X and X = (X1, . . . ,Xm)>. If there are positive constants η
and ρ such that

P(|X>β| > η) ≥ ρ, ∀‖β‖ = 1, [5.7]

then

(a) E(|X>β|) ≥ ηρ > 0 for any β with ‖β‖ = 1

(b) P( 1
m

∑m
i=1 |X>i β| ≥

1
2ηρ) ≥ 1− exp

(
−mρ

2

2

)
for any β with ‖β‖ = 1

(c) Let ‖X‖ denote the operator norm of the matrix X. If P(‖X‖ > C
√
m) ≤ e−cm for some constants c and C,

then with probability at least

1− e−cm − exp
(
−mρ

2

2 + p log(1 + 8C
ρ

)
)
,

it holds that X has full column rank and

inf
‖β‖=1

1
m

m∑
i=1
|X>i β| ≥

ηρ

4 .

Proof. (a) is trivial. For (b), let ξi = 1|X>
i
β|>η. By Hoeffding’s inequality, P(

∑m
i=1 ξi ≤

mρ
2 ) ≤ exp

(
−mρ

2

2

)
. Note

that the event {
∑m
i=1 ξi >

mρ
2 } implies that

∑m
i=1 |X>i β| >

mρ
2 η. Thus,

P( 1
m

m∑
i=1
|X>i β| ≤

1
2ηρ) ≤ P(

m∑
i=1

ξi ≤
mρ

2 ) ≤ exp
(
−mρ

2

2

)
.

For (c), we fixed a ηρ
4C -net N to cover the unit sphere Sp−1. By a volume argument, |N | ≤ (1 + 8C

ηρ )p. Under the
event {‖X‖ ≤ C

√
m} and the event

{
m∑
i=1
|X>i βk| ≥

mρ

2 η for all βk ∈ N},

for any ‖β‖ = 1, we can pick β1 ∈ N such that ‖β − β1‖ ≤ ηρ
4C . Thus,

1
m

(
m∑
i=1
|X>i β| −

m∑
i=1
|X>i β1|

)

≤ 1
m

m∑
i=1
|X>i (β − β1)| ≤ 1√

m
‖X(β − β1)‖ ≤ ηρ

4C
√
m
‖X‖ ≤ ηρ

4 ,

where the first inequality is due to the triangle inequality, the second is due to the generalized mean inequality, and
the third is from the definition of the operator norm and ‖β − β1‖ ≤ ηρ

4C . It follows that under these two events, we
have inf‖β‖=1

1
m

∑m
i=1 |X>i β| ≥ ηρ/4. This also implies that Xβ is a non-zero vector for any β, and thus rank(X) = p.

Since the union bound on the exception probability of these two events is (1 + 8C
ηρ )pexp

(
−mρ

2

2

)
+ e−cm, we proved

(c).

In order to use Lemma 5.8 to prove Theorem 5.7, we need to establish a lower bound on the small ball probability
and an upper bound on the operator norm of the synthetic covariate matrix.
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B.1. Lower Bounds on Small Ball Probability. We first show the condition Eq. (5.7) in Lemma 5.8 is implied by Condi-
tion 5.5. The proof makes use of two classic results: the first lemma is a direct implication of Hoeffding’s inequality,
and the second lemma is standard in the literature of the Littlewood–Offord problem.

Lemma 5.9. If X satisfies Condition 5.5, then for any y ∈ Rp with ‖y‖ = 1 and |y1| < 1, and t > 0

max
(

P(
p∑
i=2

yiXi > t),P(
p∑
i=2

yiXi < −t)
)
≤ exp

(
− t2

2B2
1(1− y2

1)

)
Lemma 5.10 (Lemma 3.1 in Ref. (12)). Let 2 < r ≤ 3 and µ ≥ 1. Suppose ξ1, · · · , ξq are independent centered r.v.
with E|ξi|r ≤ µr for all i = 1, · · · , q. Let y ∈ Rq and ‖y‖ = 1. Then for every λ ≥ 0

P(|
∑
i

ξiyi| > λ) ≥
(

(E
∑
i ξ

2
i y

2
i − λ2)+

8µ2

)r/(r−2)

.

We are now ready for the main result on the small ball probability.

Proposition 5.11. Assume X satisfy Condition 5.5 then there exist positive constants η0 and ρ0 that only depend
on B1, such that

P(|β>X| > η0) ≥ ρ0, ∀‖β‖ = 1. [5.8]

Proof. For any ρ, η ∈ [0, 1), define a function f(η, ρ) = η+
√

(1−2B2
1 log(1−ρ)−η2)(−2B2

1 log(1−ρ))
1−2B2

1 log(1−ρ) ; f(η, ρ) is the larger root
in [0, 1) of the following equation

x−
√

(1− x2)2B2
1 log( 1

1− ρ ) = η. [5.9]

For any η, ρ ∈ (0, 1), we separately consider |β1| ≥ f(η, ρ) and |β1| < f(η, ρ).

• If |β1| ≥ f(η, ρ), without loss of generality, assume β1 > 0. Let t2 = 2B2
1(1− β2

1) log( 1
1−ρ ). Lemma 5.9 reads

P
(

p∑
i=2

βiXi ≥ −t

)
≥ ρ [5.10]

Since f(η, ρ) is the larger root of Eq. (5.9) and β1 ≥ f(η, ρ), one can check β1−t = β1−
√

(1− β2
1)2B2

1 log( 1
1−ρ ) ≥

η. Thus, P(β1 +
∑p
i=2 βiXi ≥ η) ≥ ρ.

• If |β1| < f(η, ρ), Lemma 5.10 with r = 3, q = p− 1, and y = (β2, . . . , βp)/
√

1− β2
1 implies that for any s > 0,

P
(
|
p∑
i=2

βiXi| ≥ s

)
≥
(

1− β2
1 − s2

(1− β2
1)8B2

1

)3

≥
(

1− f2(η, ρ)− s2

(1− β2
1)8B2

1

)3

.

For any s ≥ f(η, ρ) + η, with |β1| ≤ f(η, ρ), we have

P(|β1 +
p∑
i=2

βiXi| ≥ η) ≥
(

1− f2(η, ρ)− s2

(1− β2
1)8B2

1

)3

. [5.11]

Note that f(η, ρ) is continuous on [0, 1]× [0, 1/2] and f(0, 0) = 0. The same holds for (f(η, ρ) + η)2 + f(η, ρ)2.
Therefore, there is some constant C > 0 only depends on B1, such that for all η, ρ ∈ (0, C],

(f(η, ρ) + η)2 + f(η, ρ)2 < 1.

Now take s = f(η, ρ) + η and substitute it into Eq. (5.11). We see that the right-hand side of Eq. (5.11) is
positive for any η, ρ ∈ (0, C]

Finally, fix any 0 < η0 ≤ C and choose ρ0 = min(C, ( 1−f2(η0,C)−(f(η0,C)+η0)2

8B2
1

)3). Combining the above two cases with
η = η0 and ρ = C, we showed

P(|β1 +
p∑
i=2

βiXi| ≥ η0) ≥ min(C,
(

1− f2(η0, C)− (f(η0, C) + η0)2

8B2
1

)3

) = ρ0 > 0.
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B.2. Upper Bounds for Operator Norm. We now show that the condition in Part (c) of Lemma 5.8 is guaranteed by
Condition 5.5, by deriving an upper bound on the operator norm of the synthetic covariate matrix.

Proposition 5.12. If i.i.d. covariates Xi’s satisfies Condition 5.5 for i = 1, . . . ,M , and M ≥ p, then

P
(
‖X‖ > t

√
2M
)
≤ e−c0t

2M , ∀t ≥ C0

where the constants C0, c0 > 0 depend only on B1, the constant in Condition 5.5.

Before the proof, we recall a classic result, Lemma 5.13, about the largest singular value of a random matrix. This
lemma holds for general independent subgaussian random variables. A r.v. ξ is subgaussian if its tail is dominated by
that of a normal random variable: there exists Bξ > 0 such that

P(|ξ| > t) ≤ 2exp(− t2

B2
ξ

), ∀t > 0. [5.12]

The subgaussian moment of ξ is the minimal Bξ such that this inequality holds. Note that by Hoeffding’s inequality,
a bounded and centered r.v. ξ ∈ [a, b] is subgaussian with subgaussian moment b−a

2 . Therefore, if X satisfies
Condition 5.5 then its coordinates are independent subgaussian with subgaussian moment B1.

Lemma 5.13 (Proposition 2.3 in Ref. (13)). Let W be an m × p random matrix, m ≥ p, whose elements are
independent subgaussian random variables with uniformly bounded subgaussian moments. Then

P
(
‖W‖ > t

√
m
)
≤ e−c0t

2m, ∀t ≥ C0,

where C0 > 0 and c0 > 0 depend only on the subgaussian moment B.

Proof of Proposition 5.12. Let W be the sub-matrix of X without the first column (recall the first column corresponds
to the constant term). By Lemma 5.13, we have

P
(
‖W‖ > t

√
M
)
≤ e−c0t

2M , ∀t ≥ C0.

For any t ≥ max(1, C0), on the event {‖W‖ ≤ t
√
M}, we have that for any β ∈ Rp

‖Xβ‖2 = β2
1M + β>−1W>Wβ−1 + 2β11>MWβ−1

≤ 2(β2
1M + β>−1W>Wβ−1) ≤ 2(β2

1M + t2M(1− β2
1)) ≤ 2t2M.

Thus, for any t ≥ max(1, C0),

P
(
‖X‖ > t

√
2M
)
≤ P

(
‖W‖ > t

√
M
)
≤ e−c0t

2M .

B.3. Synthesis.

Proof of Theorem 5.7. By Proposition 5.11, Condition 5.5 implies that there are η0 and ρ0 depending on B1 such
that Eq. (5.7) holds for W = X. This proves the result of Part (a). In addition, Part (a) of Lemma 5.8 implies
E(|X>β|) ≥ η0ρ0 for any β with norm 1. Therefore, we obtain the result of Part (b). By Proposition 5.12,
Condition 5.5 implies that the condition in Part (c) of Lemma 5.8 holds. Then Lemma 5.8, together with Eq. (5.7),
implies the result of Part (c).

C. Properness of Catalytic Priors.
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C.1. Catalytic Priors with Fixed Prior Weight. We begin with Theorem 5.14 and Corollary 5.15, which show the properness
of catalytic priors with finite M . These two results are combined into one presented as Theorem 1 in the main text.

Theorem 5.14. Assume the synthetic covariate matrix X∗ has full column rank and each synthetic response Y ∗i lies
in Y. Suppose cφ := infη 6=0 |φ(η)/η| > 0. Then the catalytic prior with finite M is proper for any τ > 0.

Proof of Theorem 5.14. For all β ∈ Rp, it holds that

1
M

M∑
i=1
|φ((Xi

∗)>β)| ≥ cφ
1
M

M∑
i=1
|(Xi

∗)>β| ≥ cφ
1
M

√√√√ M∑
i=1

((Xi
∗)>β)2 ≥ cφ

√
σmin

M
‖β‖2,

where σmin is the smallest eigenvalue of (X∗)>X∗/M (which is positive because X∗ has full column rank). This means
Condition (2) in Theorem 5.2 holds.

Furthermore, since each Y ∗i , i = 1, . . . ,M , lies in Y , which is an open set, there exist u−, u+ ∈ Y, δ > 0, such that
u− ≤ Y ∗i − δ < Y ∗i + δ ≤ u+, for all i = 1, · · · ,M . Thus, Condition (1) in Theorem 5.2 holds. Theorem 5.2 (with
ui = Y ∗i , wi = X∗i , α = τ , c1 =

√
σmin/M) implies that the integral of the unnormalized density function is finite,

which means the catalytic prior with finite M is proper.

Theorem 5.14 requires every synthetic response to lie in Y, which is guaranteed when the synthetic response is
taken to be the predictive mean of the sufficient statistic as in the case of exponential families, as described in Section
Catalytic Prior for GLM in the main text. Corollary 5.15 relaxes this condition and allows a synthetic response to be
on the boundary of Y. The condition 2 in Corollary 5.15 can be easily satisfied when the stratified synthetic data
generation is used.

Corollary 5.15. Let {(X∗i , Y ∗i ) : 1 ≤ i ≤M} be the synthetic dataset. Suppose

1. cφ := infη 6=0 |φ(η)/η| > 0,

2. there exists a set of linearly independent covariate vectors {x(0)
j }

p
j=1 such that for each 1 ≤ j ≤ p

1
#{i : X∗i = x

(0)
j }

∑
i:X∗

i
=x(0)

j

Y ∗i ∈ Y, [5.13]

3. for each 1 ≤ i ≤M , supθ (Y ∗i θ − b(θ)) ≤ logC for a constant C,

then the catalytic prior based on {(X∗i , Y ∗i ) : 1 ≤ i ≤M} is proper for any τ > 0.

Proof. We define another set of synthetic data points and weights:

X̃∗j = x
(0)
j , Ỹ ∗j = 1

#{i : X∗i = x
(0)
j }

∑
i:X∗

i
=x(0)

j

Y ∗i , w̃j = τ

M
#{i : X∗i = x

(0)
j }, 1 ≤ j ≤ p [5.14]

Denote by π̃ the catalytic prior corresponding to the synthetic dataset {(X̃∗j , Ỹ ∗j ) : 1 ≤ j ≤ p} and weights w̃j . Using
the proof of Theorem 5.14, we see that π̃ is proper. It follows that∫

Rp
exp

(
τ

M

M∑
i=1

(Y ∗i φ((Xi
∗)>β)− b(φ((Xi

∗)>β))
)
dβ

≤ C
τ
M (M−

∑p

j=1
w̃j)
∫
Rp

exp

 τ

M

p∑
j=1

#{i : X∗i = x
(0)
j } × (Ỹ ∗j φ((X̃∗j )>β)− b(φ((X̃∗j )>β))

 dβ <∞,

where the first inequality comes from rearranging the terms and the third condition of the corollary, and the second
inequality is due to the properness of π̃. This completes the proof.
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Theorem 5.14 and Corollary 5.15 show that if the synthetic covariate matrix has full column rank, then the catalytic
prior with finite M is proper for any τ > 0. The following theorem relaxes the full column rank assumption and shows
that the properness of catalytic priors can also be guaranteed with high probability if the synthetic-data generating
distribution satisfies some mild conditions. It also provides upper bounds on the tail integrals of the catalytic priors,
which are used in Section D to study the convergence of catalytic priors.

Theorem 5.16. Suppose (i) there exists a compact subset Ycom of Y such that every synthetic response is in
Ycom with probability 1, (ii) the synthetic-covariate generating distribution satisfies Condition 5.5, and (iii) cφ :=
infη 6=0 |φ(η)/η| > 0. Then there exist constants C∗ and δ that only depend on Ycom and the exponential family, and
constants ρ0, η0, c and C that only depend on B1, such that with probability at least

1− e−cM − exp
(
−Mρ2

0
2 + p log(1 + 8C

η0ρ0
)
)
,

the following holds

(a) X∗ has full column rank, the catalytic prior is proper for any τ > 0, and∫
‖β‖∈Rp

exp
{
τ

M

M∑
i=1

(
Y ∗i φ((Xi

∗)>β)− b(φ((Xi
∗)>β))

)}
dβ ≤ CStirling

Cτ (32πp)p/2
(τcφη0ρ0δ)p

.

(b) supβ∈Rp maxi≤M
(
Y ∗i φ((Xi

∗)>β)− b(φ((Xi
∗)>β))

)
≤ logC∗

(c) For any K > 4p/(τδcφη0ρ0), we have∫
‖β‖>K

exp
{
τ

M

M∑
i=1

(
Y ∗i φ((Xi

∗)>β)− b(φ((Xi
∗)>β))

)}
dβ

≤ CStirlingCτ∗ exp(p− τcφη0ρ0δK/4)(
√

2πK
√
pe

)p.

Before proving Theorem 5.16, we state an analogous theorem for population catalytic priors. The proof for both
theorems relies on the same idea and uses Theorem 5.7.

Theorem 5.17. Under the same conditions as in Theorem 5.16, the following holds

(a) the population catalytic prior is proper for any τ > 0 and∫
‖β‖∈Rp

exp
{
τE[Y ∗φ((X∗)>β)− b(φ((X∗)>β))]

}
dβ ≤ CStirling

Cτ (2πp)p/2
(τcφη0ρ0δ)p

.

(b) E[Y ∗φ((X∗)>β)− b(φ((X∗)>β))] ≤ logC∗

(c) There exists a universal constant CStirling, such that for any K > p/(τδcφη0ρ0), we have∫
‖β‖>K

exp
{
τE[Y ∗φ((X∗)>β)− b(φ((X∗)>β))]

}
dβ

≤ CStirlingCτ∗ exp(p− τcφη0ρ0δK)(
√

2πK
√
pe

)p.

Proof of Theorem 5.16 and Theorem 5.17. Since Ycom is a compact subset of Y, using an open covering argument,
there exist some u−, u+ ∈ Y and δ > 0 such that for any u ∈ Ycom, it holds that u− + δ ≤ u ≤ u+ − δ. Since the
synthetic response is in Ycom, so is the conditional expectation given the synthetic covariates. Thus, Condition (1) in
Theorem 5.3 and Condition (1) in Theorem 5.2 hold.
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For Theorem 5.17
Under Condition 5.5, Theorem 5.7 implies that for any β ∈ Rp

E|(X∗)>β| ≥ η0ρ0‖β‖.

Therefore, for all β ∈ Rp, it holds that

E|φ((X∗)>β)| ≥ cφE|(X∗)>β| ≥ cφη0ρ0‖β‖.

That is, Condition (2) in Theorem 5.3 holds with c0 = cφη0ρ0. By Theorem 5.3 (with U = Y ∗, W = X∗ and α = τ),
we conclude Theorem 5.17.

For Theorem 5.16
Under Condition 5.5, Theorem 5.7 implies that with probability at least 1− e−cM − exp

(
−Mρ2

0
2 + p log(1 + 8C

η0ρ0
)
)
,

X∗ has full column rank and it holds that

inf
‖β‖=1

1
M

M∑
i=1
|φ((Xi

∗)>β)| ≥ cφη0ρ0

4 .

Thus, Condition (2) in Theorem 5.2 holds with c1 = cφη0ρ0/4. By Theorem 5.2 (with ui = Y ∗i , wi = X∗i and α = τ),
we conclude Theorem 5.16.

C.2. Properness of the Joint Priors for (τ, β).

Theorem 5.18. If Γα,γ(τ) is taken as Eq. (16) of the main text for linear regression or as Eq. (17) of the main
text for other generalized linear models, where both α and γ are positive, then under the same conditions in either
Theorem 5.14 or Corollary 5.15, the following holds:

(1) The joint prior on (τ,β) is proper;

(2) For any α′ ∈ (0, α), the α′-th moment of β exists;

(3) Denoting by hα,γ(τ) the marginal prior on τ . If the MLE based on the synthetic data exists, then limτ→∞
1
τ log hα,γ(τ) =

−1/γ < 0.

Remark 5.19. The conclusions (2) and (3) indicate how the hyper-parameters α and γ affect the joint prior.
Specifically, α controls the tail behavior of β: the larger α, the lighter the tail β has; γ controls the tail behavior of τ :
the larger γ, the heavier the tail τ has. �

Proof. Denote by `(β) the log likelihood based on the synthetic data:

`(β) = 1
M

M∑
i=1

(
Y ∗i φ((Xi

∗)>β)− b(φ((Xi
∗)>β))

)
.

Since Conclusion (2) implies (1), we only need to prove (2) and (3).
Part 1. We first prove Conclusion (2). The proof is adapted from the proof of Theorem 3.1 in Ref. (14).
1(a). Suppose Γα,γ(τ) is taken as Eq. (17) of the main text for GLMs. By Tonelli’s theorem, for any α′ ∈ (0, α),∫

τ>0

∫
β∈Rp

‖β‖α
′
τp+α−1exp

(
−(κ+ 1

γ
)τ + τ`(β)

)
dβdτ =

∫
β∈Rp

‖β‖α
′ Γ(p+ α)
(κ+ γ−1 − `(β))p+α dβ.

From the proof of Theorem 5.14 and the proof of Corollary 5.15, we know that there exist positive constants c1 and
C1 such that

exp(`(β)) ≤ C1exp(−c1‖β‖), ∀β 6= 0. [5.15]

Split the integral in Eq. (5.15) into two:
∫
`(β)≤κ−c1‖β‖/2 and

∫
`(β)>κ−c1‖β‖/2. We will separately bound the two

integrals (without the constant term Γ(p+ α) there).
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For the first integral, we have∫
`(β)≤κ−c1‖β‖/2

‖β‖α
′ 1
(κ+ 1/γ − `(β))p+α dβ

≤
∫
`(β)≤κ−c1‖β‖/2

‖β‖α
′ 1
(1/γ + c1‖β‖/2)p+α dβ ≤

∫
Rp

‖β‖α′

(1/γ + c1‖β‖/2)p+α dβ,

where the last integral is finite by elementary calculus using the fact that α′ ∈ (0, α).
For the second integral, we have∫

`(β)>κ−c1‖β‖/2
‖β‖α

′ 1
(κ+ 1/γ − `(β))p+α dβ

≤
∫
`(β)>κ−c1‖β‖/2

‖β‖α
′ 1
(1/γ)p+α dβ

≤
∫
`(β)>κ−c1‖β‖/2

‖β‖α
′ 1
(1/γ)p+α exp(`(β) + c1‖β‖/2− κ)dβ

≤ C1

∫
`(β)>κ−c1‖β‖/2

γp+αe−κ‖β‖α
′
exp(−c1‖β‖+ c1‖β‖/2)dβ

≤ C1

∫
β∈Rp

γp+αe−κ‖β‖α
′
exp(−c1‖β‖/2)dβ,

where the first inequality is because by definition of κ it is no less than `(β), the second inequality is due to the fact
that `(β) + c1‖β‖/2− κ ≥ 0 in the domain of the integral, and the third inequality is due to Eq. (5.15). The last
expression is finite due to its exponential tail. Therefore, we prove the conclusion of (2) for GLMs.

1(b). Suppose Γα,γ(τ) is taken as Eq. (16) of the main text for linear regression. By Tonelli’s theorem, for any
α′ ∈ (0, α), we have∫

τ>0

∫
β∈Rp

‖β‖α
′
τ (p+α)/2−1exp

(
−(κ+ 1

γ
)τ + τ`(β)

)
dβdτ =

∫
β∈Rp

‖β‖α
′ Γ((p+ α)/2)
(κ+ 1/γ − `(β))(p+α)/2 dβ. [5.16]

Eq. (1.1) in Section 1 implies that there exists a positive constant c2 only depending on the noise variance and the
smallest singular value of the synthetic covariate matrix such that `(β) ≤ κ − c2‖β − β̃0‖2. Splitting the integral
in Eq. (5.16) into two:

∫
`(β)≤κ−c2‖β−β̃0‖2/2 and

∫
`(β)>κ−c2‖β−β̃0‖2/2. We can bound Eq. (5.16) similarly as before

(ignoring the constant Γ((p+ α)/2) in the numerator):∫
`(β)≤κ−c2‖β−β̃0‖2/2

‖β‖α
′ 1
(κ+ 1/γ − `(β))(p+α)/2 dβ

≤
∫
`(β)≤κ−c2‖β−β̃‖2/2

‖β‖α
′ 1
(1/γ + c2‖β − β̃0‖2/2)(p+α)/2

dβ

≤
∫
β∈Rp

‖β‖α
′ 1
(1/γ + c2‖β − β̃0‖2/2)(p+α)/2

dβ <∞,

and ∫
`(β)>κ−c2‖β−β̃0‖2/2

‖β‖α
′ 1
(κ+ 1/γ − `(β))(p+α)/2 dβ

≤
∫
`(β)>κ−c2‖β−β̃0‖2/2

‖β‖α
′ 1
(1/γ + 0)(p+α)/2 exp

(
`(β) + c2‖β − β̃0‖2/2− κ

)
dβ

≤
∫
`(β)>κ−c2‖β−β̃0‖2/2

‖β‖α
′
γ(p+α)/2exp

(
−c2‖β − β̃0‖2 + c2‖β − β̃0‖2/2

)
dβ

≤
∫
β∈Rp

‖β‖α
′
γ(p+α)/2exp

(
−c2‖β − β̃0‖2/2

)
dβ <∞.
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Combining the two cases, we conclude (1) and (2).
Part 2. We now prove Conclusion (3). Write the marginal prior for τ as

h(τ) ∝ τp+α−1exp (−τ/γ)
∫
β∈Rp

eτ(`(β)−κ)dβ.

By L’Hôpital’s rule,

lim
τ→∞

log h(τ)
τ

= − 1/γ + lim
τ→∞

∫
β∈Rp(`(β)− κ)eτ(`(β)−κ)dβ∫

β∈Rp e
τ(`(β)−κ)dβ

. [5.17]

It remains to show

lim
τ→∞

∫
β∈Rp(`(β)− κ)eτ(`(β)−κ)dβ∫

β∈Rp e
τ(`(β)−κ)dβ

= 0. [5.18]

We state the following lemma.

Lemma 5.20. Suppose f(x) is a continuous function on Rp, and x0 ∈ Rp uniquely minimizes f(x) and f(x0) = 0.
Furthermore, if there are some constants C and ω such that

f(x) ≥ C + ω‖x‖, [5.19]

then

lim
τ→∞

∫
x∈Rp f(x)e−τf(x)dx∫
x∈Rp e

−τf(x)dx
= 0.

By Theorem 5.14 and Corollary 5.15, the condition for Lemma 5.20 with function κ− `(β) holds, and we conclude
Eq. (5.18).

Proof of Lemma 5.20. Without loss of generality, we can assume x0 = 0; otherwise, let x̃ = x−x0, C̃ = (C−ω‖x0‖),
then f̃(x̃) = f(x̃+ x0) ≥ (C − ω‖x0‖) + ω‖x̃‖ = C̃ + ω‖x̃‖, i.e., the condition holds for f̃(x̃).

Part 1. We first show that the numerator is finite for any τ > 0.
Note that d

ds (se−τs) = (1− τs2)e−τs and lims→∞ se−τs = 0 , we have

f(x)e−τf(x) =
∫ ∞
f(x)

(τt2 − 1)e−τtdt.

By Fubini’s theorem, we have∫
x∈Rp

f(x)e−τf(x)dx =
∫
x∈Rp

∫ ∞
f(x)

(τt2 − 1)e−τtdtdx =
∫ ∞

0
(τt2 − 1)e−τtdt

∫
x∈Rp

1t>f(x)dx. [5.20]

By the condition of the lemma, f(x) < t implies ‖x‖ < t−C
ω . Thus,

∫
x∈Rp 1t>f(x)dx ≤ Cp( t−Cω )p, where the constant

Cp is the volume of a p-dimensional unit ball, and Eq. (5.20) can be bounded from above by∫
x∈Rp

f(x)e−τf(x)dx ≤ Cp
∫ ∞

0
( t− C

ω
)p(τt2 − 1)e−τtdt <∞.

Part 2. For any ε > 0, we split the numerator into two parts:∫
x∈Rp

f(x)e−τf(x)dx ≤
∫
f(x)≤ε

f(x)e−τf(x)dx+
∫
f(x)>ε

f(x)e−τf(x)dx

≤ ε
∫
x∈Rp

e−τf(x)dx+
∫
f(x)>ε

f(x)e−τf(x)dx [5.21]

Fixed any τ0 > 0, say τ0 = 1. For any τ > τ0, if f(x) > ε, then

f(x)e−τf(x) = f(x)e−τ0f(x)e−(τ−τ0)f(x) ≤ f(x)e−τ0f(x)e−(τ−τ0)ε.
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Therefore, the second integral on the right-hand side of Eq. (5.21) can be bounded by

e−(τ−τ0)ε
∫
f(x)>ε

f(x)e−τ0f(x)dx. [5.22]

We next bound the denominator from below. By the continuity at x0 = 0, there exists δε > 0 such that for any
‖x‖ ≤ δε, f(x) ≤ 1

2ε. Thus, ∫
x∈Rp

e−τf(x)dx ≥
∫
‖x‖≤δε

e−τf(x)dx ≥ e− τ2 εCpδpε . [5.23]

Combining Eq. (5.21), Eq. (5.22) and Eq. (5.23), we conclude that∫
x∈Rp f(x)e−τf(x)dx∫
x∈Rp e

−τf(x)dx
≤ ε+

e−(τ−τ0)ε ∫
f(x)>ε f(x)e−τ0f(x)dx

e−
τ
2 εCpδ

p
ε

,

whose right-hand side converges to ε + 0 as τ → ∞. Since ε > 0 is arbitrary, we conclude that the limit of
(
∫
x∈Rp f(x)e−τf(x)dx)/(

∫
x∈Rp e

−τf(x)dx) is 0.

D. Convergence from Catalytic Prior with finite M to Population Catalytic Prior. We will establish the convergence
of the catalytic priors in this section. Recall that the total variation distance between two distributions with density
π1 and π2 is defined as dTV(π1, π2) =

∫
|π1(β)− π2(β)|dβ. Our strategy to show the convergence in total variation is

to first split the integral into
∫
‖β‖≤K and

∫
‖β‖>K , and then obtain bounds for each in terms of K. By choosing K in

an appropriate way (see Section D.2), we can obtain an upper bound on the total variation distance. Since upper
bounds on the integrals of catalytic priors on ‖β‖ > K have already been established in Section A, the remaining
effort is to quantify the uniform convergence of the log likelihood function on ‖β‖ ≤ K for a fixed K. Section D.1
focuses on this uniform convergence.

Section D.3 directly computes the KL-divergence between the catalytic prior with finite M and the population
catalytic prior in the case of linear regression models and obtains an upper bound. This bound for the linear regression
case is of independent interest because it holds for all τ > 0, unlike the ones for other GLMs.

D.1. Uniform Convergence On a Compact Set. Throughout this section, we denote

`(y, θ) = yθ − b(θ).

The goal of this section is to find a probabilistic bound on

ZK := sup
‖β‖≤K

1
M

M∑
i=1

(
`(Y ∗i , (Xi

∗)>β)− E`(Y ∗i , (Xi
∗)>β)

)
. [5.24]

Once a bound on ZK is obtained, the integral of the absolute difference in the two prior densities on ‖β‖ ≤ K can
also be bounded.

Let Z0 := 1
M

∑M
i=1 (`(Y ∗i , 0)− E`(Y ∗i , 0)), which corresponds to taking β = 0 in the likelihood. We first bound

the expectation of ZK − Z0.

Lemma 5.21. Assume ‖X∗i ‖2 ≤ V 2
X and the log likelihood function `(y, θ) is Lipschitz-L in θ, then

E(ZK − Z0) ≤ 4KLVX√
M

.

The proof of this lemma is based on two classical lemmas in the literature of empirical processes and concentration
of measures. They are presented below for completeness. A random variable ε is called Rademacher if P(ε = 1) =
P(ε = −1) = 1/2, i.e., it is a symmetric Bernoulli r.v. on ±1.
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Lemma 5.22 (Symmetrization theorem, Theorem A.2 in Ref. (15)). Let U1, . . . , Un be independent random variables
with values in some space U , and let ε1, . . . , εn be a Rademacher sequence independent of U1, . . . , Un. Let Γ be a class
of real-valued functions on U . Then

E

(
sup
γ∈Γ

∣∣∣∣∣
n∑
i=1
{γ(Ui)− Eγ(Ui)}

∣∣∣∣∣
)
≤ 2E

(
sup
γ∈Γ

∣∣∣∣∣
n∑
i=1

εiγ(Ui)
∣∣∣∣∣
)

[5.25]

Lemma 5.23 (Contraction theorem, Theorem A.3 in Ref. (15)). Let x1, . . . , xn be nonrandom elements in some
space X , and F is a class of real-valued functions on X . Consider Lipschitz function γi : R 7→ R, that is,

|γi(s)− γi(s̃)| ≤ |s− s̃|, ∀s, s̃ ∈ R. [5.26]

Let ε1, . . . , εn be a Rademacher sequence. Then for any function f0 : X 7→ R, we have

E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi{γi(f(xi))− γi(f0(xi))}
∣∣∣∣∣
)
≤ 2E

(
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi{f(xi)− f0(xi)}
∣∣∣∣∣
)
. [5.27]

Proof of Lemma 5.21. Let ε1, . . . , εM be a Rademacher sequence independent with all the synthetic data. We have

E(ZK − Z0)

≤ E sup
‖β‖≤K

| 1
M

M∑
i=1

(
`(Y ∗i , (Xi

∗)>β)− E`(Y ∗i , (Xi
∗)>β)− [`(Y ∗i , 0)− E`(Y ∗i , 0)]

)
|

≤ 2E sup
‖β‖≤K

| 1
M

M∑
i=1

εi
(
`(Y ∗i , (Xi

∗)>β)− `(Y ∗i , 0)
)
| (by symmetrization, Lemma 5.22)

≤ 4LE sup
‖β‖≤K

| 1
M

M∑
i=1

εi
(
(Xi

∗)>β − 0
)
| (by contraction principle, Lemma 5.23)

≤ 4LE sup
‖β‖≤K

‖ 1
M

M∑
i=1

εiX
∗
i ‖‖β‖

≤ 4LK 1
M

√√√√E‖
M∑
i=1

εiX∗i ‖2 ≤
4KLVX√

M
,

with the following reasons:

(1) the second inequality: apply Lemma 5.22 with Ui = (Y ∗i ,X∗i ) and Γ = {γβ(Ui) = `(Y ∗i , (Xi
∗)>β) : ‖β‖ ≤ K};

(2) the third inequality: we first condition on the synthetic data, and then apply Lemma 5.23 with xi = X∗i ,
F = {fβ(x) = x>β : ‖β‖ ≤ K} and γi(s) = `(Y ∗i , s);

(3) the fourth and fifth inequalities are due to the Cauchy-Schwarz inequality, and the last inequality is due to the
independence between εi and X∗i .

Next we adapt a theorem from Ref. (16) to bound the deviation of ZK − Z0 from its expectation.

Lemma 5.24. Assume ‖X∗i ‖2 ≤ V 2
X and the log likelihood function `(y, θ) is Lipschitz-L in θ for |θ| ≤ KVX , then

P
(
ZK − Z0 − E(ZK − Z0) ≥ 8LKVX√

M
s

)
≤ e−smin(s,

√
M) [5.28]
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Proof. Let Wi,β = 1
2LKVX

(
`(Y ∗i , (Xi

∗)>β)− E`(Y ∗i , (Xi
∗)>β)− [`(Y ∗i , 0)− E`(Y ∗i , 0)]

)
. Then EWi,β = 0 and

sup
‖β‖≤K

|Wi,β| ≤ 1,

because `(y, θ) is Lipschitz-L in θ for |θ| ≤ KVX and sup‖β‖≤K |(Xi
∗)>β| ≤ KVX .

Let Σ2 := E sup‖β‖≤K
∑M
i=1W

2
i,β and σ2 := sup‖β‖≤K

∑M
i=1 EW 2

i,β. Clearly Σ2 ≤ M and σ2 ≤ M . By
Theorem 12.2 in Ref. (16), we have

P
(

sup
‖β‖≤K

M∑
i=1

Wi,β − E sup
‖β‖≤K

M∑
i=1

Wi,β ≥ t

)
≤ exp

(
− t2

2t+ 8M

)
,

which directly implies that

P
(
ZK − Z0 − E(ZK − Z0) ≥ 2LKVX

M
t

)
≤ exp

(
−min( t4 ,

t2

16M )
)
.

Setting t = 4s
√
M , we obtain the result.

Combining Lemma 5.21 and Lemma 5.24 together, we have the following theorem.

Theorem 5.25. Assume ‖X∗i ‖2 ≤ V 2
X and the log likelihood function `(y, θ) is Lipschitz-L in θ for |θ| ≤ KVX , then

P
(
ZK ≥

12LKVX√
M

s

)
≤ e−smin(s,

√
M) [5.29]

Proof. Note that `(y, 0) = y · 0− b(0) = −b(0), so by definition Z0 := 1
M

∑M
i=1 (`(Y ∗i , 0)− E`(Y ∗i , 0)) = 0. We have

P
(
ZK ≥

12LKVX√
M

s

)
= P

(
ZK − Z0 ≥

12LKVX√
M

s

)
≤ P

(
ZK − Z0 ≥ E(ZK − Z0) + 8LKVX√

M
s

)
≤ e−smin(s,

√
M),

where the first inequality is due to Lemma 5.21, and the second inequality is due to Lemma 5.24.

D.2. Convergence in Total Variation. We begin with an elementary lemma, which formalizes the key steps to show the
convergence in total variation.

Lemma 5.26. For two measurable functions f, g on Rp with integrable exponents, let If :=
∫
β∈Rp e

fdβ ∈ (0,∞)
and Ig :=

∫
β∈Rp e

gdβ ∈ (0,∞). Suppose ε1, ε2 are finite positive numbers such that

1. sup
‖β‖≤K

|f(β)− g(β)| ≤ ε1.

2.
∫
‖β‖>K e

fdβ ≤ ε2,
∫
‖β‖>K e

gdβ ≤ ε2

Then ∫
β∈Rp

|e
f

If
− eg

Ig
|dβ ≤ 2(eε1 − 1) + 3ε2

If

Proof. This proof is elementary.∫
β∈Rp

|e
f

If
− eg

Ig
|dβ ≤

∫
β∈Rp

|ef − eg|
If

|dβ +
∫
β∈Rp

eg| 1
If
− 1
Ig
|dβ = 1

If

∫
β∈Rp

|ef − eg|dβ + 1
If
|If − Ig|. [5.30]

Note that on ‖β‖ ≤ K, |ef − eg| ≤ (eε1 − 1)ef . It follows that

If − Ig =
∫
‖β≤K

(ef − eg)dβ +
∫
‖β>K

efdβ −
∫
‖β>K

egdβ ≤ (eε1 − 1)If + ε2.
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Similarly we have Ig− If ≤ (eε1 −1)If + ε2. Thus, |Ig− If | ≤ (eε1 −1)If + ε2. Therefore, we can bound the right-hand
side of Eq. (5.30) by

1
If

(
2ε2 +

∫
‖β‖≤K

ef (eε1 − 1)dβ + (eε1 − 1)If + ε2

)
≤ 2(eε1 − 1) + 3ε2

If
.

We now use this lemma together with Theorems 5.17 and 5.16 to prove the convergence in total variation.

Theorem 5.27. Suppose there exists a compact subset Ycom of Y such that every synthetic response is in Ycom with
probability 1, and the synthetic covariate sampled satisfies Condition 5.5 and cφ := infη 6=0 |φ(η)/η| > 0. Suppose also
the log likelihood function `(y, θ) is Lipschitz-L in θ. Then there exist constants C∗ and δ only depending on Ycom

and the exponential family, and constants ρ0, η0, c and C that only depend on the constant B1 in Condition 5.5, such
that for any ε ∈ (0, 1), and ν ∈ (0, 1), for any M > M0 := max

( 24
ε L
√
pB1K+, 1

)2 log(1/ν), where

K+ = 8
τδcφη0ρ0

max
(

log(CStirlingCτ )− log(Icat,∞ε) + p log(
√

128πp/e
τδcφη0ρ0

), p2

)
, [5.31]

we have that the total variation distance dTV (πcat,M , πcat,∞) ≤ 5ε with probability at lest

1− ν − e−cM − exp
(
−Mρ2

0
2 + p log(1 + 8C

η0ρ0
)
)
. [5.32]

Remark 5.28. Based on this result, we can further study the rate of convergence. We will use the asymptotic
notation an . bn (and an & bn) to indicate supn an

bn
< ∞ (and infn an

bn
> 0) for any positive sequences an, bn. We

also use an � bn if an & bn and an . bn hold simultaneously. If we ignore all constants (such as τ, δ, cφ, η0, ρ0, C)
that do not depend on p or M , then

K+ � p log p+ log( 1
Icat,∞ε

)

M0 � p(
p log p+ log( 1

Icat,∞ε
)

ε
)2 log(1/ν). [5.33]

We can assume log(1/ν) > 1 and log(1/ε) > 1, since only small values of ν and ε matter. Together with p > 1,
Eq. (5.33) implies

√
M0 & 1

ε . Therefore log( 1
ε ) . logM0. Plugging in Eq. (5.33), we have

ε . (p log p+ log
(

M0

Icat,∞

)
)

√
p log(1/ν)

M0
. [5.34]

This analysis suggests that the total variation dTV (πcat,M , πcat,∞) decays roughly at the rate of O(
√

p3 log2(p)+p log2(M)
M ).

�

Remark 5.29. For fixed p and τ , one can take C1 sufficiently large such that for any ν ∈ (0, 1/6) and ε ∈ (0, 1), the
following inequalities hold

2
ρ2

0

(
log(1/ν) + p log(1 + 8C

η0ρ0
)
)
<C1 log( 1

3ν ), [5.35]

1
c

log(1/ν) <C1 log( 1
3ν ), [5.36](

24
ε
L
√
pB1K+

)2
<C1

1
(5ε)2

(
1 + log2( 1

5ε )
)
, [5.37]

1 <C1
1

(5ε)2

(
1 + log2( 1

5ε )
)
. [5.38]
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For any ε0 ∈ (0, 1/2) and ε1 ∈ (0, 5), if M ≥ C1

(
1 + log2( 1

ε1
)
)

1
ε2

1
log( 1

ε0
), substituting ν = ε0/3 and ε = ε1/5 in the

above inequalities (Eq. (5.35) to Eq. (5.38)), we have

M >
2
ρ2

0

(
log(1/ν) + p log(1 + 8C

η0ρ0
)
)
, M >

log(1/ν)
c

, [5.39]

and

M > max
(

24
ε
L
√
pB1K+, 1

)2
log(1/ν). [5.40]

Using Eq. (5.39), the probability in Eq. (5.32) is bounded from below by 1− 3ν = 1− ε0. Therefore, Theorem 5.27,
together with Eq. (5.40), implies that with probability at least 1− ε0, the total variation distance dTV (πcat,M , πcat,∞)
is bounded from above by 5ε = ε1. This result corresponds to the first statement in Theorem 4 of the main text. �

Remark 5.30. The assumption on Ycom is automatically satisfied if the synthetic-data generating model is a
sub-model, say g∗(· |X∗,Y ,X) = f(· | β̂>X∗), and the synthetic response is replaced by the predictive mean under
the synthetic-data generating model. The reason is the following. Under Condition 5.5, ‖X∗‖ is bounded and β̂>X∗

lies in some compact set Θ ⊂ R. This implies that every synthetic response will lie in the image b′(Θ), which is also
compact because b′(·) is continuous. �

Proof of Theorem 5.27. Denote by πUcat,M and πUcat,∞ respectively the unnormalized density functions of the finite-M
catalytic prior and the population catalytic prior, and denote by Icat,M and Icat,∞ respectively the integrals of πUcat,M
and πUcat,∞.

We directly apply Theorem 5.16 to get all the constants and all the inequalities. Denote by A1 the event that
(a)-(c) in Theorem 5.16 hold. On this event, for any K > 4p/(τδcφη0ρ0), we have∫

‖β‖>K
πUcat,Mdβ ≤ CStirlingCτ∗ exp(p− τcφη0ρ0δK/4)(

√
2πK
√
pe

)p

= CStirlingC
τ
∗ (2π
pe

)p/2ep [Kpexp(−2τC2K)] ,

where C2 = cφη0ρ0δ/8. Using the elementary fact that for all a, b and x > 0, it always holds that a log x − bx ≤
−bx/2 + a log(2a/b)− a, we know that the above right-hand-side is bounded by (taking x = K, a = p and b = 2τC2)∫

‖β‖>K
πUcat,Mdβ ≤ CStirlingCτ∗ (2πp

e
)p/2 exp (−τC2K)

(τC2)p . [5.41]

A similar argument using (a)-(c) in Theorem 5.17 shows that the right-hand side of Eq. (5.41) is also an upper bound
for
∫
‖β‖>K π

U
cat,∞dβ.

For any ε ∈ (0, 1), let K0 = 1
τC2

(
log(CStirlingCτ ) + log(1/(Icat,∞ε)) + p log(

√
2πp/e
τC2

))
)
. Let

K+ = max(K0, 4p/(τδcφη0ρ0)).

It is straightforward to check that if K ≥ K+, then the right-hand side of Eq. (5.41) is no greater than Icat,∞ε.
Let VX be √pB1. Condition 5.5 implies ‖X∗i ‖2 ≤ pB2

1 = V 2
X . By Theorem 5.25, for any ν > 0 and any

M ≥ log(1/ν), it holds with probability at least 1− ν that

sup
‖β‖≤K+

| log(πUcat,M )− log(πUcat,∞)| ≤ 12LK+VX√
M

√
log(1/ν). [5.42]

Theorem 5.16 and Theorem 5.25 show that with probability at least

1− ν − e−cM − exp
(
−Mρ2

0
2 + p log(1 + 8C

η0ρ0
)
)
,
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both events A1 and Eq. (5.42) hold, in which case Lemma 5.26 implies that

dTV (πcat,M , πcat,∞) ≤ 2(exp
(

12LK+VX√
M

√
log(1/ν)

)
− 1) + 3

Icat,∞
Icat,∞ε.

Furthermore, if M > ( 24LVXK+
ε )2 log(1/ν), then using the fact that ex ≤ 1 + 2x for x ∈ (0, 1),

dTV (πcat,M , πcat,∞) ≤ 2(exp (ε/2)− 1) + 3ε ≤ 5ε.

D.3. Convergence of Catalytic Priors for Linear Regression Models. Theorem 5.27 requires the technical Lipschitz condition
of the likelihood, which does not apply to linear regression models. In this section, we study the convergence of
catalytic priors for linear regression with Gaussian noise. It is interesting to note that the catalytic prior for linear
regression has a convergence rate that does not depend on τ . This also guarantees the use of small value of τ for
linear regression, which may not be suitable for other GLMs.

In this section, we use the same notation as in Section 1, where we have shown that for a linear regression model,
the catalytic prior πcat,M is N(β̃0, σ

2( τM (X∗)>X∗)−1), and the population catalytic prior πcat,∞ is N(β̃0, σ
2(τΣX)−1),

where β̃0 is the estimated parameter under the synthetic-data generating distribution (and the predictive mean under
the synthetic-data generating distribution is Eg∗(Y ∗|X∗ = x) = x>β̃0).

Theorem 5.31. Suppose X∗1 , . . . ,X∗M are i.i.d. drawn from the independent resampling distribution, and ‖X∗i ‖2 ≤
VX . Let σ2

X be min2≤j≤p σ̂2
X,j (which is positive by assumption). Then for any δ > 0 and any M > 16

9 (VXσX )2 log(pδ ),
it holds with probability at least 1− δ that

KL(πcat,∞, πcat,M ) ≤ 2pVX
σX

√
1
M

log(p
δ

). [5.43]

Remark 5.32. Condition 5.5 implies ‖X∗i ‖2 ≤ pB2
1 , that is, VX can be taken as √pB1. It follows that the KL-

divergence decays at the rate of O(
√

p3 log p
M ). This rate is slightly faster than the rate in Theorem 5.27, which is

O(
√

p3 log2(p)+p log2(M)
M ). See Remark 5.28. �

Proof of Theorem 5.31. Let DX be the diagonal matrix diag(1, σ̂2
X,2, . . . , σ̂

2
X,p). Under the independent resampling

distribution, the limiting covariance matrix ΣX = limM→∞
1
M (X∗)>X∗ is the diagonal matrix DX , i.e., ΣX = DX .

We first prove that for any t > 0 and any M , with probability at least 1− p · exp
(
− t2

2(1+ 2t
3
√
M

VX
σX

)

)
,

‖ 1
M
D
−1/2
X (X∗)>X∗D−1/2

X − Ip‖ ≤
VX√
MσX

t. [5.44]

Define Ui = D
−1/2
X X∗i . Under the conditions of the theorem, we have

‖Ui‖ ≤
VX
σX

, and EUiU>i = Ip [5.45]

Let Si = 1
M (UiU>i − Ip) and ∆ = 1

MD
−1/2
X (X∗)>X∗D−1/2

X − Ip. Then ∆ =
∑M
i=1 Si.

Note that σ2
X = minj σ̂2

X,j ≤ V 2
X . Eq. (5.45) implies

‖Si‖ ≤
1 + V 2

X/σ
2
X

M
≤ 2V 2

X/σ
2
X

M
.
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We use the expression A � B to indicate that B −A is positive semi-definite.

E
M∑
i=1

S2
i = 1

M2

M∑
i=1

(
EUiU>i UiU>i − Ip

)
� 1
M2

M∑
i=1

(
(VX
σX

)2EUiU>i − Ip
)

� (VX/σX)2

M
Ip,

where the first equality and the third inequality uses EUiU>i = Ip, and the second inequality is due to U>i Ui =
‖Ui‖2 ≤ (VXσX )2. Applying the Matrix Bernstein inequality (Theorem 1.4 in Ref. (17)), we have that for all s ≥ 0,

P(‖∆‖ ≥ s) ≤ p · exp
(

−s2/2
(VX/σX)2

M + 2s(VX/σX)2

3M

)
.

Substitute s = t(VX/σX)/
√
M into the last right-hand side, we conclude

P(‖∆‖ ≥ tVX/σX√
M

) ≤ p · exp
(
− t2

2(1 + 2t
3
√
M

VX
σX

)

)
, [5.46]

which is Eq. (5.44).
Now we compute the KL-divergence between the catalytic prior πcat,∞ ∼ N(β̃0, σ

2(τ(X∗)>X∗/M)−1) and the
population catalytic prior πcat,M ∼ N(β̃0, σ

2(τDX)−1).
By the definition, the KL-divergence between two multivariate normal distributions N(µ1,Ω−1

1 ) and N(µ2,Ω−1
2 ) is

1
2
(
Tr(Ω−1

1 Ω2) + log det(Ω1Ω−1
2 )− p+ Tr(Ω2(µ2 − µ1)(µ2 − µ1)>

)
.

Take Ω1 = τ(X∗)>X∗/(Mσ2) and Ω2 = τDX/σ
2. Then ∆ = Ω−1/2

2 Ω1Ω−1/2
2 − Ip and

KL(πcat,∞, πcat,M ) = 1
2
(
Tr(Ω−1

1 Ω2) + log det(Ω1Ω−1
2 )− p

)
.

By the cyclic property of matrix trace, we have

Tr(Ω−1
1 Ω2)− p = Tr(Ω−1

1 (Ω2 −Ω1)) = −Tr(Ω1/2
2 Ω−1

1 Ω1/2
2 ∆) = −Tr((Ip + ∆)−1∆).

Let the eigenvalue decomposition of ∆ be V ΛV >, where Λ is a diagonal matrix whose diagonal entries are λ1, . . . , λp

and V is an orthonormal matrix. By V >V = Ip, we have

Tr(Ω−1
1 Ω2)− p+ log det(Ω1Ω−1

2 ) = log det(Ip + ∆)− Tr((Ip + ∆)−1∆)

=
p∑
i=1

(
log(1 + λi)−

λi
1 + λi

)
.

Note that the inequality log(1 + λ)− λ/(1 + λ) ≤ 2|λ| holds for any |λ| < 1/2, so on the event ‖∆‖ < 1/2, we have

Tr(Ω−1
1 Ω2)− p+ log det(Ω1Ω−1

2 ) ≤ 2
p∑
i=1
|λi| ≤ 2p‖∆‖,

which means that

KL(πcat,∞, πcat,M ) ≤ p‖∆‖.

For any δ > 0, if
M >

16
9 (VX

σX
)2 log(p

δ
),
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then 2(VX/σX)
√

4 log( pδ )
3
√
M

< 1, and we can take t =
√

4 log(pδ ) in Eq. (5.46) to conclude that

P
(
‖∆‖ ≥ (VX/σX)

√
4 log(pδ )
M

)
≤ δ,

and

P
(
KL(πcat,∞, πcat,M ) ≥ p(VX/σX)

√
4 log(pδ )
M

)
≤ δ.

This concludes the proof of the theorem.

Remark 5.33. The last inequality does not depend on the value of τ , which implies that one can use a small value
of τ in the catalytic prior for linear regression models. �

Remark 5.34. As a special case, when VX = 1 and σX = 1, for any ε > 0, if M ≥ 4p3

3ε2 log(pδ ) then with probability
at least 1− δ, it holds that KL(πcat,∞, πcat,M ) ≤ ε.

�
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