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FROM FINITE SAMPLE TO ASYMPTOTICS: A GEOMETRIC
BRIDGE FOR SELECTION CRITERIA IN SPLINE REGRESSION1

BY S. C. KOU

Harvard University

This paper studies, under the setting of spline regression, the connection
between finite-sample properties of selection criteria and their asymptotic
counterparts, focusing on bridging the gap between the two. We introduce a
bias-variance decomposition of the prediction error, using which it is shown
that in the asymptotics the bias term dominates the variability term, providing
an explanation of the gap. A geometric exposition is provided for intuitive
understanding. The theoretical and geometric results are illustrated through a
numerical example.

1. Introduction. A central problem in statistics is regression: One observes
{(xi, yi), i = 1,2, . . . , n} and wants to estimate the regression function ofy on x.
Through the efforts of many authors, the past two decades have witnessed the
establishment of nonparametric regression as a powerful tool for data analysis;
references include, for example, Härdle (1990), Hastie and Tibshirani (1990),
Wahba (1990), Silverman (1985), Rosenblatt (1991), Green and Silverman (1994),
Eubank (1988), Simonoff (1996), Fan and Gijbels (1996), Bowman and Azzalini
(1997) and Fan (2000).

The practical application of nonparametric regression typically requires the
specification of a smoothing parameter which crucially determines how locally the
smoothing is done. This article, under the setting of smoothing splines, concerns
the data-driven choice of smoothing parameter (as opposed to a subjective
selection); in particular, this article focuses on the connection betweenfinite-
sample properties of selection criteria and theirasymptotic counterparts.

The large-sample (asymptotic) perspective has been impressively addressed
in the literature. Some references, among others, include Wahba (1985), Li
(1986, 1987), Stein (1990), Hall and Johnstone (1992), Jones, Marron and
Sheather (1996), Hurvich, Simonoff and Tsai (1998) and Speckman and Sun (2001).

Complementary to the large-sample (asymptotic) developments, Efron (2001)
and Kou and Efron (2002), using a geometric interpretation of selection criteria,

Received March 2003; revised March 2004.
1Supported in part by NSF Grant DMS-02-04674 and Harvard University Clark-Cooke Fund.
AMS 2000 subject classifications. Primary 62G08; secondary 62G20.
Key words and phrases. Cp, generalized maximum likelihood, extended exponential criterion,

geometry, bias, variability, curvature.

2444



FROM FINITE SAMPLE TO ASYMPTOTICS 2445

study thefinite-sample properties. For example, they explain (a) why the popular
Cp criterion has the tendency to be highly variable [even for data sets generated
from the same underlying curve, theCp-estimated curve varies a lot from
oversmoothed ones to very wiggly ones; see Kohn, Ansley and Tharm (1991)
and Hurvich, Simonoff and Tsai (1998) for examples], and (b) why another
selection criterion, generalized maximum likelihood [Wecker and Ansley (1983),
Wahba (1985) and Stein (1990)], appears to be stable and yet sometimes tends
to undersmooth the curve. Roughly speaking, it was shown that the root of
the variable behavior ofCp is its geometric instability, while the stable but
undersmoothing behavior of generalized maximum likelihood (GML) stems from
its potentially large bias. In addition, they also introduce a new selection criterion,
the extended exponential (EE) criterion, which combines the strength ofCp and
GML while mitigating their weaknesses.

With the asymptotic and finite-sample properties delineated, it seems that we
have a “complete” picture of selection criteria. However, a careful inspection of the
finite-sample and asymptotic results, especially the ones comparingCp and GML,
reveals an interesting gap. On the finite-sample side,Cp ’s geometric instability
undermines its competitiveness [Kohn, Ansley and Tharm (1991) and Hurvich,
Simonoff and Tsai (1998)], which opens the door for the more stable GML, while
on the large-sample (asymptotic) side different authors [e.g., Wahba (1985) and
Li (1986, 1987)] have suggested that from the frequentist standpoint theCp-type
criterion asymptotically performs more efficiently than GML. This “gap” between
finite-sample and asymptotic results naturally makes one puzzle: (a) Why doesn’t
the finite-sample advantage of GML, notably its stability, benefit it as far as large-
sample (asymptotics) is concerned? (b) Why does the geometric instability ofCp

seen in finite-sample disappear in the asymptotic considerations?
This article attempts to address these puzzles. First, by decomposing the

estimation error into a bias part and a variability part, we show that as sample
size grows large the bias term dominates the variability term, thus making the
large-sample case virtually a bias problem. Consequently in the large-sample
comparisons, one is essentially comparing the bias of different selection criteria
and unintentionally overlooking the variability—a situation particularly favoring
the Cp-type criterion as it is (asymptotically) unbiased. Second, by studying
the evolution of the geometry of selection criteria, we show that the geometric
instability of selection criteria gradually decreases, though rather slowly, which
again benefits theCp-type criterion, because it says as far as asymptotics is
concerned, the instability ofCp evident in finite-sample studies will not show up.
The recent interesting work of Speckman and Sun (2001) appears to confirm our
results regarding asymptotics (see Section 2); they showed that GML andCp agree
on the relative convergence rate of the selected smoothing parameter.

The connection between finite-sample and asymptotic results is illustrated by
a numerical example (Section 4). The numerical example also indicates that for
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sample sizes one usually encounters in practice the EE criterion appears to behave
more stably than both GML andCp.

The article is organized as follows. Section 2 introduces a bias-variance
decomposition of the total prediction error, and investigates its finite- and large-
sample consequences. Section 3 provides a geometric explanation to bridge
the finite-sample and asymptotic results regarding selection criteria. Section 4
illustrates the connection through a simulation experiment. Thearticle concludes
in Section 5 with further remarks. The detailed theoretical proofs are deferred to
the Appendix.

2. A bias-variance decomposition for prediction error.

2.1. Selection criteria in spline regression. The goal of regression is to
estimatef (x) = E(y|x) from n observed data points{(xi, yi), i = 1,2, . . . , n}.
A linear smoother estimatesf = (f (x1), f (x2), . . . f (xn))

′ by f̂λ = Aλy, where the
entries of then × n smoothing matrixAλ depend onx = (x1, x2, . . . , xn) and also
on a nonnegativesmoothing parameter λ. One class of linear smoothers that will
be of particular interest in this article is (cubic) smoothing splines, under which

Aλ = UaλU′,(2.1)

whereU is ann × n orthogonal matrixnot depending onλ, andaλ = diag(aλi),
a diagonal matrix with theith diagonal elementaλi = 1/(1+λki), i = 1,2, . . . , n.
The constantsk = (k1, k2, . . . , kn), solely determined byx, are nonnegative and
nondecreasing. The trace of the smoothing matrix tr(Aλ) is referred to as the
“degrees of freedom,”dfλ = tr(Aλ), which agrees with the standard definition
if Aλ represents polynomial regression.

To use splines in practice, one typically has to infer the value of the smoothing
parameterλ from the data. TheCp criterion choosesλ to minimize an unbiased
estimate of the total squared error. Suppose theyi ’s are uncorrelated, with meanfi

and constant varianceσ 2. TheCp estimate ofλ is λ̂Cp = arg minλ{Cλ(y)}, where
the Cp statisticCλ(y) = ‖y − f̂λ‖2 + 2σ 2 tr(Aλ) − nσ 2 is an unbiased estimate
of E‖f̂λ − f‖2.

The generalized maximum likelihood (GML) criterion [Wecker and Ansley
(1983)] is another selection criterion motivated from empirical Bayes considera-
tions. If one starts fromy ∼ N(f, σ 2I), and puts a Gaussian prior on the underlying
curve:f ∼ N(0, σ 2Aλ(I − Aλ)

−1), then by Bayes theorem,

y ∼ N
(
0, σ 2(I − Aλ)

−1), f|y ∼ N(Aλy, σ 2Aλ).(2.2)

The second relationship shows thatf̂λ = Aλy is the Bayes estimate off. The
first relationship motivates the GML: It choosesλ̂GML as the MLE ofλ from
y ∼ N(0, σ 2(I − Aλ)

−1).
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The setting of smoothing splines (2.1) allows a rotation of coordinates,

z = U′y/σ, g = U′f/σ, ĝλ = U′f̂λ/σ,(2.3)

which leads to a diagonal form:z ∼ N(g, I), ĝλ = aλz. Letbλi = 1− aλi andbλ =
(bλ1, bλ2, . . . , bλn). In the new coordinate system, theCp statistic can be expressed
as a function ofz2, Cλ(z2) = σ 2 ∑n

i=1(b
2
λiz

2
i − 2bλi) + nσ 2, and correspondingly

λ̂Cp = arg min
λ

∑
i>2

(b2
λiz

2
i − 2bλi).

Under the coordinate system ofz and g, since z ∼ N(0,diag(b−1
λ )), g|z ∼

N(aλz,aλ),

λ̂GML = MLE of z ∼ N
(
0,diag(b−1

λ )
) = arg min

λ

∑
i>2

(bλiz
2
i − logbλi).

Becausez andg offer simpler expressions, we will work on them instead of
y and f whenever possible. The extended exponential (EE) selection criterion,
studied in Kou and Efron (2002), provides a third way to choose the smoothing
parameter. It is motivated by the idea of combining the strengths ofCp and GML
while mitigating their weaknesses, since in practice theCp-selected smoothing
parameter tends to be highly variable, whereas the GML criterion has a serious
problem with bias (see Section 4 for an illustration). Expressed in terms ofz, the
EE criterion selects the smoothing parameterλ according to

λ̂EE = arg min
λ

∑
i>2

[Cbλizi
4/3 − 3b

1/3
λi ],

where the constantC =
√

π

22/3�(7/6)
= 1.203. Kou and Efron (2002) explained its

construction from a geometric point of view and illustrated through a finite-sample
nonasymptotic analysis that the EE criterion combines the strengths ofCp and
GML to a large extent.

An interesting fact about the three criteria (Cp, GML and EE) is that they share
a unified structure. Letp ≥ 1, q ≥ 1 be two fixed constants. Define the function

l
(p,q)
λ (u) =


∑
i

[
(cqb

1/q
λi )pui − p

p − 1

(
(cqb

1/q
λi )p−1 − 1

)]
, if p > 1,

∑
i

(cqb
1/q
λi ui − logb

1/q
λi ), if p = 1,

(2.4)

wherecq =
√

π

21/q�(1/2+1/q)
, and a corresponding selection criterion

λ̂(p,q) = argmin
λ

{
l
(p,q)
λ (z2/q)

}
.(2.5)

Then it is easy to verify that (i)l(p,q)
λ → l

(1,q)
λ asp → 1; (ii) taking p = 1, q = 1

gives the GML criterion;p = 2, q = 1 gives theCp criterion; p = q = 3
2 gives
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the EE criterion. The class (2.5), therefore, unites the three criteria in a continuous
fashion. This much facilitates our theoretical development as it allows us to work
on the general selection criterionλ̂(p,q) and take(p, q) to specific values to obtain
corresponding results for EE,Cp and GML.

2.2. The unbiasedness of Cp . To introduce the idea of bias-variance decom-
position, we first note that for each selection criterionλ̂(p,q) there are an associ-
ated central smoothing parameterλ

(p,q)
c and central degrees of freedomdf (p,q)

c

obtained by applying the expectation operator on the selection criterion (2.5):

λ(p,q)
c = argmin

λ
E

{
l
(p,q)
λ (z2/q)

}
,(2.6)

df (p,q)
c = tr

(
A

λ
(p,q)
c

)
.(2.7)

Since (2.6) is the estimating-equation version of (2.5), from the general theory of
estimating equations it can be seen thatλ̂(p,q) and d̂f

(p,q)
are centered around

λ
(p,q)
c anddf

(p,q)
c in the sense thatλ(p,q)

c anddf
(p,q)
c are the asymptotic means

of λ̂(p,q) and d̂f
(p,q)

. Thusλ
(p,q)
c anddf

(p,q)
c index the central tendency of the

selection criterion-(p, q).
Next we introduce theideal smoothing parameter λ0 and theideal degrees of

freedom df0 = tr(Aλ0), which are intrinsically determined by the underlying curve
and do not depend on the specific selection criterion one uses:

λ0 = argmin
λ

Ef‖f̂λ − f‖2 = argmin
λ

E‖ĝλ − g‖2.(2.8)

The riskE‖ĝλ0 − g‖2 associated withλ0 represents the minimum risk one has
to bear to estimate the underlying curve. Therefore, to compare the performance
of different selection criteria one can focus on theextra risk: E‖ĝ

λ̂
− g‖2 −

E‖ĝλ0 − g‖2. See Wahba (1985), Härdle, Hall and Marron (1988), Hall and
Johnstone (1992), Gu (1998) and Efron (2001) for more discussion.

Having introduced the necessary concepts, we state our first result, the
unbiasedness ofCp.

THEOREM 2.1. The central smoothing parameter λ
(2,1)
c and degrees of

freedom df
(2,1)
c of Cp correspond exactly to the ideal smoothing parameter and

degrees of freedom

λ(2,1)
c = λ0, df (2,1)

c = df0.

PROOF. First, from the definition (2.8) a straightforward expansion gives

λ0 = argmin
λ

∑
i

(
b2
λi(g

2
i + 1) − 2bλi

)
.(2.9)
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Next, forCp according to (2.6) its central smoothing parameter

λ(2,1)
c = argmin

λ
E

{
l
(2,1)
λ (z2)

} = argmin
λ

E

{∑
i

[b2
λiz

2
i − 2bλi]

}
(2.10)

= argmin
λ

∑
i

(
b2
λi(g

2
i + 1) − 2bλi

)
.

The proof is complete because (2.9) and (2.10) give identical expressions forλ0

andλ
(2,1)
c . �

Since no other element from the selection criteria class (2.5) possesses this
property of unbiasedness, the result of Theorem 2.1 givesCp an advantage over
the others. As we shall see shortly, this advantage is the main factor that makes the
asymptotic consideration favorable forCp.

2.3. The bias-variance decomposition. The results developed so far work for
all sample sizes. Next we turn our attention to the large-sample case. There is
a large amount of literature addressing the large-sample properties of selection
criteria. The well-cited asymptotic results [Wahba (1985) and Li (1986, 1987),
among others] suggest that as far as large-sample is concerned theCp-type
criterion outperforms GML. This interestingly seems at odds with the well-known
finite-sample results. For example, Kohn, Ansley and Tharm (1991) and Hurvich,
Simonoff and Tsai (1998), among others, illustrate that finite-sample-wise theCp

criterion has a strong tendency for high variability in the sense that even for data
sets generated from the same underlying curve theCp-estimated curves vary a
great deal from oversmoothed ones to very wiggly ones, which contrasts with
the stably performing GML. To understand why there is this gap between finite-
and large-sample results, we will provide a bias-variance decomposition of the
prediction error, based on which it will be seen that the major reason is that the
large-sample consideration virtually only looks at the bias, as bias asymptotically
dominates variability.

The central smoothing parameter and central degrees of freedom defined
previously pave the way for the bias-variance decomposition. Consider the
prediction error for estimating the curveE‖f̂

λ̂(p,q) − f‖2, which is equal to
σ 2E‖ĝ

λ̂(p,q) − g‖2 according to (2.3). We can write

E‖ĝ
λ̂(p,q) − g‖2

= E
∥∥(

ĝ
λ̂(p,q) − ĝ

λ
(p,q)
c

) + (
ĝ
λ

(p,q)
c

− g
)∥∥2

= E
∥∥ĝ

λ
(p,q)
c

− g
∥∥2+2E

(
ĝ
λ

(p,q)
c

− g
)′(ĝ

λ̂(p,q) − ĝ
λ

(p,q)
c

) + E
∥∥ĝ

λ̂(p,q) − ĝ
λ

(p,q)
c

∥∥2
.
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Consequently, the extra risk beyond the unavoidable riskE‖ĝλ0 − g‖2 can be
written as

E‖ĝ
λ̂(p,q) − g‖2 − E

∥∥ĝλ0 − g
∥∥2

= (
E

∥∥ĝ
λ

(p,q)
c

− g
∥∥2 − E

∥∥ĝλ0 − g
∥∥2)(2.11)

+ 2E
(
ĝ
λ

(p,q)
c

− g
)′(ĝ

λ̂(p,q) − ĝ
λ

(p,q)
c

) + E
∥∥ĝ

λ̂(p,q) − ĝ
λ

(p,q)
c

∥∥2
.

This expression provides a bias-variance decomposition for the prediction error.
The first termE‖ĝ

λ
(p,q)
c

− g‖2 − E‖ĝλ0 − g‖2 can be viewed as the bias term—
it captures the error of estimating the curveg beyond the unavoidable risk by
using the central smoothing parameterλ

(p,q)
c , which measures the discrepancy

between the central risk associated withλ̂(p,q) and the ideal minimum risk; the
third termE‖ĝ

λ̂(p,q) − ĝ
λ

(p,q)
c

‖2 can be viewed as the variability term—it measures

the variability ofĝ
λ̂(p,q) from its “center”ĝ

λ
(p,q)
c

; the second term, the covariance,
arises here due to the nature of adaptation (the smoothing parameter itself is also
inferred from the data, in addition to estimating the curve).

Clearly, for any practical finite-sample problem, each term in (2.11) contributes
to the squared prediction error. However, we shall show that as the sample sizen

grows large the bias term gradually dominates the other two. To focus on the basic
idea, without loss of generality, we assume the design points(x1, x2, . . . , xn) aren

equally spaced points along the interval[0,1]. Section 5 will discuss the setting of
general design points.

In what follows, to avoid cumbersome notation, we will writêλ for λ̂(p,q),
d̂f for d̂f

(p,q)
, λc for λ

(p,q)
c , dfc for df

(p,q)
c , and so on. The full notation̂λ(p,q),

λ
(p,q)
c , df

(p,q)
c will be used whenever potential confusion might arise. Consider

the bias termE‖ĝλc − g‖2 − E‖ĝλ0 − g‖2 first:

E
∥∥ĝλc − g

∥∥2 = E
∥∥aλcz − g

∥∥2 =
n∑

i=1

(
b2
λci

g2
i + a2

λci

)
(2.12)

= λc

n∑
i=1

[
aλcibλci(kig

2
i )

] +
n∑

i=1

a2
λci

,

where the last equality uses the factbλi = λki

1+λki
= λkiaλi . To obtain the asymptotic

orders, we need to know howλc, the central smoothing parameter, evolves
as the sample size gets large. According to definition (2.6),λc satisfies the
normal equation∂

∂λ
l
(p,q)
λ (E{z2/q})|λ=λc = 0, which (through some algebra) can

be written as∑
i

aλcib
p/q
λci

(cqE{z2/q
i } − 1) = ∑

i

aλcib
(p−1)/q
λci

− ∑
i

aλcib
p/q
λci

.(2.13)

The following lemma gives the order of the left-hand side of (2.13).
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LEMMA 2.2. Under mild regularity conditions, for p ≥ q,
∑

i aλcib
p/q
λci

×
(cqE{z2/q

i } − 1) = O(λc).

The regularity conditions and the proof of Lemma 2.2 are given in the Appendix.
The proof uses one handy result of Demmler and Reinsch (1975), where by
studying the oscillation of the smoothing-splineeigenvectors, it is effectively
shown that for any curvef (x) satisfying 0<

∫ 1
0 f ′′(t)2 dt < ∞,

0<

n∑
i=3

kig
2
i ≤ 1

σ 2

∫ 1

0
f ′′(t)2 dt < ∞ for all n ≥ 3.(2.14)

See also Speckman (1983, 1985) and Wahba (1985). For the right-hand side
of (2.13), the following theorem, taken from Kou (2003), is useful.

THEOREM 2.3. Suppose n
λ

→ ∞ and n3λ → ∞. Then for r > 1
4, s > −1

4,

n∑
i=3

ar
λib

s
λi = 1

4π
B

(
r − 1

4
, s + 1

4

)(
n

λ

)1/4

+ o

((
n

λ

)1/4)
,

where the beta function B(x, y) = �(x)�(y)/�(x + y).

Applying this result, the right-hand side of (2.13) is∑
i

aλcib
(p−1)/q
λci

− ∑
i

aλcib
p/q
λci

= O

((
n

λc

)1/4)
.

Matching it with the result of Lemma 2.2 gives

λ(p,q)
c = O(n1/5) for all p ≥ q,(2.15)

which furthermore implies (takingr = 1, s = 0 in Theorem 2.3)

df (p,q)
c = O

((
n

λ
(p,q)
c

)1/4)
= O(n1/5) for p ≥ q.(2.16)

Note that (2.15) and (2.16) cover GML,Cp and EE, since all three satisfyp ≥ q.
With the help of Theorem 2.3 and (2.15), we can calculate the asymptotic order
of the bias termE‖ĝλc − g‖2 − E‖ĝλ0 − g‖2. By inequality (2.14), the first term
of (2.12)

λc

n∑
i=1

[
aλcibλci(kig

2
i )

] ≤ λc

n∑
i=1

(kig
2
i ) = O(λc) = O(n1/5);

and (from Theorem 2.3) the second term of (2.12)
∑n

i=1 a2
λci

= O(( n
λc

)1/4) =
O(n1/5). Adding them together yields

E
∥∥ĝ

λ
(p,q)
c

− g
∥∥2 = O(n1/5).(2.17)
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Identical treatment of the ideal smoothing parameterλ0 gives

E
∥∥ĝλ0 − g

∥∥2 = O(n1/5).(2.18)

Combining the results of (2.17) and (2.18), we observe that for a “general”
criterion λ̂(p,q) the bias termE‖ĝ

λ
(p,q)
c

− g‖2 − E‖ĝλ0 − g‖2 = O(n1/5). We put a
quotation mark on “general” because there is one exception:Cp. In Theorem 2.1

we have shown thatλ(2,1)
c = λ0, which implies thatE‖ĝ

λ
(2,1)
c

− g‖2 − E‖ĝλ0 −
g‖2 = 0. The following theorem summarizes the discovery and extends the result
to the variability and covariance terms in the decomposition.

THEOREM 2.4. Under mild regularity conditions provided in the Appendix,
for all p ≥ q:

(i) the bias term

E
∥∥ĝ

λ
(p,q)
c

− g
∥∥2 − E

∥∥ĝλ0 − g
∥∥2 =

{
O(n1/5), if (p, q) 	= (2,1),

0, if (p, q) = (2,1),

(ii) the covariance term E(ĝ
λ

(p,q)
c

− g)′(ĝ
λ̂(p,q) − ĝ

λ
(p,q)
c

) = O(1),

(iii) the variability term E‖ĝ
λ̂(p,q) − ĝ

λ
(p,q)
c

‖2 = O(1).
Therefore, the extra risk

E‖ĝ
λ̂(p,q) − g‖2 − E

∥∥ĝλ0 − g
∥∥2 =

{
O(n1/5), if (p, q) 	= (2,1),

O(1), if (p, q) = (2,1).

The regularity conditions and the proof of Theorem 2.4 are given in the Appen-
dix. From Theorem 2.4 we observe that in general the bias term asymptotically
dominates the other two. It is the unbiasedness ofCp that gives it the asymptotic
advantage. In other words, when one compares the asymptotic prediction error for
different criteria, essentially the comparison is focused on the bias, and as long as
asymptotics is concerned the variability of the criteria does not matter much. The-
orem 2.4, therefore, provides an understanding of the gap between finite-sample
and asymptotic results regarding selection criteria. Since the asymptotic compar-
ison essentially focuses on the bias andCp is unbiased, it is not surprising that
the high variability ofCp evident in finite-sample studies does not show up in the
large-sample considerations. Furthermore, (2.18) and Theorem 2.4 say that for all
three selection criteria of interest, GML,Cp and EE, the averaged prediction er-
ror 1

n
E‖ĝ

λ̂
− g‖2 is of orderO(n−4/5), an order familiar to many nonparametric

problems. Speckman and Sun (2001) studied the asymptotic properties of selection
criteria; they showed that GML- andCp- estimated smoothing parameters have the
same convergence rate, which, from a different angle, conveys a message similar
to Theorem 2.4.
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3. A geometric bridge between the finite-sample and asymptotic results.
In this section, to obtain an intuitive complement to the result of Section 2, we
provide a geometric explanation of why the finite-sample variability does not show
up in the asymptotics.

3.1. The geometry of selection criteria. The fact thatλ̂(p,q) choosesλ as
the minimizer of l(p,q)

λ implies that λ̂(p,q) must satisfy the normal equation
∂
∂λ

l
(p,q)
λ (z2/q)|

λ=λ̂(p,q) = 0, which (through simple algebra) can be written as

η̇
(p,q)′
λ

(
z2/q − µ

(p,q)
λ

)∣∣
λ=λ̂(p,q) = 0,(3.1)

where the vectoṙη(p,q)
λ = (η̇

(p,q)
λ1 , η̇

(p,q)
λ2 , . . . , η̇

(p,q)
λn )′, η̇

(p,q)
λi = − p

qλ
aλi(cqb

1/q
λi )p,

µ
(p,q)
λ = (µ

(p,q)
λ1 ,µ

(p,q)
λ2 , . . . ,µ

(p,q)
λn ) andµ

(p,q)
λi = 1/(cqb

1/q
λi ). This normal equa-

tion representation suggests a simple geometric interpretation of theλ̂(p,q) crite-
rion. For a given observationz, the smoothing parameter is chosen by projecting
z2/q onto the line{µ(p,q)

λ :λ ≥ 0} orthogonally to the directioṅη(p,q)
λ . Figure 1

diagrams the geometry two-dimensionally.
In Figure 1L

(p,q)
λ is the hyperplaneL(p,q)

λ = {z : (η̇(p,q)
λ )′(z2/q − µ

(p,q)
λ ) = 0}.

Finding the specific hyperplaneL(p,q)
λ that passes throughz2/q is equivalent to

solving (3.1). It is noteworthy from Figure 1 that different hyperplanesL
(p,q)
λ

are not parallel, but rather intersect each other, while points on the intersection
of two hyperplanes satisfy both normal equations. This phenomenon is termed
the reversal effect in Efron (2001) and Kou and Efron (2002). Figure 2 provides

FIG. 1. The geometry of selection criteria. Two coordinates z
2/q
i and z

2/q
j (i < j) are

indicated here.
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FIG. 2. Illustration of the reversal effect caused by the rotation of the orthogonal directions.

an illustration, showing one hyperplaneL
(p,q)
λ0

intersecting a nearby hyperplane

L
(p,q)
λ0+dλ (for a smalldλ).
Intuitively, if an observation falls beyond the intersection (i.e., in the reversal

region), the selection criterion̂λ(p,q) then will have a hard time assigning the
smoothing parameter. Furthermore, we observe that forλ̂(p,q), if the direction
η̇

(p,q)
λ rotates very fast, the reversal region will then be quite large, causing the

criterion to have a high chance of encountering observations falling into the
reversal region. This reversal effect is the main factor behindCp ’s finite-sample

unstable behavior, because theCp orthogonal directioṅη(2,1)
λ rotates much faster

than both the EE directioṅη(3/2,3/2)
λ and the GMLη̇

(1,1)
λ [Kou and Efron (2002)].

It is worth pointing out that the geometry and the reversal effect do not involve
asymptotics. Thus finite-sample-wise, the faster rotation ofη̇

(2,1)
λ costsCp much

more instability than the EE and GML criteria, undermining its competitiveness.

3.2. The evolution of the geometry. The geometric interpretation naturally
suggests we investigate the evolution of the reversal effect (i.e., the geometric
instability) as the sample size grows large to bridge the gap between finite- and
large-sample results. There are two ways to quantify the geometric instability.
First, since the root of instability is the rotation of the orthogonal directions, the
curvature of the directions, which captures how fast they rotate, is a measure
of the geometric instability. Second, one can investigate the probability that an
observation falls into the reversal region, which directly measures how large the
reversal effect is.
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For the orthogonal directioṅη(p,q)
λ , its statistical curvature [Efron (1975)],

which measures the speed of rotation, is defined by

γλ =
(

det(Mλ)

(η̇
(p,q)′
λ Vλη̇

(p,q)
λ )3

)1/2

with Mλ =
(

η̇
(p,q)′
λ Vλη̇

(p,q)
λ η̇

(p,q)′
λ Vλη̈

(p,q)
λ

η̇
(p,q)′
λ Vλη̈

(p,q)
λ η̈

(p,q)′
λ Vλη̈

(p,q)
λ

)
,

where η̈
(p,q)
λ = ∂

∂λ
η̇

(p,q)
λ , and the matrixVλ = diag(c−(p+1)

q b
−(p+1)/q
λi /p). For

the selection criteria class (2.5), Kou and Efron (2002) showed that the squared
statistical curvature

γ 2
λ = (p + q)2

pc
p−1
q

{ ∑
i a

4
λib

(p−1)/q
λi

(
∑

i a
2
λib

(p−1)/q
λi )2

− (
∑

i a
3
λib

(p−1)/q
λi )2

(
∑

i a
2
λib

(p−1)/q
λi )3

}
.(3.2)

THEOREM 3.1. The curvature evaluated at the ideal smoothing parameter λ0
has the asymptotic order γλ0 = O(n−1/10).

PROOF. According to Theorem 2.3,γ 2
λ0

= O(( n
λ0

)−1/4), which is O(n−1/5)

by (2.15). �

Theorem 3.1 says that, first, for the selection criteria class (2.5), geometrically
as the sample size gets larger and larger, the orthogonal directions will rotate more
and more slowly, which will make the geometric instability smaller and smaller;
second, for different selection criteria, the curvature decreases at the same order.

Next, we consider the probability of an observation falling into the reversal
region. Following Kou and Efron (2002), the reversal region (i.e., the region
beyond the intersection of different hyperplanes) is defined as

reversal region= {z :R0(z) < 0},
where the functionR0(z) is given byR0(z) = l̈

(p,q)
λ0

(z2/q) − βλ0 l̇
(p,q)
λ0

(z2/q) with

l
(p,q)
λ defined in (2.4),̇l(p,q)

λ = ∂
∂λ

l
(p,q)
λ , l̈

(p,q)
λ = ∂2

∂λ2 l
(p,q)
λ , and the constantβλ0 =

− 1
λ0

[2− (1+ p
q
)

∑
i a3

λ0i b
−2/q
λ0i∑

i a2
λ0i b

−2/q
λ0i

].

THEOREM 3.2. Under mild regularity conditions, the probability that an
observation will fall into the reversal region satisfies

P
(
R0(z) < 0

) − 	
(
T (p,q)

n

) → 0 as n → ∞,

where 	 is the standard normal c.d.f. and for all p ≥ q the sequence T
(p,q)
n =

O(n1/10) < 0.
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The regularity conditions and proof are deferred to the Appendix. Theorems
3.1 and 3.2 point out that as the sample sizen grows large, the reversal
effect, which is the source ofCp ’s instability, decreases at the same rate for
all (p, q)-estimators and eventually vanishes. This uniform rate is particularly
beneficial forCp, because under a finite-sample size,Cp suffers from the reversal
effect a lot more than the other criteria, such as GML and EE. Theorems 3.1 and 3.2
thus explain geometrically why the high variability ofCp observed by many
authors in finite-sample studies does not hurt it as long as asymptotics is concerned.

4. A numerical illustration. In this section through a simulation experiment
we will illustrate the connection between finite-sample and asymptotic perfor-
mances of different selection criteria, focusing onCp, GML and EE. The experi-
ment starts from a small sample size and increases it gradually to exhibit how the
performance of different selection criteria evolves as the sample sizen grows.

In the simulation the design pointsx aren equally spaced points on the[−1,1]
interval, where the sample sizen starts at 61, and increases to 121, 241, . . . ,
until 3841. For each value ofn, 1000 data sets are generated from the curve
f (x) = sin(π(x + 1))/(x/2 + 1) shown in Figure 3 with noise levelσ = 1.
The Cp, GML and EE criteria are applied to the simulated data to choose the
smoothing parameter (hence the degrees of freedom), which is subsequently used
to estimate the curve.

The bias-variance relationship can be best illustrated by comparing the
estimated degrees of freedom (from different selection criteria) with the ideal
degrees of freedomdf0, since Efron (2001) suggested that the comparison based
on degrees of freedom is more sensitive. Figure 4 shows the histograms ofCp,
GML and EE estimated degrees of freedom under various sample sizes; the vertical
bar in each panel represents the ideal degrees of freedomdf0.

One can observe from Figure 4 that (i)Cp is roughly unbiased; (ii) as sample
size increases, the bias of GML is gradually revealed; (iii) the large spread ofCp

FIG. 3. The curve used to generate the data.
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FIG. 4. Cp, GML and EE estimated degrees of freedom. The vertical bar in each panel is the ideal
degrees of freedom.

estimates points out its high variability even for sample size as large as 3841. The
asymptotic results, overlooking the variability, in a certain sense reveal only part
of the picture.

Table 1 reports the squared curvature of different selection criteria under
various sample sizes; one sees that the curvature ofCp is significantly larger
than that of GML or EE, meaning that finite-sample-wise,Cp suffers more
from geometric instability. Although the geometric instability (measured by the
curvature) becomes smaller and smaller as the sample size gets larger and larger,

TABLE 1
The squared curvature of Cp, GML and EE

n = 61 n = 121 n = 241 n = 481 n = 961 n = 1921 n = 3841

Cp 0.71 0.63 0.57 0.51 0.46 0.41 0.37
GML 0.08 0.07 0.06 0.05 0.04 0.04 0.03
EE 0.29 0.26 0.23 0.21 0.19 0.17 0.15
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TABLE 2
The sample mean and standard deviation of ‖ĝ

λ̂
− g‖2

n = 61 n = 121 n = 241 n = 481 n = 961 n = 1921 n = 3841

Cp mean 6.22 6.41 6.75 7.34 7.45 8.13 9.20
std dev 4.81 4.54 4.42 4.42 4.25 4.33 4.91

GML mean 5.90 5.68 5.91 6.61 7.01 7.85 9.10
std dev 4.03 3.34 3.18 3.47 3.39 3.79 4.07

EE mean 5.89 5.78 6.10 6.73 7.03 7.78 8.86
std dev 4.04 3.34 3.33 3.53 3.49 3.83 4.08

it decreases quite slowly, indicating that unless the sample size isvery large, the
variability cannot be overlooked (as the asymptotics would do).

Table 2 reports the average value and standard deviation of‖ĝ
λ̂(p,q) − g‖2,

the squared estimation error, across the data sets. It is interesting to observe that
(i) the standard deviation ofCp estimates is larger than that of GML and EE,
since geometricallyCp suffers more from the reversal effect than the other two;
(ii) for small sample sizes, GML appears to work better thanCp as the asymptotics
come in rather slowly; (iii) for reasonable sample sizes from 61 to 3841, as one
usually encounters in practice, the EE criterion appears to behave stably well.

Comparing Table 2 with the result of Theorem 2.4, a careful reader might notice
that this example itself illustrates the “seeming” gap: For sample size as large as
3841 the asymptotics are still not there. This, again, is due to the fact that although
Cp ’s unbiasedness gives it an asymptotic competitive edge, the asymptotics come
in rather slowly, and, therefore, for finite-sample size at hand one cannot neglect
the variability, which evidently causesCp more trouble than the others in Table 2.

5. Discussion. This article investigates the connection between finite-sample
properties of selection criteria and their asymptotic counterparts, focusing on
bridging the gap between the two. Through a bias-variance decomposition of the
prediction error, it is shown that in asymptotics bias dominates variability, and thus
the large-sample comparison essentially concentrates on bias, and unintentionally
overlooks the variability. As the geometry intuitively explains how different
selection criteria work, the article also studies the evolution of the geometric
instability, the source ofCp ’s high variability, and shows that although the
geometric instability decreases as sample size grows, it decreases very slowly so
that for sample sizes one usually encounters in practice, it cannot be neglected. We
conclude the article with a few remarks.

REMARK 5.1. General design points. We have assumed that the design points
x = (x1, . . . , xn) are equally spaced along a fixed interval. Ifx are drawn, instead,
from a distribution functionG such thatxi = G−1((2i − 1)/n), then essentially
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all the results would remain valid. For example, the conclusion of Theorem 2.3
changes to

n∑
i=3

ar
λib

s
λi = 1

4π

(∫
X

g1/4(x) dx

)
B

(
r − 1

4
, s + 1

4

)(
n

λ

)1/4

+ o

((
n

λ

)1/4)
,

whereg(x) is the density ofG over the domainX [Kou (2003)]. Correspondingly,
the asymptotic orders that we derived will remain the same (except for longer
expressions in the proofs).

REMARK 5.2. Unknown σ 2. To focus on the basic ideas, we implicitly
assumedσ 2 to be known in our analysis. Ifσ 2 is unknown, we can replace it with
an estimatẽσ 2, which changes (2.3) tõz ≡ U′y/σ̃ = z(σ/σ̃ ) and z̃2/q = z2/qR,
whereR = (σ 2/σ̃ 2)1/q , leading to the estimator̃λ(p,q) = argminλ{l(p,q)

λ (z̃2/q)},
and likewised̃f (p,q). If R ∼ (1,varR) is independent ofz2/q , it is easy to see that

z̃2/q ∼ (
E(z2/q),varz2/q + varR ·(E(z2/q)E(z2/q)′ + varz2/q))

,(5.1)

where the notationX ∼ (α,β) meansX has meanα and varianceβ. The extra
uncertainty ofσ 2 makes the estimate more variable. For example, it can be shown
that

var{d̃f (p,q)}
var{d̂f (p,q)}

.= 1+ varR ·
[

1+ (
∑

i aλciB
p−1
λci

/cq)
2∑

i a
2
λci

B
2p
λci

varz2/q
i

]
,

which shows the loss of precision in̂df
(p,q)

from having to estimateσ 2. Likewise,
our results in Sections 2 and 3 can be modified (at the expense of more complicated
calculations) without changing the conclusion. In practice, the estimateσ̃ 2 can be
based on the higher components ofU′y ∼ (σg, σ 2I), for instance,

σ̃ 2 =
n∑

i=n−1−M

(U′y)2
i /(M − 2),

because the assumed smoothness off implies thatgi
.= 0 for i large and that̃σ 2

andz2/q are nearly independent, which makes (5.1) valid.

REMARK 5.3. Higher-order smooth curves. In Section 2.3, we showed that
for general curves EE,Cp and GML gave the same orderO(n−4/5) for the
averaged prediction error1

n
E‖ĝ

λ̂
− g‖2. A reader familiar with the work of Wahba

(1985) might sense this as a puzzle, because there it is shown thatCp (GCV) has
a faster convergence rate than GML. This seeming conflict actually arises from
the difference in the requirements. Wahba (1985) worked on higher-order smooth
curves that belong to the null space of the roughness penalty. In our context of
cubic smoothing splines they are the curves such that

∫
f ′′(x)2 dx = 0, namely,

linear lines. In contrast we have assumed
∫

f ′′(x)2 dx > 0, and termed them
“general curves”; see (2.14).
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REMARK 5.4. Generalizations of Cp and GML. A number of authors have
suggested modifyingCp or GML, including (i) generalCp, whose criterion
is Cp(λ) = ‖y − f̂λ‖2 + 2ωσ 2 tr(Aλ), (ii) general GCV, whose criterion is
GCV (λ) = ‖y − f̂λ‖2/(1 − ω tr(Aλ)/n)2, and (iii) a full Bayesian estimate by
putting a prior on the unknown smoothing parameterλ. Takingω = 1 in (i) and (ii)
results in the classicalCp and GCV. One can also see (through a Taylor expansion)
that (i) and (ii) are asymptotically equivalent. Using a numberω > 1 will make
the estimate stabler since a heavier roughness penalty is assigned; on the other
hand, this will cause theCp criterion to lose its unbiasedness, since the central
smoothing parameter will no longer coincide with the ideal smoothing parameter
λ0. The finite-sample stability will thus trade offCp ’s asymptotic advantage. The
full Bayesian approach (iii) is expected to behave even more stably than GML. An
interesting open problem is to investigate how large its bias will be and how its
geometry, if possible, will evolve as sample size grows.

REMARK 5.5. Regularity conditions. All the regularity conditions for the
theoretical results, such as Assumptions A.1–A.4 in the Appendix, can be
summarized simply as

cqE{z2/q
i } ≈ 1+ 1

q
g2

i ,

varz2/q
i ≈ const+constg2

i ,

E(z
2/q
i − E{z2/q

i })3 ≈ const+constg2
i .

Strict equality holds in the case ofCp and GML, whereq = 1, cq = 1:

E{z2
i } = 1+ g2

i ,

varz2
i = 2+ 4g2

i ,

E(z2
i − 1− g2

i )
3 = 8+ 24g2

i ,

which point out that the conditions are reasonably mild.

APPENDIX: REGULARITY CONDITIONS AND DETAILED PROOFS

Regularity conditions for Lemma 2.2.

ASSUMPTIONA.1.
∑

i aλcib
p/q
λci

(cqE{z2/q
i } − 1) = O(

∑
i aλcib

p/q
λci

g2
i ).

To see the validity of the assumption, we notice thatq = 1 for Cp and GML, and∑
i aλcib

p
λci

(cqE{z2
i } − 1) exactly equals

∑
i aλcib

p
λci

g2
i . Assumption A.1, hence,

clearly holds true forCp and GML, indicating its mildness. The proof below
provides more discussion.
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PROOF OFLEMMA 2.2. To prove the lemma, we need the following result of
Kou and Efron [(2002), Lemma 1]: Forzi ∼ N(gi,1), E(z

2/q
i ) = 1√

π
21/q�( 1

q
+

1
2)M(− 1

q
, 1

2,−1
2g2

i ), where M(·, ·, ·) is the confluent hypergeometric function

(CHF) defined byM(c,d, z) = 1 + cz
d

+ · · · + (c)nzn

(d)nn! + · · ·, with (d)n = d(d +
1) · · · (d + n − 1). Applying the bounds of CHF [Chapter 13 of Abramowitz and
Stegun (1972)]: 1+ 1

q
g2

i − 1
6q

(1− 1
q
)g4

i ≤ M(− 1
q
, 1

2,−1
2g2

i ) ≤ 1+ 1
q
g2

i , one has

1

q
g2

i − 1

6q

(
1− 1

q

)
g4

i ≤ cqE{z2/q
i } − 1≤ 1

q
g2

i .(A.1)

The left-hand side of (2.13) is thus bounded above by1
q

∑
i aλcib

p/q
λci

g2
i , and

below by 1
q

∑
i aλcib

p/q
λci

g2
i − 1

6q
(1− 1

q
)
∑

i aλcib
p/q
λci

g4
i . From (2.14),

∑n
i=3 kig

2
i ≤

1
σ2

∫ 1
0 f ′′(t)2 dt < ∞, suggesting that forn sufficiently large, the term1

q
g2

i of (A.1)
dominates, which again points out that Assumption A.1 is mild. In light of (2.14),∑

i aλcib
p/q
λci

g2
i = λc

∑
i a

2
λci

b
p/q−1
λci

(kig
2
i ) = O(λc), for p ≥ q, which according to

Assumption A.1 implies that∑
i

aλcib
p/q
λci

(cqE{z2/q
i } − 1) = O(λc) for p ≥ q. �

To prove Theorem 2.4, we need the following approximation.

LEMMA A.1.

E
∥∥ĝ

λ̂
− ĝλc

∥∥2

.= c2
q

Q2
λc

(E{z2/q})
(A.2)

×
{(∑

i

a2
λci

b2
λci

(g2
i + 1)

)(∑
i

a2
λci

b
2p/q
λci

varz2/q
i

)

+ ∑
i

a4
λci

b
2+2p/q
λci

E[(z2
i − g2

i − 1)(z
2/q
i − E{z2/q

i })2]
}
,

E
(
ĝλc − g

)′(ĝ
λ̂
− ĝλc

)
.= cq

Qλc(E{z2/q})(A.3)

× ∑
i

a2
λci

b
1+p/q
λci

(
aλci cov(z2

i , z
2/q
i ) − gi cov(zi, z

2/q
i )

)
,
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where the function Qλ(u) is defined by

Qλ(u) = ∑
i

aλib
(p−1)/q
λi

{
1

q
aλi +

[(
1+ p

q

)
aλi − 2

]
(cqb

1/q
λi ui − 1)

}
.(A.4)

DERIVATION OF LEMMA A.1. Sinceλ̂ by definition is a function ofu = z2/q ,
andλc is a function ofE{z2/q}, applying a Taylor expansion ona

λ̂i
− aλci , we

obtain

a
λ̂i

− aλci
.= −aλcibλci

λc

· ∑
j

∂λ̂

∂uj

∣∣∣∣
u=E{z2/q}

(z
2/q
j − E{z2/q

j }).

Some algebra, after applying the implicit function calculation to the defini-

tion (2.5) ofλ̂ or equivalently to the normal equation (3.1), yields∂λ̂
∂uj

|u=E{z2/q } =
−λccqaλj b

p/q
λj

Qλc (E{z2/q}) , which then gives

ĝ
λ̂i

− ĝλci = (
a
λ̂i

− aλci

)
zi

.= cqaλcibλcizi

Qλc(E{z2/q})
∑
j

aλcjb
p/q
λcj

(z
2/q
j − E{z2/q

j }).(A.5)

The fact that thezi ’s are independent of each other implies

E
(
ĝ

λ̂i
− ĝλci

)2

.= c2
qa2

λci
b2
λci

Q2
λc

(E{z2/q})

{
(g2

i + 1)
∑
j

a2
λcj

b
2p/q
λcj

varz2/q
j

+ a2
λci

b
2p/q
λci

E[(z2
i − g2

i − 1)(z
2/q
i − E{z2/q

i })2]
}
.

Summing overi yields the approximation

E
∥∥ĝ

λ̂
− ĝλc

∥∥2

.= c2
q

Q2
λc

(E{z2/q})

{(∑
i

a2
λci

b2
λci

(g2
i + 1)

)(∑
i

a2
λci

b
2p/q
λci

varz2/q
i

)

+ ∑
i

a4
λci

b
2+2p/q
λci

E[(z2
i − g2

i − 1)(z
2/q
i − E{z2/q

i })2]
}
.

The approximation ofE(ĝλc − g)′(ĝ
λ̂
− ĝλc) can be obtained in a similar way.�

Before proving Theorem 2.4, we state its regularity conditions. Theorem 2.4
needs the following assumptions, in addition to Assumption A.1.
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ASSUMPTIONA.2.∑
i

aλcib
p/q
λci

[(
1+ p

q

)
aλci − 2

]
(cqE{z2/q

i } − 1)

= O

(∑
i

aλcib
p/q
λci

[(
1+ p

q

)
aλci − 2

]
g2

i

)
,

∑
i

a2
λci

b
2p/q
λci

varz2/q
i

= O

(
max

(∑
i

a2
λci

b
2p/q
λci

,
∑
i

a2
λci

b
2p/q
λci

g2
i

))
.

ASSUMPTIONA.3.
∑

i(a
2
λci

b
1+p/q
λci

)lE{zm
i z

2n/q
i } = O(max(

∑
i (a

2
λci

b
1+p/q
λci

)l,∑
i (a

2
λci

b
1+p/q
λci

)lg2
i )), for l,m,n ∈ {1,2}.

Like Assumption A.2, these two assumptions are exactly true for GML andCp,
sinceE{z2

i } = 1 + g2
i , and var(z2

i ) = 2 + 4g2
i . In general, a Taylor expansion on

the CHF can show forq ≥ 1,

varz2/q
i = const1+ const2· g2

i + O(g4
i ),(A.6)

which suggests that the assumptions are mild.

PROOF OFTHEOREM 2.4. Write

Term A=
(∑

i

a2
λci

b2
λci

(g2
i + 1)

)(∑
i

a2
λci

b
2p/q
λci

varz2/q
i

)
,

Term B= ∑
i

a4
λci

b
2+2p/q
λci

E[(z2
i − g2

i − 1)(z
2/q
i − E{z2/q

i })2];

then approximation (A.2) becomes

E
∥∥ĝ

λ̂
− ĝλc

∥∥2 .= c2
q

Q2
λc

(E{z2/q})(Term A+ Term B).(A.7)

For Term A, note that according to Assumption A.2 the order of
∑

i a
2
λci

b
2p/q
λci

×
varz2/q

i is the maximum of
∑

i a
2
λci

b
2p/q
λci

and
∑

i a
2
λci

b
2p/q
λci

g2
i . But

∑
i a

2
λci

b
2p/q
λci

=
O(( n

λc
)1/4) = O(n1/5) by Theorem 2.3, and

∑
i a

2
λci

b
2p/q
λci

g2
i = O(λc) = O(n1/5).

So
∑

i a
2
λci

b
2p/q
λci

varz2/q
i = O(n1/5). Next observe that

∑
i a

2
λci

b2
λci

(g2
i + 1) =∑

i a
2
λci

b2
λci

g2
i + ∑

i a
2
λci

b2
λci

; the first term is equal toλc(
∑

i a
3
λci

bλci(kig
2
i )) =
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O(λc) = O(n1/5); the second term is of orderO(( n
λc

)1/4) = O(n1/5). Therefore,

Term A= O(n1/5 · n1/5) = O(n2/5).
For Term B, a Taylor expansion on the CHF gives

E[(z2
i − g2

i − 1)(z
2/q
i − E{z2/q

i })2] = const+constg2
i + O(g4

i ),(A.8)

which, together with Assumption A.3, implies that the order of Term B is the
maximum of O(λc) = O(n1/5) and O(( n

λc
)1/4) = O(n1/5). Thus Term B=

O(n1/5).
Using Assumption A.2, the denominator in (A.7)

Qλc(E{z2/q}) = ∑
i

aλcib
(p−1)/q
λci

{
1

q
aλci + (

b
1/q
λci

− 1
)[(

1+ p

q

)
aλci − 2

]}

+ ∑
i

aλcib
p/q
λci

[(
1+ p

q

)
aλci − 2

]
(cqE{z2/q

i } − 1)

(A.9)

= O

((
n

λc

)1/5)
+ O(λc)

= O(n1/5).

Plugging (A.9) and the orders of Term A and Term B into (A.7) yieldsE‖ĝ
λ̂

−
ĝλc‖2 = O(1).

For the covariance termE(ĝλc − g)′(ĝ
λ̂
− ĝλc), we can write

E
(
ĝλc − g

)′(ĝ
λ̂
− ĝλc

) .= cq

Qλc(E{z2/q})(Term C+ Term D),

Term C= ∑
i

a2
λci

b
1+p/q
λci

cov(z2
i , z

2/q
i ),

Term D= −∑
i

a2
λci

b
1+p/q
λci

gi cov(zi, z
2/q
i ).

Applying Assumption A.3 and the facts that

cov(z2
i , z

2/q
i ) = const+constg2

i + O(g4
i ),

gi cov(zi, z
2/q
i ) = constg2

i + O(g4
i ),

which can be derived similarly to (A.8), it can be shown that

Term C= O(n1/5), Term D= O(n1/5),

which finally givesE(ĝλc − g)′(ĝ
λ̂
− ĝλc) = O(1). �
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Regularity conditions for Theorem 3.2.

ASSUMPTIONA.4.∑
i

[
al
λ0i

b
p/q
λ0i

(cqE{z2/q
i } − 1)

] = O

(∑
i

al
λ0i

b
p/q
λ0i

g2
i

)
for l = 1,2,

∑
i

[
al
λ0i

b
2p/q
λ0i

varz2/q
i

]

= O

(
max

(∑
i

al
λ0i

b
2p/q
λ0i

,
∑
i

al
λ0i

b
2p/q
λ0i

g2
i

))
for l = 2,3,4.

Like the previous three assumptions, Assumption A.4 is exact for GML and
Cp. For general criteria in the class (2.5), the facts (A.6), (A.1) andE(z

2/q
i −

E{z2/q
i })3 = const+constg2

i + O(g4
i ) suggest that Assumption A.4 is reasonably

mild.

PROOF OF THEOREM 3.2. Let M(R0) and V (R0) denote the mean and
variance ofR0(z). Kou and Efron (2002) showed that

M(R0) = p

q2 (p + q)cp−1
q

×
{

1

p + q

(∑
i

a2
λ0i

b
(p−1)/q
λ0i

)

+ ∑
i

[
aλ0ib

(p−1)/q
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)(
cqb

1/q
λ0i

E{z2/q
i } − 1

)]}
,

V (R0) = p2

q4 (p + q)2c2p
q

∑
i

[
a2
λ0i

b
2p/q
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)2

varz2/q
i

]
.

Using the Berry–Esseen theorem [Feller (1971), page 521], we have

P (R0(z) < 0) − 	
(
M(R0)/

√
V (R0)

) → 0 asn → ∞.

Note that we can writeM(R0)√
V (R0)

= Term 1+Term 2
cq(Term 3)1/2 , where

Term1= 1

p + q

(∑
i

a2
λ0i

b
(p−1)/q
λ0i

)

+ ∑
i

[
aλ0ib

(p−1)/q
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)(
b

1/q
λ0i

− 1
)]

,



2466 S. C. KOU

Term2= ∑
i

[
aλ0ib

p/q
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)
(cqE{z2/q

i } − 1)

]
and

Term3= ∑
i

[
a2
λ0i

b
2p/q
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)2

varz2/q
i

]
.

To obtain the order of Term 1, we need another result from Kou (2003): Suppose
n
λ

→ ∞; then for allr > 1
4 ands < −1

4,
∑n

i=3 ar
λib

s
λi = O((n

λ
)−s). This result and

Theorem 2.3 imply

Term1= O

((
n

λ0

)1/4)
= O(n1/5).(A.10)

To obtain the order of Term 2, we note that by Assumption A.4 and (2.14),

Term2= O

(
λ0

∑
i

[
a2
λ0i

b
p/q−1
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)
(kig

2
i )

])
(A.11)

= O(λ0) = O(n1/5) for all p ≥ q.

For Term3, since∑
i

[
a2
λ0i

b
2p/q
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)2]
= O

((
n

λ0

)1/4)
= O(n1/5)

and ∑
i

[
a2
λ0i

b
2p/q
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)2

g2
i

]

= λ0
∑
i

[
a3
λ0i

b
2p/q−1
λ0i

(
aλ0i −

∑
i a

3
λ0i

b
−2/q
λ0i∑

i a
2
λ0i

b
−2/q
λ0i

)2

(kig
2
i )

]

= O(λ0) = O(n1/5) for all p ≥ q,

using Assumption A.4 we have

Term3= O(n1/5) for all p ≥ q.(A.12)

Combining (A.10)–(A.12) finally yields

T (p,q)
n = M(R0)√

V (R0)
= O

(
n1/5

n1/10

)
= O(n1/10) < 0 for all p ≥ q. �
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