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Abstract Shrinkage estimators have profound impacts in statistics and in scientific
and engineering applications. In this article, we consider shrinkage estimation in
the presence of linear predictors. We formulate two heteroscedastic hierarchical
regression models and study optimal shrinkage estimators in each model. A class
of shrinkage estimators, both parametric and semiparametric, based on unbiased
risk estimate (URE) is proposed and is shown to be (asymptotically) optimal under
mean squared error loss in each model. Simulation study is conducted to compare
the performance of the proposed methods with existing shrinkage estimators. We
also apply the method to real data and obtain encouraging and interesting results.

1 Introduction

Shrinkage estimators, hierarchical models and empirical Bayes methods, dating
back to the groundbreaking works of [24] and [21], have profound impacts in
statistics and in scientific and engineering applications. They provide effective
tools to pool information from (scientifically) related populations for simultaneous
inference—the data on each population alone often do not lead to the most effective
estimation, but by pooling information from the related populations together (for
example, by shrinking toward their consensus “center”), one could often obtain
more accurate estimate for each individual population. Ever since the seminal works
of [24] and [10], an impressive list of articles has been devoted to the study of
shrinkage estimators in normal models, including [1, 2, 4–6, 8, 12, 14, 16, 22, 25],
among others.

In this article, we consider shrinkage estimation in the presence of linear
predictors. In particular, we study optimal shrinkage estimators for heteroscedastic
data under linear models. Our study is motivated by three main considerations. First,
in many practical problems, one often encounters heteroscedastic (unequal variance)
data; for example, the sample sizes for different groups are not all equal. Second,
in many statistical applications, in addition to the heteroscedastic response variable,
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one often has predictors. For example, the predictors could represent longitudinal
patterns [7, 9, 27], exam scores [22], characteristics of hospital patients [18], etc.
Third, in applying shrinkage estimators to real data, it is quite natural to ask for the
optimal way of shrinkage.

The (risk) optimality is not addressed by the conventional estimators, such as the
empirical Bayes ones. One might wonder if such an optimal shrinkage estimator
exists in the first place. We shall see shortly that in fact (asymptotically) optimal
shrinkage estimators do exist and that the optimal estimators are not empirical Bayes
ones but are characterized by an unbiased risk estimate (URE).

The study of optimal shrinkage estimators under the heteroscedastic normal
model was first considered in [29], where the (asymptotic) optimal shrinkage
estimator was identified for both the parametric and semiparametric cases. Xie et al.
[30] extends the (asymptotic) optimal shrinkage estimators to exponential families
and heteroscedastic location-scale families. The current article can be viewed as
an extension of the idea of optimal shrinkage estimators to heteroscedastic linear
models.

We want to emphasize that this article works on a theoretical setting somewhat
different from [30] but can still cover its main results. Our theoretical results show
that the optimality of the proposed URE shrinkage estimators does not rely on
normality nor on the tail behavior of the sampling distribution. What we require
here are the symmetry and the existence of the fourth moment for the standardized
variable.

This article is organized as follows. We first formulate the heteroscedastic linear
models in Sect. 2. Interestingly, there are two parallel ways to do so, and both
are natural extensions of the heteroscedastic normal model. After reviewing the
conventional empirical Bayes methods, we introduce the construction of our optimal
shrinkage estimators for heteroscedastic linear models in Sect. 3. The optimal
shrinkage estimators are based on an unbiased risk estimate (URE). We show in
Sect. 4 that the URE shrinkage estimators are asymptotically optimal in risk. In
Sect. 5 we extend the shrinkage estimators to a semiparametric family. Simulation
studies are conducted in Sect. 6. We apply the URE shrinkage estimators in Sect. 7
to the baseball data set of [2] and observe quite interesting and encouraging results.
We conclude in Sect. 8 with some discussion and extension. The appendix details
the proofs and derivations for the theoretical results.

2 Heteroscedastic Hierarchical Linear Models

Consider the heteroscedastic estimation problem

Yij� indep.� N .�i;Ai/ ; i D 1; : : : ; p; (1)
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where � D �
�1; : : : ; �p

�T
is the unknown mean vector, which is to be estimated,

and the variances Ai > 0 are unequal, which are assumed to be known. In many
statistical applications, in addition to the heteroscedastic Y D �

Y1; : : : ;Yp
�T

, one
often has predictors X. A natural question is to consider a heteroscedastic linear
model that incorporates these covariates. Notation-wise, let fYi;XigpiD1 denote the p
independent statistical units, where Yi is the response variable of the i-th unit, and
Xi D .X1i; : : : ;Xki/

T is a k-dimensional column vector that corresponds to the k
covariates of the i-th unit. The k � p matrix

X D �
X1j � � � jXp

	
; X1; ::;Xp 2 R

k;

where Xi is the i-th column of X, then contains the covariates for all the units.
Throughout this article we assume that X has full rank, i.e., rank.X/ D k.

To include the predictors, we note that, interestingly, there are two different
ways to build up a heteroscedastic hierarchical linear model, which lead to different
structure for shrinkage estimation.

Model I: Hierarchical linear model. On top of (1), the �i’s are �i
indep.�

N
�
XT
i ˇ; �

�
, where ˇ and � are both unknown hyper-parameters. Model I

has been suggested as early as [26]. See [16] and [17] for more discussions. The
special case of no covariates (i.e., k D 1 and X D Œ1j � � � j1	) is studied in depth
in [29].

Model II: Bayesian linear regression model. Together with (1), one assumes � D
XTˇ with ˇ following a conjugate prior distribution ˇ � Nk .ˇ0; �W/, where
W is a known k � k positive definite matrix and ˇ0 and � are unknown hyper-
parameters. Model II has been considered in [3, 15, 20] among others; it includes
ridge regression as a special case when ˇ0 D 0k and W D Ik.

Figure 1 illustrates these two hierarchical linear models. Under Model I, the
posterior mean of � is O��;ˇi D � .�C Ai/

�1 YiCAi .�C Ai/
�1 XT

i ˇ for i D 1; : : : ; p,
so the shrinkage estimation is formed by directly shrinking the raw observation
Yi toward a linear combination of the k covariates Xi. If we denote �i D XT

i ˇ,

Fig. 1 Graphical illustration of the two heteroscedastic hierarchical linear models
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and � D �
�1; : : : ; �p

�T 2 Lrow .X/, the row space of X, then we can rewrite the
posterior mean of � under Model I as

O��;� D �

�C Ai
Yi C Ai

�C Ai
�i; with � 2 Lrow .X/ : (2)

Under Model II, the posterior mean of � is

O��;ˇ0 D XT Ǒ�;ˇ0 ; with Ǒ�;ˇ0 D �W.�W C V/�1 ǑWLS C V .�W C V/�1 ˇ0;
(3)

where ǑWLS D �
XA�1XT

��1
XA�1Y is the weighted least squares estimate of

the regression coefficient, A is the diagonal matrix A D diag
�
A1; : : : ;Ap

�
, and

V D .XA�1XT/�1. Thus, the estimate for �i is linear in Xi, and the “shrinkage”
is achieved by shrinking the regression coefficient from the weighted least squares

estimate ǑWLS
toward the prior coefficient ˇ0.

As both Models I and II are natural generalizations of the heteroscedastic normal
model (1), we want to investigate if there is an optimal choice of the hyper-
parameters in each case. Specifically, we want to investigate the best empirical
choice of the hyper-parameters in each case under the mean squared error loss

lp.�; O�/ D 1

p

�
�
�� � O�

�
�
�
2 D 1

p

pX

iD1

�
�i � O�i

�2
(4)

with the associated risk of O� defined by

Rp.�; O�/ D EYj�
�
lp.�; O�/

�
;

where the expectation is taken with respect to Y given � .

Remark 1 Even though we start from the Bayesian setting to motivate the form of
shrinkage estimators, our discussion will be all based on the frequentist setting.
Hence all probabilities and expectations throughout this article are fixed at the
unknown true � , which is free in R

p for Model I and confined in Lrow .X/ for
Model II.

Remark 2 The diagonal assumption of A is quite important for Model I but not so
for Model II, as in Model II we can always apply some linear transformations to
obtain a diagonal covariance matrix. Without loss of generality, we will keep the
diagonal assumption for A in Model II.

For the ease of exposition, we will next overview the conventional empirical
Bayes estimates in a general two-level hierarchical model, which includes both
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Models I and II:

Yj� � Np.�;A/ and � � Np.�;B/; (5)

whereB is a non-negative definite symmetric matrix that is restricted in an allowable
set B, and � is in the row space Lrow.X/ of X.

Remark 3 Under Model I, � and B take the form of � D XTˇ and B 2 B D˚
�Ip W � > 0�, whereas under Model II, � and B take the form of � D XTˇ0 and
B 2 B D ˚

�XTWX W � > 0�. It is interesting to observe that in Model I, B is of full
rank, while in Model II, B is of rank k. As we shall see, this distinction will have
interesting theoretical implications for the optimal shrinkage estimators.

Lemma 1 Under the two-level hierarchical model (5), the posterior distribution is

�jY � Np
�
B.A C B/�1Y C A.A C B/�1�;A.A C B/�1B

�
;

and the marginal distribution of Y is Y � Np .�;A C B/.

For given values of B and �, the posterior mean of the parameter � leads to the
Bayes estimate

O�B;� D B.A C B/�1Y C A.A C B/�1�: (6)

To use the Bayes estimate in practice, one has to specify the hyper-parameters in
B and �. The conventional empirical Bayes method uses the marginal distribution
of Y to estimate the hyper-parameters. For instance, the empirical Bayes maximum

likelihood estimates (EBMLE) OBEBMLE
and O�EBMLE are obtained by maximizing the

marginal likelihood of Y:

� OBEBMLE
; O�EBMLE

�
D argmax

B2B
�2Lrow.X/

� .Y � �/T .A C B/�1 .Y ��/� log .det .A C B// :

Alternatively, the empirical Bayes method-of-moment estimates (EBMOM)
OBEBMOM

and O�EBMOM are obtained by solving the following moment equations
for B 2 B and � 2 Lrow .X/:

� D XT
�
X .A C B/�1 XT

��1
X .A C B/�1 Y;

B D .Y � �/ .Y � �/T � A:

If no solutions of B can be found in B, we then set OBEBMOM D 0p�p. Adjustment for
the loss of k degrees of freedom from the estimation of � might be applicable for
B D �C (C D Ip for Model I and XTWX for Model II): we can replace the second
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moment equation by

� D
 

p

p � k

kY ��k2
tr .C/

� tr .A/
tr .C/

!C
:

The corresponding empirical Bayes shrinkage estimator O�EBMLE
or O�EBMOM

is then

formed by plugging . OBEBMLE
; O�EBMLE

/ or . OBEBMOM
; O�EBMOM

/ into Eq. (6).

3 URE Estimates

The formulation of the empirical Bayes estimates raises a natural question: which

one is preferred O�EBMLE
or O�EBMOM

? More generally, is there an optimal way

to choose the hyper-parameters? It turns out that neither O�EBMLE
nor O�EBMOM

is
optimal. The (asymptotically) optimal estimate, instead of relying on the marginal
distribution of Y, is characterized by an unbiased risk estimate (URE). The idea
of forming a shrinkage estimate through URE for heteroscedastic models is first
suggested in [29]. We shall see that in our context of hierarchical linear models
(both Models I and II) the URE estimators that we are about to introduce have
(asymptotically) optimal risk properties.

The basic idea behind URE estimators is the following. Ideally we want to find
the hyper-parameters that give the smallest risk. However, since the risk function
depends on the unknown � , we cannot directly minimize the risk function in
practice. If we can find a good estimate of the risk function instead, then minimizing
this proxy of the risk will lead to a competitive estimator.

To formally introduce the URE estimators, we start from the observation that,

under the mean squared error loss (4), the risk of the Bayes estimator O�B;�
for fixed

B and � is

Rp.�; O�B;�
/ D 1

p

�
�
�A .A C B/�1 .� � �/

�
�
�
2 C 1

p
tr
�
B .A C B/�1 A .A C B/�1 B

�
;

(7)
which can be easily shown using the bias-variance decomposition of the mean
squared error. As the risk function involves the unknown � , we cannot directly
minimize it. However, an unbiased estimate of the risk is available:

URE .B;�/ D 1

p

�
�
�A .A C B/�1 .Y � �/

�
�
�
2 C 1

p
tr
�
A � 2A .A C B/�1 A

�
; (8)

which again can be easily shown using the bias-variance decomposition of the mean
squared error. Intuitively, if URE .B;�/ is a good approximation of the actual risk,
then we would expect the estimator obtained by minimizing the URE to have good
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properties. This leads to the URE estimator O�URE
, defined by

O�URE D OBURE
.A C OBURE

/�1Y C A.A C OBURE
/�1 O�URE

; (9)

where
� OBURE

; O�URE
�

D argmin
B2B; �2Lrow.X/

URE .B;�/ :

It is worth noting that the value of � that minimizes (8) for a given B is neither
the ordinary least squares (OLS) nor the weighted least squares (WLS) regression
estimate, echoing similar observation as in [29].

In the URE estimator (9), OBURE
and O�URE are jointly determined by minimizing

the URE. When the number of independent statistical units p is small or moderate,
joint minimization of B and the vector �, however, may be too ambitious. In this
setting, it might be beneficial to set � by a predetermined rule and only optimize
B, as it might reduce the variability of the resulting estimate. In particular, we can
consider shrinking toward a generalized least squares (GLS) regression estimate

O�M D XT
�
XMXT

��1
XMY D PM;XY;

where M is a prespecified symmetric positive definite matrix. This use of O�M gives

the shrinkage estimate O�B; O�M

D B.A C B/�1Y C A.A C B/�1 O�M, where one only
needs to determine B. We can construct another URE estimate for this purpose.

Similar to the previous construction, we note that O�B; O�M

has risk

Rp.�; O�B; O�M

/ D1

p

�
�
�A .A C B/�1

�
Ip � PM;X

�
�

�
�
�
2

C 1

p
tr
��

Ip � A .A C B/�1
�
Ip � PM;X

��
A

�
�
Ip � A .A C B/�1

�
Ip � PM;X

��T
�

: (10)

An unbiased risk estimate of it is

UREM .B/ D 1

p

�
�
�A .A C B/�1

�
Y � O�M

��
�
�
2 C 1

p
tr
�
A � 2A .A C B/�1

�
Ip � PM;X

�
A
�
:

(11)

Both (10) and (11) can be easily proved by the bias-variance decomposition of
mean squared error. Minimizing UREM .B/ over B gives the URE GLS shrinkage
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estimator (which shrinks toward O�M):

O�URE
M D OBURE

M

�
A C OBURE

M

��1
Y C A

�
A C OBURE

M

��1
O�M
; (12)

where

OBURE
M D argmin

B2B
UREM .B/ :

Remark 4 When M D Ip, clearly O�M D O�OLS, the ordinary least squares regression
estimate. When M D A�1, then O�M D O�WLS, the weighted least squares regression
estimate.

Remark 5 Tan [28] briefly discussed the URE minimization approach for Model I
without the covariates in [29] in relation to [11], where Model I is assumed but an
unbiased estimate of the mean prediction error (rather than the mean squared error)
is used to form a predictor (rather than an estimator).

Remark 6 In the homoscedastic case, (12) reduces to standard shrinkage toward a
subspace Lrow .X/, as discussed, for instance, in [23] and [19].

4 Theoretical Properties of URE Estimates

This section is devoted to the risk properties of the URE estimators. Our core
theoretical result is to show that the risk estimate URE is not only unbiased for the
risk but, more importantly, uniformly close to the actual loss. We therefore expect
that minimizing URE would lead to an estimate with competitive risk properties.

4.1 Uniform Convergence of URE

To present our theoretical result, we first define L to be a subset of Lrow .X/:

L D f� 2 Lrow .X/ W k�k 	 Mp� kYkg;

where M is a large and fixed constant and � 2 Œ0; 1=2/ is a constant. Next, we
introduce the following regularity conditions:

(A)
Pp

iD1 A2i D O .p/; (B)
Pp

iD1 Ai�
2
i D O .p/; (C)

Pp
iD1 �2i D O .p/;

(D) p�1XAXT ! ˝D; (E) p�1XXT ! ˝E > 0;
(F) p�1XA�1XT ! ˝F > 0; (G) p�1XA�2XT ! ˝G.
The theorem below shows that URE .B;�/ not only unbiasedly estimates the risk

but also is (asymptotically) uniformly close to the actual loss.
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Theorem 1 Assume conditions (A)–(E) for Model I or assume conditions (A) and
(D)–(G) for Model II. In either case, we have

sup
B2B; �2L

ˇ
ˇ
ˇURE .B;�/ � lp

�
�; O�B;��ˇˇ

ˇ ! 0 in L1; as p ! 1:

We want to remark here that the set L gives the allowable range of �: the norm
of � is up to an o

�
p1=2

�
multiple of the norm of Y. This choice of L does not

lead to any difficulty in practice because, given a large enough constant M, it will
cover the shrinkage location of any sensible shrinkage estimator. We note that it is
possible to define the range of sensible shrinkage locations in other ways (e.g., one
might want to define it by 1-norm in R

p), but we find our setting more theoretically
appealing and easy to work with. In particular, our assumption of the exponent � <
1=2 is flexible enough to cover most interesting cases, including O�OLS, the ordinary
least squares regression estimate, and O�WLS, the weighted least squares regression
estimate (as in Remark 4) as shown in the following lemma.

Lemma 2 (i) O�OLS 2 L . (ii) Assume .A/ and .A0/
Pp

iD1 A�2�ı
i D O .p/ for some

ı > 0; then O�WLS 2 L for � D 4�1 C .4C 2ı/�1 and a large enough M.

Remark 7 We want to mention here that Theorem 1 in the case of Model I covers
Theorem 5.1 of [29] (which is the special case of k D 1 and X D Œ1j1j : : : j1	)
because the restriction of j�j 	 max

1�i�p
jYij in [29] is contained in L as

max
1�i�p

jYij D .max
1�i�p

Y2i /
1=2 	 .

pX

iD1
Y2i /

1=2 D kYk :

Furthermore, we do not require the stronger assumption of
Pp

iD1 j�ij2Cı D O .p/
for some ı > 0 made in [29]. Note that in this case (k D 1 and X D Œ1j1j : : : j1	)
we do not even require conditions .D/ and .E/, as condition .A/ directly implies

tr.
�
XXT

��1
XAXT/ D O .1/, the result we need in the proof of Theorem 1 for Model

I.

Remark 8 In the proof of Theorem 1, the sampling distribution of Y is involved only
through the moment calculations, such as E.tr.YYT � A � ��T/2/ and E.kYk2/. It
is therefore straightforward to generalize Theorem 1 to the case of

Yi D �i Cp
AiZi;

where Zi follows any distribution with mean 0, variance 1,E
�
Z3i
� D 0, andE

�
Z4i
�
<

1. This is noteworthy as our result also covers that of [30] but the methodology we
employ here does not require to control the tail behavior of Zi as in [29, 30].
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4.2 Risk Optimality

In this section, we consider the risk properties of the URE estimators. We will show
that, under the hierarchical linear models, the URE estimators have (asymptotically)
optimal risk, whereas it is not necessarily so for other shrinkage estimators such as
the empirical Bayes ones.

A direct consequence of the uniform convergence of URE is that the URE
estimator has a loss/risk that is asymptotically no larger than that of any other
shrinkage estimators. Furthermore, the URE estimator is asymptotically as good

as the oracle loss estimator. To be precise, let Q�OL
be the oracle loss (OL) estimator

defined by plugging

� QBOL
; Q�OL

�
D argmin

B2B; �2L
lp
�
� ; O�B;��

D argmin
B2B; �2L

�
�B.A C B/�1Y C A.A C B/�1� � ���2

into (6). Of course, Q�OL
is not really an estimator, since it depends on the unknown

� (hence we use the notation Q�OL
rather than O�OL

). Although not obtainable in

practice, Q�OL
lays down the theoretical limit that one can ever hope to reach. The

next theorem shows that the URE estimator O�URE
is asymptotically as good as the

oracle loss estimator, and, consequently, it is asymptotically at least as good as any
other shrinkage estimator.

Theorem 2 Assume the conditions of Theorem 1 and that O�URE 2 L . Then

lim
p!1P

�
lp
�
� ; O�URE

�
� lp

�
�; Q�OL

�
C �

�
D 0 8� > 0;

lim sup
p!1

�
Rp

�
� ; O�URE

�
� Rp

�
� ; Q�OL

��
D 0:

Corollary 1 Assume the conditions of Theorem 1 and that O�URE 2 L . Then for

any estimator O� OBp; O�p D OBp

�
A C OBp

��1
Y C A

�
A C OBp

��1 O�p with OBp 2 B and

O�p 2 L , we always have

lim
p!1P




lp
�
� ; O�URE

�
� lp




�; O� OBp; O�p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
� ; O�URE

�
� Rp




�; O� OBp; O�p

��

	 0:
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Corollary 1 tells us that the URE estimator in either Model I or II is asymptoti-
cally optimal: it has (asymptotically) the smallest loss and risk among all shrinkage
estimators of the form (6).

4.3 Shrinkage Toward the Generalized Least Squares Estimate

The risk optimality also holds when we consider the URE estimator O�URE
M that

shrinks toward the GLS regression estimate O�M D PM;XY as introduced in Sect. 3.

Theorem 3 Assume the conditions of Theorem 1, O�M 2 L , and

p�1XMXT ! ˝1 > 0; p�1XAMXT ! ˝2; p�1XMA2MXT ! ˝3; (13)

where only the first and third conditions above are assumed for Model I and only
the first and the second are assumed for Model II. Then we have

sup
B2B

ˇ
ˇ
ˇ
ˇUREM .B/� lp




�; O�B; O�M
�ˇ
ˇ
ˇ
ˇ ! 0 in L1 as p ! 1: (14)

As a corollary, for any estimator O� OBp; O�M

D OBp

�
A C OBp

��1
Y C A

�
A C OBp

��1 O�M

with OBp 2 B, we always have

lim
p!1P




lp
�
�; O�URE

M

�
� lp




�; O� OBp; O�M
�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
�; O�URE

M

�
� Rp




�; O� OBp; O�M
��

	 0:

Remark 9 For shrinking toward O�OLS, where M D Ip, we know from Lemma 2 that
O�OLS is automatically in L , so we only need one more condition p�1XA2XT ! ˝3

for Model I. For shrinking toward O�WLS, where M D A�1, (13) is the same as the
conditions (E) and (F) of Theorem 1, so additionally we only need to assume .A0/
of Lemma 2 and (F) for Model I.

5 Semiparametric URE Estimators

We have established the (asymptotic) optimality of the URE estimators O�URE
and

O�URE
M in the previous section. One limitation of the result is that the class over which

the URE estimators are optimal is specified by a parametric form:B D �C (0 	 � 	
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1) in Eq. (6), where C D Ip for Model I and C D XTWX for Model II. Aiming
to provide a more flexible and, at the same time, efficient estimation procedure,
we consider in this section a class of semiparametric shrinkage estimators. Our
consideration is inspired by Xie et al. [29].

5.1 Semiparametric URE Estimator Under Model I

To motivate the semiparametric shrinkage estimators, let us first revisit the Bayes

estimator O��;� under Model I, as given in (2). It is seen that the Bayes estimate
of each mean parameter �i is obtained by shrinking Yi toward the linear estimate
�i D XT

i ˇ, and that the amount of shrinkage is governed by Ai, the variance: the
larger the variance, the stronger is the shrinkage. This feature makes intuitive sense.

With this observation in mind, we consider the following shrinkage estimators
under Model I:

O�b;�i D .1 � bi/ Yi C bi�i; with � 2 Lrow .X/ ;

where b satisfies the monotonic constraint

MON .A/ W bi 2 Œ0; 1	 ; bi 	 bj whenever Ai 	 Aj:

MON .A/ asks the estimator to shrink more for an observation with a larger variance.
Since other than this intuitive requirement, we do not post any parametric restriction
on bi, this class of estimators is semiparametric in nature.

Following the optimality result for the parametric case, we want to investigate,

for such a general estimator O�b;�
with b 2 MON .A/ and � 2 Lrow .X/, whether

there exists an optimal choice of b and �. In fact, we will see shortly that such an
optimal choice exists, and this asymptotically optimal choice is again characterized

by an unbiased risk estimate (URE). For a general estimator O�b;�
with fixed b and

� 2 Lrow .X/, an unbiased estimate of its risk Rp.�; O�b;�
/ is

URESP .b;�/ D 1

p
kdiag .b/ .Y � �/k2 C 1

p
tr .A � 2diag .b/A/ ;

which can be easily seen by taking B D A.diag .b/�1 � Ip/ in (8). Note that we use
the superscript “SP” (semiparametric) to denote it. Minimizing over b and � leads

to the semiparametric URE estimator O�URE
SP , defined by

O�URE
SP D .Ip � diag.ObURE

SP //Y C diag.ObURE
SP / O�URE

SP ; (15)
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where
�ObURE

SP ; O�URE
SP

�
D argmin

b2MON.A/; �2Lrow.X/
URESP .b;�/ :

Theorem 4 Assume conditions (A)–(E). Then under Model I we have

sup
b2MON.A/; �2L

ˇ
ˇ
ˇURESP .b;�/� lp

�
�; O�b;��ˇˇ

ˇ ! 0 in L1 as p ! 1:

As a corollary, for any estimator O� Obp; O�p D .Ip � diag.Obp//Y C diag.Obp/ O�p with
Obp 2 MON .A/ and O�p 2 L , we always have

lim
p!1P




lp
�
�; O�URE

SP

�
� lp




�; O� Obp; O�p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
�; O�URE

SP

�
� Rp




�; O� Obp; O�p

��

	 0:

The proof is the same as the proofs of Theorem 1 and Corollary 1 for the case of
Model I except that we replace each term of Ai=.�C Ai/ by bi.

5.2 Semiparametric URE Estimator Under Model II

We saw in Sect. 2 that, under Model II, shrinkage is achieved by shrinking the

regression coefficient from the weighted least squares estimate ǑWLS
toward the

prior coefficient ˇ0. This suggests us to formulate the semiparametric estimators
through the regression coefficient. The Bayes estimate of the regression coefficient
is

Ǒ�;ˇ0 D �W.�W C V/�1 ǑWLS C V .�W C V/�1 ˇ0; with V D .XA�1XT/�1

as shown in (3). Applying the spectral decomposition on W�1=2VW�1=2 gives
W�1=2VW�1=2 D U	UT , where 	 D diag .d1; : : : ; dk/ with d1 	 � � � 	 dk. Using
this decomposition, we can rewrite the regression coefficient as

Ǒ�;ˇ0 D �W1=2U .�Ik C	/�1UTW�1=2 ǑWLSCW1=2U	 .�Ik C	/�1UTW�1=2ˇ0:
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If we denote Z D UTW1=2X as the transformed covariate matrix, the estimate
O��;ˇ0 D XT Ǒ�;ˇ0 of � can be rewritten as

O��;ˇ0 D ZT
�
� .�Ik C	/�1 UTW�1=2 ǑWLS C	 .�Ik C	/�1UTW�1=2ˇ0

�
:

Now we see that � .�Ik C	/�1 D diag.�= .�C di// plays the role as the shrinkage
factor. The larger the value of di, the smaller �= .�C di/, i.e., the stronger the
shrinkage toward ˇ0. Thus, di can be viewed as the effective “variance” component
for the i-th regression coefficient (under the transformation). This observation
motivates us to consider semiparametric shrinkage estimators of the following form

O�b;ˇ0 D ZT
�
.Ik � diag .b//UTW�1=2 ǑWLS C diag .b/UTW�1=2ˇ0

�

D ZT
�
.Ik � diag .b//	ZA�1Y C diag .b/UTW�1=2ˇ0

�
; (16)

where b satisfies the following monotonic constraint

MON .D/ W bi 2 Œ0; 1	 ; bi 	 bj whenever di 	 dj:

This constraint captures the intuition that, the larger the effective variance, the
stronger is the shrinkage.

For fixed b and ˇ0, an unbiased estimate of the risk Rp.� ; O�b;ˇ0
/ is

URESP .b;ˇ0/ D 1

p

�
�
�ZT .Ik � diag .b//	ZA�1Y C ZTdiag .b/UTW�1=2ˇ0 � Y

�
�
�
2

C 1

p
tr
�
2ZT .Ik � diag .b//	Z � A

�
;

which can be shown using the bias-variance decomposition of the mean squared
error. Minimizing it gives the URE estimate of .b;ˇ0/:



ObURE
SP ;

� Ǒ
0

�URE

SP

�

D argmin
b2MON.D/; ˇ02Rk

URESP .b;ˇ0/ ;

which upon plugging into (16) yields the semiparametric URE estimator O�URE
SP under

Model II.

Theorem 5 Assume conditions (A), (D)–(G). Then under Model II we have

sup
b2MON.D/; XTˇ02L

ˇ
ˇ
ˇURESP .b;ˇ0/ � lp

�
�; O�b;ˇ0

�ˇ
ˇ
ˇ ! 0 in L1 as p ! 1:
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As a corollary, for any estimator O� Obp; Ǒ
0;p obtained from (16) with Obp 2 MON .D/

and XT Ǒ
0 2 L , we always have

lim
p!1P




lp
�
�; O�URE

SP

�
� lp




�; O� Obp; Ǒ
0;p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
�; O�URE

SP

�
� Rp




� ; O� Obp; Ǒ
0;p

��

	 0:

The proof of the theorem is essentially identical to those of Theorem 1 and
Corollary 1 for the case of Model II except that we replace each di=.�C di/ by bi.

6 Simulation Study

In this section, we conduct simulations to study the performance of the URE
estimators. For the sake of space, we will focus on Model I. The four URE

estimators are the parametric O�URE
of Eq. (9), the parametric O�URE

M of Eq. (12) that
shrinks toward the OLS estimate O�OLS (i.e., the matrix M D Ip), the semiparametric
O�URE
SP of Eq. (15), and the semiparametric O�URE;OLS

SP that shrinks toward O�OLS, which

is formed similarly to O�URE
M by replacing Ai=.�CAi/ with a sequence b 2 MON .A/.

The competitors here are the two empirical Bayes estimators O�EBMLE
and O�EBMOM

,

and the positive part James-Stein estimator O�JSC
as described in [2, 17]:

O� JSC
i D O�WLS

i C
 

1 � p � k � 2
Pp

iD1
�
Yi � O�WLS

i

�2
=Ai

!C
�
Yi � O�WLS

i

�
:

As a reference, we also compare these shrinkage estimators with Q�OR
, the

parametric oracle risk (OR) estimator, defined as plugging Q�ORIp and Q�OR into
Eq. (6), where

� Q�OR; Q�OR
�

D argmin
0���1; �2Lrow.X/

Rp

�
�; O��;�

�

and the expression of Rp.�; O��;�/ is given in (7) with B D �Ip. The oracle risk

estimator Q�OR
cannot be used without the knowledge of � , but it does provide a

sensible lower bound of the risk achievable by any shrinkage estimator with the
given parametric form.
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Fig. 2 Comparison of the risks of different shrinkage estimators for the two simulation examples

For each simulation, we draw .Ai; �i/ (i D 1; 2; : : : ; p) independently from a
distribution � .Ai; �ijXi;ˇ/ and then draw Yi given .Ai; �i/. The shrinkage estimators
are then applied to the generated data. This process is repeated 5000 times. The
sample size p is chosen to vary from 20 to 500 with an increment of length 20.
In the simulation, we fix a true but unknown ˇ D .�1:5; 4;�3/T and a known
covariates X, whose each element is randomly generated from Unif .�10; 10/. The
risk performance of the different shrinkage estimators is given in Fig. 2.

Example 1 The setting in this example is chosen in such a way that it reflects
grouping in the data:

Ai � 0:5 � 1fAiD0:1g C 0:5 � 1fAiD0:5gI
�ijAi � N

�
2 � 1fAiD0:1g C XT

i ˇ; 0:5
2
� I Yi � N .�i;Ai/ :

Here the normality for the sampling distribution of Yi’s is asserted. We can see that
the four URE estimators perform much better than the two empirical Bayes ones
and the James-Stein estimator. Also notice that both of the two (parametric and
semiparametric) URE estimators that shrink towards O�OLS is almost as good as the
other two with general data-driven shrinkage location—largely due to the existence
of covariate information. We note that this is quite different from the case of [29],
where without the covariate information the estimator that shrinks toward the grand
mean of the data performs significantly worse than the URE estimator with general
data-driven shrinkage location.

Example 2 In this example, we allow Yi to depart from the normal distribution
to illustrate that the performance of those URE estimators does not rely on the
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normality assumption:

Ai � Unif .0:1; 1/ I �i D Ai C XT
i ˇI

Yi � Unif.�i � p
3Ai; �i C p

3Ai/:

As expected, the four URE estimators perform better or at least as good as
the empirical Bayes estimators. The EBMLE estimator performs the worst due
to its sensitivity on the normality assumption. We notice that the EBMOM
estimator in this example has comparable performance with the two parametric
URE estimators, which makes sense as moment estimates are more robust to the
sampling distribution. An interesting feature that we find in this example is that
the positive part James-Stein estimator can beat the parametric oracle risk estimator
and perform better than all the other shrinkage estimators for small or moderate p,
even though the semiparametric URE estimators will eventually surpass the James-
Stein estimator, as dictated by the asymptotic theory for large p. This feature of
the James-Stein estimate is again quite different from the non-regression setting
discussed in [29], where the James-Stein estimate performs the worst throughout all
of their examples. In both of our examples only the semiparametric URE estimators
are robust to the different levels of heteroscedasticity.

We can conclude from these two simulation examples that the semiparametric
URE estimators give competitive performance and are robust to the misspecification
of the sampling distribution and the different levels of the heteroscedasticity. They
thus could be useful tools in analyzing large-scale data for applied researchers.

7 Empirical Analysis

In this section, we study the baseball data set of [2]. This data set consists of the
batting records for all the Major League Baseball players in the 2005 season. As
in [2] and [29], we build a given shrinkage estimator based on the data in the first
half season and use it to predict the second half season, which can then be checked
against the true record of the second half season. For each player, let the number
of at-bats be N and the successful number of batting be H, then we have Hij �
Binomial.Nij; pj/, where i D 1; 2 is the season indicator and j D 1; � � � ; p is the
player indicator. We use the following variance-stabilizing transformation [2] before
applying the shrinkage estimators

Yij D arcsin

s
Hij C 1=4

Nij C 1=2
;
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which gives Yij P�N.�j; .4Nij/
�1/, �j D arcsin

p
pj. We use

TSE. O�/ D
X

j

.Y2j � O�j/2 �
X

j

1

4N2j
:

as the error measurement for the prediction [2].

7.1 Shrinkage Estimation with Covariates

As indicated in [29], there exists a significant positive correlation between the
player’s batting ability and his total number of at-bats. Intuitively, a better player
will be called for batting more frequently; thus, the total number of at-bats will
serve as the main covariate in our analysis. The other covariate in the data set is the
categorical variable of a player being a pitcher or not.

Table 1 summarizes the result, where the shrinkage estimators are applied three
times—to all the players, the pitchers only, and the non-pitchers only. We use all the
covariate information (number of at-bats in the first half season and being a pitcher
or not) in the first analysis, whereas in the second and the third analyses we only use
the number of at-bats as the covariate. The values reported are ratios of the error of a
given estimator to that of the benchmark naive estimator, which simply uses the first
half season Y1j to predict the second half Y2j. Note that in Table 1, if no covariate
is involved (i.e., when X D Œ1j � � � j1	), the OLS reduces to the grand mean of the
training data as in [29].

Table 1 Prediction errors of batting averages using different shrinkage estimators

All Pitchers Non-pitchers

p for estimation 567 81 486

p for validation 499 64 435

Covariates? No Yes No Yes No Yes

Naive 1 NA 1 NA 1 NA

Ordinary least squares (OLS) 0.852 0.242 0.127 0.115 0.378 0.333

Weighted least squares (WLS) 1.074 0.219 0.127 0.087 0.468 0.290

Parametric EBMOM 0.593 0.194 0.129 0.117 0.387 0.256
Parametric EBMLE 0.902 0.207 0.117 0.096 0.398 0.277

James-Stein 0.525 0.184 0.164 0.142 0.359 0.262

Parametric URE toward OLS 0.505 0.203 0.123 0.124 0.278 0.300

Parametric URE toward WLS 0.629 0.188 0.127 0.112 0.385 0.268

Parametric URE 0.422 0.215 0.123 0.130 0.282 0.310

Semiparametric URE toward OLS 0.409 0.197 0.081 0.097 0.261 0.299

Semiparametric URE toward WLS 0.499 0.184 0.098 0.083 0.336 0.256
Semiparametric URE 0.419 0.201 0.077 0.126 0.278 0.314

Bold numbers highlight the best performance with covariate(s) in each case
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7.2 Discussion of the Numerical Result

There are several interesting observations from Table 1.

1. A quick glimpse shows that including the covariate information improves the
performance of essentially all shrinkage estimators. This suggests that in practice
incorporating good covariates would significantly improve the estimation and
prediction.

2. In general, shrinking towards WLS provides much better performance than
shrinking toward OLS or a general data-driven location. This indicates the
importance of a good choice of the shrinkage location in a practical problem.
An improperly chosen shrinkage location might even negatively impact the
performance. The reason that shrinking towards a general data-driven location
is not as good as shrinking toward WLS is probably due to that the sample size
is not large enough for the asymptotics to take effect.

3. Table 1 also shows the advantage of semiparametric URE estimates. For each
fixed shrinkage location type (toward OLS, WLS, or general), the semiparametric
URE estimator performs almost always better than their parametric counterparts.
The only one exception is in the non-pitchers only case with the general data-
driven location, but even there the performance difference is ignorable.

4. The best performance in all three cases (all the players, the pitchers only, and the
non-pitchers only) comes from the semiparametric URE estimator that shrinks
toward WLS.

5. The James-Stein estimator with covariates performs quite well except in the
pitchers only case, which is in sharp contrast with the performance of the
James-Stein estimator without covariates. This again highlights the importance
of covariate information. In the pitchers only case, the James-Stein performs the
worst no matter one includes the covariates or not. This can be attributed to the
fact that the covariate information (the total number of at-bats) is very weak for
the pitchers only case; in the case of weak covariate information, how to properly
estimate the shrinkage factors becomes the dominating issue, and the fact that
the James-Stein estimator has only one uniform shrinkage factor makes it not
competitive.

7.3 Shrinkage Factors

Figure 3 shows the shrinkage factors of all the shrinkage estimators with or without
the covariates for the all-players case of Table 1. We see that the shrinkage factors
are all reduced after including the covariates. This makes intuitive sense because
the shrinkage location now contains the covariate information, and each shrinkage
estimator uses this information by shrinking more toward it, resulting in smaller
shrinkage factors.
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Fig. 3 Plot of the shrinkage factors O�=
�O�C Ai

�
or 1 � Obi of all the shrinkage estimators for the

case of all players

8 Conclusion and Discussion

Inspired by the idea of unbiased risk estimate (URE) proposed in [29], we extend
the URE framework to multivariate heteroscedastic linear models, which are
more realistic in practical applications, especially for regression data that exhibits
heteroscedasticity. Several parallel URE shrinkage estimators in the regression case
are proposed, and these URE shrinkage estimators are all asymptotically optimal in
risk compared to other shrinkage estimators, including the classical empirical Bayes
ones. We also propose semiparametric estimators and conduct simulation to assess
their performance under both normal and non-normal data. For data sets that exhibit
a good linear relationship between the covariates and the response, a semiparametric
URE estimator is expected to provide good estimation result, as we saw in the
baseball data. It is also worth emphasizing that the risk optimality for the parametric
and semiparametric URE estimators does not depend on the normality assumption
of the sampling distribution of Yi. Possible future work includes extending this URE
minimization approach to simultaneous estimation in generalized linear models
(GLMs) with canonical or more general link functions.

We conclude this article by extending the main results to the case of weighted
mean squared error loss.

Weighted Mean Squared Error Loss One might want to consider the more
general weighted mean squared error as the loss function:

lp
�
�; O�I 

�
D 1

p

pX

iD1
 i

�
�i � O�i

�2
;
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where  i > 0 are known weights such that
Pp

iD1  i D p. The framework proposed
in this article is straightforward to generalize to this case.

For Model II, we only need to study the equivalent problem by the following
transformation

Yi ! p
 iYi; �i ! p

 i�i; Xi ! p
 iXi; Ai !  iAi; (17)

and restate the corresponding regularity conditions in Theorem 1 by the transformed
data and parameters. We then reduce the weighted mean square error problem back
to the same setting we study in this article under the classical loss function (4).

Model I is more sophisticated than Model II to generalize. In addition to the
transformation in Eq. (17), we also need � !  i� in every term related to the
individual unit i. Thus,

p
 i�ijX;ˇ; � indep.� N

�p
 iXT

i ˇ; � i

�
;

so these transformed parameters
p
 i�i are also heteroscedastic in the sense that

they have different weights, while the setting we study before assumes all the
weights on the �i are one. However, if we carefully examine the proof of Theorem 1
for the case of Model I, we can see that actually we do not much require the
equal weights on the �i’s. What is important in the proof is that the shrinkage
factor for unit i is always of the form Ai= .Ai C �/, which is invariant under the
transformation Ai !  iAi and � !  i�. Thus, after reformulating the regularity
conditions in Theorem 1 by the transformed data and parameters, we can still follow
the same proof to conclude the risk optimality of URE estimators (parametric or
semiparametric) even under the consideration of weighted mean squared error loss.

For completeness, here we state the most general result under the semiparametric
setting for Model I. Let

O�URE
SP; D

�
Ip � diag

�ObURE
 

��
Y C diag

�ObURE
 

�
O�URE
 ;

URE .b;�I / D 1

p

pX

iD1
 i

�
b2i .Yi � �i/

2 C .1 � 2bi/Ai

�
;

�ObURE
 ; O�URE

 

�
D argmin

b2MON.A/; �2Lrow.X/
URE .b;�I / :

Theorem 6 Assume the following five conditions . -A/
Pp

iD1  2i A2i D O .p/,
. -B/

Pp
iD1  2i Ai�

2
i D O .p/, . -C/

Pp
iD1  i�

2
i D O .p/, . -D/ p�1Pp

iD1  2i
AiXiXT

i converges, and . -E/ p�1Pp
iD1  iXiXT

i ! ˝ > 0. Then we have

sup
b2MON.A/; �2L 

ˇ
ˇ
ˇURE .b;�I / � lp

�
�; O�b;�I 

�ˇ
ˇ
ˇ !
p!1 0 in L1,
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where � 2 L if and only if � 2 Lrow .X/ and

pX

iD1
 i�

2
i 	 Mp�

pX

iD1
 iY

2
i

for a large and fixed constant M and a fixed exponent � 2 Œ0; 1=2/. As a corollary,

for any estimator O� Obp; O�p D .Ip � diag.Obp//Y C diag.Obp/ O�p with Obp 2 MON .A/ and
O�p 2 L , we have

lim
p!1P




lp
�
�; O�URE

SP; 

�
� lp




�; O� Obp; O�p

�

C �

�

D 0 8� > 0;

lim sup
p!1




Rp

�
� ; O�URE

SP; 

�
� Rp




�; O� Obp; O�p

��

	 0:
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Appendix: Proofs and Derivations

Proof of Lemma 1 We can write � D �CZ1 and Y D �CZ2, where Z1 � Np.0;B/

and Z2 � Np.0;A/ are independent. Jointly

 
Y
�

!

is still multivariate normal

with mean vector

 
�

�

!

and covariance matrix



A C B B
B B

�

. The result follows

immediately from the conditional distribution of a multivariate normal distribution.

Proof of Theorem 1 We start from decomposing the difference between the URE
and the actual loss as

URE .B;�/ � lp
�
�; O�B;��

DURE
�
B; 0p

� � lp
�
�; O�B;0p

�
� 2

p
tr
�
A .A C B/�1 � .Y � �/T

�
(18)

D1

p
tr
�
YYT � A � ��T

� � 2

p
tr
�
B .A C B/�1

�
YYT � Y�T � A

��

� 2

p
tr
�
A .A C B/�1� .Y � �/T

�
(19)

D .I/C .II/C .III/ :
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To verify the first equality (18), note that

URE .B;�/� URE
�
B; 0p

�

D 1

p

�
�
�A .A C B/�1 .Y ��/

�
�
�
2 � 1

p

�
�
�A .A C B/�1 Y

�
�
�
2

D �1
p

tr




�T
�
A .A C B/�1

�T
A .A C B/�1 .2Y ��/

�

;

lp
�
�; O�B;�

�
� lp

�
�; O�B;0p

�

D 1

p

�
�
�
�
Ip � A .A C B/�1

�
Y C A .A C B/�1� � �

�
�
�
2

� 1

p

�
�
�
�
Ip � A .A C B/�1

�
Y � �

�
�
�
2

D 1

p
tr



�T
�
A .A C B/�1

�T �
2
��

Ip � A .A C B/�1
�
Y � �

�
C A .A C B/�1�

��

:

Equation (18) then follows by rearranging the terms. To verify the second equal-
ity (19), note

URE
�
B; 0p

� � lp
�
�; O�B;0p

�

D 1

p

�
�
�A .A C B/�1 Y

�
�
�
2 � 1

p

�
�
�
�
Ip � A .A C B/�1

�
Y � �

�
�
�
2

C 1

p
tr
�
A � 2A .A C B/�1 A

�

D 1

p
tr


�
Y � 2

�
Ip � A .A C B/�1

�
Y C �

�T
.Y � �/

�

C 1

p
tr
�
A � 2A .A C B/�1 A

�

D 1

p
tr
�
YYT � A � ��T

� � 2

p
tr
�
B .A C B/�1

�
Y .Y � �/T � A

��
:

With the decomposition, we want to prove separately the uniform L1 convergence
of the three terms .I/, .II/, and .III/.

Proof for the case of Model I.
The uniform L2 convergence of .I/ and .II/ has been shown in Theorem 3.1 of

[29] under our assumptions .A/ and .B/, so we focus on .III/, i.e., we want to show
that sup

0���1; �2L
j.III/j ! 0 in L1 as p ! 1.
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Without loss of generality, let us assume A1 	 A2 	 � � � 	 Ap. We have

sup
0���1; �2L

j.III/j D 2

p
sup

0���1; �2L

ˇ
ˇ
ˇ
ˇ
ˇ

pX

iD1

Ai

Ai C �
�i .Yi � �i/

ˇ
ˇ
ˇ
ˇ
ˇ

	 2

p
sup
�2L

sup
0�c1�����cp�1

ˇ
ˇ
ˇ
ˇ
ˇ

pX

iD1
ci�i .Yi � �i/

ˇ
ˇ
ˇ
ˇ
ˇ

D 2

p
sup
�2L

max
1�j�p

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

pX

iDj

�i .Yi � �i/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

where the last equality follows from Lemma 2.1 of [13]. For a generic p-dimensional

vector v, we denote Œv	jWp D .0; : : : 0; vj; vjC1; : : : ; vp/. Let PX D XT
�
XXT

��1
X be

the projection matrix onto Lrow .X/. Then since L � Lrow .X/, we have

2

p
sup
�2L

max
1�j�p

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

pX

iDj

�i .Yi � �i/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 2

p
max
1�j�p

sup
�2L

ˇ
ˇ�T ŒY � �	jWp

ˇ
ˇ

D2

p
max
1�j�p

sup
�2L

ˇ
ˇ�TPXŒY � �	jWp

ˇ
ˇ 	 2

p
max
1�j�p

sup
�2L

k�k � ��PXŒY � � 	jWp
�
�

D2

p
max
1�j�p

Mp� kYk � ��PXŒY � �	jWp
�
� :

Cauchy-Schwarz inequality thus gives

E

 

sup
0���1;�2L

j.III/j
!

	 2Mp��1
r

E

�
kYk2

�
�
s

E




max
1�j�p

�
�PXŒY � � 	jWp

�
�2
�

:

(20)
It is straightforward to see that, by conditions (A) and (C),

r

E

�
kYk2

�
D
r

E.
Xp

iD1 Y
2
i / D

r
Xp

iD1
�
�2i C Ai

� D O
�
p1=2

�
:

For the second term on the right-hand side of (20), let PX D 
 D
 T denote the
spectral decomposition. Clearly,

D D diag

0

@1; : : : ; 1
„ ƒ‚ …
k copies

; 0; : : : ; 0
„ ƒ‚ …
p�k copies

1

A :
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It follows that

E




max
1�j�p

�
�PXŒY � �	jWp

�
�2
�

D E




max
1�j�p

ŒY � �	TjWpPXŒY � �	jWp
�

D E




max
1�j�p

tr
�
D
 T ŒY � �	jWp

�

 T ŒY � �	jWp

�T�
�

D E

 

max
1�j�p

kX

lD1

�

 T ŒY � � 	jWp

	2
l

!

D E

0

B
@max
1�j�p

kX

lD1

0

@
pX

mDj

�

 T
	
lm
.Ym � �m/

1

A

2
1

C
A

	 E

0

B
@

kX

lD1
max
1�j�p

0

@
pX

mDj

�

 T
	
lm
.Ym � �m/

1

A

2
1

C
A

D
kX

lD1
E

0

B
@max
1�j�p

0

@
pX

mDj

�

 T
	
lm
.Ym � �m/

1

A

2
1

C
A :

For each l, M.l/
j D Pp

mDp�jC1
�

 T
	
lm
.Ym � �m/ forms a martingale, so by Doob’s

Lp maximum inequality,

E




max
1�j�p

�
M.l/

j

�2
�

	 4E
�
M.l/

p

�2 D 4E

 
pX

mD1

�

 T
	
lm
.Ym � �m/

!2

D 4

pX

mD1

�

 T
	2
lm
Am D 4

�

 TA


	
ll
:

Therefore,

E




max
1�j�p

�
�PXŒY � � 	jWp

�
�2
�

	
kX

lD1
4
�

 TA


	
ll

D 4

pX

lD1
ŒD	ll

�

 TA


	
ll

D 4 tr
�
D
 TA


� D 4 tr .PXA/

D 4 tr
�
XT
�
XXT

��1
XA
�

D 4 tr
��
XXT

��1
XAXT

�
D O .1/ ;
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where the last equality uses conditions .D/ and .E/. We finally obtain

E

 

sup
0���1; �2L

j.III/j
!

	 o
�
p�1=2� � O

�
p1=2

� � O .1/ D o .1/ :

Proof for the case of Model II.
Under Model II, we know that

pX

iD1
Ai�

2
i D �TA� D ˇT.XAXT/ˇ D O .p/

by condition .D/. In other words, condition .D/ implies condition .B/. Therefore,
we know that the term .I/ ! 0 in L2 as shown in Theorem 3.1 of [29], and we only
need to show the uniform L1 convergence of the other two terms, .II/ and .III/.

Recall that B 2 B D ˚
�XTWX W � > 0� has only rank k under Model II. We

can reexpress .II/ and .III/ in terms of low rank matrices. Let V D �
XA�1XT

��1
.

Woodbury formula gives

.A C B/�1 D �
A C �XTWX

��1 D A�1 � A�1�XT
�
W�1 C �V�1��1 XA�1

D A�1 � A�1�XTW .�W C V/�1 VXA�1;

which tells us

B .A C B/�1 D Ip � A .A C B/�1 D �XTW .�W C V/�1 VXA�1:

Let U	UT be the spectral decomposition of W�1=2VW�1=2, i.e., W�1=2VW�1=2 D
U	UT , where 	 D diag .d1; : : : ; dk/ with d1 	 � � � 	 dk. Then .�W C V/�1 D
W�1=2

�
�Ik C W�1=2VW�1=2

��1
W�1=2 D W�1=2U .�Ik C	/�1UTW�1=2, from

which we obtain

B .A C B/�1 D �XTW .�W C V/�1 VXA�1 D �XTW1=2U .�Ik C	/�1	UTW1=2XA�1:

If we denote Z D UTW1=2X, i.e., Z is the transformed covariate matrix, then
B .A C B/�1 D �ZT .�Ik C	/�1	ZA�1. It follows that

.II/ D �2
p

tr
�
B .A C B/�1

�
YYT � Y�T � A

��

D �2
p

tr
�
�ZT .�Ik C	/�1	ZA�1 �YYT � Y�T � A

��

D �2
p

tr
�
� .�Ik C	/�1	ZA�1 �YYT � Y�T � A

�
ZT
�
;
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.III/ D �2
p

tr
�
A .A C B/�1� .Y � �/T

�

D �2
p

tr
��

Ip � �ZT .�Ik C	/�1	ZA�1�� .Y � �/T
�

D �2
p

tr
�
� .Y � �/T�C 2

p
tr
�
� .�Ik C	/�1	ZA�1� .Y � �/T ZT

�

D .III/1 C .III/2 :

We will next show that .II/, .III/1, and .III/2 all uniformly converge to zero in L1,
which will then complete our proof.

Let � D ZA�1 �YYT � Y�T � A
�
ZT . Then

sup
0���1

j.II/j D 2

p
sup

0���1

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1

�di
�C di

Œ� 	ii

ˇ
ˇ
ˇ
ˇ
ˇ

	 2

p
sup

0�c1�����ck�dk

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1
ci Œ� 	ii

ˇ
ˇ
ˇ
ˇ
ˇ

D 2

p
max
1�j�k

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

iDj

dk Œ� 	ii

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

where the last equality follows as in Lemma 2.1 of [13]. As there are finite number
of terms in the summation and the maximization, it suffices to show that

dk Œ� 	ii =p ! 0 in L2 for all 1 	 i 	 k:

To establish this, we note that Œ� 	ii D Pp
nD1

Pp
mD1

�
A�1
n Yn .Ym � �m/ � ınm

�
ŒZ	in

ŒZ	im,

E

�
Œ� 	2ii

�
D

X

n;m;n0 ;m0

E
��
A�1
n Yn .Ym � �m/� ınm

� �
A�1
n0 Yn0 .Ym0 � �m0/� ın0m0

��

� ŒZ	in ŒZ	im ŒZ	in0 ŒZ	im0 :

Depending on n;m; n0;m0 taking the same or distinct values, we can break the
summation into 15 disjoint cases:

X

all distinct

C
X

three distinct, nDm

C
X

three distinct, nDn0

C
X

three distinct, nDm0

C
X

three distinct, mDn0

C
X

three distinct, mDm0

C
X

three distinct, n0Dm0

C
X

two distinct, nDm, n0Dm0
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C
X

two distinct, nDn0, mDm0

C
X

two distinct, nDm0, n0Dm

C
X

two distinct, nDmDn0

C
X

two distinct, nDmDm0

C
X

two distinct, nDn0Dm0

C
X

two distinct, mDn0Dm0

C
X

nDmDn0Dm0

:

Many terms are zero. Straightforward evaluation of each summation gives

E

�
Œ� 	

2
ii

�
D

pX

nD1

E

��
A�1
n Yn .Yn � �n/� 1

�2
�
ŒZ	4in

C
pX

nD1

X

m¤n

E

��
A�1
n Yn .Ym � �m/

�2
�
ŒZ	2in ŒZ	

2
im

C
pX

nD1

X

m¤n

E
��
A�1
n Yn .Ym � �m/

� �
A�1
m Ym .Yn � �n/

��
ŒZ	2in ŒZ	

2
im

C 2

pX

nD1

X

m¤n

E
��
A�1
n Yn .Yn � �n/� 1

� �
A�1
m Ym .Yn � �n/

��
ŒZ	3in ŒZ	im

C
pX

nD1

X

m¤n0;n0

¤n;m¤n

E
��
A�1
m Ym .Yn � �n/

� �
A�1
n0

Yn0 .Yn � �n/
��
ŒZ	2in ŒZ	im ŒZ	in0

D
pX

nD1

2An C �2n

An
ŒZ	4in C

pX

nD1

X

m¤n

AnAm C An�
2
m

A2m
ŒZ	2in ŒZ	

2
im C

pX

nD1

X

m¤n

ŒZ	2in ŒZ	
2
im

C 2

pX

nD1

X

m¤n

�n�m

Am
ŒZ	3in ŒZ	im C

pX

nD1

X

m¤n0 ;n0

¤n;m¤n

An�m�n0

AmAn0

ŒZ	2in ŒZ	im ŒZ	in0

D
pX

n;mD1

An

Am
ŒZ	2in ŒZ	

2
im C

pX

n;mD1

ŒZ	2in ŒZ	
2
im C

pX

n;m;n0

D1

An�m�n0

AmAn0

ŒZ	2in ŒZ	im ŒZ	in0 :

Using matrix notation, we can reexpress the above equation as

E

�
Œ� 	2ii

�
D �

ZAZT
	
ii

�
ZA�1ZT

	
ii

C �
ZZT

	2
ii

C �
ZAZT

	
ii

�
ZA�1�

	2
i

	 tr
�
ZAZT

�
tr
�
ZA�1ZT

�C tr
�
ZZT

�2 C tr
�
ZAZT

�
tr
�
�TA�1ZTZA�1�

�

D tr
�
WXAXT

�
tr
�
WXA�1XT

�C tr
�
WXXT

�2

C tr
�
WXAXT

�
tr
�
ˇT
�
XA�1XT

�
W
�
XA�1XT

�
ˇ
�
;
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which is O .p/O .p/CO .p/2 CO .p/O
�
p2
� D O

�
p3
�

by conditions .D/-.F/. Note
also that condition .F/ implies

dk 	
kX

iD1

di D tr
�
W�1=2VW�1=2

�
D tr

�
W�1V

� D tr
�
W�1.XA�1XT/�1

� D O
�
p�1

�
:

Therefore, we have

E

�
d2k Œ� 	

2
ii =p

2
�

D O
�
p�2�O

�
p3
�
=p2 D O

�
p�1� ! 0;

which proves

sup
0���1

j.II/j ! 0 in L2; as p ! 1:

To prove the uniform convergence of .III/1 to zero in L1, we note that

sup
�2L

j.III/1j D 2

p
sup
�2L

ˇ
ˇ�T .Y � �/ˇˇ D 2

p
sup
�2L

ˇ
ˇ�TPX .Y � �/ˇˇ

	 2

p
sup
�2L

k�k � kPX .Y � �/k D 2

p
Mp� kYk � kPX .Y � �/k ;

so by Cauchy-Schwarz inequality

E

 

sup
�2L

j.III/1j
!

	 2Mp��1
r

E

�
kYk2

�r

E

�
kPX .Y � �/k2

�
: (21)

Under Model II, � D XTˇ, so it follows that
Pp

iD1 �2i D k�k2 D tr
�
ˇˇTXXT

� D
O .p/ by condition .E/. Hence

r

E

�
kYk2

�
D
qPp

iD1
�
�2i C Ai

� D O
�
p1=2

�
. For

the second term on the right-hand side of (21), note that

E

�
kPX .Y � �/k2

�
D E

�
tr
�
PX .Y � �/ .Y � �/T��

D tr .PXA/ D tr
��
XXT

��1
XAXT

�
D O .1/

by conditions .D/ and .E/. Thus, in aggregate, we have

E

 

sup
�2L

j.III/1j
!

	 2Mp��1O
�
p1=2

�
O .1/ D o .1/ :
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We finally consider the .III/2 term. We have

sup
0���1; �2L

j.III/2j D 2

p
sup
�2L

sup
0���1

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1

�di
�C di

�
ZA�1� .Y � �/T ZT

	
ii

ˇ
ˇ
ˇ
ˇ
ˇ

	 2

p
sup
�2L

max
1�j�k

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

kX

iDj

dk
�
ZA�1� .Y � �/T ZT

	
ii

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

	 2dk
p

sup
�2L

kX

iD1

ˇ
ˇ
�
ZA�1� .Y � �/T ZT

	
ii

ˇ
ˇ

D 2dk
p

sup
�2L

kX

iD1

ˇ
ˇ
�
ZA�1�

	
i ŒZ .Y � �/	i

ˇ
ˇ

	 2dk
p

sup
�2L

v
u
u
t

kX

iD1

�
ZA�1�

	2
i �

v
u
u
t

kX

iD1
ŒZ .Y � �/	2i :

Thus, by Cauchy-Schwarz inequality

E

 

sup
0���1; �2L

j.III/2j
!

	 2dk
p

v
u
u
t

E

 

sup
�2L

kX

iD1

�
ZA�1�

	2
i

!

�
v
u
u
t

E

 
kX

iD1
ŒZ .Y � �/	2i

!

:

Note that

sup
�2L

kX

iD1

�
ZA�1�

	2
i

D sup
�2L

kX

iD1

 
pX

mD1

�
ZA�1	

im
Œ�	m

!2

	 sup
�2L

kX

iD1

 
pX

mD1

�
ZA�1	2

im
�

pX

mD1
Œ�	2m

!

D sup
�2L

kX

iD1

��
ZA�2ZT

	
ii k�k2

�

D tr
�
ZA�2ZT

�
sup
�2L

k�k2 D tr
�
WXA�2XT

�
.Mp� kYk/2 D o

�
p2
� kYk2 ;

where the last equality uses condition .G/. Thus,

E

 

sup
�2L

kX

iD1

�
ZA�1�

	2
i

!

D o
�
p3
�
:
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Also note that

E

 
kX

iD1
ŒZ .Y � �/	2i

!

D E
�
tr
�
ZTZ .Y � �/ .Y � �/T��

D tr
�
ZTZA

� D tr
�
WXAXT

� D O .p/

by condition .D/. Recall that dk D O
�
p�1� by condition .F/. It follows that

E

 

sup
0���1; �2L

j.III/2j
!

	 2

p
O
�
p�1� o

�
p3=2

�
O
�
p1=2

� D o .1/ ;

which completes our proof.

Proof of Lemma 2 The fact that O�OLS 2 L is trivial as

O�OLS D XT
�
XXT

��1
XY D PXY;

while the projection matrix PX has induced matrix 2-norm kPXk2 D 1. Thus,�
�
� O�OLS

�
�
� 	 kPXk2 kYk D kYk. For O�WLS, note that

O�WLS D XT
�
XA�1XT

��1
XA�1Y

D A1=2
�
XA�1=2

�T



XA�1=2
�
XA�1=2

�T
��1 �

XA�1=2
�
A�1=2Y

D A1=2
�
PXA�1=2

�
A�1=2Y;

where PXA�1=2 is the ordinary projection matrix onto the row space of XA�1=2 and
has induced matrix 2-norm 1. It follows
�
�
� O�WLS

�
�
� 	

�
�
�A1=2

�
�
�
2

�
�PA�1=2X

�
�
2

�
�
�A�1=2

�
�
�
2

kYk D max
1�i�p

A1=2i � max
1�i�p

A�1=2
i � kYk :

Condition .A/ gives

max
1�i�p

A1=2i D .max
1�i�p

A2i /
1=4 	 .

pX

iD1
A2i /

1=4 D O
�
p1=4

�
:

Similarly, condition .A0/ gives

max
1�i�p

A�1=2
i D .max

1�i�p
A�2�ı
i /1=.4C2ı/ 	 .

pX

iD1
A�2�ı
i /1=.4C2ı/ D O

�
p1=.4C2ı/

�
:
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We then have proved that

�
�
� O�WLS

�
�
� 	 O

�
p1=4

�
O
�
p1=.4C2ı/

�
kYk D O .p�/ kYk :

Proof of Theorem 2 To prove the first assertion, note that

URE
� OBURE

; O�URE
�

	 URE
� QBOL

; Q�OL
�

by the definition of OBURE
and O�URE, so Theorem 1 implies that

lp
�
�; O�URE

�
� lp

�
�; Q�OL

�

	 lp
�
�; O�URE

�
� URE

� OBURE
; O�URE

�
C URE

� QBOL
; Q�OL

�
� lp

�
�; Q�OL

�

	 2 sup
B2B; �2L

ˇ
ˇ
ˇURE .B;�/� lp

�
�; O�B;�

�ˇ
ˇ
ˇ !
p!1 0 in L1 and in probability,

(22)

where the second inequality uses the condition that O�URE 2 L . Thus, for any � > 0,

P

�
lp
�
�; O�URE

�
� lp

�
�; Q�OL

�
C �

�

	 P

 

2 sup
B2B; �2L

ˇ
ˇ
ˇURE .B;�/� lp

�
�; O�B;��ˇˇ

ˇ � �

!

! 0:

To prove the second assertion, note that

lp
�
�; Q�OL

�
	 lp

�
�; O�URE

�

by the definition of Q�OL
and the condition O�URE 2 L . Thus, taking expectations on

Eq. (22) easily gives the second assertion.

Proof of Corollary 1 Simply note that

lp
�
�; Q�OL

�
	 lp




�; O� OBp; O�p

�

by the definition of Q�OL
. Thus,

lp
�
�; O�URE

�
� lp




�; O� OBp; O�p

�

	 lp
�
�; O�URE

�
� lp

�
�; Q�OL

�
:

Then Theorem 2 clearly implies the desired result.
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Proof of Theorem 3 We observe that

UREM .B/ � lp




� ; O�B; O�M
�

DURE
�
B; O�M

�
� lp




�; O�B; O�M
�

C 2

p
tr
�
A .A C B/�1 PM;XA

�
:

Since

sup
B2B

ˇ
ˇ
ˇ
ˇURE

�
B; O�M

�
� lp




�; O�B; O�M
�ˇ
ˇ
ˇ
ˇ 	 sup

B2B; �2L

ˇ
ˇ
ˇURE .B;�/� lp

�
�; O�B;��ˇˇ

ˇ

! 0 in L1

by Theorem 1, we only need to show that

sup
B2B

ˇ
ˇ
ˇ
ˇ
1

p
tr
�
A .A C B/�1 PM;XA

�ˇˇ
ˇ
ˇ ! 0 as p ! 1:

Under Model I,

tr
�
A .A C B/�1 PM;XA

�
D

pX

iD1

Ai

Ai C �
ŒPM;XA	ii

	
 

pX

iD1
.

Ai

Ai C �
/2 �

pX

iD1
ŒPM;XA	2ii

!1=2

	
 

p �
pX

iD1
ŒPM;XA	

2
ii

!1=2

D p1=2
q

tr .PM;XA.PM;XA/T/; for all � � 0;

but tr
�
PM;XAAPT

M;X

� D tr
�
XT
�
XMXT

��1
XMA2MXT

�
XMXT

��1
X
�

D tr
��
XMXT

��1
.XMA2MXT/

�
XMXT

��1
.XXT/

�
D O.1/ by (13) and condi-

tion (E). Therefore,

sup
B2B

ˇ
ˇ
ˇ
ˇ
1

p
tr
�
A .A C B/�1 PM;XA

�ˇˇ
ˇ
ˇ D 1

p
O
�
p1=2

�
O.1/ D O. p�1=2/ ! 0:
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Under Model II, A .A C B/�1 D Ip � �ZT .�Ik C	/�1	ZA�1, where
W�1=2VW�1=2 D U	UT , 	 D diag .d1; : : : ; dk/ with d1 	 � � � 	 dk, and Z D

UTW1=2X as defined in the proof of Theorem 1. Thus,

tr
�
A .A C B/�1 PM;XA

�
D tr .PM;XA/� tr

�
�ZT .�Ik C	/�1	ZA�1PM;XA

�
:

We know that tr .PM;XA/ D tr
��
XMXT

��1
.XMAXT/

�
D O.1/ by the assump-

tion (13). tr
�
�ZT .�Ik C	/�1	ZA�1PM;XA

�
D tr

�
� .�Ik C	/�1	ZA�1 PM;X

AZT
� D tr

�
� .�Ik C	/�1	ZA�1XT

�
XMXT

��1
XMAZT

�
. The Cauchy-Schwarz

inequality for matrix trace gives

ˇ
ˇ
ˇtr
��
� .�Ik C	/�1	

� �
ZA�1XT

�
XMXT

��1
XMAZT

��ˇ
ˇ
ˇ

	 tr1=2
�
.� .�Ik C	/�1	/2

�

� tr1=2
�
ZA�1XT

�
XMXT

��1
XMAZTZAMXT

�
XMXT

��1
XA�1ZT

�
:

Since

tr
�
.� .�Ik C	/�1	/2

�
D

kX

iD1



�di
�C di

�2
	 kd2k D O

�
p�2� for all � � 0

as shown in the proof of Theorem 1 and

tr
�
ZA�1XT

�
XMXT

��1
XMAZTZAMXT

�
XMXT

��1
XA�1ZT

�

D tr
��
XMXT

��1
XMAZTZAMXT

�
XMXT

��1
XA�1ZTZA�1XT

�

D tr
��
XMXT

��1
.XMAXT/W.XAMXT/

�
XMXT

��1
.XA�1XT/W.XA�1XT/

�

D O. p2/

from (13) and condition (F), we have

sup
B2B

ˇ
ˇ
ˇ
ˇ
1

p
tr
�
A .A C B/�1 PM;XA

�ˇˇ
ˇ
ˇ D 1

p

�
O.1/C

p
O .p�2/ � O. p2/

�
D O. p�1/ ! 0:

This completes our proof of (14). With this established, the rest of the proof is
identical to that of Theorem 2 and Corollary 1.

kou@stat.harvard.edu



Optimal Shrinkage Estimation in Heteroscedastic Hierarchical Linear Models 283

References

1. Berger, J.O., Strawderman, W.E.: Choice of hierarchical priors: admissibility in estimation of
normal means. Ann. Stat. 24(3), 931–951 (1996)

2. Brown, L.D.: In-season prediction of batting averages: a field test of empirical Bayes and Bayes
methodologies. Ann. Appl. Stat. 2(1), 113–152 (2008)

3. Copas, J.B.: Regression, prediction and shrinkage. J. R. Stat. Soc. Ser. B Methodol. 45(3),
311–354 (1983)

4. Efron, B., Morris, C.: Empirical Bayes on vector observations: an extension of Stein’s method.
Biometrika 59(2), 335–347 (1972)

5. Efron, B., Morris, C.: Stein’s estimation rule and its competitors—an empirical Bayes
approach. J. Am. Stat. Assoc. 68(341), 117–130 (1973)

6. Efron, B., Morris, C.: Data analysis using Stein’s estimator and its generalizations. J. Am. Stat.
Assoc. 70(350), 311–319 (1975)

7. Fearn, T.: A Bayesian approach to growth curves. Biometrika 62(1), 89–100 (1975)
8. Green, E.J., Strawderman, W.E.: The use of Bayes/empirical Bayes estimation in individual

tree volume equation development. For. Sci. 31(4), 975–990 (1985)
9. Hui, S.L., Berger, J.O.: Empirical Bayes estimation of rates in longitudinal studies. J. Am. Stat.

Assoc. 78(384), 753–760 (1983)
10. James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379. University of
California Press, Berkeley (1961)

11. Jiang, J., Nguyen, T., Rao, J.S.: Best predictive small area estimation. J. Am. Stat. Assoc.
106(494), 732–745 (2011)

12. Jones, K.: Specifying and estimating multi-level models for geographical research. Trans. Inst.
Br. Geogr. 16(2), 148–159 (1991)

13. Li, K.C.: Asymptotic optimality of CL and generalized cross-validation in ridge regression with
application to spline smoothing. Ann. Stat. 14(3), 1101–1102 (1986)

14. Lindley, D.V.: Discussion of a paper by C. Stein. J. R. Stat. Soc. Ser. B Methodol. 24, 285–287
(1962)

15. Lindley, D.V.V., Smith, A.F.M.: Bayes estimates for the linear model. J. R. Stat. Soc. Ser. B
Methodol. 34(1), 1–41 (1972)

16. Morris, C.N.: Parametric empirical Bayes inference: theory and applications. J. Am. Stat.
Assoc. 78(381), 47–55 (1983)

17. Morris, C.N., Lysy, M.: Shrinkage estimation in multilevel normal models. Stat. Sci. 27(1),
115–134 (2012)

18. Normand, S.L.T., Glickman, M.E., Gatsonis, C.A.: Statistical methods for profiling providers
of medical care: issues and applications. J. Am. Stat. Assoc. 92(439), 803–814 (1997)

19. Omen, S.D.: Shrinking towards subspaces in multiple linear regression. Technometrics 24(4),
307–311 (1982). 1982

20. Raftery, A.E., Madigan, D., Hoeting, J.A.: Bayesian model averaging for linear regression
models. J. Am. Stat. Assoc. 92(437), 179–191 (1997)

21. Robbins, H.: An empirical Bayes approach to statistics. In: Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability. Contributions to the Theory
of Statistics, vol. 1, pp. 157–163. University of California Press, Berkeley (1956)

22. Rubin, D.B.: Using empirical Bayes techniques in the law school validity studies. J. Am. Stat.
Assoc. 75(372), 801–816 (1980)

23. Sclove, S.L., Morris, C., Radhakrishnan, R.: Non-optimality of preliminary-test estimators for
the mean of a multivariate normal distribution. Ann. Math. Stat. 43(5), 1481–1490 (1972)

24. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics
and Probability. Contributions to the Theory of Statistics, vol. 1, pp. 197–206. University of
California Press, Berkeley (1956)

kou@stat.harvard.edu



284 S.C. Kou and J.J. Yang

25. Stein, C.M.: Confidence sets for the mean of a multivariate normal distribution (with
discussion). J. R. Stat. Soc. Ser. B Stat Methodol. 24, 265–296 (1962)

26. Stein, C.: An approach to the recovery of inter-block information in balanced incomplete block
designs. In: Neyman, F.J. (ed.) Research Papers in Statistics, pp. 351–366. Wiley, London
(1966)

27. Strenio, J.F., Weisberg, H.I., Bryk, A.S.: Empirical Bayes estimation of individual growth-
curve parameters and their relationship to covariates. Biometrics 39(1), 71–86 (1983)

28. Tan, Z.: Steinized empirical Bayes estimation for heteroscedastic data. Stat. Sin. 26, 1219–
1248 (2016)

29. Xie, X., Kou, S.C., Brown, L.D.: SURE estimates for a heteroscedastic hierarchical model. J.
Am. Stat. Assoc. 107(500), 1465–1479 (2012)

30. Xie, X., Kou, S.C., Brown, L.D.: Optimal shrinkage estimation of mean parameters in family
of distributions with quadratic variance. Ann. Stat. 44, 564–597 (2016)

kou@stat.harvard.edu




