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Statistical Methodology in Single-Molecule
Experiments
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Abstract. Toward the last quarter of the 20th century, the emergence of
single-molecule experiments enabled scientists to track and study individ-
ual molecules’ dynamic properties in real time. Unlike macroscopic sys-
tems’ dynamics, those of single molecules can only be properly described
by stochastic models even in the absence of external noise. Consequently,
statistical methods have played a key role in extracting hidden information
about molecular dynamics from data obtained through single-molecule ex-
periments. In this article, we survey the major statistical methodologies used
to analyze single-molecule experimental data. Our discussion is organized
according to the types of stochastic models used to describe single-molecule
systems as well as major experimental data collection techniques. We also
highlight challenges and future directions in the application of statistical
methodologies to single-molecule experiments.
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1. THE ARRIVAL OF SINGLE-MOLECULE
EXPERIMENTS AND THE ROLE OF

STATISTICAL METHODOLOGY

The modern concept of the molecules was introduced
in the 19th century. Since then, questions about how in-
teractions among molecules dictate macroscopic systems’
properties have become areas of key scientific inquiry.
Although the foundations of many scientific theories,
such as statistical mechanics, were firmly grounded at the
molecular level, knowledge of molecular dynamics was
mostly derived from data obtained in ensemble-level ex-
periments (i.e., experiments involving many molecules).
Such data provided us information on the average prop-
erties of molecules rather than individual molecules’ dy-
namics. Starting in the late 20th century, scientists have
developed new techniques (see the Supplementary Mate-
rial, Du and Kou, 2020) to manipulate and visualize single
molecules in liquid solutions. These advances heralded
the era of single-molecule experiments and significantly
advanced our understanding of microscopic systems.
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To analyze single-molecule experimental data, ad-
vanced statistical methodologies are necessary. First, un-
like traditional technological advancements that often
improve the signal-to-noise ratio, single-molecule ex-
periments reveal an additional layer of uncertainty hid-
den in conventional ensemble-level experiments. The mi-
croscopic realm is intrinsically stochastic and can only
be sufficiently described with probability models. Many
single-molecule experiments also rely on recording fluo-
rescence emission, a stochastic process governed by quan-
tum mechanics. Thus, even if we repeat a single-molecule
experiment perfectly under the exact same conditions, we
cannot reproduce the same data. In this regard, a key fea-
ture of single-molecule data analysis is to learn from noisy
stochastic data. Sophisticated statistical approaches are
therefore required to analyze the distribution of observed
data and infer hidden information.

Second, single-molecule experimental data analysis
must account for a considerable degree of heterogene-
ity over time and across molecules. A single molecule is
subject to constant fluctuation that can affect its proper-
ties. A stochastic model with fixed parameters may be
insufficient to model such phenomena. It is often neces-
sary to allow the parameters or even the model to fluctuate
over time. Many single-molecule experiments also record
data originating from multiple molecules that exhibit dis-
tinct characteristics beyond the explanatory power of a
simple stochastic model. Suitable statistical methods are
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therefore necessary to infer molecules’ common traits and
individual characteristics.

Third, despite the technological advancements, modern
single-cell experiments often only illuminate a small part
(e.g., the surface) of the system under investigation. Many
single-molecule experiments are conducted to validate or
improve scientific hypotheses. However, more often than
not, the observed data do not contain sufficient informa-
tion to directly examine these hypotheses. Even when
suitable stochastic models are proposed, the data gener-
ally only contain partial output of these models. There-
fore, sophisticated statistical approaches are necessary to
bridge the gap between the observed data and the ques-
tions of interest.

This clearly evidences why statistical approaches have
been used to analyze experimental data since the emer-
gence of single-molecule experiments. This union has
only grown stronger in recent decades as modern statis-
tical methodologies have gradually been adopted in this
field. In this article, we review several major statistical
methods that have been used to analyze single-molecule
experimental data in recent decades. Our review is mainly
organized according to the stochastic models used for
modeling molecular systems, which are usually tied to
particular experimental techniques. We will explore the
following three areas: analyzing the motion of a single
molecule modeled as diffusion process, studying the fluc-
tuation of molecular number within a small volume based
on the autocorrelation function of intensity signal, and in-
ferring the dynamic mechanism of a single molecule mod-
eled by continuous-time Markov chains.

2. MOTION OF A SINGLE MOLECULE AND
DIFFUSION PROCESS

The famous Brownian motion refers to the seemingly
chaotic movement of small particles in a solution. In
1905, Albert Einstein proposed a theoretical model for the
Brownian motion, which links the distribution of small
particles’ trajectories to the properties of the particles and
the surrounding environment. In the 1980s, the develop-
ment of the single-particle tracking (SPT) technique al-
lowed scientists to record the positions of single particles
at the speed of a few milliseconds per frame (see a re-
view by Saxton and Jacobson, 1997). In 1996, the obstacle
of tracking a single molecule’s locations was overcome
using fluorescence spectroscopy (Schmidt et al., 1996).
The observed positions of molecules can be used to re-
construct single molecules’ trajectories over time (see the
Supplementary Material, Du and Kou, 2020), which al-
lows scientists to study the properties of biomolecules and
the structure of cellular systems.

2.1 Free Diffusion and Diffusion Constant

The displacement x(t) of a small particle in one-
dimensional space without the interference of an exter-
nal field can be modeled by the integrated Ornstein-
Uhlenbeck process, which is usually approximated by a
scaled standard Wiener process (see the Supplementary
Material, Du and Kou, 2020). This approximation is re-
ferred to as Brownian motion or free diffusion in the bio-
physics literature. For free diffusion, the second moment
of x(t) follows the Einstein-Smoluchowski relation:

(1) E
[
x2(t)

] = 2Dt.

A similar relationship holds in higher-dimensional
space: the second moment of ‖x(t)‖ is 4Dt in two dimen-
sions and 6Dt in three dimensions. The constant param-
eter D depends on the temperature, the solution’s viscos-
ity, and the particle’s radius, and is known as the diffusion
constant (see the Supplementary Material, Du and Kou,
2020). The estimated diffusion constant can shed light on
the particle’s properties and its interaction with the sur-
rounding environment (Blainey et al., 2009).

The mean square displacements (MSDs) of a single par-
ticle under free diffusion are natural candidates for es-
timating D. In typical SPT-based experiments, the posi-
tions of a molecule are measured at discrete time points
with constant increments. If we use x1, . . . , xn to de-
note the molecule’s measured positions at time t1, . . . , tn
(�t = ti+1 − ti ), the MSD of this molecule after time lag
k�t can be estimated by averaging all displacements with
time lag k�t (Qian, Sheetz and Elson, 1991):

(2) ρ̂k = 1

n − k

n−k∑
i=1

(xi+k − xi)
2, k = 1,2, . . . .

A simple regression of the estimated MSD ρ̂k against
k can be used to estimate D. Because ρ̂k is subjected to
larger variation for larger k, weighted regression is the
preferred approach (Qian, Sheetz and Elson, 1991; Sax-
ton, 1997). Alternatively, MSDs can also be estimated by
averaging all nonoverlapping displacements, which yields
slightly greater variance (Saxton, 1997).

Without measurement error, the aforementioned
method of estimating the diffusion constant can reach the
usual convergence rate of n−1/2. In practice, the mea-
surements of molecules’ locations are subjected to the
static error when measuring the location of an immo-
bilized molecule, as well as the motion blur error due
to the movement during �t , and the theoretical rate of
convergence would be much slower (at n−1/4) (Gloter
and Jacod, 2001). Methods of estimating diffusion con-
stants in the presence of measurement errors include the
maximum likelihood method (Berglund, 2010), the op-
timized least-squares fit method (Michalet, 2010) and
the covariance-based estimator (Vestergaard, Blainey and
Flyvbjerg, 2014).
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2.2 Inference Beyond Free Diffusion

Anomalous diffusion. In many physical and biological
systems, instead of being a linear function of time, the
MSD of the molecular trajectory obeys the following gen-
eral power law:

(3) E
[
x2(t)

] = Dtα,

which is known as anomalous diffusion. Various theoret-
ical frameworks have been proposed to model anomalous
diffusion (for an in-depth review, see Metzler et al., 2014).
Notable theoretical models include the fractional mod-
els (Metzler and Klafter, 2000) and the models based on
generalized Langevin equations with fractional Gaussian
noise (Kou and Xie, 2004; Kou 2008a; also see the Sup-
plementary Material, Du and Kou, 2020).

Both of the anomalous exponent α and the (general-
ized) diffusion constant D can be estimated by a sim-
ple regression model with both MSD and time at log-
scale. More sophisticated approaches would take mea-
surement errors (Kepten, Bronshtein and Garini, 2013;
Sikora et al., 2017a, 2017b) as well as the uncertainty in
MSD estimates (Kepten et al., 2015) into consideration.
The asymptotic properties of the MSD-based estimators
in anomalous diffusion processes are largely unsettled.
When the anomalous diffusion process is modeled as frac-
tional Brownian motion, progress has been made (Sikora
et al., 2017a, 2017b).

Directed diffusion. The motion of a molecule subjected
to a constant directed drift with velocity V is known
as directed diffusion. Within a cell, the presence of di-
rected diffusion often indicates an active molecule trans-
port mechanism. The MSD of directed diffusion is

(4) E
[
x2(t)

] = 2Dt + V 2t2,

which is quadratic in time (Qian, Sheetz and Elson, 1991).
Moreover, molecular trajectory under directed diffusion
exhibits a clear tendency toward the drift’s direction. For
this reason, statistics that reflect trajectories’ asymmetry
are often used alongside MSD analysis to identify di-
rected diffusion and estimate the drift velocity (Saxton,
1994; Huet et al., 2006).

Confined diffusion. When a molecule’s motion is re-
stricted within a confined space imposed by cellular struc-
ture, confined diffusion occurs. Confined diffusion can
be described as a diffusion process that occurs in a fi-
nite space with reflection boundaries. Although the ex-
act formula of the MSD of confined diffusion depends on
the characteristics of the confined space, the MSD curve
will not increase indefinitely and will arrive and remain
at a plateau after sufficiently large t . This characteristic
can be used to identify confinement in diffusion processes
and estimate the size of the confined space (Kusumi, Sako
and Mutsuya, 1993; Jeon and Metzler, 2010; Clausen and
Lagerholm, 2013).

2.3 Inferring Heterogeneity in Single-Molecule
Trajectories

A homogeneous diffusion process with constant param-
eters is insufficient to describe the heterogeneity observed
in single-molecule trajectories. The characteristics of the
diffusion process usually depend on the molecule’s prop-
erties, including its size, mass, and structure, which may
vary between molecules and fluctuate during a molecule’s
lifetime. As the molecule traverses the complex landscape
within a cell, environmental factors can change as well.
Consequently, heterogeneity may not only appear across
trajectories but may also manifest over the course of the
same trajectory. From the modeling perspective, observed
trajectories can switch between diffusion states character-
ized by distinctive parameters or even different types of
diffusion processes. From the inference perspective, sta-
tistical methods are necessary to identify and categorize
these underlying diffusion states and estimate the transi-
tions between diffusion states or diffusion processes.

2.3.1 Heterogeneity across trajectories. When hetero-
geneity mainly appears as variation between trajectories,
such as in the case of multiple short trajectories, each
trajectory can be described using a homogeneous diffu-
sion process drawing from a collection of diffusion states.
Analyzing heterogeneity across trajectories is therefore a
matter of clustering or classification.

The MSD curve, based on its distinctive shapes in var-
ious diffusion models, is often used as the basis of such
analysis. The estimated MSD curve can provide direct
clues to recognizing stationary, free, anomalous, confined,
and directed diffusion (Kusumi, Sako and Mutsuya, 1993;
Suh et al., 2007). A systematic approach to classifying
multiple trajectories can be developed within a Bayesian
framework that combines the subjective prior belief of
diffusion models and the likelihood of MSDs (Monnier
et al., 2012). In this approach, the joint distribution of
MSDs at different time points is assumed to be multivari-
ate Gaussian with a covariance matrix derived from math-
ematical models. Random forest can be applied to classify
multiple trajectories using features derived from MSDs
(Wagner et al., 2017). Trajectories can also be classified
from the distributions of observed displacements directly
(Koo et al., 2015).

2.3.2 Heterogeneity over time. When heterogeneity
appears within the same trajectory, the first priority is to
identify the transitions between different diffusion states
and discover the transitions’ patterns. Because MSDs are
generally estimated by averaging over the whole trajec-
tory, MSD-based analysis has limited use when solving
such problems. Approaches that can extract information
from local segments are often necessary. Here we will fo-
cus on how to analyze heterogeneity in a single observed
trajectory. Nonetheless, many approaches discussed in
this section can also be used to study multiple statistically
independent trajectories.
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Fluctuation of diffusion constants in free diffusion. If
the molecule follows free Brownian diffusion through its
course of movement, heterogeneity over time can only ap-
pear as fluctuation in diffusion constants. In this scenario,
each diffusion state corresponds to a distinct diffusion
constant. Given how the diffusion constant changes over
time, the likelihood function of the observed trajectory
can be easily obtained as the displacements are indepen-
dently Gaussian distributed. Therefore, hidden Markov
models with known numbers of states are widely used
to detect changes in diffusion constants (Das, Cairo and
Coombs, 2009; Chung et al., 2010; Ott, Shai and Haran,
2013; Slator, Cairo and Burroughs, 2015). If the num-
ber of diffusion states is unknown, the posterior distri-
bution of the number of states (Persson et al., 2013) or
model selection criterion such as BIC (Koo et al., 2015)
can be used to determine the number of states. Other ap-
proaches also exist, such as modeling the overall distri-
bution of all displacements as a mixture distribution in
which each component corresponds to a particular diffu-
sion constant (Bosch, Kanger and Subramaniam, 2014) or
applying likelihood-ratio-based tests to detect transitions
between diffusion constants as in a typical change-point
problem (Yin, Song and Yang, 2018).

Detecting changes in the modes of diffusion. More gen-
erally, heterogeneity within the same trajectory can man-
ifest when transitions occur between different diffusion
processes. A common problem in this area is identifying
segments of confined diffusion in a trajectory dominated
by free diffusion. This problem arises from studying the
membrane protein, whose interaction with the membrane
may cause it to become temporally trapped in a small
compartment. Analyzing this mechanism can then pro-
vide valuable information about the membrane structure
and about the interactions between the membrane and the
protein.

One approach for identifying transient confinement is
to rely on suitable segment-level statistics to distinguish
confined and free diffusion. In free diffusion, a molecule’s
motion is not restricted by a physical boundary, so the
molecule tends to move further. Therefore, transition from
free diffusion to confined diffusion can be detected by
tracking the estimated probability of a molecule reaching
maximum displacement within �t (Saxton, 1993; Sim-
son, Sheets and Jacobson, 1995). This approach can be
further improved by considering the variation in the max-
imum displacement (Meilhac et al., 2006). A drawback
of this approach is that the diffusion constant must be
estimated prior to transition identification. This can be
avoided by relying on the so-called packing coefficient,
which is defined as the ratio of the observed segment’s
length to the area of convex hull containing the observed
segment (Renner et al., 2017).

The aforementioned approaches depend on the choice
of the length of local segment to construct testing statis-
tics. Other approaches, such as hidden Markov models,
have been used to identify transient confinement in re-
cent years. To establish analytical likelihood, confined
diffusion is often modeled as free diffusion in the pres-
ence of a potential well. Transitions between the confined
and free diffusion, as well as other parameters of interest,
such as diffusion constant and the strength of the potential
well, can then be inferred using particle filtering (Bern-
stein and Fricks, 2016) or MCMC algorithm (Slator and
Burroughs, 2018) under a two-state hidden Markov model
framework.

Transitions in diffusion states can occur between other
diffusion processes as well. Within cells, the transporta-
tions of molecules often involve the stochastic transitions
between free and directed diffusion. Such transitions can
be detected based on the asymmetry in molecular tra-
jectories (Huet et al., 2006), local MSD estimated based
on short time window (Arcizet et al., 2008), or a hidden
Markov model with a Bayesian model selection method
(Monnier et al., 2015). More generally, by modeling the
joint distribution of observed displacements, transitions
between free, confined, and anomalous diffusions and im-
mobile states can also be estimated using likelihood ap-
proaches (Koo and Mochrie, 2016).

3. FLUCTUATION IN MOLECULAR NUMBERS AND
AUTOCORRELATION FUNCTION

The diffusion of molecules and chemical reactions can
cause the number of molecules to fluctuate within a given
volume. By analyzing the fluctuation in the number of
molecules over time, we can extract useful information
such as diffusion constants or chemical reaction rates.
Fluorescence correlation spectroscopy (FCS), which was
developed almost half a century ago (Magde, Elson and
Webb, 1972), has been used for this purpose. FCS uti-
lizes a confocal microscope to record the arrivals of a
single photon stream emitted by fluorescent molecules
within a tiny detection volume upon the excitation of a
focused laser beam. Raw photon arrival data can then be
processed to represent the overall strength of fluorescence
originating from all molecules at time t : the so-called flu-
orescence intensity signal F(t). Although FCS does not
actively track individual molecules, modern FCS experi-
ments can detect the change caused by a single molecule
(see the review by Elson, 2011).

3.1 Autocorrelation Function of Fluorescence
Intensity

Under the equilibrium assumption, fluorescence inten-
sity F(t) is a stationary stochastic process with autocor-
relation function G(τ):

(5) G(τ) = Cov(F (0),F (τ))

[E(F(0))]2 ,
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where the expectation is computed over the whole time
course. For example, the first moment of intensity
E(F(0)) can be computed as 1

T

∫ T
0 F(t) dt .

The autocorrelation function of the F(t) depends on the
cause of the underlying system’s fluctuation in molecu-
lar number. In many common scenarios, the analytic for-
mula of G(τ) can be derived (Elson and Magde, 1974)
so that the key parameters can be estimated based on the
observed autocorrection. For instance, if there is only a
single fluorescence molecular species within the detec-
tion volume and its copy number follows Poisson dis-
tribution, the autocorrelation function at 0 equals the in-
verse of the average number of molecules. If fluctuation
in the molecular number is caused by the free diffusion
of molecules that move in or out of the detection volume,
then G(τ)/G(0) = (1 + τ/τD)−1 with τD ∝ D−1. If the
fluctuation in molecular number is caused by a chemical
reaction, the autocorrelation function will explicitly de-
pend on the reaction rate. If more than one fluorescent
molecular species exist in the system, the recorded inten-
sity F(t) equals the sum of fluorescence intensities from
each species, and the autocorrelation function will pro-
vide a clue to the presence of multiple molecular species.

3.2 Inference with Autocorrelation Function

A common way to analyze FCS data is to fit the the-
oretical autocorrelation function to the observed autocor-
relation curve. To properly account for noise in the au-
tocorrelation curve, χ2 statistics, the sum of the squared
errors between the observed and fitted values, normal-
ized by the variances, can be used as the object function
(Koppel, 1974; Meseth et al., 1999). The variance of cor-
relation can be computed using approximated equations
(Koppel, 1974) or estimated from multiple signals (Woh-
land, Rigler and Vogel, 2001).

This approach is useful for choosing competing models.
Although a direct comparison of the fitted and observed
autocorrelation curves can be sufficient to rule out un-
derfitted models (Brock, Hink and Jovin, 1998; Genner-
ich and Schild, 2000), choosing among models that all fit
the data well requires a more sophisticated approach. Re-
duced χ2 statistics that penalizes model complexity have
been used to construct an F -test for model comparision
(Meseth et al., 1999). By approximating the likelihood of
autocorrelation functions with multivariate Gaussian dis-
tribution, marginal likelihoods or posterior probabilities
can also be used for such a purpose (He, Guo and Bathe,
2012; Sun et al., 2015).

The observed fluorescence intensity signal depends on
the concentration and the brightness of molecules in the
detection volume. When multiple molecular species with
various concentrations and brightness levels are present, a
conventional approach based on the autocorrelation func-
tion alone can be insufficient for distinguishing molecu-
lar species. In this scenario, it is necessary to consider

higher-order moments of intensity signal (Qian and El-
son, 1990a, 1990b) or the higher-order correlation func-
tions (Melnykov and Hall, 2009; Wu et al., 2016).

3.3 Photon Count Histogram

The autocorrelation function only utilizes the fluores-
cence intensity signal’s first two normalized moments.
To extract more information, the full distribution of the
photon count—the number of photons detected over a
given time interval—is also used in analysis. For instance,
the stationary probability of photon count n can be ex-
pressed as P(n) = ∑∞

m=0 G(n|m)H(m), where H(m) is
the stationary probability of the number of molecules m,
and G(n|m) represents the conditional probability of the
number of photons generated from m molecules. Under
suitable assumptions, the formula of P(n) can be de-
rived and used to fit the observed histogram of the photon
count. This approach is known as photon count histogram
(PCH).

A primary advantage of the PCH approach over the au-
tocorrelation function is that it accounts for both concen-
tration and brightness of molecular species. Specifically,
H(n) depends on the concentration of the molecules, and
G(n|m) depends on the brightness of the molecules. Due
to the normalization, the autocorrelation function does not
contain much information on molecular brightness. This
fact makes PCH a particularly valuable tool for distin-
guishing multiple molecular species with distinct concen-
trations and brightness levels (Chen et al., 1999; Müller,
Chen and Gratton, 2000). PCH can be generalized to two-
dimensional space when two detectors are used (Kask et
al., 2000). The cumulants of photon count can also serve
as alternatives to PCH (Müller, 2004; Wu and Müller,
2005).

In practice, the observed PCH is recreated from the
photon counts recorded at successive time intervals,
which are effectively treated as i.i.d. observations. Al-
though photon counts measured at different times fol-
low the same marginal distribution when the stationary
assumption holds, they are correlated. Therefore, if the
primary goal is to capture the temporal dynamics of the
underlying system, the autocorrelation function is still the
preferred method.

4. SINGLE-MOLECULE DYNAMICS AND
CONTINUOUS-TIME MARKOV CHAIN

Another major focus of single-molecule experiments
is the study of chemical kinetics and the conformational
dynamics of single molecules. At the molecular level,
chemical reactions are triggered by random collisions be-
tween molecules. To complete a chemical reaction, the
molecules involved must often go through intermediate
steps that are generally hidden at the macroscopic level.
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Moreover, the functions and properties of a molecule de-
pend on its conformational structure, which is subject to
fluctuation and may undergo dramatic changes under suit-
able conditions. Such conformational dynamics can be es-
sential for the proper functions of molecules and can be
observed and studied in single-molecule experiments. To
study the chemical kinetics and the conformational dy-
namics of single molecules, we need to monitor the activ-
ity of a single molecule in real time. In recent years, many
experimental techniques have been developed for tracking
the dynamics of a single molecule through indirect means.
Notable methods include patch clamp recording and fluo-
rescence spectroscopy.

Patch clamp recording (Neher and Sakmann, 1976; see
also the review by Sakmann, 2013) was developed to
study the mechanism of ion channels, protein molecules
on cell membranes that serve as gates for the ion current
across the membrane. Through conformational changes in
the protein structure, an ion channel can switch between
open and closed states to enable or block the ion current.
The patch clamp recording method can record the strength
of the ion current passing through a small area of mem-
brane (which may contain a single or a few ion channels)
over time. The changes in the levels of observed signals
can be used to determine the dynamics of the conforma-
tional state of the ion channel(s) in the recording area.

In fluorescence spectroscopy, time-varying signals can
be obtained by recording the intensity of a photon stream
that originates from one or several fluorescence tags at-
tached to a single molecule (see the review by Orrit, Ha
and Sandoghdar, 2014). With the help of a single-photon-
counting detector, experimental devices can record each
photon’s arrival time to generate the so-called time-
stamped photon sequence. However, analysis is usually
conducted using the condensed time-binned photon in-
tensity signal, in which each observation represents the
total number of photons collected by the detector during a
short time window. One advantage of the time-binned in-
tensity signal compared to the time-stamped data is that it
does not require a highly precise single-photon-counting
detector and can potentially reduce the noise introduced
by the intrinsic stochasticity of photon emission processes
through aggregation.

Time-stamped data and time-binned signals reflect how
fluorescence intensity changes over time, which is usually
tied to the underlying molecules’ reaction or conforma-
tional state. Some molecules have naturally fluorescent
sites that can be turned on or off based on certain con-
formational changes. By tracking how the fluorescence
signal varies, we can infer the molecule’s conformational
dynamic (Lu, Xun and Xie, 1998). The FRET microscopy
(Ha et al., 1996) simultaneously records the fluorescence
signals emitted by two fluorophores, a donor and an ac-
ceptor, attached to the same molecule. The acceptor’s flu-
orescence intensity depends on the distance between the

fluorophores. Thus, the FRET ratio, which is the ratio of
the acceptor’s intensity to the total intensity of the ac-
ceptor and the donor, allows us to measure the relative
physical distance between two parts of the host molecule
(tagged by the donor and acceptor) and collect informa-
tion about its conformational dynamics.

Signals from patch clamp recording and fluorescence
spectroscopy, especially the time-binned data, are time se-
ries that share a common trait: Their signal may remain at
a relatively stable level (with noise) for a short time but
switch stochastically between different levels in the long
run. If the variation in the stable level is removed, we can
obtain an idealized version of such a signal: a step func-
tion over time that can take a few distinct values.

4.1 Modeling Molecular Dynamics

A common way to model the dynamics of single
molecules is to use a continuous-time Markov chain
(CTMC) with finite state space. Under this model, each
state refers to a stable conformational state of the mole-
cule or a particular stage of the chemical reaction in-
volving the molecule, and the molecule can stochastically
switch between various states.

Let us assume that the dynamic of a molecule can
be modeled with a CTMC with K different states S =
{S1, S2, . . . , SK} and the generator matrix Q = {qij }. The
dwell time of the molecule in state Si would follow an ex-
ponential distribution with rate −qii = ∑

j �=i qij . When-
ever the transition out of the current state Si occurs, the
molecule will switch into one of the other states Sj (j �= i)

with a probability proportional to qij .

Example: Enzymatic reaction. In the famous
Michaelis–Menten model of a catalytic reaction, an en-
zyme molecule E binds with the substrate molecule S

to form a complex ES. The complex can either dissoci-
ate back into the enzyme and substrate molecule or un-
dergo the catalytic process to transform the substrate into
product P and release the enzyme molecule. The released
enzyme E0 would then return to the initial state E for an-
other catalytic circle. This model can be summarized as
follows (English et al., 2006):

(6) E + S
k1
�
k−1

ES
k2→ P + E0, E0 δ→ E.

Here the enzyme molecule can switch among three states:
free enzyme E, complex ES, and the released state E0.
With a single enzyme molecule, the transitional rates
among different states depend only on the chemical ki-
netic rate parameters k1, k−1, k2, δ and the concentration
of substrates, [S]. The generator matrix Q can be written
as

⎛
⎜⎝

E ES E0

E −k1[S] k1[S] 0
ES k−1 −k−1 − k2 k2
E0 δ 0 −δ

⎞
⎟⎠.
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Example: Ion channel. The del Castillo–Katz model
(Del Castillo and Katz, 1957) models the opening and
closing of the ion channel with a two-step process. Let
us use T to represent the closed state of the ion channel.
To transit into the open state, T needs to bind with ag-
onist A first to form an intermediate compound AT . At
state AT , the channel remains closed until the transition
into the open state AR occurs. Similarly, the opened ion
channel can be closed through the unbinding of agonist A

in a reversed two-step process. In summary, the ion chan-
nel can switch between two closed states T and AT and
one open state AR. This model, along with its generator
matrix, is listed below (Colquhoun and Hawkes, 1981):

T
k+1
�
k−1

AT
α

�
β

AR,

⎛
⎜⎜⎜⎝

T AT AR

T −k+1[A] k+1[A] 0

AT k−1 −k−1 − α α

AR 0 β −β

⎞
⎟⎟⎟⎠.

(7)

A realization of the trajectory of a CTMC over [0, T ]
can be denoted as x(t) where x(t) = k if the system
is in the state Sk at time t . Given the full trajectory of
x(t) over [0, T ], its likelihood is the product of the ex-
ponential densities of sojourn times in successive states
and the multinomial probabilities of the transitions be-
tween states. In practice, instead of observing the full tra-
jectory of x(t), we can take only indirect measurements
y = (y(t1), y(t2), . . . , y(tn)) at discrete times 0 = t1 <

t2 < · · · < tn = T . The distributions of y(ti) are usually
modeled with distributional family F where the parame-
ter values at time ti are determined by x(ti):

y(ti) ∼ F(θx(ti )), E
(
y(ti)

) = μx(ti ).

It is also customary to assume that as long as the param-
eter values are different the means of the measurements
will differ as well. Thus, we can expect that the observed
signal, although it can be noisy, would roughly follow a
stepwise pattern.

In principle, the estimated mean signal μ̂ would al-
low us to determine the states of the single molecule
at the times of measurement and estimate the change-
points (times when the transitions between states occur).
Such information would allow us to reconstruct x(t) over
[0, T ], infer the parameters in the generator matrix Q,
and understand the mechanism of this single molecule.
Nonetheless, although many existing approaches can re-
move the noise from the observed data to obtain the es-
timated mean signal μ̂, it is often impossible to fully re-
construct x(t) due to several practical issues.

First, the minimum time resolution of the experiment
limits the information we may learn from the data. Given

μ̂i �= μ̂i+1, we can only deduce that at least one state tran-
sition has taken place between ti and ti+1. Worse, when
the transitions between states occur much faster than the
minimum time resolution, we may fail to detect any tran-
sitions taking place between ti and ti+1. Second, in most
single-molecule experiments, parameters (as well as the
means) that specify the distribution of measurements can
be the same for varying underlying states, and each unique
value in μ can represent more than one discrete state.
For instance, in the single-molecule experiment of enzy-
matic reaction (equation (6)), the fluorescence tag used
for tracking the activity of the single enzyme is active at
state E0 but remains dormant at both E and ES. There-
fore, although the high values in the observed signal rep-
resent state E0, low values may indicate either state E or
ES. Consequently, it is impossible to determine any tran-
sitions between E and ES based on the strength of the
mean signal alone.

Without knowing the complete trajectory x(t), there is
no direct ways of inferring rate parameters in the gen-
erator matrix. In addition, it can be more challenging to
choose between CTMC models with different numbers
of states and transitional structures derived from compet-
ing scientific hypotheses. Thus, although scientists have
proposed many innovative methods for tracking single-
molecule dynamics, sophisticated mathematical and sta-
tistical methods are necessary to analyze experimental
data and answer relevant questions.

4.2 Model-Free Approaches for Segmenting
Single-Molecule Signal

A common step in analyzing the stepwise single-
molecule signal is to first remove the noise so that the ob-
served signal can be properly segmented. The distribution
of the lengths of the segments that share the same mean,
as well as the times and patterns of transitions between
segments with different means, can provide useful insight
into the mechanism of the single-molecule system. Many
conventional statistical tools can be applied for this pur-
pose without the explicit application of the CTMC model.
We will call such approaches “model-free” approaches
and discuss them in this section.

In model-free approaches, transitions between states
are either treated as deterministic or modeled with con-
venient assumptions, and the major goal is to estimate the
mean signal from the noisy data. Straightforward filter-
and-thresholding approaches have been used to analyze
ion channel recording and the fluorescence intensity sig-
nal for a long time (Chung and Kennedy, 1991; VanDon-
gen, 1996; Haran, 2004). In these approaches, a filter al-
gorithm is first applied to reduce the noise in the signal.
The transition points can then be determined by establish-
ing a threshold for the changes in the signal strength so
that the mean signal can be estimated in a segment-wise
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fashion. Researchers have also considered other more so-
phisticated de-noising techniques such as the wavelet in
recent years (Taylor, Makarov and Landes, 2010).

In the statistics literature, such questions are known as
change-point problems (Chernoff and Zacks, 1964). In
a typical change-point model, the entire signal is mod-
eled as a sequence of segments separated by change-
points. Within the same segment, the observations are in-
dependently and identically distributed. Between succes-
sive segments, the observations are drawn independently
from the same distributional family with different param-
eter values (usually with distinctive means). Maximum
likelihood estimation can be used to estimate the loca-
tions of change-points when their number is known in
advance (Hinkley, 1970). Otherwise, the penalized maxi-
mum likelihood can be used to select the optimal change-
point configuration (Yao, 1988; Braun, Braun and Müller,
2000; Zhang and Siegmund, 2007; Boysen et al., 2009).
Because introducing a prior distribution would automati-
cally penalize too many change-points, Bayesian methods
are commonly used as well (Smith, 1975; Barry and Har-
tigan, 1993; Chib, 1998; Fearnhead and Liu, 2007; Du,
Kao and Kou, 2016).

Many of the aforementioned change-point methods can
be directly applied to a single-molecule signal. Nonethe-
less, a large number of the change-point algorithms were
developed under the equal-variance assumption; that is,
observations from different segments share the same com-
mon variance, which can be inappropriate in many single-
molecule experiments. Moreover, some single-molecule
signals contain frequent transitions and short segments,
which could be challenging for conventional change-point
detection algorithms. In recent years, new methods tai-
lored to single-molecule experiments have been devel-
oped. To model the fluctuation in ion channel record-
ing, a Bayesian sampling algorithm designed for detecting
changes in the opening probabilities was used (Siekmann,
Sneyd and Crampin, 2014). A marginal likelihood ap-
proach, where the prior distributions are constructed us-
ing an empirical Bayesian procedure, was shown to be
effective for signals with nonconstant variance and fre-
quent change-points (Du, Kao and Kou, 2016). A similar
Bayesian approach was also used to estimate the number
of active fluorescent subunits from photobleaching time
traces (Tsekouras et al., 2016). Approaches based on mul-
tiscale statistics can be better adapted to the changes in
local variation that are common among single-molecule
signals (Frick, Munk and Sieling, 2014; Pein, Sieling
and Munk, 2017). To handle the scenario where multi-
ple channels were recorded simultaneously, a multivariate
change-point method was applied to detect the transitions
in multivariate time series using Hotellings T 2 test statis-
tic (Bauer et al., 2018).

4.3 CTMC-Based Approaches for Analyzing
Single-Molecule Signal

In contrast to the model-free approaches, model-based
approaches rely on a concrete CTMC model to model
the state transitions. Within the framework of the CTMC
model, the distribution of sojourn time in particular
state(s) as well as the transition probabilities between
states can be derived or estimated. Although the effec-
tiveness of the CTMC-based approach largely depends
on how well the chosen model matches the real single-
molecule system, the interpretability of the CTMC model
is often worth the risk.

Fitting the dwell time distribution. A straightforward
way to learn the underlying CTMC model from the ob-
served single-molecule signal is to analyze the histogram
of dwell times in various states. Given a CTMC model
with a finite number of states, it is not hard, at least in
principle, to derive the analytical formula of the densities
of dwell times in a given set of states as functions of the
transition rates. Specifically, the density of the dwell time
in a single state is exponential, and the density of the dwell
time in a particular set of states is a mixture of exponen-
tial functions. As long as we can segment the signal prop-
erly and match each segment to the underlying discrete
state(s), we can obtain the empirical distribution of dwell
times and fit the theoretical density function accordingly.
This strategy can usually provide direct insight into the
mechanisms of a single molecular system, but it is often
limited to relatively simple models due to the complexity
of the analytical density function.

This method was first used to analyze ion channels
recordings, where signals often switch between two levels
corresponding to the open and closed state(s) (Colquhoun
and Hawkes, 1981). For instance, in model (7), the den-
sity of the dwell time in closed states T and AT is a
double-exponential function, and the density of the dwell
time in open state AR is a single-exponential function. To
choose between competing models with different num-
bers of intermediate states or patterns of state transi-
tions, we can derive the theoretical density function un-
der each model and apply standard model selection met-
rics, such as the likelihood ratio and AIC (Horn, 1987)
or BIC (Ball and Sansom, 1989). Similar strategies were
later used to analyze the time-binned fluorescence inten-
sity signal with single-exponential (Zhuang et al., 2000;
McKinney et al., 2003) or multiple-exponential functions
(Lu, Xun and Xie, 1998; Zhuang et al., 2002; Bokinsky
et al., 2003). For the time-stamped photon sequence, the
autocorrelation function of waiting times between succes-
sive events of photon arrivals is either a single-exponential
or a multiple-exponential function and can thus be fitted in
a similar fashion (Yang and Xie, 2002; Yang et al., 2003).
In recent years, more rigorous research on fitting such
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multiple-exponential functions has emerged. The roles of
the number of observations and the fluctuation in transi-
tion rates on fitting the dwell time distribution have been
examined (Floyd, Harrison and Van Oijen, 2010). A gen-
eralized method of moments was also shown to perform
better compared to the traditional least-squares approach
(Piatt and Price, 2019).

Hidden Markov model. By treating the observed data
as the sum of the mean signal and the stochastic noise
whose magnitude may depend on the underlying states,
the hidden Markov model (HMM) provides a general way
of inferring the CTMC model from single-molecule sig-
nals. With the help of the HMM method, the state of the
single molecule at any given time of measurement, the
mean values of the observed signal, and the transition
rates in the generator matrix can be estimated at the same
time.

The first systematic work to adopt the HMM to analyze
ion channel data appeared in 1990 (Chung et al., 1990). In
this work, the Baum–Welch algorithm was used to obtain
the maximum likelihood estimators of model parameters
and the means of signal. Computational algorithms other
than the Baum–Welch algorithm were also explored, such
as the direct optimization approach (Qin, Auerbach and
Sachs, 2000a) and the segmental k-means method (Qin,
2004). Many researches simply treated the noise in the
observed signal as additive white Gaussian noise. How-
ever, significant efforts were made to improve the con-
ventional algorithm to handle more realistic model as-
sumptions, especially a signal with non-Gaussian or cor-
rected noise (Venkataramanan, Kuc and Sigworth, 1998;
Venkataramanan et al., 1998; Qin, Auerbach and Sachs,
2000b). In addition to the deterministic optimization al-
gorithm, MCMC methods were also popular for inferring
parameters and the means of signal (Ball et al., 1999; Ros-
ales et al., 2001; Gin et al., 2009; Siekmann et al., 2011;
Epstein et al., 2016).

For fluorescence intensity data, the HMM approaches
have been applied to analyze both the time-stamped pho-
ton sequence and the time-binned intensity signal. In the
time-stamped data, the process of photon arrivals is usu-
ally modeled as Poisson process with rates that depend
on the underlying states, which allows for the direct ap-
plication of HMM techniques (Andrec, Levy and Talaga,
2003; Schröder and Grubmüller, 2003; Kou, Xie and Liu,
2005; Okamoto and Sako, 2012; Keller et al., 2014). No-
tably, the conventional HMM models can be expanded to
incorporate the fluctuation in the intensity of photon ar-
rivals due to the diffusion of molecules (Kou, Xie and
Liu, 2005). Analysis using time-stamped data can provide
a better estimation of the transition times and is more sen-
sitive to rapid transitions compared with analysis using
time-binned data. Still, time-binned data are more com-
monly used in practice due to the added difficulty of col-
lecting and modeling the time-stamped data.

For time-binned data, a maximum likelihood approach
was first applied to estimate the means and the transi-
tion probabilities in the FRET ratio trajectory under the
HMM framework (McKinney, Joo and Ha, 2006). Later,
many Bayesian strategies were used to infer parameters in
the HMM, such as maximizing the posterior or marginal
distribution via the variational Bayes approach (Bron-
son et al., 2009; Okamoto and Sako, 2012) or empirical
Bayes approaches (van de Meent et al., 2014), as well
as the MCMC sampling approaches (Chen et al., 2016).
Although Gaussian distributional assumptions are often
used to model the noise, other distributions, such as Pois-
son and mixture Gaussian distribution, have also been in-
vestigated in the literature as well (Liu et al., 2010). In
addition, techniques such as FRET use multiple fluores-
cence tags to study the dynamic of a single molecule, and
the multivariate HMM can be valuable for analyzing mul-
tiple channels simultaneously (Liu et al., 2010).

To apply an HMM method, the total number of dis-
crete states in a Markov chain model is needed. From
a statistics standpoint, this is a model selection prob-
lem. BIC and AIC are often used in practice for the de-
termination of the number of states. However, BIC and
AIC encounter conceptual difficulty when the observa-
tions y = (y(t1), y(t2), . . . , y(tn)) are supported on the
real line with unknown variances, as in the case where
y(ti) follows a Gaussian distribution conditioning on its
hidden state. This conceptual difficulty stems from the
fact that the HMM can be overly fitted with infinite likeli-
hood as one can make the estimated variance component
arbitrarily small (Gassiat and Rousseau, 2014). Marginal
likelihood is one method of avoiding the difficulty beset-
ting BIC or AIC and can provide a consistent estimate of
the number of states (Chen et al., 2019). Moreover, when
multiple trajectories are available for analysis, the number
of discrete states estimated from an individual trajectory
can vary. If this is the case, a majority rule that reflects
the consensus of the observed signals can be used to de-
termine the number of states in the overall model (Chen
et al., 2016).

In the study of single-molecule data, it is quite com-
mon that the number of distinct means shown in the ob-
served data is smaller than the number of underlying dis-
crete states. Such a scenario will be discussed in the next
section. Here, we will stick to the scenario in which each
discrete state corresponds to a unique mean.

A straightforward way of determining the number of
states is to count the number of modes in the empirical
distribution of the signal. We may also first fit a Markov
model with many states, and then fine tune the number of
states based on the estimated means (Chung et al., 1990;
McKinney, Joo and Ha, 2006). Alternatively, we can fit
multiple models with different numbers of states and
choose the best using the frequentist approaches (McK-
inney, Joo and Ha, 2006; Liu et al., 2010; Chen et al.,
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2016) or Bayesian methods (Bronson et al., 2009; van de
Meent et al., 2014; Chen et al., 2019). In recent years,
the infinite hidden Markov model (iHMM) has been ap-
plied to study single molecule signals (Hines, Bankston
and Aldrich, 2015). This approach involves using a hier-
archical Dirichlet process as the prior distribution of the
transition probability matrix, which guarantees the gener-
ation of a proper transition probability matrix with ran-
dom dimensions. Consequently, iHMM provides a frame-
work for sampling CTMC models with different numbers
of states.

4.4 Specific Issues in Analyzing Single-Molecule
Signals

The issues discussed in the previous sections can appear
in any applications with the HMM. In single-molecule ex-
periments, the application of HMM methods is also beset
by unique challenges. In this section, we discuss the prob-
lems of handling the aggregation of states, dynamic dis-
order, and heterogeneity across molecules.

4.4.1 Resolving aggregated states. Although deter-
mining the number of unique means in the observed sig-
nal is a relatively simple matter, specifying the number
of discrete states in the CTMC model is more difficult
in a single-molecule experiment and deserves special at-
tention. As we have discussed in Section 4.1, although
the stochastic model of the molecular dynamic can in-
volve many intermediate states, changes in the means of
the observed signal often do not contain sufficient infor-
mation to discriminate these states. A unique mean in the
observed signal may correspond to multiple underlying
discrete states. Such phenomena are known as the aggre-
gation of states in the ion channel literature and are also
commonly encountered in experiments utilizing fluores-
cence spectroscopy.

No matter how complicated the true model may be, it is
always feasible to first fit the data with a Markov model
whose number of states equals to the number of distinc-
tive means in the observed signal. This procedure can still
yield a reasonably good segmentation of the observed sig-
nal (Fredkin and Rice 1992a, 1992b). We can then inves-
tigate the histograms of the lengths of segments with the
same means and determine whether we need a more com-
plicated model.

Some HMM-based methods directly fit the observed
data with a sophisticated Markov model with aggregated
states. After all, the distribution of the lengths of seg-
ments and the transition patterns may carry information
for distinguishing aggregated states. These algorithms of-
ten add constraints to the conventional HMM algorithm
to ensure that the aggregated states share the same mean
(Rosales, 2004). Techniques such as the reversible-jump
MCMC can be used to choose between models with
different degrees of aggregations (Hodgson and Green,

1999; de Gunst and Schouten, 2003). Recently, the appli-
cation of the iHMM has also demonstrated that the aggre-
gated states can be resolved if the dwell times in different
aggregated states have distinctive characteristics (Hines,
Bankston and Aldrich, 2015).

Nonetheless, the identifiability issue may arise when
the observed data do not contain sufficient information to
resolve the aggregated states. Many studies have demon-
strated that, for some Markov models with aggregated
states, the estimations of transition rates can be highly
inaccurate or subject to slow convergence (Fredkin and
Rice, 1992b; Ball et al., 1999; Hodgson and Green, 1999;
Qin, Auerbach and Sachs, 2000a). It remains unknown
whether a formal procedure exists to determine whether
a given model is identifiable. However, some have sug-
gested that well-designed MCMC sampling algorithms
can provide a clue to the nonidentifiability of model pa-
rameters based on the pattern of posterior distribution and
the speed of convergence (Gin et al., 2009; Siekmann et
al., 2011; Siekmann, Sneyd and Crampin, 2014).

4.4.2 Dynamic disorder. The analysis of the fluores-
cence signal from single molecules has confirmed one im-
portant feature of single-molecule kinetics: dynamic dis-
order (Zwanzig, 1992). Simply put, the kinetic rate pa-
rameters of molecules, rather than being constant, may
fluctuate over time. In a CTMC model, fluctuation in rate
parameters can induce a memory effect in the otherwise
memoryless Markov process. Taking the enzymatic reac-
tion in (6) as an example, if we define a single turnover as
the time for an enzyme to complete one catalytic cycle—
that is, the first passage time from state E to state E0—we
can expect successive turnover times to be independent.
However, if the rate parameters can change over time,
a memory effect—nonzero correlation between succes-
sive turnover times—may appear, as has been observed
in single-molecule experiments (Lu, Xun and Xie, 1998;
Min et al., 2005; Kou, 2008b).

Two ways of modeling dynamic disorder exist: the dis-
crete model and the continuous model. In the discrete
model, the molecule can switch between different confor-
mations, each of which comes with a distinct set of rate
parameters (Schenter, Lu and Xie, 1999; Berezhkovskii,
Szabo and Weiss, 2000; Yang and Cao, 2001; Kou et
al., 2005; Chung and Gopich, 2014; Chung, Louis and
Gopich, 2016). Such a model effectively expands the state
space of the original CTMC model. For instance, by re-
placing each of the original three states with n confor-
mational states, the enzymatic reaction model (6) can
be expanded into the following multiconformational-state
model (Kou et al., 2005; English et al., 2006; Du and Kou,
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2012):

(8)
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ESn
k2n−→ P+ E0

n E0
n

δn−→ En

The multiconformational-state models are capable of
modeling dynamic disorder within a Markov frame-
work. Nonetheless, the additional states also increase
the degree of state aggregation. Consequently, although
conventional HMM-based approaches can technically
be used to analyze these models (Chung and Gopich,
2014; Chung, Louis and Gopich, 2016), parameters in
multiconformational-state models are usually estimated
by fitting analytical functions such as the density func-
tion or the autocorrelation function of experimental data.
Although these functions are the sums of multiple-
exponential decays in principle, explicit analytical for-
mulas are generally available only for small n. Therefore,
approximated approaches, such as treating rate parame-
ters in different conformations states as random variables
or focusing on the dominated exponential components,
are often needed (Kou et al., 2005; Du and Kou, 2012).

The continuous model treats the rate parameters in the
CTMC as stochastic processes. Such a model does not in-
troduce additional discrete states but rather sacrifices the
Markov property. For instance, the following model was
used to study the forming and breaking of intramolecular
pairing in a DNA hairpin (Kou, Xie and Liu, 2005):

(9) A
k12 exp

[
−x(t)

]
�

k21 exp
[
−x(t)

] B, dxt = −λxt dt + √
2ξλdWt,

where the transition rates between states A and B are
modeled with an Ornstein–Uhlenbeck process represent-
ing the diffusion of the molecule. Parameters in this model
can be inferred from the posterior samples drawn with the
help of the data augmentation and MCMC methods.

Both of the aforementioned models handle dynamic
disorder by introducing an added layer of complexity that
reflects the heterogeneity over time in single-molecule
systems. Although the presence of such heterogeneity can
be detected from simple statistics, such as the autocorre-
lation function, how to best model this phenomenon re-
mains unclear. Although complex models may better re-
semble the actual molecular dynamics, the observed data
may not contain sufficient information to reconstruct such
subtle dynamics. Some authors have demonstrated that
in certain scenarios, complex multi-conformational-state
models or continuous models may not necessarily offer

significant improvement over a simple two-by-two model
where the molecule only switches between two conforma-
tional states in each stage (e.g., n = 2 in equation (8); Lu,
Xun and Xie, 1998; Schenter, Lu and Xie, 1999).

In this regard, nonparametric approaches can be a valu-
able tool to analyze heterogeneity over time in the ex-
perimental data. For instance, the time-stamped photon
arrival sequence can be modeled as a doubly stochastic
Poisson process in which the arrival rate is also a stochas-
tic process. Then, the arrival rate over time along with the
autocorrelation function can be estimated directly using
a nonparametric approach without explicit assumptions
(Zhang and Kou, 2010). Such model-free estimation may
offer valuable information on the extent of heterogeneity
as well as provide directions to construct better parametric
models.

4.4.3 Heterogeneity across molecules. Another issue
in analyzing single-molecule data is how to handle multi-
ple signals originating from different molecules. In prac-
tice, repeated experiments are often conducted, and sci-
entists wish to combine information from all signals.
As a result of the heterogeneity between molecules, not
only can the transition rates between states differ across
molecules but also the means of signals in the same state
can vary. Moreover, the space of discrete states can differ
between molecules, because a single molecule may not
be able to visit all of the discrete states within a single
recording.

A simple strategy of handling multiple signals is to treat
different signals as independent realizations of one global
model. To infer the global model, we can analyze each
observed signal first and then pool the results to estimate
global parameters (McKinney, Joo and Ha, 2006; Bronson
et al., 2009). As the estimated means of the same state
would naturally vary between different signals, suitable
algorithms are needed to categorize the segments from
the trajectory-wise analysis and match them to the states
in the global model. The so-called transition density plot
(McKinney, Joo and Ha, 2006), a two-dimensional his-
togram that represents the distribution of signal levels be-
fore and after each transition, can be used for this purpose
as well as for determining the number of discrete states
in the global model. Then, the global transition proba-
bilities at the log scale can be estimated as the averages
of the logarithm of transition probabilities inferred from
individual signals. Alternatively, because the signals are
independent, it is also feasible to apply the HMM to in-
fer the global model directly using all of the signals si-
multaneously (Blanco and Walter, 2010; Liu et al., 2010).
These strategies, although they can be used to pool in-
formation for inferring a global model, simply treat the
difference between molecules as noise and may overlook
heterogeneity between signals.
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Various other approaches have been developed to
recognize heterogeneity between molecules. In single-
molecule cluster analysis (Blanco et al., 2015) for FRET
data, each signal is first segmented using HMM inde-
pendently. Every estimated segment is then matched to
one of the ten global states with the given FRET values.
Finally, a modified k-means algorithm is used to cluster
signals based on the similarity in the transition probabil-
ity matrices. This approach enforces a degree of consis-
tency over the signal means but allows the pattern of state
transitions to differ. In the method known as the single-
molecule analysis of complex kinetic sequences (Schmid
and Hugel, 2018), a global CTMC model is used to model
the transitions between hidden states, whereas the lev-
els of the observed signals are allowed to differ across
molecules.

The hierarchical HMM model can systematically exam-
ine the common traits as well as the specific characteris-
tics of individual signals (van de Meent et al., 2014; Chen
et al., 2016). In a typical hierarchical HMM setup, all sig-
nals share the same global state space, while the distri-
butional parameters, such as the signal means, are drawn
from a common prior distribution. Similarly, the transition
rate matrices can be assumed to be either constants or in-
dependent samples from a prior distribution. Moreover, as
a result of either the molecular heterogeneity or the limit
duration of the observed signal, a molecule may only visit
only a part of the global state space during its course. This
issue can be handled by introducing a random indicator
vector that specifies the subspace that the corresponding
molecule visits (Chen et al., 2016). Through sharing in-
formation effectively, the hierarchical HMM model could
significantly reduce the uncertainties in estimating model
parameters (Chen et al., 2016).

5. CONCLUSION

The development of single-molecule experiments has
allowed scientists to study the detailed dynamics of in-
dividual molecules. As scientists zoom in on the micro-
scopic world, the intrinsic stochasticity of molecular sys-
tems emerges as a dominating factor. Unlike the exper-
iments conducted on the macroscopic scale, advanced
single-molecule experiments often have to rely on indi-
rect means of collecting the much-needed information for
probing the underlying molecular system. At least in the
near future, our measurements of single-molecule sys-
tems will remain incomplete, and a large portion of such
systems will continue to be hidden from our sight. All
of these factors have called for extensive applications of
statistical methodology in analyzing single-molecule ex-
perimental data. Only by applying appropriate statistical
methods can we hope to learn useful information from
the noisy data and to bridge the gap between the observed
information and the hidden mechanisms. It is, then, no

wonder that in recent decades, there has been an increas-
ing trend of applying complex statistical methods for an-
alyzing single-molecule data. It is safe to expect that such
momentum will continue as new technological advance-
ments and experimental techniques are developed.

The application of statistical methodology in single-
molecule experiments also brings many challenges. First,
complex mathematical models are used extensively in
single-molecule study. These models are often developed
from established physical principles and can provide a
clear interpretation of the mechanisms of the underlying
system (see Qian and Kou, 2014). Many single-molecule
experiments are also designed to validate or improve
such models. In this regard, successful applications of
the statistical method needs to take such models into ac-
count. Although some models (such as the CTMC) can
fit into the existing inference framework, many others
are too complicated for conventional tools. In particu-
lar, when the likelihood function is unavailable, inference
with single-molecule data often has to rely on the fitting
of relatively simple analytical functions. Such a strategy
utilizes only a few moments of the data and it remains to
be seen whether general approaches can be developed to
handle such a scenarios without losing valuable informa-
tion.

Second, in many studies of single-molecule data, one
must choose between competing stochastic models. Al-
though the current statistical literature contains many
tools for model selection, these tools are often devel-
oped with relatively generic linear models in mind and
thus may not always be suitable for choosing between
complicated nonlinear stochastic models. Even though the
Bayesian approach might provide a general solution for
this matter, it can be challenging to design a suitable sam-
pling algorithm that can incorporate competing models
under the same framework. In addition, due to the com-
plexity of the model and the incomplete nature of the data,
it is often hard to determine whether the available data
contain sufficient information for identifying the given
models. Such an identification issue has severely affected
the ability to use sophisticated and realistic models in
analysis, and rigorous statistical methodology is needed
to resolve this matter.

Third, modern single-molecule experiments involve the
use of sophisticated measurement techniques, which often
introduce additional layers of complexity. Complicated
algorithms are usually applied to pre-process the raw data
with the aim of removing the unwanted effects stemming
from the measurement methods. However, in the realm
of single-molecule experiments, due to the strong interac-
tions between the measurement methods and the dynam-
ics of molecules, such a procedure may lead to the loss
of valuable information. Therefore, for the in-depth ap-
plication of statistical methodology, researchers needs to
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consider the data generation process and should attempt
to incorporate the relevant information into the inference
framework. Such works would require not only a good
understanding of the experimental procedure, but also the
ability to design a new inference approach to accommo-
date the extended model and data set.

With these issues in mind, we hope that our review of
statistical methodologies in single-molecule experiments
will not only provide a general picture of the current de-
velopment in this area but also ignite further interest in
introducing and developing new methodologies for ana-
lyzing single-molecule data.
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