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Abstract Advances in nanotechnology enable scientists for the first time to study biological pro-

cesses on a nanoscale molecule-by-molecule basis. They also raise challenges and opportunities for

statisticians and applied probabilists. To exemplify the stochastic inference and modeling problems in

the field, this paper discusses a few selected cases, ranging from likelihood inference, Bayesian data

augmentation, and semi- and non-parametric inference of nanometric biochemical systems to the uti-

lization of stochastic integro-differential equations and stochastic networks to model single-molecule

biophysical processes. We discuss the statistical and probabilistic issues as well as the biophysical

motivation and physical meaning behind the problems, emphasizing the analysis and modeling of real

experimental data.
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1 Introduction

The renowned physicist Richard Feynman once said that “everything that living things can
do can be understood in terms of the jigglings and wigglings of atoms”[1]. Advances in nan-
otechnology of the last two decades have brought scientists closer to this “holy grail” than ever
before. For the first time scientists were able to study biological processes on an unprecedented
nanoscale molecule-by-molecule basis[2−7], opening the door to addressing many problems that
were inaccessible just a few decades ago.

The new field of nanoscale single-molecule biophysics has attracted much attention from bi-
ologists, chemists and biophysicists because nanoscale single-molecule experiments offer many
advantages over the traditional experiments involving a population of molecules. First, by
“zooming in” on individual molecules, single-molecule experiments provide data with more
accuracy and higher resolution. Second, by isolating, tracking and manipulating individual
molecules, single-molecule experiments capture transient intermediates and detailed dynamics
of a biological process, the type of information rarely available from traditional population
experiments. Third, by following single molecules, scientists can study biological processes
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directly on the individual molecule level, instead of relying on the extremely difficult task of
synchronizing the actions of a population of biomolecules. Fourth, since many important bio-
logical functions in a living cell are carried out by single molecules, understanding the behavior
of individual biomolecules is a crucial task, for which single-molecule experiments are specif-
ically designed. Many new scientific discoveries (see, for example, [8–10]) have emerged from
the nanoscale single-molecule studies.

Advances in nanoscale single-molecule biophysics also bring opportunities and challenges for
statisticians and stochastic modelers because of the stochastic nature of single-molecule ex-
periments. First, on the single-molecule level, the laws of statistical and quantum mechanics
fundamentally dictate the underlying biological dynamics/processes to be stochastic; their char-
acterization thus requires stochastic models. Second, since the experiments focus on and study
only one molecule at a time, the data from single-molecule experiments tend to be much noisier
than those from the traditional population experiments because one cannot use the actions
of thousands of molecules to average out the noise. Third, in most biophysical experiments,
single-molecule experiments in particular, inference of the underlying stochastic dynamics is
usually complicated by the presence of latent processes, which are unobserved but affect the
data collection. Fourth, in addition to the preference of analytical tractability, it is important
that the stochastic models constructed for biophysical processes should agree with fundamental
physical laws and have a sound physical foundation.

In this article, to exemplify the stochastic inference and modeling problems in the field, we
will look at a few selected cases, ranging from likelihood inference (of single-molecule fluores-
cence experiments), Bayesian data augmentation (to handle latent processes), and semi- and
non-parametric inference (of nanometric biochemical systems) to the utilization of stochastic
integro-differential equations (to model single-protein conformational fluctuation) and stochas-
tic networks (to model single-enzyme reaction dynamics).

The paper is organized as follows. Section 2 considers the likelihood and Bayesian analysis
of single-molecule experimental data, outlining, in particular, a Bayesian data augmentation
method to handle latent processes. Sections 3 and 4 discuss non- and semi-parametric inference
of nanoscale data. The second half of the paper (Sections 5 and 6) focuses on stochastic
modeling problems. Section 5 considers the modeling of subdiffusive motion within single
proteins, formulating a stochastic integro-differential equation framework. Section 6 studies
enzymatic reactions of single proteins, proposing a stochastic network model to describe the
reaction kinetics. Section 7 makes a few concluding remarks.

2 Likelihood and Bayesian inference

2.1 Likelihood analysis of single-molecule fluorescence experiments

One of the most important experimental tools to probe biological systems is fluorescence imag-
ing, where biologists and chemists use stochastic signals extracted from the experimental videos
to infer the function and mechanism of proteins and enzymes alike. In the context of single-
molecule biophysics, fluorescence experiments[11] play an indispensable role. In such experi-
ments, the system of interest is placed in a focal volume under a laser beam. The laser excites
the molecule under study, which then emits photons. These photons are recorded by a pho-
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ton detector. Because the molecule’s photon emission pattern depends on its underlying state
(e.g., the active and inactive states of an enzyme could have different photon emission inten-
sity), by tracking how the photon emission pattern fluctuates over time, one can investigate the
underlying (stochastic) dynamics itself.

A typical biological process/dynamics involves two entities A and B:

A
k12
�
k21

B, (2.1)

where A and B could be two different states of a protein or DNA molecule, k12 and k21 are the
transition rates between the two states[12]. In the familiar statistics language, (2.1) translates
to a two-state continuous-time Markov chain with the infinitesimal generator Q =

(−k12 k12
k21 −k21

)
.

The corresponding transition matrix is

P (t) = eQt =

⎛

⎝ π1 + π2e
−kt π2(1 − e−kt)

π1(1 − e−kt) π2 + π1e
−kt

⎞

⎠ , (2.2)

where k = k12 + k21, and (π1, π2) = (k21/(k12 + k21), k12/(k12 + k21)) denotes the stationary
distribution of the two-state Markov chain.

In most experiments, however, the states A and B are not directly observed; they have to be
inferred from the photon observations. The photon emission of the molecule follows a doubly
stochastic Poisson process: During the period that the molecule is in state A, the photons are
emitted (and subsequently arrive at the detector) according to a Poisson process with arrival
rate λA; during the period that the molecule is in state B, the photon arrival is also Poisson
but with a different arrival rate λB . The term “doubly stochastic” comes from the fact that
both the arrival time and the arrival rate are stochastic. Let γ(t) denote the two-state Markov
process (2.1), taking values λA and λB. Define Y (t) to be the total number of photons arrived
at the detector up to time t. Then the dependence of Y (t) on γ(t) can be written as

P (Y (t+ h) − Y (t) = 1|γ(t)) = γ(t)h+ o(h),

P (Y (t+ h) − Y (t) = 0|γ(t)) = 1 − γ(t)h+ o(h). (2.3)

In the fluorescence experiments successive photon arrival times T1, T2, . . . , Tn are recorded.
The goal is to infer from them the transition dynamics between A and B[10, 13]. The parameters
are θ = (k12, k21, λA, λB), of which the transition rates k12 and k21 are of special importance
because (i) they are directly linked with the energy barrier height between A and B[14], and (ii)
the energy barrier height in turn marks the energy landscape and the time scale of the reaction.

Using an infinitesimal discretization approach formulated in [15], the exact likelihood func-
tion can be obtained in closed form. First, the time interval [T1, Tn] can be divided into
infinitesimal pieces, each with length h. Second, within each small interval, one can approxi-
mate the conditional likelihood of T1, T2, . . . , Tn given γ by successive Bernoulli trials (2.3).
Finally, combining this approximation with the transition probability (2.2) of γ, applying
matrix algebra and taking the limit of h → 0 give the exact likelihood L(T1, . . . , Tn|θ) =
(π1, π2)Λ(

∏n−1
i=1 e

(Q−Λ)(Ti+1−Ti)Λ) ( 1
1 ), where the matrix Λ = diag(λA, λB).



1184 Kou S C

Likelihood for single-molecule fluorescence lifetime experiments. A special sub-
class of fluorescence experiments is the so-called single-molecule fluorescence lifetime exper-
iments, in which, in addition to the photon arrival time Ti, the detector registers another
quantity termed fluorescence lifetime for each photon. The fluorescence lifetime (measuring
the molecule’s response time to laser excitation) has an exponential distribution with rate de-
pending also on the underlying state of the molecule. For the two-state process (2.1), the
fluorescence lifetime has an exponential distribution with rate a when the molecule is in state
A, and an exponential distribution with a different rate b when the molecule is in state B.
An interesting fact from the quantum theory is that at any molecular state the mean of the
fluorescence lifetime and the photon’s Poisson arrival rate are proportional to each other. We
thus have λA = C/a, and λB = C/b for some proportional constant C.

Let τi denote the fluorescence lifetime associated with the i-th photon. The data pairs
{(Ti, τi)}ni=1 are collected in fluorescence lifetime experiments. They depend on the underlying
γ process via

P (Y (t+ h) − Y (t) = 1|γ(t)) = γ(t)h+ o(h),

P (Y (t+ h) − Y (t) = 0|γ(t)) = 1 − γ(t)h+ o(h),

[τ |γ(t), Y (t+ h) − Y (t) = 1]∼C γ−1(t) · exp(−C γ−1(t)τ).

The parameter of interest is θ = (k12, k21, a, b, C). Fluorescence lifetime experiments usually
require more sophisticated equipment than ordinary fluorescence experiments, but the gain
is that both Ti and τi provide information about the underlying stochastic dynamics of the
molecule. Using the same infinitesimal discretization method, one can derive the closed-form
likelihood for {(Ti, τi)}ni=1.

2.2 Bayesian data augmentation for latent processes
The closed-form likelihood in principle allows efficient inference of the parameters. In real
experiments, however, there are usually latent processes that complicate the inference. One
substantial complication arises from the molecule’s diffusion[11]. In the experiments, as the
laser-excited molecule emits photons, it also diffuses in the laser’s focal volume. As a result,
since the laser illuminating intensity that the molecule receives is the highest at the center of
the focal volume and decreases from center outward, the actual photon arrival rate depends not
only on the underlying state of the molecule, but also on the molecule’s location. The photon
arrival rate can be expressed as γ(t)α(t) with

α(t) = exp
[
− B2

x(t) +B2
y(t)

w2
xy

− B2
z(t)
w2
z

]
, (2.4)

where (Bx(t), By(t), Bz(t)) is the location of the molecule, following a three-dimensional Brow-
nian motion, and the known constants wxy and wz specify the x-, y- and z-axes of the ellipsoidal
focal volume. The presence of molecular diffusion changes the statistical structure from (2.3)
to

P (Y (t+ h) − Y (t) = 1|γ(t), α(t)) = γ(t)α(t)h+ o(h),

P (Y (t+ h) − Y (t) = 0|γ(t), α(t)) = 1 − γ(t)α(t)h+ o(h).
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The extra conditionality on the diffusion factor α(t) alters the likelihood as well. Using
the infinitesimal discretization technique, we can derive the conditional likelihood of T1, . . . , Tn

conditioning on α(t) as L(T1, . . . , Tn|θ, αt) = (π1, π2)Λ1(
∏n−1
i=1 e

(Q−Λi)(Ti+1−Ti)Λi+1) ( 1
1 ), where

Λi = diag(λAα(Ti), λBα(Ti)). Since the molecule’s 3-D Brownian diffusion is not observed, in
the full likelihood the latent diffusion factor α(t) has to be integrated out: L(T1, . . . , Tn|θ) =
∫
L(T1, . . . , Tn|θ, αt)P (αt) dαt, where P (αt) denotes the probability law of α(t). This path

integral is analytically intractable. The difficulty carries over to the Bayesian inference: with
prior distribution η(θ), evaluating the posterior distribution

P (θ|T1, . . . , Tn) ∝ η(θ)
∫
L(T1, . . . , Tn|θ, αt)P (αt) dαt (2.5)

is very challenging even numerically.

Bayesian data augmentation. One method to address this difficulty is Bayesian data
augmentation[16]. The intuitive idea is that if we can augment the unobserved diffusion (Bx,
By, Bz), the inference and computation will be much easier. Statistically speaking, instead of
focusing on the marginal distribution (2.5) of θ, we consider the joint posterior distribution of
θ and (Bx, By, Bz),

P (θ, Bx, By, Bz|T1, . . . , Tn) ∝ η(θ)L(T1, . . . , Tn|θ, αt)P (Bx, By, Bz),

where P (Bx, By, Bz) is the law of (Bx, By, Bz). The difficult path integral disappears from this
joint distribution. By sampling from it, one effectively marginalizes out the hidden diffusion
process and obtains the correct inference.

To draw the samples, one can start with the Gibbs sampler. However, since the 3-D diffusion
(Bx, By, Bz) has to be updated time point by time point, which is lengthy, a dynamic program-
ming idea of forward-backward sampling[17, 18] can be applied to reduce the computation cost:
backward compute the partial matrix products in the likelihood, forward update the diffusion
chain. The detailed implementation of the forward-backward sampling is given in [15]. The
computation cost is reduced by an order of magnitude: from O(n2) to O(n).

For fluorescence lifetime experiments (where, recall, one also observes the τi’s) the data
augmentation procedure for inferring the parameters can be carried out in the same way except
with conditional likelihood L(T1, τ1, . . . , Tn, τn|α(t),θ) = (π1, π2)D1Λ1(

∏n−1
i=1 e

(Q−Λi)(Ti+1−Ti)

Di+1Λi+1) ( 1
1 ), where Di = diag(a exp(−aτi), b exp(−bτi)), and Λi = diag(λAα(Ti), λBα(Ti)).

A simulation example. We use simulated fluorescence lifetime data sets from [15] to
illustrate the data augmentation approach. Each data set contains pairs {(Ti, τi)}ni=1 generated
from the latent Brownian diffusion (Bx, By, Bz) and the two-state process γ. Applying the data
augmentation approach, we imputed Brownian diffusion for each data set. Figure 1(a) shows
the sample posterior distribution (with a flat prior) of the parameters from a typical Monte
Carlo run (the vertical bars are the true values). The method is seen to correctly identify all
the parameters. Figure 1(b) compares the augmented Brownian diffusion factor α(t) with the
actual one, displaying the multiple augmented α(t) (the light curves) with the true α(t) (the
thick curve) for four representative data sets. The data augmentation technique appears to
recover the hidden factor well.
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Figure 1 (a) Histograms of the posterior samples. Vertical bar in each panel is the true value (k = k12 + k21,

π1 = k21/k). (b) Comparison of the augmented Brownian factors α(t) with the actual one. The thick curve is

the actual Brownian factor. The light curves are the augmented ones.

A real experimental data set. Let us now consider single-molecule experiments carried
by the Xie group at Chemistry Department of Harvard University to study a DNA hairpin
molecule, which is a single stranded nucleic acid structure, participating in many important
biological processes including the regulation of gene expression[19], DNA recombination[20], and
the facilitation of mutagenic events[21]. Because of the biological relevance, studying DNA
hairpin’s conformational properties, such as the conformational fluctuation and energy barrier
between the different states, is of current interest. A DNA hairpin has two states, open and
closed, illustrated in Figure 2. In the experiments, a fluorescence donor dye and a quencher
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are attached to the two ends of the molecule (Figure 2). The donor dye emits photons under
laser excitation, while the quencher annihilates the excitation. In the hairpin’s closed state,
the quenching is strong and very few photons from the donor are detected; in the open state,
because the donor and quencher are far away from each other, the quenching is weak and many
photons from the donor are detected.

Figure 2 The closed and open states of a DNA hairpin. To infer the states, a fluorescence donor (F) and a

quencher (Q) are attached to the two ends of the DNA hairpin.

Figure 3 (a) Posterior histograms from the experimental data (k = k12 + k21, π1 = k21/k). (b) The decay

time constant 1/k for the experimental data.
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Applying the data augmentation method to the fluorescence lifetime data yields the posterior
distribution of the five parameters, shown in Figure 3(a). Figure 3(b) shows the posterior
distribution of 1/k = 1/(k12 + k21), which, termed the decay-time constant, tells the energy
barrier height between the two states of a DNA hairpin. Since our method uses the likelihood, it
is more efficient than the available method-of-moment type estimation methods in the chemistry
literature. In those approaches photon arrival times have to be first “binned” together to smooth
out the effect of unobserved Brownian diffusion, and then the binned arrival times are used to fit
certain moment equations to estimate the parameters[22,23]. Because what happens inside the
binning time-window is lost once the arrival times are binned together, the binning approaches
suffer a significant loss of accuracy (i.e., time resolution). For the same data we analyze here,
the binning methods have a maximum time resolution of 280 microseconds (μs). In contrast,
our analysis provides a much sharper inference: the posterior median of 1/k is 59μs; a 95%
symmetric posterior interval is (39, 91)μs.

2.3 Inference of complex models
Our discussion so far focuses on the two-state model (2.1). For some systems, scientists have
proposed more complex models. For example, a two-by-two model

A1

k12
�
k21

B1

α ↓↑ α′ β ↓↑ β′

A2

k′12
�
k′21

B2

(2.6)

has been used to describe the dynamics of some proteins[24]. The underlying γ(t) process is now
a four-state continuous-time Markov chain, taking values λA1 , λA2 , λB1 , and λB2 respectively
in the four states. To infer this type of model, the likelihood analysis and Bayesian data
augmentation can be straightforwardly generalized.

The two-by-two model can be further generalized to a continuous diffusive model

A
k12e

−x(t)

�
k21e−x(t)

B, (2.7)

where an Ornstein-Uhlenbeck process x(t) satisfying dx(t) = −ρx(t)dt+√
2ξρ dW (t) is used to

control the transition rates[25]. Physically, the time-varying and stochastic transition rates can
be pictured as the result of a dynamically fluctuating energy barrier between the two states.
Inference of this model is more challenging. First, the presence of the control process x(t)
implies that the likelihood must undergo another layer of conditioning: conditioning on x(t).
Second, the control process x(t) is not observed and cannot be analytically integrated out.
Third, the parameters ρ and ξ of the x(t) are unknown and they couple strongly with x(t).
The data augmentation idea can be applied to address the first two difficulties: augmenting
both x(t) and the Brownian diffusion. The strong correlation between (ρ, ξ) and x(t), however,
creates a complication: Conditioning on large values of x(t), posterior draws of (ρ, ξ) tend to
be large, and, conversely, large values of (ρ, φ) tend to induce large posterior draws of x(t).

Thus, to draw posterior samples, in addition to the forward-backward sampling of Subsection
2.2, more powerful Monte Carlo methods have to be used. Kou, Xie and Liu[15] introduced a
group-move Monte Carlo, which works to move the highly correlated (ρ, ξ) and x(t) together.
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By breaking the high-correlation bottleneck that seriously limits the Gibbs sampler, the group-
move Monte Carlo substantially improves the sampling efficiency.

Since different models convey different physical/biological pictures of the underlying systems,
a natural scientific question is to discriminate the competing models from the experimental
data. For instance, for the DNA hairpin molecule (of Figure 2), there were many debates about
whether the continuous diffusive model is more appropriate than the two-state model[26−29].
However, because of the difficulty of data analysis, no clear consensus had been previously
reached. The likelihood-based data augmentation approach provides a means to address it.
First, since the two-state model can be viewed as a degenerate case of the diffusive model with√
ξ = 0, one can examine the posterior distribution of

√
ξ from the diffusive model: if it is

sufficiently far from 0, then the data is supportive of the diffusive model. Second, the data
augmentation method can be used together with the following result from [15] to compute the
Bayes factor[30] for Bayesian model selection.

For two nested models M1 ⊂M2, where M1 has parameters μ, and the larger model M2 has
parameters (μ, ζ), if the prior distributions are consistent, i.e., P (μ|M1) =

∫
P (μ, ζ|M2)dζ,

then the Bayes factor can be expressed as the posterior mean of the likelihood ratio:

BF =
P (y|M1)
P (y|M2)

= E

[
P (y|M1,μ)
P (y|M2,μ, ζ)

∣
∣
∣
∣ y,M2

]
. (2.8)

Here y refers to the data. This identity implies that if we have posterior samples of the
parameters (μ(i), ζ(i)), i = 1, . . . , N , drawn from the larger model M2, we can then estimate
the Bayes factor by the sample average of B̂F = 1

N

∑N
i=1[P (y |M1,μ

(i))/P (y |M2,μ
(i), ζ(i))].

Results for the DNA hairpin data. Applying the group-move Monte Carlo method
with data augmentation to the diffusive model, we obtained the posterior distribution of the
parameters from the DNA hairpin data, shown in Figure 4. The posterior samples of

√
ξ

Figure 4 Posterior histograms from the diffusive model.



1190 Kou S C

are concentrated far away from 0, which indicates strongly that the two-state model does not
fit the data. The estimated Bayes factor of B̂F = (3.43 ± 0.29) × 10−9 corroborates the
graphical message of Figure 4. For the DNA hairpin data, μ and ζ in (2.8) correspond to
μ = (θ, Bx, By, Bz) and ζ = (ρ, ξ, x(t)). From a scientific point of view, the preference of the
diffusive model implies that the energy barrier between the two states of the DNA hairpin has
more complex behavior than the simple static picture depicted in the two-state model. The
fluctuation of the energy barrier in this case could be attributed to conformational flexibility of
the DNA molecule.

3 Nonparametric inference of single-molecule fluorescence experiments

The preceding discussion illustrates that, under the specification of parametric models, Bayesian
and likelihood methods are quite effective for inferring the underlying biological dynamics from
fluorescence photon arrival data, and for discriminating between competing models even when
latent processes are present. Parametric models, however, are not always available for data
analysis, especially when scientists are in the early exploration of a new biological process. The
intuitive idea of “learning” directly from the data makes nonparametric inference appealing
here.

Let us recall in single-molecule fluorescence experiments photon arrival times T1, T2, . . . , Tn

within an observational time window [0, T ] are recorded; they follow a doubly stochastic Poisson
process where the stochastic arrival rate γ(t) depends on the underlying biological process. In
the nonparametric case, the Poisson setting (2.3) still holds, but γ(t) no longer has a specific
parametric form (such as a continuous-time Markov chain that we encountered previously).
The goal is to infer the properties of γ(t) nonparametrically.

One important characteristic is the autocorrelation function (ACF) of γ(t), which measures
the strength of dependence. A fast decay of the ACF, such as an exponential decay, indi-
cates that the underlying biological process is Markovian and that the biomolecule under study
has a relatively simple conformation dynamics, whereas a slow decay of ACF signifies a com-
plicated process and points to an intricate internal structure/conformational dynamics of the
biomolecule.

To estimate the ACF nonparametrically, we first approximate γ(t) from the photon arrival
data by a kernel estimate

γ̂(t) =
n∑

i=1

1
h
f

(
Ti − t

h

)
, (3.1)

where f is a symmetric smooth density function with bounded support [−b, b], and h is the band-
width. Under stationarity and ergodicity assumptions on γ(t), the ACF C(t) = Cov(γ(0), γ(t))
is estimated by

Ĉ(t) =
1

T − 2bh− t

∫ T−bh−t

bh

(γ̂(t+ s) − μ̂)(γ̂(s) − μ̂)ds, (3.2)

where μ̂ = n/T estimates μ = E[γ(t)], the mean photon arrival intensity, and the integral is
taken over the range of [bh, T − bh− t] instead of [0, T − t] to avoid the bias at the boundary
of the observational window. Zhang and Kou[31] showed that under mind regularity conditions
(such as stationarity and ergodicity) Ĉ(t) converges to C(t) in L2 as T h→ ∞, h→ 0.
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The practical application of (3.1) and (3.2) requires the choice of the bandwidth h. It can
be shown that the optimal one (in the mean square error sense) for γ̂ is

hopt = Df

[
μ

C′(0+)

]1/2

, (3.3)

where the constantDf = {∫ b−b f2(s)ds /(
∫ b
−b

∫ b
−b |s1−s2|f(s1)f(s2)ds1ds2−2

∫ b
−b |s|f(s)ds)}1/2.

Based on this result, a plug-in regression method for choosing h was proposed in [31]. We can
start with an initial h and use it to estimate C(t) and C′(0+), then replace the unknown C′(0+)
and μ in (3.3) with Ĉ′(0+) and μ̂ = n/T , which gives a better ĥ.

Under the assumption of short range dependence of γ(t), we can further establish the asymp-
totic normality for Ĉ(t). Detailed (but lengthy) analysis[31] shows that the asymptotic variance
can be well approximated by

V̂ (t) =
2

(T − 2bh− t)2

∫ T−2bh−t

0

(T − 2bh− t− s)Ĉov(t, s)ds, (3.4)

where Ĉov(t, s) involves the fourth central moment of γ,

Ĉov(t, s) = max
{∫ T−bh−s−t

bh

γ̂c(r) γ̂c(r + t) γ̂c(r + s) γ̂c(r + s+ t)
T − 2bh− s− t

dr − Ĉ2(t), 0
}

with γ̂c(t) ≡ γ̂(t)− μ̂ denoting the centralized γ̂(t). Equation (3.4) provides a practical method
to construct confidence intervals for the ACF. For example, an asymptotic 95% confidence

interval is Ĉ(t) ± 1.96
√
V̂ (t).

Two simulation examples. As a first illustration, we simulate the photon arrival times
from the two-by-two model (2.6), where γ(t) follows a four-state continuous-time Markov chain
with transition rates k12 = 3, k21 = 4, k′12 = 4, k′21 = 5, α = 1, α′ = 2, β = 2.5, and β′ = 4,
and γ(t) takes values 100000, 90000, 5000, and 4500, respectively, at states A1, A2, B1, and B2.
The observational time window is [0, T ] = [0, 100]. The true ACF C(t) in this case is a mixture
of three exponential functions. Figure 5(a) shows the estimated Ĉ(t) and the 95% confidence
interval based on one data set, compared with the true C(t). The ACF is well recovered. As a
further checkup for the accuracy of the confidence interval, we repeat the data generation 100
times (each time generating γ(t) first and then T1, T2, . . .). For each data set we calculate Ĉ(t).
The 2.5 and 97.5 percentile of these repeated estimates gives the real 95% coverage of Ĉ(t),
which is shown in Figure 5(b). Comparing the two panels, we can see that the approximate
confidence interval based on just one realization is close to the true one.

We next consider an example where the arrival rate γ(t) takes continuous values: γ(t) =
K exp(G(t)), where G(t) is a stationary Gaussian process with mean 0 and covariance function
�(t) = 1/(1+|t|)6. It is straightforward to show that the true ACF is C(t) = K2(exp(�(t))−1)
here. We generate photon arrival times from this model with K = 10000. Figure 6(a) shows
Ĉ(t) and the 95% confidence interval based on one data set, compared with the true C(t).
The ACF is well recovered. To further check up, we repeat the simulation 100 times. Figure
6(b) shows the 2.5 and 97.5 percentile from the repeated estimates Ĉ(t). It is evident that the
approximate confidence interval (based on one realization alone) in Figure 6(a) is quite close to
the true one in Figure 6(b).
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Figure 5 Estimated ACF for data generated from the two-by-two model. (a) Ĉ(t) and the 95% confidence

interval based on one simulated data set. The dotted curve is the true C(t). (b) The true 95% coverage of Ĉ(t)

based on 100 repetitions. The solid line is the average over the 100 estimates.

Figure 6 Estimated ACF for data generated from the exponential-Gaussian model. (a) Ĉ(t) and the 95%

confidence interval based on one simulated data set. The dotted curve is the true C(t). (b) The true 95%

coverage of Ĉ(t) based on 100 repetitions. The solid line is the average over the 100 estimates.

Real experimental data. A recent single-molecule experiment[32] studied a protein com-
plex formed by fluorescein and monoclonal antifluorescein. This is an antibody-antigen system.
In the experiment, the 3-D conformation of the molecule spontaneously fluctuates over time.
To study the conformational dynamics, the immobilized protein complex was placed under a
laser beam. Photons from the laser-excited molecule are collected with the photon arrival rate
depending on the molecule’s time-varying conformation.

Applying the nonparametric estimator to the experimental data gives Ĉ(t) and the 95% con-
fidence interval, shown in Figure 7. The graph was plotted on a log-log scale; the approximate
(log-log) linear trend reveals the slow decay of C(t) (more specifically, a power law type of de-
cay), and suggests that the underlying γ(t) has a long memory. The presence of long memory
indicates the complexity of the protein complex’ conformational fluctuation, which might be due
to the molecule’s intricate structure. For detailed discussion about the biological implications,
such as its effect on enzyme activity, see [33].
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4 Semi-parametric inference of nanometric biochemical systems

Studying the chemical kinetics behind biochemical reactions is of great importance to chemists
and biologists because chemical kinetics often governs the reactions’ biological functions. Un-
derstanding the detailed chemical kinetics of enzyme reactions, in particular, is of considerable
current interest. A single enzyme molecule in a living cell is a nanometric system; it catalyzes
biochemical reactions by first binding to the substrate (i.e., the reactant), then turning the
substrate into reaction product, and finally coming back to its initial state. The corresponding
kinetics can be depicted as

E

ES

↗↙
↑↓

↖↘
EP

with transition rates

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E
κ1

�
κ−1

ES

ES
κ2

�
κ−2

EP

EP
κ3

�
κ−3

E

. (4.1)

Figure 7 ACF for a real experimental data set. Ĉ(t) and the 95% confidence interval are plotted on a log-log

scale. The approximate power law type of decay suggests a long memory of γ(t), which indicates that the

conformational fluctuation of the protein complex is very complicated.

When an enzyme completes a forward reaction cycle (i.e., clockwise in the above diagram),
it successfully converts a substrate molecule to a product. However, since the reactions are
reversible, once in a while an enzyme can cycle backward (i.e., counterclockwise), in which case
it (counterproductively) turns a product back to a substrate. The tradeoff between the forward
and backward reaction flow is characterized by the thermodynamic driving force �μ, defined
as

�μ = log
(
κ1

κ−1

)
+ log

(
κ2

κ−2

)
+ log

(
κ3

κ−3

)
.

Since the thermodynamic driving force �μ, intrinsic to the (enzyme) system, directly measures
the system’s thermodynamic tendency towards its chemical equilibrium[34], accurate estimation
of �μ is central to the understanding of biochemical processes, in particular, the actual function
of the reaction in live cells.
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In single-molecule experiments, the turnover cycles of a single enzyme molecule are followed
over time. In particular, the number of net cycles (the full forward cycles minus the full back-
ward cycles) accomplished by the enzyme molecule within a time window can be determined.
Let Zi denote the number of net cycles in the i-th time window (1 � i � n); it can take both
positive and negative values. The task is to estimate �μ from the cycle data Z1, Z2, . . . , Zn.

To do so, one natural approach is to calculate the probability distribution of Zi from the
three-state continuous-time Markov chain (4.1), estimate the parameters κ1, κ−1, etc., and
then obtain �μ through its definition. This full parametric approach, however, has a serious
limitation: it relies on the correctness of the three-state Markov chain model. In fact, for many
enzyme reactions, scientists have suggested and sometimes deduced the existence of reaction
intermediates, which means that there could be four or more states in the reaction cycle, such
as E � ES � ES′ � EP ′ � EP � E. The thermodynamic driving force �μ in these cases
is still defined as the sum of log-ratios between the forward and backward rates (except there
might be κ4, κ5, etc.). The question is how to estimate �μ from Z1, . . . , Zn without assuming
a specific model.

A very useful result for the estimation is the following relationship: for any positive integer j,

P (Zi = j)
P (Zi = −j) = exp(j�μ). (4.2)

It can be shown[35] that this relationship, which is termed fluctuation theorem, holds irrespec-
tive of the exact model. Therefore, it is very desirable to estimate �μ based on this model-
independent semi-parametric result. One method-of-moment approach used by biophysicists is
based on a corollary of (4.2): E[exp(−�μZ)] =

∑∞
j=−∞ P (Z = j)e−j�μ =

∑∞
j=−∞ P (Z =

j) = 1, which leads to the estimator �μ̂MM

�μ̂MM = the nonzero solution of
1
n

n∑

i=1

exp(−Zi�μ̂MM) = 1.

This method-of-moment estimator, though intuitively simple, does not utilize the full potential
of (4.2). A more efficient semi-parametric maximum likelihood estimator was proposed by [36].

The probabilities pj = P (Z = j) are treated as nuisance parameters but with the impor-
tant link of p−j = pj exp(−j�μ), j � 1. Let Nj denote the number of occurrences (out of
the n observations) that exactly j net turnover cycles are observed, i.e., Nj = �{i : Zi =
j}, j = 0,±1,±2, . . . . Clearly,

∑∞
j=−∞Nj = n. The likelihood of observing the outcome

{N0, N±1, N±2, . . .} is then given by

L(N0, N±1, . . . | �μ, p0, p1, . . .) =
n!

∏∞
j=−∞Nj!

∞∏

j=−∞
p
Nj

j ∝ pN0
0

∞∏

j=1

[pNj

j (pje−j�μ)N−j ].

The semi-parametric MLE �μ̂MLE is obtained by maximizing the log-likelihood

logL(N0, N±1, . . . | �μ, p0, . . .) = const +N0 log p0 +
∞∑

j=1

[(Nj +N−j) log pj −�μ jN−j],

subject to the constraint p0 +
∑∞
j=1 pj(1 + e−j�μ) = 1 (i.e., the total probability should be

one).
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Using the Lagrange multiplier and solving the corresponding first-order conditions, we find
the final expression

�μ̂MLE = the solution of
∞∑

j=1

j
Nj exp(−j�μ̂MLE) −N−j

1 + exp(−j�μ̂MLE)
= 0, (4.3)

where the nuisance parameters automatically dropped out. It is instructive to compare this
new semi-parametric MLE with the method-of-moment approach. We can rewrite �μ̂MM as

�μ̂MM = the nonzero solution of
∞∑

j=1

[Nj exp(−j�μ̂MM)−N−j ][exp(j�μ̂MM)−1] = 0, (4.4)

which tells us that �μ̂MLE and �μ̂MM differ essentially by their assignments of weights on the
individual equations of Nj exp(−j�μ̂) − N−j = 0. The (asymptotically) optimal weights of
j/(1 + exp(−j�μ̂)) are obtained only by working on the (semi-parametric) likelihood.

An illustration. Let us consider a simulation. We generated enzyme turnover data from
the model (4.1). The parameters were taken to be κ1 = 430, κ2 = κ3 = κ−1 = κ−2 = 1000,
κ−3 = 4.3 (with unit sec−1); the numbers were chosen so that their ranges are representative of
real enzyme reactions. The number of net cycles Zi within the time window of 0.01 sec were
collected.

Figure 8 The root mean squared errors (RMSE) for �μ̂MM and �μ̂MLE as functions of the sample size n.

The data generation and estimation are repeated 5000 times at each sample size.

The true �μ is 4.6 in this case. To compare the two estimators, we examine the estimation
with different sample sizes, ranging from several hundred to 10,000. The root mean squared
error (RMSE), [E(�μ̂ −�μ)2]1/2, were calculated by repeating the data generation and esti-
mation 5000 times at each sample size. Figure 8 plots the RMSE of �μ̂MLE and �μ̂MM as
functions of n, the sample size. The superiority of �μ̂MLE over �μ̂MM is evident. For example,
at n = 10, 000, �μ̂MLE is more than five times as efficient as �μ̂MM. An inspection of (4.4)
reveals the root of �μ̂MM’s problem. The method-of-moment estimator assigns exponential
weight on the j-th equation. However, as j gets larger, having j or −j net cycles becomes
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rarer and rarer. Thus, by putting exponentially high weights on rare events, �μ̂MM loses its
stability and, subsequently, its efficiency. This simulation example illustrates the efficacy of the
semi-parametric approach. We expect its application to real single-molecule experimental data
in the near future.

5 Modeling subdiffusion within proteins

We have so far discussed statistical inference problems in single-molecule biophysics. From
this section on, we will turn to stochastic modeling problems in the field. We start from the
modeling of subdiffusion within single proteins.

Since Einstein’s and Wiener’s ground breaking works in the early 20th century, the theory
of Brownian motion and diffusion processes has revolutionized not only physics, chemistry and
biology, but also probability and statistics. A key characteristic of Brownian motion is that
the second moment E[x2(t)], which in physics corresponds to the mean squared displacement
(location) of a Brownian particle, is proportional to time t. In some systems[37−39], scientists,
however, have discovered a puzzling departure from Brownian diffusion: The mean squared
displacement E[x2(t)] there is no longer proportional to t, but rather E[x2(t)] ∝ tα, where
0 < α < 1. Because α < 1, these movements are defined as subdiffusion. Recent single-molecule
experiments[9, 32] reveal that subdiffusion may be quite prevalent in biological systems.

In a 2003 Science paper[9], scientists conducting single-molecule experiments on a protein-
enzyme system, called Fre, observed this subdiffusion phenomenon. The Fre system is involved
in the DNA synthesis of E. Coli. (where Fre catalyzes a reaction involving the protein Flavin).
Figure 9 shows the crystal structure of Fre, which contains two smaller structures: FAD (an
electron carrier) and Tyr (an amino acid). The 3-D conformation of Fre spontaneously fluctu-
ates, and consequently, the distance between the two substructures FAD and Tyr varies over
time. It was found that the stochastic distance fluctuation between FAD and Tyr undergoes a
subdiffusion.

Figure 9 The crystal structure of Fre. The two substructures FAD and Tyr are highlighted.

To explain this subdiffusion phenomenon, Kou and Xie[40] formulated a stochastic integro-
differential equation model based on fractional Gaussian noise and the generalized Langevin
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equation.
Since the model utilizes concepts from statistical mechanics, to facilitate the discussion, let

us first review how the law of Brownian diffusion was derived in physics. Suppose we have a
Brownian particle with mass m suspended in water. The physical description of the particle’s
motion starts from the Langevin equation[41, 14]: mdv(t)

dt = −ζv(t) + F (t), where v(t) is the
velocity of the particle at time t, and dv(t)/dt is the acceleration of the particle. On the right
hand side, ζ is the friction constant, and F (t) is the white noise (formally the derivative of
the Wiener process). Because both the movement of the particle and the friction originate
from the particle’s collision with water molecules, the Langevin equation has an important
physical constraint E[F (t)F (s)] = 2ζkBT · δ(t− s), where kB is the Boltzmann constant, T is
the underlying temperature and δ(·) is Dirac’s delta function. This proportional relationship
between the noise level and the friction constant is a consequence of the fluctuation-dissipation
theorem in statistical mechanics[42, 43]. In the more familiar probability notation, the Langevin
equation translates to mdv(t) = −ζv(t)dt+

√
2ζkBT dB(t), where B(t) is the Wiener process,

and the formal association of “F (t) =
√

2ζkBT dB(t)/dt” is recognized.
The solution v(t) to the Langevin equation is the Ornstein-Uhlenbeck process, which is

stationary Gaussian with mean E[v(t)] = 0 and covariance function E[v(t)v(s)] = kBT
m exp

(− ζ
m |t− s|). It follows that for the displacement, x(t) =

∫ t
0 v(s)ds, which is the actual observed

motion, the second moment is

E[x2(t)] = Var[x(t)] ∼ 2
kBT

ζ
t, for large t, (5.1)

which is known in physics as Einstein’s Brownian diffusion law.
The classical theory of Brownian diffusion, however, fails to explain subdiffusion, which

satisfies, instead, E[x2(t)] ∝ tα with 0 < α < 1 for large t. The starting point of our model to
account for subdiffusion is the generalized Langevin equation (GLE)[42, 44]

m
dv(t)
dt

= −ζ
∫ t

−∞
v(u)K(t− u)du+G(t), (5.2)

where, in comparison with the Langevin equation, (i) a noise G(t) having memory replaces
the white noise, and (ii) the memory kernel K convoluted with the velocity makes the process
non-Markovian. The reason that both K and G(t) appear in the equation is that any closed
(equilibrium) physical system must satisfy the fluctuation-dissipation theorem, which requires
the memory kernel K(t) and the noise to be linked by E[G(t)G(s)] = kBTζ ·K(t− s). In an
intuitive sense, this relationship arises because both the friction and the motion of the particle
originate from the collision between it and its surrounding media. The GLE reduces to the
Langevin equation when K is the delta function.

Under the GLE framework, the key question is: Is there a combination of kernel function
and noise structure that can lead to subdiffusion? To answer this question, we note that the
white noise is mathematically interpreted as the formal derivative of a Wiener process, which
is the unique process that satisfies (i) being Gaussian, (ii) having independent increment, (iii)
having stationary increment, and (iv) being self-similar. To generalize the white noise, we want
to maintain as many nice properties as possible and at the same time introduce memory. This
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leads to processes with the following three property: (i) Gaussian, (ii) stationary increment and
(iii) self-similar. The only class of process that embodies all three properties is the fractional
Brownian motion (fBm) process BH(t)[45, 46], which is Gaussian with mean E[BH(t)] = 0, and
covariance function E[BH(t)BH(s)] = 1

2 (|t|2H + |s|2H − |t− s|2H). H , between 0 and 1, is the
so-called Hurst parameter; BH(t) reduces to the Wiener process when H = 1/2.

Taking G(t) in (5.2) to be the (formal) derivative of fBm, FH(t) =
√

2ζkBTdBH(t)/dt, we
reach the model mdv(t)

dt = −ζ ∫ t
−∞ v(u)KH(t − u)du + FH(t), where the kernel KH(t) is given

by

KH(t) = E[FH(0)FH(t)]/(kBTζ) = 2H(2H − 1)|t|2H−2, for t �= 0. (5.3)

In the more familiar probability notation, the model can be written as

mdv(t) = −ζ
(∫ t

−∞
v(u)KH(t− u)du

)
dt+

√
2ζkBT dBH(t). (5.4)

The presence of the convolution term and the dBH(t) term makes this equation non-Markovian
and nonstandard. It, nevertheless, can be solved in closed form via a Fourier analysis. The
solution v(t) is a stationary Gaussian process. See [47] for details. One can further show that
the displacement x (t) =

∫ t
0 v(s)ds of equation (5.4) satisfies

E[x(t)2] = Var[x(t)] ∼ kBT

ζ

2 sin(2Hπ)
πH(2H − 1)(2H − 2)

t2−2H ∝ t2−2H , for large t.

This result tells us that the model with H > 1/2 leads to an explanation of subdiffusion.
Modeling subdiffusion under external potential. The model so far considers sub-

diffusion of a free particle, i.e., the motion of a particle without the influence of an outside
force (or potential). If there exists an external potential U(x) (e.g., a magnetic field), which
is a function of the displacement x(t), the model has to be modified. More specifically, the
term −U ′(x(t)) will be added to the right hand side of (5.2)[14, 42, 44]. Thus, to describe the
movement of a subdiffusive particle under an external potential U(x), the model becomes

dx(t)=v(t)dt,mdv(t)=−ζ
(∫ t

−∞
v(u)KH(t− u)du

)
dt−U ′(x(t))dt+

√
2ζkBTdBH(t). (5.5)

In the special case of a harmonic potential U(x) = 1
2mψx

2, where m is the mass of the particle
and the constant ψ reflects the potential’s strength, the model is

dx(t)=v(t)dt,mdv(t)=−ζ
(∫ t

−∞
v(u)KH(t− u)du

)
dt−mψx(t)dt+

√
2ζkBTdBH(t), (5.6)

which can also be solved by the Fourier transform method[47].
When the acceleration term mdv(t)/dt is negligible, which corresponds to the so-called over-

damped condition in physics[14], equation (5.6) reduces to

dx(t) = v(t)dt, mψx(t)dt = −ζ
(∫ t

−∞
v(u)KH(t− u)du

)
dt+

√
2ζkBTdBH(t), (5.7)

which can be solved in closed form via the Fourier method[47].
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Physical meaning of the model. A key requirement for biophysical models is that the
model must make physical sense: It must agree with fundamental physical laws and should have
a sound physical basis. For the motion of a free particle, the law of thermal dynamics[42, 43, 48]

requires that the stationary variance of the velocity should be kBT/m. It can be shown[47] that
indeed our model (5.4) satisfies E[v2(0)] = Var[v(0)] = kBT/m. For particles moving under a
harmonic potential U(x) = 1

2mψx
2, the law of thermal dynamics asserts that the stationary

variance of the displacement should be E[x2(0)] = kBT
mψ . Notably, our model (5.6) and its

overdamped version (5.7) both satisfy this requirement[47].
Furthermore, the models can be derived from the physical microscopic interaction between

the particle and its surrounding media. We start from the Hamiltonian (which is essentially
the total energy) of the particle Hs = p2

2m + 1
2mψx

2, where p = mv is the momentum, p2/(2m)
is the kinetic energy, x is the displacement, and mψx2/2 is the potential energy under the
harmonic case. The surrounding media, consisting of N ∼ 1023 small molecules, has its own
Hamiltonian

HB =
N∑

j=1

(
p2
j

2mb
+

1
2
mbω

2
j

(
qj − γj

ω2
j

x

)2)
,

where mb is the (common) mass of an individual molecule in the media, pj , qj and ωj are,
respectively, the momentum, location and oscillation frequency of the j-th molecule in the
media, and γj is the coupling strength between the particle of interest and the j-th molecule.
Once the total Hamiltonian Hs +HB is given, the classical theory of mechanics[49] states that
the motion of the particle as well as that of the media molecules is given by

dx

dt
=
∂(Hs +HB)

∂p
,

dp

dt
= −∂(Hs +HB)

∂x
,

dqj
dt

=
∂(Hs +HB)

∂pj
,

dpj
dt

= −∂(Hs +HB)
∂qj

.

Solving them[47, 44] leads to

m
dv(t)
dt

= −mψx(t) − ζ

∫ t

0

K(t− s)v(s)ds +G(t), x(t) =
∫ t

0

v(s)ds, (5.8)

where K(t) ∝ mb

∑N
j=1 γ

2
j cos(ωjt)/ω2

j . Equation (5.8) is of exactly the same form as (5.6). If
the media molecules are such that

∑
jmbγ

2
j cos(ωjt)/ω2

j → 2H(2H−1)t2H−2, then the memory
kernel (5.3) is also obtained.

Explaining the single-molecule experimental results. A recent single-molecule experi-
ment[9] studied a protein-enzyme compound Fre, which is involved in the DNA synthesis of
E. Coli. As shown in Figure 9, Fre contains two subunits: FAD and Tyr. Because the 3-D
conformation of Fre spontaneously fluctuates over time, the (edge-to-edge) distance between
FAD and Tyr varies. This distance fluctuation was probed in the experiment. Fre is placed
under a laser beam. The laser excites FAD to be fluorescent. By recording the fluorescence
lifetime of FAD, one can trace the distance between FAD and Tyr, because at any time t the
fluorescence lifetime λ(t) of FAD is a function of the distance[50, 51]:

λ(t) = k0e
β(xeq+x(t)),
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where k0 and β are known constants[51], xeq is the mean distance, and x(t) with mean 0 is the
distance fluctuation at time t.

To model x(t), researchers used to describe x(t) as a Brownian diffusion process under the
harmonic potential m d

dtv(t) = −ζv(t)−mψx(t)+F (t), x(t) =
∫ t
0 v(s)ds, or by its overdamped

version mψx(t) = −ζv(t) + F (t), x(t) =
∫ t
0
v(s)ds, where F (t) is the white noise.

The nanoscale single-molecule experimental data of λ(t) provides the means to test the model.
One can calculate the empirical autocorrelation function of λ(t) from the experimental data and
compare it with the theoretical autocorrelation function from the model. The autocorrelation
function is used as the test statistic because the experimentally recorded fluorescence lifetime is
actually the true λ(t) plus background and equipment noise. Using autocorrelation effectively
removes the noise, since the noise is uncorrelated. Figure 10 shows the empirical autocorrelation
function (the open circles) compared with the best fitting from the Brownian diffusion model
(the dashed curve). A clear discrepancy is seen. On the other hand, the solid line in Figure 10
is the result from modeling x(t) by our subdiffusive process (5.7). The curve is fitted by using
the Hurst parameter H = 0.74, and the analytical solution of (5.7). A very close agreement
with the experimental autocorrelation function is seen.

Figure 10 Autocorrelation function of the fluorescence lifetime λ(t). The open circles represent the empirical

autocorrelation from the experimental data. The dashed line is the best fit from the classical Brownian diffusion

model. The solid line is the fit (H = 0.74, ζ/(mψ) = 0.40, β2kBT/(mψ) = 0.81) from our model (5.7).

As a model checking, we make predictions about the distance fluctuation and test whether
these predictions can be confirmed by the experiments. The first set of predictions involves
higher order autocorrelation functions because they are very sensitive to distinguishing models[52].
With the values of the fitting parameters fixed to those in Figure 10, we compute from the model
the predicted three-step and four-step autocorrelation functions E[Δλ(0)Δλ(t1)Δλ(t1+t2)] and
E[Δλ(0)Δλ(t1)Δλ(t1 + t2)Δλ(t1 + t2 + t3)], where Δλ(t) = λ(t)−E[λ(t)], and compare them
with their experimental counterparts. Figure 11(a) and (b) show, respectively, the three-step
and four-step autocorrelation functions E[Δλ(0)Δλ(t)Δλ(2t)] and E[Δλ(0)Δλ(t)Δλ(2t)Δ
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λ(3t)] as functions of time t. The theoretical curves (the solid lines) from our model agree well
with the experimental values (the open circles).

Figure 11 Model predictions compared with experimental data. (a) and (b): The experimentally obtained

autocorrelation functions E[Δλ(0)Δλ(t) Δλ(2t)] and E[Δλ(0)Δλ(t) Δλ(2t) Δλ(3t)] overlaid with the model

predictions for various t. The theoretical curves from our model are calculated using the same parameter values

as in Figure 10. (c): A test for time-symmetry. The experimental three-step correlations E[Δλ(0)Δλ(t) Δλ(3t)]

and E[Δλ(0)Δλ(2t) Δλ(3t)] are plotted again each other for various t. A 45◦ line is predicted by our model.

The second prediction from the model is time-symmetry. For any t1 and t2, the model
predicts E[Δλ(0)Δλ(t1)Δλ(t1 + t2)] = E[Δλ(0)Δλ(t2)Δλ(t1 + t2)]. It says that if our model
is true, then one can swap the order of the time lags without changing the correlation value.
This can be tested by taking t1 = t, t2 = 2t and plotting the experimentally obtained three-time
correlation E[Δλ(0)Δλ(t)Δλ(3t)] against E[Δλ(0)Δλ(2t)Δλ(3t)] for various t. A 45◦ line is
predicted by the model. The experimental plot in Figure 11(c) indeed confirms the prediction.

6 Modeling enzymatic reaction of single proteins

In this section we will consider the stochastic modeling problems raised in recent single-molecule
experiments on enzymatic reactions, where the high resolution experimental results showed a
surprising departure from what classical theory predicts.

According to the classical Michaelis-Menten (MM) model of enzymatic reaction in biochemi-
stry[53], an enzyme catalyzes a reaction in the following way. First, the enzyme binds to the
substrate (i.e., the reactant molecule) and forms an enzyme-substrate complex. The complex
then undergoes a decomposition to generate the reaction product and release the enzyme to
its original form to catalyze the next substrate. In the biochemistry literature, this process is
typically diagrammed as

E + S
k1[S]

�
k−1

ES
k2→ E0 + P, E0 δ→ E, (6.1)

where E (and E0), S, ES, and P stand for the enzyme, the substrate, the enzyme-substrate
complex, and the reaction product, respectively. The symbol [S] denotes the substrate concen-
tration; k1 is the association rate (per unit substrate concentration); k−1 and k2 are, respec-
tively, the dissociation and catalytic rate, and δ is the rate of E0’s return to E. In our familiar
statistics language, diagram (6.1) corresponds to a three-state continuous-time Markov chain
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with the infinitesimal generator

QMM =

⎛

⎜
⎜
⎝

−k1[S] k1[S] 0

k−1 −(k−1 + k2) k2

δ 0 −δ

⎞

⎟
⎟
⎠ .

An enzyme molecule switches continuously among the three states E, ES, and E0 according
to it.

The time needed for an enzyme to complete one catalytic cycle is called the turnover time.
The reciprocal of the mean turnover time is defined as the enzymatic reaction rate[54−56].

In the MM model, the turnover time is the first passage time from E to E0. It can be
shown[55, 57] that the density function of this first passage time is given by

f(t) =
k1k2[S]

2p
(e−(q−p)t − e−(q+p)t), (6.2)

where p =
√

(k1[S] + k2 + k−1)2/4 − k1k2[S] and q = (k1[S] + k2 + k−1)/2. This explicit
description, together with (6.1), has important experimental implications for the MM model.
First, (6.2) says that the turnover time’s distribution should have an exponential decay with
rate q − p. In addition, due to the exponential nature, for most values of t, e−(q−p)t easily
overwhelms e−(q+p)t; thus, f(t) is almost a purely exponential distribution, and will yield a
practically straight line on a log-linear plot. Figure 12 provides an illustration, plotting f(t) on
a log-linear scale for typical values of [S], k1, k2, and k−1; a clear linear pattern is shown.

Figure 12 The density function f(t) of the turnover time from the MM model plotted on a log-linear scale.

[S] = 100 μM (micro-molar), k1 = 5 × 107 M−1s−1, k2 = 730 s−1, k−1 = 18300 s−1.

Second, since an enzyme behaves as a Markov chain in the MM model, it follows immediately
from the Markov property that an enzyme’s successive turnover times should be independently
and identically distributed of each other. No memory should be found among the turnover
times.

Third, from (6.2) we know that the enzymatic reaction rate under the MM model is

v =
1

∫ ∞
0 f(t)t dt

=
k2[S]

[S] + (k2 + k−1)/k1
. (6.3)
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This relationship, referred to as the Michaelis-Menten equation, is of fundamental importance
in the biochemistry literature[53, 58]: It gives an explicit hyperbolic dependence of the reaction
rate v on the substrate concentration [S].

Before the single-molecule experiments were possible, numerous researchers had studied dif-
ferent enzyme systems under the traditional experimental approach. Unable to track an indi-
vidual enzyme molecule, the traditional experiments relied on a population of enzymes, and by
measuring the accumulation of reaction products over time, they estimated the reaction rate
for various substrate concentrations. It was found in these traditional experiments that the
hyperbolic form in (6.3), i.e.,

v ∝ [S]
[S] + C

with some constant C

appeared to hold for many enzymes. Thus for decades the MM model has been featured in
textbooks as the fundamental mechanism for enzymatic reactions[58−60].

Advances in nanotechnology have made it possible to study enzymatic reactions at the single-
molecule level[61]. English et al.[62] recently carried out single-molecule experiments on β-
galactosidase, an essential enzyme that catalyzes the breakdown of the sugar lactose[63, 64]. The
experimental results surprised researchers, as the high resolution data clearly demonstrated
that: (a) the empirical distribution of the experimentally recorded turnover times is much
heavier (skewed) than an exponential one; (b) a single enzyme’s successive turnover times are
highly correlated; and (c) The hyperbolic relationship of v ∝ [S]/([S] + C) appears to hold for
the single-molecule data.

Some questions immediately arise from these observations. First, what causes the turnover
time’s heavier-than-exponential distribution? Second, how can an enzyme “remember” its past,
and from where does the memory come? Third, given that findings (a) and (b) have contradicted
the fundamentals of the MM model, how can the hyperbolic formula derived from it still hold?

A stochastic network model was introduced in [55] to answer these questions. The model
is based on the experimental insight that enzymes are not rigid entities but rather dynamic
biomolecules, experiencing constant fluctuations in their 3-D conformations[10, 9, 33, 32], which
suggests that one should not treat an enzyme as an object with a fixed state, but as a collection
of (interconverting) states (with each state being a distinct conformation of the enzyme). We
thus propose the following stochastic network model for enzymatic reactions[55], diagramed as:

S + E1

k11[S]

�
k−11

ES1
k21→ P + E0

1 E0
1
δ1→ E1

↓↑ ↓↑ ↓↑ ...

S + E2

k12[S]

�
k−12

ES2
k22→ P + E0

2 E0
2
δ2→ E2

...
...

...
...

↓↑ ↓↑ ↓↑
S + En

k1n[S]

�
k−1n

ESn
k2n→ P + E0

n E0
n
δn→ En,

(6.4)

where E1, E2, . . . represent the different states (conformations) of the original enzyme, and ESi
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and E0
i are the states corresponding to subsequent enzyme-substrate binding and decomposi-

tion. k1i is the association rate (per unit concentration) for the i-th state Ei; k−1i, k2i, and δi
are, respectively, the dissociation, catalytic, and returning rates.

The transitions between Ei and Ej (i �= j) in the model capture the (conformational) fluc-
tuation of the enzyme. Different states, due to their specific spatial conformation, could have
different reactivity levels. This is embodied in the model by allowing k1i, k−1i, k2i, and δi to
take distinct values for different i.

The model (6.4) generalizes the classical MM model to a stochastic network[65−67]. Let αij ,
βij and γij (i �= j) be the transition rates of Ei → Ej , ESi → ESj and E0

i → E0
j , respectively.

Then the stochastic network (6.4) can be described as a continuous-time Markov chain with
infinitesimal generator

Qnet =

⎛

⎜
⎜
⎝

QAA −QAB QAB 0

QBA QBB − (QBA +QBC) QBC

QCA 0 QCC −QCA

⎞

⎟
⎟
⎠ , (6.5)

where the square matrixQAA represents the transition rates among the Ei states: (QAA)ij = αij

for i �= j, (QAA)ii = −∑
j �=i αij . Likewise the matrices QBB and QCC represent the transition

rates among the ESi states and E0
i states, respectively. The diagonal matrices QAB, QBA,

QBC and QCA denote the transition rates of Ei → ESi, ESi → Ei, ESi → E0
i , and E0

i →
Ei: QAB = diag(k11[S], . . . , k1n[S]), QBA = diag(k−11, . . . , k−1n), QBC = diag(k21, . . . , k2n)
and QCA = diag(δ1, . . . , δn).

In model (6.4), an enzyme’s turnover time is the first passage time from the first reaction
stage to the third stage, i.e., from any Ei state to any E0

j state. For example, suppose an
enzyme goes through the following path: E0

1 → E1 → E2 → ES2 → E0
2 → E2 → E3 → ES3 →

ES1 → S1 → ES1 → E0
1 , then the first turnover time corresponds to E1 → E2 → ES2 → E0

2 ,
and the second corresponds to E2 → E3 → ES3 → ES1 → S1 → ES1 → E0

1 . The feature that
a turnover event can start from any Ei and end in any E0

j in our model captures the fact that
in a single-molecule experiment, instead of observing the specific enzyme conformations and
their interconversions, one can record only the time for an enzyme to complete a reaction cycle
(see the description of real experiments below). In other words, on the network (6.4), the exact
states are not observed, and only transitions from the set {E1, . . . , En} to the set {E0

1 , . . . , E
0
n}

are observed.
The stochastic model (6.4) provides an explanation to the experimental puzzles. First, it can

be shown[57] that under it the stationary turnover time distribution feq(t) can be expressed as
a mixture of exponentials

feq(t) =
2n∑

i=1

σiλie
−λit,

where σi and λi are related to the eigen-values and vectors of the matrix (6.5). See [57] for the
detailed (but lengthy) expressions. This result implies that as long as there are multiple states
(conformations) in the network (n > 1), the distribution in general would be heavier (skewer)
than a single exponential one; thus, in particular, if one plots the empirical distribution of
successive turnover times on a logarithmic scale, instead of observing a straight line indicating
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a single-exponential tail, one would find a line skewed to the right, which is exactly the first
puzzle observed in the single-molecule experiments.

Second, the stochastic network model leads to a direct explanation of the memory between
successive turnover times. To make the idea transparent, imagine there are only two states E1

and E2 for illustration per se:

S + E1

k11[S]

�
k−11

ES1
k21→ P + E0

1 E0
1
δ1→ E1

↓↑ ↓↑ ↓↑ ...

S + E2

k12[S]

�
k−12

ES2
k22→ P + E0

2 E0
2
δ2→ E2.

Suppose the transitions of E1 ↔ E2, ES1 ↔ ES2, and E0
1 ↔ E0

2 are all infrequent. Then it is
easily seen that if a turnover event starts from E1 (E2) it is highly likely that the next turnover
event will also start from E1 (E2). Now imagine furthermore that E1 and E2 have different
reactivity levels; for example, the transitions of S + E1 � ES1 → P + E0

1 and E0
1 → E1 are

all fast, while the transitions of S + E2 � ES2 → P + E0
2 and E0

2 → E2 are all slow. Then
it is clear that a slow (fast) turnover will likely be followed by another slow (fast) turnover,
naturally producing the correlation between successive turnover times.

Third, it can also be shown[57] that under general conditions (such as slow conformational
fluctuation) the hyperbolic relationship of v ∝ [S]/([S] + C) between the reaction rate v =
1/

∫ ∞
0 tfeq(t)dt and the substrate concentration [S] holds in the stochastic network model.

In summary, the stochastic network model offers a resolution of the experimental puzzles.
Although the classical MM model gives the description of v ∝ [S]/([S] + C), observing such a
relationship in experiments by no means implies that the MM model is the underlying mecha-
nism because the MM model is only one of many that display such a relationship – the discovery
of memory and heavier-than-exponential distribution of the turnover times in fact points to the
opposite direction.

Real single-molecule experimental data. English et al.[62] studied β-galactosidase
(β-gal). In the experiment a single β-gal molecule is immobilized (to a bead) so that its
enzymatic turnovers can be continuously monitored under a fluorescence microscope. To detect
the individual turnovers, careful treatments were carried out so that once the experimental
system was placed under a laser beam the reaction product and only the reaction product was
fluorescent. In other words, as the β-gal enzyme catalyzes one substrate molecule after another,
strong fluorescence signal is emitted and detected only when a product is released. Recording
the fluorescence signals over time thus enables the experimental determination of individual
turnovers.

Figure 13(a) presents a schematic picture of the experimental setup. Figure 13(b) shows a
typical fluorescence intensity reading from the experiment: each vertical bar is a fluorescence
intensity spike generated by the release of one reaction product. The time lag between two adja-
cent fluorescence spikes is the enzymatic turnover time. Thus taking the time lag between every
two consecutive fluorescence spikes gives the successive turnover times of the β-gal molecule.
To investigate how substrate concentration [S] affects the turnover times, the experiment was
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repeated at different levels of [S]; throughout each repetition the substrate concentration [S] is
held at a fixed level.

Figure 13 (a) Schematic presentation of the experimental setup. A single β-gal molecule is immobilized to

a bead on a glass coverslip. Two laser beams (confocal beam and bleaching beam) are applied to collect the

fluorescence signals. (b) Experimental fluorescence intensity reading. Each fluorescence intensity spike is caused

by the release of one reaction product.

The empirical distributions of the experimental turnover times obtained at four substrate
concentrations [S] = 10 μM, 20 μM, 50 μM, and 100 μM (micro-molar) are plotted in Figure 14
on a log-linear scale (open circles, filled circles, open squares, and filled squares, respectively).
Rather than following straight lines on the logarithmic scale as the MM model predicts, the
empirical distributions have skewed tails at high substrate concentrations.

Figure 14 Empirical distributions of the turnover times on a log-linear scale. The open circles, filled circles,

open squares, and filled squares represent experimental data obtained at substrate concentrations 10 μM, 20 μM,

50 μM, and 100 μM respectively. The solid curves are the fittings from our model using equation (6.6), where

the fitted parameter k̂1 = 5.01 × 107 M−1s−1, k̂−1 = 1.83 × 105 s−1, â = 4.25 and b̂ = 220 s−1.
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As a check of our stochastic network model, we fit it to the empirical turnover time distri-
butions. It can be shown[55, 57] that under the assumptions of homogeneous enzyme binding
(i.e., k11 = k12 = · · · = k1n ≡ k1, k−11 = k−12 = · · · = k−1n ≡ k−1) and slow (enzyme)
conformational fluctuation[10, 9, 32], the stationary turnover time distribution in the model is

feq(t) =
∫ ∞

0

w(k2)
k1k2[S]
2p(k2)

(e−[q(k2)−p(k2)]t − e−[q(k2)+p(k2)]t)dk2 with (6.6)

p(k2) =

√
1
4
(k1[S] + k2 + k−1)2 − k1k2[S], q(k2) =

1
2
(k1[S] + k2 + k−1),

where w(k2) is the distribution of the k2i’s. Since the simplest distribution over the positive real
line is the gamma distribution, for model fitting we take w(k2) = ka−1

2 exp(−k2/b)/[baΓ(a)], a
gamma density. Compared with (6.4), now (6.6) only has four parameters: k1, k−1, a and b.

The maximum likelihood fitting of (6.6) to the experimental data is shown in Figure 14
as the solid curves (overlaid on the empirical distributions). The fitted parameter values are
given in the Figure caption. For all four substrate concentrations, close agreement between the
theoretical curves and the experimental values is evident.

Experimental relationship between reaction rate and substrate concentration.
At each substrate concentration [S], the reaction rate can be directly estimated from the
experimental turnover times τ1, τ2, . . . , τN via v̂ = 1/τ̄ . If the hyperbolic relationship of
v = χ[S]/([S] + CM ) holds, then a plot of 1/v versus 1/[S] should yield a straight line with
slope CM/χ and intercept 1/χ. Figure 15(a) graphs 1/v̂ versus 1/[S] from experimental data.
Notably a linear pattern indeed emerges. A simple least-square fit (the black line in Figure
15(a)) gives χ̂ = 730 ± 40 s−1 and ĈM = 390 ± 30μM.

Figure 15 (a) A plot of 1/v̂ versus 1/[S] from the experimental data. The reaction rate v̂ at each point

is calculated from the experimental data at the corresponding substrate concentration. The black line is the

least-square fit with χ̂ = 730 ± 40 s−1 and ĈM = 390 ± 30μM. (b) Turnover time autocorrelation function.

Cov(m) is plotted against mτ̄ from the experimental data at substrate concentration [S] = 100 μM.

As a consistency check of the model, we compute from formula (6.6) that

v =
1

∫ ∞
0 t feq(t)dt

=
b(a− 1) [S]

[S] + (k−1 + b(a− 1))/k1
≡ χ′[S]

[S] + C′
M

.

Plugging in the MLEs of Figure 14, we note that χ̂′ = b̂(â−1) = 715 s−1 and Ĉ′
M = (k̂−1+ b̂(â−

1))/k̂1 = 380μM agree well with the least-square nonparametric estimates of χ̂ = 730 ± 40 s−1

and ĈM = 390 ± 30μM above.
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Experimental autocorrelation of turnover times. From the experimental successive
turnover times τ1, τ2, . . . , τN , one can calculate their empirical autocovariance

Cov(m) =
1

N −m

∑

i

(τi − τ̄ )(τi+m − τ̄).

Figure 15(b) shows the empirical autocorrelation function, plotting the normalized Cov(m)
against mτ̄ for m = 1, 2, . . . at the substrate concentration [S] = 100μM. Instead of a flat
horizontal line at zero as the MM model would predict, a clear memory effect is seen. The
experimental data at other substrate concentrations showed similar correlation picture. The
evident memory indicates strongly that the classical MM missed important aspects of real
enzymatic reactions and that models that can account for the memory are necessary.

7 Discussion

The advances in nanoscale (single-molecule) biophysics have generated much excitement from
biologists, chemists, and biophysicists, as they hold promise for new scientific discoveries. They
also raise many interesting statistical inference and stochastic modeling problems, owing to the
stochastic nature of the single-molecule world. If in the past some physical scientists had been
resistant to advanced statistical methods (due to the remarkably high signal-to-noise ratio in
classical experiments), the nanoscale development has significantly altered the landscape.

The statistical inference problems include both parametric and nonparametric ones, as illus-
trated in this paper. Parametric inference questions arise because in many cases there are well
established models out of the basic understanding of physics, chemistry and biology. Nonpara-
metric inference, on the other hand, is well suited for studying new or complex phenomena,
where comprehensive theory is yet to be established, and for testing/validating existing the-
ories. Three distinctive features underlie both the parametric and nonparametric analyses of
single-molecule data. First, the data collected in the experiments are usually not of our familiar
i.i.d. or independence type. They are rather inherently stochastic. Second, the inference is often
complicated by the presence of latent noise, which itself can possess stochastic structures (such
as governed by unobserved molecular Brownian motion). Third, since fluorescence technique is
widely used in biophysical experiments to investigate the biological processes of interest, (dou-
bly stochastic) Poisson process or general point process type of arrival or spike data are broadly
present. Each of these features raises distinct statistical inference problems, as we have seen in
this paper.

The study of nanoscale biophysics also brings many new stochastic modeling problems. While
some can be addressed by applying existing stochastic tools, such as the utilization of stochastic
network to model single-molecule enzymatic reaction in Section 6, others require new theoret-
ical frameworks, as the modeling of subdiffusive motion within a single protein molecule in
Section 5 illustrates. Nanoscale biophysics, hence, presents opportunities for both applied and
theoretical probabilists. For instance, from a pure theoretical angle, how to solve the GLE (5.5)
with an arbitrary potential U(x) is an important open problem; its answer directly relates to
the understanding of many biological and chemical systems. One distinct feature underlying
the construction of biophysical models is the requirement that the models should have sound
physical meaning and must agree with fundamental physical laws, since the randomness in
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individual molecules’ behavior is, after all, governed by statistical and quantum mechanics.

The problems presented in this paper exemplify only a few instances of the numerous and
growing research opportunities in nanoscale biophysics. We hope they will serve to generate
further interest in applying modern statistical and probabilistic methodology to interesting
biophysical and scientific problems.
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