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ABSTRACT

Big data generated from the Internet offer great potential for predictive analysis. Here we focus on using
online users’ Internet search data to forecast unemployment initial claims weeks into the future, which
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provides timely insights into the direction of the economy. To this end, we present a novel method Penalized

Regression with Inferred Seasonality Module (PRISM), which uses publicly available online search data
from Google. PRISM is a semiparametric method, motivated by a general state-space formulation, and
employs nonparametric seasonal decomposition and penalized regression. For forecasting unemployment
initial claims, PRISM outperforms all previously available methods, including forecasting during the 2008-
2009 financial crisis period and near-future forecasting during the COVID-19 pandemic period, when
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unemployment initial claims both rose rapidly. The timely and accurate unemployment forecasts by PRISM
could aid government agencies and financial institutions to assess the economic trend and make well-

informed decisions, especially in the face of economic turbulence.

1. Introduction

Driven by the growth and wide availability of Internet and
online platforms, big data are generated with an unprecedented
speed nowadays. They offer the potential to inform and trans-
form decision making in industry, business, social policy and
public health (Manyika et al. 2011; Chen, Chiang, and Storey
2012; McAfee and Brynjolfsson 2012; Murdoch and Detsky
2013; Khoury and Ioannidis 2014; Kim, Trimi, and Chung
2014). Big data can be used for developing predictive models
for systems that would have been challenging to predict with
traditional small-sample-based approaches (Siegel 2013; Einav
and Levin 2014). For instance, numerous studies have demon-
strated the potential of using Internet search data in tracking
influenza outbreaks (Ginsberg et al. 2009; Yang, Santillana,
and Kou 2015; Ning, Yang, and Kou 2019; Yang, Ning, and
Kou 2021), dengue fever outbreaks (Yang et al. 2017), financial
market returns (Preis, Moat, and Stanley 2013; Risteski and
Davcev 2014), consumer behaviors (Goel et al. 2010), unem-
ployment (Ettredge, Gerdes, and Karuga 2005; Choi and Var-
ian 2012; Li 2016), and housing prices (Wu and Brynjolfsson
2015).

We consider here using Internet users’ Google search to
forecast US unemployment initial claims weeks into the future.
Unemployment initial claims measure the number of job-
less claims filed by individuals seeking to receive state job-
less benefits. It is closely watched by the government and the
financial market, as it provides timely insights into the direc-
tion of the economy. A sustained increase of initial claims
would indicate rising unemployment and a challenging econ-
omy, whereas a steady decrease of initial claims would signal
recovery of labor market. During the great financial crisis of

2008 and the COVID-19 pandemic, these unemployment data
have been a key focus for government agencies when mak-
ing fiscal and monetary policy decisions under unprecedented
pressure.

Weekly unemployment initial claim is the (unadjusted) total
number of actual initial claims filed under the Federal-State
Unemployment Insurance Program in each week ending on
Saturday. The Employment and Training Administration (ETA)
of the U.S. Department of Labor collects the weekly unemploy-
ment insurance claims reported by each state’s unemployment
insurance program office, and releases the data to the public
at 8:30 a.m. (eastern time) on the following Thursday. Thus,
the weekly unemployment initial claim data are reported with
a one-week delay: the number reported on Thursday of a given
week is actually the unemployment initial claim number of
the preceding week. For accessing the general economic trend,
it is, therefore, highly desirable for government agencies and
financial institutions to predict the unemployment situation of
the current week, which is known as nowcasting (Giannone,
Reichlin, and Small 2008), as well as weeks into the future.
In this article, we use the general phrase forecasting to cover
both nowcasting (the current week) and predicting into future
weeks.

In contrast to the one-week delayed unemployment reports
by the Department of Labor, Internet users’ online search of
unemployment-related query terms provides highly informative
and real-time information for the current unemployment situa-
tion. For instance, a surge of Internet search of “unemployment
office “unemployment benefits,” “unemployment extension,’
etc. in a given week could indicate an increase of unemploy-
ment of that week, as presumably more people unemployed
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Figure 1. (Top) The cumulative absolute error of nowcasting of different methods. (Bottom) The unemployment initial claims for the same period of 2007-2016.

are searching for information of getting unemployment aid.
Internet search data, offering a real-time “peek” of the current
week, thus, augment the delayed official time-series unemploy-
ment data.

There are several challenges in developing an effective
method to forecast weekly unemployment initial claims with
Internet search data. First, the volatile seasonality pattern
accounts for most of the variation of the target time series.
Figure 1 (bottom) plots the weekly unemployment initial claims
from 2007 to 2016; the seasonal spikes are particularly note-
worthy. A prediction method should address and use the strong
seasonality to achieve good prediction performance. Second,
the method needs to effectively incorporate the most up-to-
date Internet search data into the modeling of target time series.
Third, as people’s search pattern and the search engine both
evolve over time, the method should be able to accommodate
this dynamic change.

Most time series models rely on state-space models to deal
with seasonality, where the latent components capture the trend
and seasonality (Aoki 1987; Harvey 1989). Among the time
series models, structural time series models and innovation
state-space models are two main frameworks (Harvey and
Koopman 1993; Hyndman et al. 2008; Durbin and Koopman
2012), both of which have various extensions of seasonal pattern
modeling and can incorporate exogenous signals as regression
components (see Supplementary Material A2 for more discus-
sion). For nowcasting time series with seasonal pattern, Scott
and Varian (2013, 2014) developed a Bayesian method based on
the structural time series model, using a spike-and-slab prior
for variable selection, and applied it to nowcast unemployment
initial claims with Google search data by treating the search
data as regressors. Alternative to this regression formulation,
Banbura et al. (2013) proposed a nowcasting method using a

factor model, in which target time series and related exogenous
time series are driven by common factors.

Here we introduce a novel prediction method PRISM, which
stands for Penalized Regression with Inferred Seasonality Mod-
ule, for forecasting times series with seasonality, and use it to
forecast unemployment initial claims. Our method is semipara-
metric in nature, and takes advantage of both the state-space
formulation for time series forecasting and penalized regres-
sion. With the semiparametric method PRISM, we significantly
expand the range of time series models for forecasting, going
beyond the traditional approaches, which are often tailored
for individual parametric models. PRISM offers a robust and
more accurate forecasting alternative to traditional paramet-
ric approaches and effectively addresses the three aforemen-
tioned challenges in forecasting time series with strong season-
ality. First, our method accommodates various nonparametric
and model-based seasonal decomposition tools, and effectively
incorporates the estimated seasonal components into predic-
tive modeling. It thus can robustly handle complex seasonal
patterns. Second, different from the traditional regression for-
mulation, our joint modeling of the target time series and the
exogenous variables accommodates the potential causal rela-
tionship between them—people do online Google search in
response of becoming unemployed. Third, PRISM uses dynamic
forecasting—training its predictive equation each week for the
forecasting—and uses rolling window and exponential weight-
ing to account for the time-varying relationship between the
target time series and the exogenous variables. For forecasting
unemployment initial claims, PRISM delivers superior perfor-
mance over all existing forecasting methods for the entire time
period of 2007-2019, and is exceptionally robust to the ups and
downs of the general economic environment, including the huge
volatility caused by the 2008 financial crisis.
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While the forecasting target here is the unemployment initial
claims, we want to highlight that PRISM applies to forecasting
other time series with complex seasonal patterns.

2. Data and Method

2.1. Initial Claims Data and Internet Search Data From
Google

The weekly (nonseasonally adjusted) initial claims are our target
time series. The initial claims for the preceding week are released
every Thursday. The time series of the initial claims from 1967 to
present are available at https://fred.stlouisfed.org/series/ICNSA.

The real-time Internet search data we used were obtained
from Google Trends (www.google.com/trends) with Python
package pytrends. The Google Trends website, which is
publicly accessible, provides weekly (relative) search volume of
search query terms specified by a user. Specifically, for a user-
specified query term, Google Trends provides integer-valued
weekly times series (after 2004); each number in the time series,
ranging from 0 to 100, represents the search volume of that
search query term in a given week divided by the total online
search volume of that week; and the number is normalized to
integer values from 0 to 100, where 100 corresponds to the
maximum weekly search within the time period (specified by
the user). Figure Al in the supplementary materials illustrates
the Google Trend time series of several search query terms in a
5-year span.

The search query terms in our study were also identified from
the Google Trends tool. One feature of Google Trends is that,
in addition to the time series of a specific term (or a general
topic), it also returns the top query terms that are most highly
correlated with the specific term. In our study, we used a list
of top 25 Google search terms that are most highly correlated
with the term “unemployment” Table A1 of the supplementary
materials lists these 25 terms, which were generated by Google
Trends on January 11, 2018; they included 12 general unem-
ployment related query terms, such as “unemployment office,”
“unemployment benefits” and “unemployment extension,” as
well as 13 query terms that were combinations of state names
and “unemployment,” such as “California unemployment” and
“unemployment Florida”

2.2. Overview of PRISM

PRISM employs a two-stage estimation procedure for forecast-
ing time series y; using its lagged values and the available exoge-
nous variables x;. The derivation and rationale of each step will
be described subsequently.

Input: Target time series {y;.(;—1)} and exogenous time series
{xt,:¢}. In the forecasting of unemployment initial claims,
{y1:¢—1)} is the official weekly unemployment initial claim
data reported with one-week delay, and {x,;} is the multi-
variate Google Trends data starting from 2004.

Stage 1 of PRISM: Seasonal decomposition. Decompose {y;},
the univariate time series of interest, into the seasonal com-
ponent {y;}, and the seasonally adjusted component z; =
vyt — y¢. In particular, with a fixed rolling window length

M, Stage 1 nonparametrically decomposes {y;—):(r—1)} into

estimated seasonal component {J;i’t}iz(tf Myo(t—1) and esti-

mated seasonally adjusted component {Qi,t}i: (M), (t—1)
using data available at time ¢.
Stage 2 of PRISM: Penalized regression. Forecast target time

series using:
K K P
~ Do DA )
Yigl = M)(,l) + Zaj( )Zt—j,t+ Z 8]‘()Vt—j,t+z /3,( )xi,t, (1)
j=1 j=1 i=1

where the coefficients are estimated by a rolling-window
L; penalized linear regression using historical data for each
forecasting horizon: I = 0 corresponds to nowcast; [ > 1
corresponds to forecasting future weeks. Note that for nota-
tional ease, we will suppress “(I)” in the superscripts of the
coeflicients in the subsequent discussion.

2.3. Derivation of PRISM

PRISM is motivated by a general state-space formulation for
univariate time series with seasonal pattern. We postulate that
the seasonal and seasonally adjusted component {y;} and {z}
each evolve according to a linear state-space model with state
vectors {s;} and {h;}, respectively:

=zt + v (2a)
Zt = W/ht + €4, (2b) Ve = V/S[ + {t, (Zd)
hi =Fhi_1+71, (20) st =Psi_1+ w0, (20)

where (&, &, 1), @}) i N(0,H),and § = (w,F,v,P,H) are
the parameters.

Our state-space formulation contains a variety of widely
used time series models, including structural time series mod-
els (Harvey 1989) and additive innovation state-space models
(Aoki 1987; Ord, Koehler, and Snyder 1997; Hyndman et al.
2008). Under the general formulation (2), a specific parametric
model can be obtained by specifying the state vectors {h;} and
{s:} along with the dependence structure H. We highlight a few
special cases of model (2) in the supplementary materials.

PRISM also models the contemporaneous information from
exogenous variables. Let x; = (1, %2, . . - ,xp,t)/ be the vector
of the exogenous variables at time . We postulate a state-space
model for x; on top of y;, instead of adding them as regressors as
in traditional models. In particular, at each time ¢, we assume a
multivariate normal distribution for x; conditional on the level
of unemployment initial claims y;,

xt|yt~~/\[p(”“x +ytﬂ)Q)1 (3)

where B = (B1,..,8p), By = (Uxp>---5Hy,), and Q is
the covariance matrix. x; is assumed to be independent of
{y1,x; : | < t} conditional on y;. For {y;} following the general
state-space model (2), our joint model for y; and x; can be
diagrammed as:

- (suh) —  (serhe) —

! |
Yt Y1
! !

Xt Xt+1


https://fred.stlouisfed.org/series/ICNSA
www.google.com/trends

To forecast y;1; under above model assumptions at time ¢, we
consider the predictive distribution of y,;; by conditioning on
the historical data {y;.;—1)} and contemporaneous exogenous
time series {x,;} as well as the latent seasonal component
{Y1:¢—1)}. Z1:¢—1) is known given y1.;—1) and y.¢—1). We can
derive a universal representation of the predictive distribution
PWes1lZ1:(1=1)> Y1:(t—1)> Xty:t)> Which is normal with mean linear
in zi.(t—1),» Y1:.¢—1) and x; as in (1) (see the supplementary
materials for the proof). This observation leads to our two-stage
semiparametric estimation procedure PRISM for nowcasting y;
and forecasting y;y; (I > 1) using all available information at
time ¢.

2.4. Stage 1 of PRISM: Seasonal Decomposition

PRISM estimates the unobserved seasonal components yy.:—1)
in the first stage. For this purpose, various seasonal decom-
position methods can be used here, including nonparametric
methods such as the classical additive seasonal decomposition
(Stuart and Kendall 1963) and parametric methods based on
innovation state-space models. We use the method of Seasonal
and Trend decomposition using Loess (STL) (Cleveland et al.
1990) as the default choice. The STL method is nonparametric.
It is widely used and robust for decomposing time series with
few assumptions owing to its nonparametric nature.

At every time ¢ for forecasting, we apply the seasonal decom-
position method (such as the default STL) to historical initial
claims observations y(;—pp):(t—1) with M being a large number.
For each rolling window from t — M to t - 1, the univariate
time series y(;—ar).(r—1) is decomposed into three components:
seasonal, trend, and the remainder. Denote p;; and Z;; as the
estimates of y; and z; using data available at time ¢. Then, at each
t the seasonal decomposition generates estimated seasonal com-

ponent time series {?i,t},-: (=M. (t—1) and seasonally adjusted

time series {éi’t}i=(t7M),,..,(t71); the latter is the sum of trend
component and remainder component. In our forecasting of
unemployment initial claims, we took M = 700. We describe
the basic procedure of the default STL in the supplementary

materials.

2.5. Stage 2 of PRISM: Penalized Linear Regression

For each fixed forecasting horizon I (> 0), we estimate y;; by
the linear predictive equation:

K K »
Jeri =y + Y @Ziju+ Y SPje+ ) Bixies (@)
=1 =1 i=1

where for notational ease we have suppressed / in the coefficients
and used the generic notations 1, aj, ; with the understanding
that there is a separate set of {u,, = (a1,...,0g),8 =
(81,...,k), B = (B1,...,Bp)} for each L. Ateach time ¢ and for
each forecasting horizon [, the regression coefficients j1,, o, &
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and B are obtained by minimizing
t—I—-1

1 K K

f— A A

N wr (errl — MKy — Zajzr—j,r - Z 8er—j,r
t=t—I-N j=1 j=1

P 2
- Zﬂixi,r> + A1 (leellr + 1181]1) + 2211811,

i=1
€)
where N is the length of a rolling window, w is a discount factor,
and A; and A, are nonnegative regularization parameters.

2.6. Features of PRISM

There are several distinct features of our estimation procedure.
First, a rolling window of length N is employed. This is to
address the fact that the parameters in the predictive equation
(4) can vary with time ¢. In our case, people’s search pattern
and the search engine tend to evolve over time, and it is quite
likely that the same search phrases would contribute in different
ways over time to the response variable. Correspondingly, the
coeflicients in (4) need to be estimated dynamically each week,
and the more recent observations should be considered more
relevant than the distant historical observations for inferring
the predictive equations of current time. The rolling window
of observations and the exponentially decreasing weights are
utilized for such purpose. Our use of exponential weighting is
related to the weighted least square formulation that is usually
referred to as discounted weighted regression in the economet-
rics literature (Ameen and Harrison 1984; Taylor 2010).

Second, since the number of unknown coefficient in (4) tends
to be quite large compared to the number of observations within
the rolling window, we applied L; regularization in our rolling-
window estimation (Tibshirani 1996), which gives robust and
sparse estimate of the coefficients. Up to two L; penalties are
applied: on (a,8) and on B, as they represent two sources of
information: information from time series components {Z;} and
{ﬁt}, and information from the exogenous variables {x;}.

Third, PRISM is a semiparametric method. The predictive
equation (4) is motivated and derived from our state-space
formulation (2). However, the estimation is not parametric in
that (i) the seasonal and seasonally adjusted components are
learned nonparametrically in Stage 1, and (ii) the coeflicients in
(4) are dynamically estimated each week in Stage 2. Combined
together, the two stages of PRISM give us a simple and robust
estimation procedure. This approach is novel and different from
the typical approaches for linear state-space models, which often
estimate unknown parameters using specific parameterization
and select a model based on information criteria (Hyndman
et al. 2008).

2.7. Using PRISM Without Exogenous Variables

In the case when exogenous time series {x;} are not available,
PRISM estimates y;1; according to the following linear predic-
tive equation:

K K
Verl = iy + Z ojZij s + Z 8iVi—jits (6)
=1 =1
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which is a degenerated special case of the predictive equation
(4). Under the same estimation procedure as in (5) except that
B and x; are dropped, predictive Equation (6) can be used to
forecast univariate time series with seasonal patterns without
exogenous time series.

2.8. Constructing Point-Wise Predictive Intervals for
PRISM Estimate

The semiparametric nature of PRISM makes it more difficult to
construct predictive intervals on PRISM forecasts, as we cannot
rely on parametric specifications, such as posterior distribu-
tions, for predictive interval construction. However, the fact
that we are forecasting time series suggests a (nonparametric)
method for us to construct predictive intervals based on the
historical performances of PRISM.

For nowcasting at time f, given the historical data available
up to time ¢ - 1, we can evaluate the root mean square error of
nowecasting for the last L time periods as

t—1
SAet = (% Z (}A’r _yr)2)1/2>
T=t—L

where J, is the real time PRISM estimate for y, generated at
time 7. Under the assumption of local stationarity and normality
of the residual, se; would be an estimate for the standard error
of . We can thus use it to construct predictive interval for
the current PRISM estimate. An 1 — « point-wise predictive
interval is given by (J; — z4/2 Set, 1 + za/2 Set), where zy 5 is
the 1 — «/2 quantile of the standard normal distribution. Sup-
plementary Material A10 shows that the empirical residuals are
approximately normal, supporting our construction. The point-
wise predictive intervals for forecasting into future weeks can be
constructed similarly. In practice, we set L = 52, estimating the
se; based on the forecasts of the most recent one-year window.

2.9. Training PRISM for Forecasting Unemployment Initial
Claims

In our forecasting of unemployment initial claims, we applied a
3-year rolling window of historical data to estimate the param-
eters in (5), that is, N = 156 (weeks). The choice of 3-year
rolling window is recommended in the literature (D’Amuri and
Marcucci 2017) as well as supported by our empirical studies
(Supplementary A7). In addition, since the Google Trends data
are only available since 2004, with the 3-year rolling window we
are able to test the performance of PRISM in 2007-2009, the
entire span of the financial crisis, which serves as an important
test of the capability of the various prediction methods. We took
K =52 (weeks) to employ the most recent 1-year estimated sea-
sonal and seasonally adjusted components, and p = 25 (Google
search terms) according to the list of top 25 nationwide query
terms related to “unemployment” in Table Al.

The weekly search volume data from Google Trends are
limited up to a 5-year span per download. The subsequent nor-
malization of the search volumes done by Google is based on the
search query term and the specified date range, which implies
that the absolute values of search volumes are normalized differ-
ently between different 5-year ranges. However, within the same

set of 5-year data the relative scale of variables is consistent (as
they are normalized by the same constant). Therefore, to avoid
the variability from different normalization across different 5-
year spans, and to ensure the coherence of the model, for each
week, we used the same set of 5-year-span data downloaded for
both the training data and the prediction.

For the choice of the discount factor, we took w = 0.985 as
the default choice. This follows the suggestion by Lindoff (1997)
that setting the discount factor between 0.95 and 0.995 works
in most applications. We further conducted the experiments for
w € [0.95,0.995] (see Supplementary Material A6) and found
the performance of PRISM is quite robust for w € [0.95,0.995]
while w = 0.985 gives optimal accuracy for our in-sample now-
casting.

For the regularization parameters A; and A, in (5), we used
cross-validation to minimize the mean squared predictive errors
(i.e., the average of prediction errors from each validation set of
data). We found empirically that the extra flexibility of having
two separate A; and X, does not give improvement over fixing
A1 = Xy. In particular, we found that for every forecasting
horizon I = 0,1,2,3, in the cross-validation process of set-
ting (A1,A2) for separate L; penalty, over 80% of the weeks
showed that the smallest cross-validation mean squared error
when restricting A; = A, is within 1 standard error of the
global smallest cross-validation mean squared error. For model
simplicity, we thus chose to further restrict A; = A, when
forecasting unemployment initial claims.

2.10. Accuracy Metrics

We wused root-mean-squared error (RMSE) and mean
absolute error (MAE) to evaluate the performance of
different methods. For an estimator {j:} and horizon
I, the RMSE and MAE are defined, respectively, as
RMSE (y,y) = [m Z:lin1+l(5’f — y)?1"? and
MAEGLY) = mrborrs Sy — i where 4
and n; are, respectively, the start and end of the forecasting
period for each I

3. Results
3.1. Retrospective Forecasting for 2007-2016

We applied PRISM to produce forecasts of weekly unemploy-
ment initial claims for the time period of 2007 to 2016 for four
time horizons: real-time, one, two, and three weeks ahead of the
current time. We compared the forecasts to the ground truth—
the unemployment initial claims released by the Department
of Labor one-week behind real-time—by measuring the RMSE
and MAE.

For comparison, we calculated the RMSE and MAE of four
alternative forecasting methods: (a) Bayesian structural time
series (BSTS) (Scott and Varian 2014); (b) and (c), two forecast-
ing methods using exponential smoothing: BATS and TBATS
(De Livera, Hyndman, and Snyder 2011); and (d) the naive
method, which without any modeling effort simply uses the last
available weekly unemployment initial claims number (which
is of the prior week) as the prediction for the current week,



one, two, and three week(s) later. The naive method serves as a
baseline. Both BATS and TBATS are based on innovation state-
space model; BATS is an acronym for key features of the model:
Box-Cox transformation, ARMA errors, trend, and seasonal
components; TBATS extends BATS to handle complex seasonal
patterns with trigonometric representations, and the initial T
connotes “trigonometric” BSTS only produces nowcasting; it
does not produce numbers for forecasting into future weeks.

As PRISM uses both historical unemployment initial claims
data and Google search information, to quantify the contribu-
tion of the two resources, we also applied PRISM but without the
Google search information. We denoted this method as “PRISM
w/o x;”

For fair comparison, in generating retrospective estimates of
unemployment initial claims, we reran all methods each week
using only the information available up to that week, that is, we
obtained the retrospective estimation as if we had relived the
testing period of 2007-2016. The two exponential smoothing
methods (b) BATS and (c) TBATS only use historical initial
claims data and do not offer the option of including exogenous
variable in their forecasting, while the method (a) BSTS allows
the inclusion of exogenous variables. Thus, for forecasting at
each week t, BSTS takes the historical initial claim data and
Google Trends data as input, whereas BATS and TBATS use
historical initial claim data only. PRISM was applied twice: with
and without Google search information. The results of BSTS,
BATS and TBATS were produced by their respective R packages
under their default settings.

Table 1 presents the performance of forecasting (including
nowcasting) unemployment initial claims over the entire period
of 2007-2016 for the four forecasting horizons. The RMSE and
MAE numbers reported here are relative to the naive method,
that is, the number reported in each cell is the ratio of the error
of a given method to that of the naive method. The absolute error
of the naive method is reported in the parentheses. BSTS does
not produce numbers for forecasting into future weeks, as its R
package outputs prediction of the target time series only with
exogenous variables inputted.

Table 1. Performance of different methods over 2007-2016 for four forecasting
horizons: real-time, 1 week, 2 weeks, and 3 weeks ahead.

Real-time 1 week 2 weeks 3 weeks

RMSE

PRISM 0.493 0.483 0.461 0.470

PRISM w/o0 x¢ 0.647 0.532 0.507 0.524

BSTS 0.588 - - -

BATS 1.002 0.897 0.848 0.832

TBATS 0.711 0.559 0.544 0.528

naive 1(50551) 1(62227) 1(69747) 1(73527)
MAE

PRISM 0.539 0.517 0.476 0.460

PRISM w/o x¢ 0.659 0.559 0.510 0.496

BSTS 0.612 - - -

BATS 0.992 0.898 0.825 0.781

TBATS 0.750 0.599 0.570 0.525

naive 1(33637) 1(41121) 1(47902) 1(52794)

NOTE: RMSE and MAE here are relative to the error of naive method; that is, the
number reported is the ratio of the error of a given method to that of the
naive method; the absolute RMSE and MAE of the naive method are reported in
the parentheses. The boldface indicates the best performer for each forecasting
horizon and each accuracy metric.
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Table 1 reveals the following. First, PRISM uniformly outper-
forms all the other methods for the entire period of 2007-2016
under all forecasting horizons. Second, the real-time Google
Trends data are very helpful for nowcasting, as PRISM and
BSTS have better nowcasting results than the other methods
that use only historical initial claim data. Third, the contribution
of contemporaneous Google Trends data becomes less signifi-
cant in forecasting future weeks, as evidenced by the shrinking
performance gap between PRISM and “PRISM w/o x;” from
nowcasting to forecasting. Fourth, among the three methods
that only use historical initial claim data, the predictive method
based on PRISM without Google information outperforms the
exponential smoothing methods BATS and TBATS.

Following the suggestion of a referee, we further compared
the performance of PRISM to the other methods with an addi-
tional metric: cumulative sum of squared forecast error differ-
ences (CSSED) (Welch and Goyal 2008), which calculates the
cumulative difference in mean-squared error (MSE) between
PRISM and the alternative. The CSSED at time T for an alter-
native method m is defined as CSSED,,, prism = Zthl(e?,m —
e?’PRISM), where e;,, and e;prism are the prediction errors at
time ¢ for method m and PRISM, respectively. The detailed com-
parison results are given in Supplementary Material A13, which
again shows that the advantage of PRISM over alternatives is
consistent over the whole evaluation period.

To assess the statistical significance of the improved predic-
tion power of PRISM compared to the alternatives, we con-
ducted Diebold-Mariano test (Diebold and Mariano 1995),
which is a nonparametric test for comparing the prediction
accuracy between two time-series forecasting methods. Table 2
reports the p-values of the Diebold-Mariano test (the null
hypothesis being that PRISM and the alternative method in
comparison have the same prediction accuracy in RMSE). With
all the p-values smaller than 2.1%, Table 2 shows that the
improved prediction accuracy of PRISM over BSTS, BATS,
and TBATS is statistically significant in all of the forecasting
horizons evaluated. Further comparison with two additional
methods is presented in Supplementary Material A12, where
PRISM continues to show significant advantage in prediction
accuracy over seasonal AR model and the method of D’Amuri
and Marcucci (2017).

Figure 2 shows the RMSE of the yearly nowcasting results
of the different methods; here the RMSE is measured relative
to the error of the naive method. It is seen that PRISM gives
consistent relative RMSE throughout the 2007-2016 period. It is
noteworthy that PRISM outperforms all other methods in 2008
and 2009 when the financial crisis caused significant instability

Table 2. p-values of the Diebold—Mariano test for prediction accuracy comparison
between PRISM and the alternatives over 2007-2016 for four forecasting horizons:
real-time, 1 week, 2 weeks, and 3 weeks ahead.

Real-time 1 week 2 weeks 3 weeks
PRISMw/o  7.86 x 107> 209 x 1072 210 x 1072  3.95x 1073
BSTS 714x 1073 - - -
BATS 917 x 1078  360x107% 1.05x10~2 1.88x107?
TBATS 520x 1072 724x 1073 259x1073  1.86x 1072

NOTE: The null hypothesis of the test is that PRISM and the alternative method in
comparison have the same prediction accuracy in RMSE.
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Figure 2. Yearly nowcasting performance of different methods from 2007 to 2016.
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Figure 3. Predictive Interval of PRISM from 2008 to 2016. The shaded area corresponds to the 95% point-wise predictive interval of PRISM nowcasting. The blue curve
is the point estimate of PRISM nowcasting. The red curve is the true unemployment initial claims. The actual coverage of the 95% PRISM predictive interval is 96.6% in

2008-2016.

in the U.S. economy. For predictions into future weeks, PRISM
also gives the leading performance for the 2007-2016 period
(detailed year-by-year plots for the forecasting performance of
the different methods for each forecasting horizon are provided
in Supplementary Material A14).

For a closer look of the performance of different methods,
Figure 1 (top) shows how the absolute errors of nowcasting
accumulate through 2007 to 2016. The cumulative absolute
error of PRISM rises at the slowest rate among all methods.
As shown in Figure 1 (bottom), the 2008 financial crisis caused
significantly more unemployment initial claims. PRISM handles
the financial crisis period well, as the accumulation of error is
rather smooth for the financial crisis period. Other methods all
accumulate loss in a considerably higher rate during the finan-
cial crisis. Furthermore, PRISM handles the strong seasonality
of initial claim data well, since the accumulation of error is
smooth within each year. Among all the methods considered,
BATS is bumpy in handling seasonality, as the accumulation
jumps when the initial claim data spikes.

We further constructed point-wise predictive intervals for
the PRISM estimates. Figure 3 shows the point estimates and
95% predictive intervals by PRISM for the nowcasting during
2008-2016 in comparison to the true unemployment initial
claims officially revealed a week later (in red). For 2008-2016,
the actual coverage of the predictive interval is 96.6%, which
is slightly higher than the nominal 95%. For longer forecasting
horizons, the predictive intervals by PRISM also give coverage
close to the nominal 95%: for the one-week-ahead, two-week-
ahead and three-week-ahead forecasts, the actual coverage levels
of the PRISM predictive intervals are, respectively, 93.9%, 95.4%,
and 94.7% (detailed plots of the PRISM predictive intervals are
provided in Supplementary Material A15).

3.2. Out-of-Sample Performance 2017-2019

To further assess PRISM’s performance, we applied PRISM
to produce out-of-sample forecasts of weekly unemployment
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Figure 4. Yearly nowcasting performance of different methods from 2017 to 2019. RMSE is measured relative to the error of the naive method; a value above 1 indicates
that the method performs worse than the naive method in that time period.

Table 3. Performance of different methods over 2017-2019 for four forecasting
horizons: real-time, 1 week, 2 weeks, and 3 weeks ahead.

Real-time 1 week 2 weeks 3 weeks

RMSE

PRISM 0.497 0.442 0.376 0.343

PRISM w/o x¢ 0.550 0.454 0.387 0.349

BSTS 0.921 - - -

BATS 1.064 0.982 0.907 0.832

TBATS 0.699 0.581 0.512 0.465

naive 1(27941) 1(34936) 1(41651) 1(46749)
MAE

PRISM 0.550 0.484 0.411 0.368

PRISM w/o0 x¢ 0.617 0.502 0.422 0.365

BSTS 0.941 - - -

BATS 1.155 0.972 0.907 0.816

TBATS 0.694 0.587 0.505 0.435

naive 1(19686) 1(24630) 1(29971) 1(35016)

NOTE: RMSE and MAE here are relative to the error of naive method; that is, the
number reported is the ratio of the error of a given method to that of the
naive method; the absolute RMSE and MAE of the naive method are reported in
the parentheses. The boldface indicates the best performer for each forecasting
horizon and each accuracy metric.

initial claims for the period of 2017-2019. Note that the PRISM
methodology, including all the model specifications, was frozen
at the end 0f 2016, so this evaluation is completely out of sample.

Table 3 summarizes the prediction errors of PRISM (both
with and without Google data) in both RMSE and MAE in com-
parison with other benchmark methods. PRISM again shows
consistent advantage over other benchmark methods in out-of-
sample predictions. PRISM with Google data is leading across
the board (except for the MAE of 3-week-ahead prediction
where it virtually ties with PRISM without Google information).
Notably, the relative errors compared with the naive method
are quite stable over the years, similar to the results in 2007-
2016. Breaking into each year (as shown in Figure 4), PRISM
uniformly outperforms other methods in comparison and gives
rather stable error reduction from the naive method over the
years, both in- and out-of-sample. This figure together with
Figure 2 shows that PRISM reduced around 50% error from the
native method (in RMSE) year across year from 2007 to 2019.
The statistical significance of PRISM’s improved prediction

Table 4. p-values of the Diebold—Mariano test for prediction accuracy comparison
between PRISM and the alternatives over 2017-2019 for four forecasting horizons:
real-time, 1 week, 2 weeks, and 3 weeks ahead.

Real-time 1 week 2 weeks 3 weeks
PRISMw/ox; 274x 1072 426x107> 125x107° 270 x 1072
BSTS 264x 107> - - -
BATS 380 x 1077 309 x 107> 240 x 107> 4.59 x 10~
TBATS 104x 1073 279%1073  746x 1073 248 x 1073

NOTE: The null hypothesis of the test is that PRISM and the alternative method in
comparison have the same prediction accuracy in RMSE.

power is also verified by the Diebold—Mariano test in Table 4,
where all the p-values are smaller than 3%. The consistent per-
formance of PRISM both in the retrospective testing of 2007-
2016 and the out-of-sample testing of 2017-2019 indicates the
robustness and accuracy of PRISM over changes in economic
environments and trends.

We also constructed point-wise predictive intervals based on
the out-of-sample nowcasts in 2017-2019 (Figure 5). Compared
with the actual unemployment data released one week later
by the Department of Labor, the intervals by PRISM capture
the actual numbers of unemployment initial claims in 97.1%
of the weeks in 2017-2019, which is higher than the nominal
95% level. This again underscores the stability of the PRISM
methodology.

3.3. Out-of-Sample Performance During COVID-19
Pandemic Period

The global shutdown due to the COVID-19 pandemic has heav-
ily impacted the US economy and job market. In particular,
the numbers of unemployment claims in the United States have
skyrocketed to record-breaking levels with more than 40 mil-
lions people in total filing for initial claims since the start of the
pandemic. This phenomenon has attracted significant attention
from major news media and the general public (Casselman
2020; Cohen 2020a, 2020b ). As the weekly unemployment
claims remain “stubbornly high” (Casselman 2020), concerns
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Table 5. Performance of PRISM and benchmark methods during the COVID-19 pandemic period for real-time nowcasting.

Mar 21-Apr 4 Apr 11-Apr 25 May 2-May 16 May 23-Jun 6 Jun 13-Jun 27 Jul4-Jul 18
RMSE
PRISM 0.684 0.257 0.607 0.538 0.574 0.629
BSTS 0.543 0.838 0.910 0.749 1.009 1.327
BATS 1.701 1.498 0.505 1.104 2617 2.640
TBATS 1.862 0.432 0.425 1.497 4.496 1.817
naive 1(2362454) 1(932295) 1(488192) 1(232074) 1(59761) 1(105392)
MAE
PRISM 0.784 0.215 0.462 0.445 0.711 0.488
BSTS 0.539 0.863 0.879 0.700 1.092 1.460
BATS 1.952 1514 0.553 0.896 3.236 2.762
TBATS 2.136 0.363 0.453 1.651 5.940 1.818
naive 1(1986663) 1(898656) 1 (444600) 1(206791) 1(44883) 1(95054)

NOTE: Evaluation period is broken down to 3-week windows. RMSE and MAE here are relative to the error of naive method; that is, the number reported is the ratio of the
error of a given method to that of the naive method; the absolute RMSE and MAE of the naive method are reported in the parentheses. The boldface indicates the best

performer for each forecasting horizon and each accuracy metric.

for significant layoffs and severe economic downturn persist.
Accurate and reliable forecasting of near-future unemployment
claims would thus provide very valuable insights into the trend
of the general economy during such trying times. In light of
this, we further applied PRISM to the out-of-sample data of the
COVID-19 pandemic period to evaluate its performance and
robustness to such unusual economic shock.

Table 5 and Figure 6 summarize the performance of PRISM’s
real-time nowcasting of the weekly unemployment claims in
comparison with the other methods during the COVID pan-
demic period from March 21, 2020 to July 18, 2020. For close
examination of the different methods, we break down the entire
period into 3-week windows. During the first three weeks when
the COVID-19 shutdown triggered the sudden and drastic rise
in unemployment claims, both PRISM and BSTS picked up the
signal rather quickly due to the input from the real-time Google
Trends data that track the search of unemployment related
query terms. Since April, PRISM began to show its advantage
over the other methods as it adapted the predictive model to
the “new regime,” leading the chart in 5 out of 6 evaluation
windows. It is worth pointing out that forecasting unemploy-
ment initial claims during this period is a very challenging

task as the unprecedented huge jump of unemployment claims
drastically altered the pattern in the data (including the time-
series pattern): we noted that PRISM is the only method that
consistently outperforms the naive method throughout this
COVID-19 period (the time-series based methods often per-
formed worse than the naive method). This out-of-sample fore-
casting performance thus indicates the robustness of PRISM to
unusual economic shocks and events, giving us more evidence
of the model’s reliability and accuracy. Further evaluation of
PRISM and the benchmarks for longer-horizon predictions is
presented in Supplementary Material A16, where PRISM also
shows advantage in near-future predictions.

4. Discussion

The wide availability of data generated from the Internet offers
great potential for predictive analysis and decision making. Our
study on using Internet search data to forecast unemployment
initial claims illustrates one such potential. The arrival of new
data (sometimes in new forms) requires new methodology to
analyze and use them. PRISM is an example where traditional
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statistical models are brought together with more recent statis-
tical tools, such as L, regularization and dynamic training.

In this article we focus on using Internet search data to
forecast unemployment initial claims weeks into the future. We
introduced a novel method PRISM for forecasting time series
with strong seasonality. PRISM is semiparametric and can be
generally applied with or without exogenous variables. PRISM is
motivated from a general state-space formulation that contains
a variety of widely used time series models as special cases.
The two stages of PRISM are easy to implement. The numerical
evaluation shows that PRISM outperforms all alternatives in
forecasting unemployment initial claim data for the time period
of 2007-2019. We believe that the accurate and robust forecasts
by PRISM would greatly benefit the public and the private
sectors to assess and gauge the economic trends.

PRISM also demonstrates stable adaptability to unusual eco-
nomic shocks such as the 2008-2009 financial crisis and the
2020 COVID-19 pandemic shutdown. The out-performance of
PRISM relative to other methods are robust during long periods
of economic expansion and during short periods of economic
recession. In particular, during the 2008-2009 financial crisis
and the COVID-19 pandemic period, we found that the real-
time data from Google enables PRISM to quickly pick up the
signal and the changes in data patterns and to provide insight on
real-time and near-future economic trends. This gives us confi-
dence that the unemployment forecasts given by PRISM would
provide government agencies with much-needed information to
react promptly and make well-informed decisions in the face of
future economic and financial shocks.

The predictive power and advantage of PRISM mainly come
from the following features: (1) dynamic model training based
on a rolling window to account for changes in people’s search
pattern and changes in the relationship between Google search
information and the targeted economic activity/index; (2) uti-
lization of L; penalty to select the most relevant predictors and
to filter out noisy and redundant information; (3) combina-
tion of nonparametric seasonality decomposition and penalized
regression for greater flexibility and adaptability; (4) incorpo-
ration of real-time Google search information from multiple

related query terms to enhance prediction accuracy and robust-
ness.

Although this article focuses on forecasting unemployment
initial claims, PRISM can be generally used to forecast time
series with complex seasonal patterns. The semiparametric
approach of PRISM covers a wider range of time series models
than traditional methods, as PRISM transforms the inference
of a complicated class of state-space models into penalized
regression of linear predictive models. Furthermore, dynami-
cally fitting the predictive equations of PRISM addresses the
time-varying relationship between the exogenous variables and
the underlying time series. One interesting question for future
study is to explore if we can extend PRISM to forecasting
unemployment indicators in more specified industries such
as construction, manufacturing, transportation, finance, and
government or to forecasting other unemployment indicators
such as nonfarm payrolls. Another direction for future study
is to extend PRISM to predict unemployment indicators for
different ethnic or demographic groups. Furthermore, it would
also be of great future interests to see if PRISM can contribute
to forecasting future breaks and macro-economic cycles.

We conclude this article with a few remarks on the detailed
implementation of the PRISM method. We used real-time Inter-
net search data from Google Trends, which provides publicly
available data through subsampling and renormalization: a
dataset undergoes subsampling (Google draws a small sample
from its raw search data for a search query term) and renor-
malization (after the sampling, Google normalizes and rounds
up the search volumes so that they become integers between 0
and 100 for each search query term) when downloaded. Due
to the subsampling and renormalization, the search term vol-
umes are noisy and variable (Yang, Santillana, and Kou 2015).
The L; regularization adopted in PRISM has shown advantage
in extracting the signals and reducing redundant information
from Google search data (see Supplementary Materials A9 and
All). Furthermore, the dynamic training with rolling win-
dow accounts for changes in search engine algorithms, people’s
search patterns, economic trends and other patterns that change
over time (Burkom, Murphy, and Shmueli 2007; Ning, Yang,
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and Kou 2019). This is also evident in Figure A11, where each
of the 25 candidate search terms has distinct patterns coming
in and out of the dynamically fitted model throughout the
time. The discount factor adopted also gives more weights on
more recent data to capture more recent economic trends and
Google search changes, which is similar to the data tapering idea
proposed by Dahlhaus (1988, 1997) for improved performance
in locally stationary time series. Our empirical analysis supports
the effectiveness of the rolling window and discount factor (Sup-
plementary Materials A6 and A7). Alternative frameworks for
inferring time series models with state-space structures include
the dynamic linear model (DLM) (Shumway and Stoffer 2017).

One limitation with PRISM arises from the data availability
from Google Trends. The public available tool only provides
up to 5-year range of weekly search data per download. Access
to data in higher resolution and longer time span requires
Google’s permission to use its nonpublic API. Furthermore, in
each downloaded batch, the search volume data are normalized
by Google to the scale from 0 to 100 based on the queried
search term and specific data range of that download. Thus,
to avoid the variability due to the normalization and to ensure
the consistency of results, we kept both the model training and
the corresponding prediction within the same (downloaded)
set of 5-year data. Furthermore, Google search data may not
reflect the entire population of unemployed people, especially
those who would not search online for employment informa-
tion. Therefore, what we utilized is essentially the association
between the search volume of related search terms and our target
of unemployment claims for PRISM’s prediction.

The R package PRISM.forecast that implements the
PRISM method is available on CRAN at https://CRAN.R-
project.org/package=PRISM.forecast. We also made the code
available at https://github.com/ryanddyi/prism.
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Supplementary Material

Details of the methodology and derivation of PRISM are presented as follows. First, the exact
search query terms used in our study, which were identified from Google Trends, are presented.
Second, the general state-space formulation that motivates PRISM is presented together with a
few widely used special cases. Third, the predictive distribution for forecasting is described in
detail. Fourth, the robustness of PRISM to the choice of the seasonal decomposition method and
to the choice of the discount factor is presented. Fifth, the detailed proof of the mathematical
result is provided.

Al. Internet Search Data from Google

The real-time Internet search data we used were from Google Trends (www.google.com/trends).
The search query terms that we used in our study were also identified from the Google Trends
tool. One feature of Google Trends is that, in addition to the time series of a specific term (or
a general topic), it also returns the top query terms that are most highly correlated with the
specific term. In our study, we used a list of top 25 Google search terms that are the most highly
correlated with the term “unemployment”. Table Al lists these 25 terms, which were generated
by Google Trends on January 11, 2018. Figure A1, the upper panel, illustrates the Google Trend
time series of several search query terms in a 5-year span. Comparing these time series to the
lower panel of Figure A1, which shows the unemployment initial claims in the same time period,
it is evident that the former provides noisy signal about the latter. On the Google Trends site,
the weekly data are available for at most a 5-year span in a query, and it would be automatically
transformed to monthly data if one asks for more than 5 years. To model and forecast the weekly
unemployment claims for the entire period of 2007-2016, we downloaded separate weekly data
sets from Google Trends, covering 2004-2008, 2006-2010, 2008-2012, 2010-2014 and 2012-2016,
respectively.

To avoid the variability due to the normalization and to ensure the coherence of the model,
for each week, we kept both the training data and the data used for prediction within the same
5-year span of data downloaded. For each search term, we downloaded Google Trends data
based on the same 5-year range and the multivariate ;. Then we trained the model and made
predictions based on a rolling window of 3 years. So for the same set of data downloaded with
the range of 2004-2008, we are able to make predictions for weeks in 2007-2008; similarly, the
data covering 2006-2010 will give predictions for weeks in 2009-2010, etc. See Figure A2 for an
illustration.

Table Al: Top 25 nationwide search query terms associated with the term “unemployment”
generated by Google Trends as of January 11, 2018.

unemployment unemployment benefits unemployment rate
unemployment office pa unemployment claim unemployment
ny unemployment nys unemployment ohio unemployment
unemployment florida unemployment extension  texas unemployment
nj unemployment unemployment number file unemployment
unemployment insurance california unemployment  unemployed
unemployment oregon new york unemployment  indiana unemployment

unemployment washington  unemployment wisconsin ~ unemployment online
unemployment login
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Figure Al: The upper panel shows the Google Trends data of four unemployment related search
queries in 2006-2010. The lower panel shows the weekly unemployment initial claims data in the
same time period.
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Figure A2: Illustration of the rolling-window prediction scheme based on 5-year span of Google
Trends data.



A2. Our State-Space Formulation and Special Cases

Our state-space model, Eq. (2.2) in the main text, contains a variety of widely used time se-
ries models, including structural time series models and additive innovation state-space models.
Under this general formulation, a specific parametric model can be obtained by specifying the
state-space models for z; and < along with their dependence structure H.

A2.1. Special case 1: seasonal AR model

The following AR model with seasonal pattern is a special case: modeling z; as an autoregressive
process with lag N and assuming a dummy variable formulation with period S for the seasonal
component y;:

yt = Zt + r)/t/
i iid )
ze =+ Y ajzi—j+ 1, e~ N(0,07)
= ! (A1)
= iid
==Y mjtw, w~N(003)
j=1

The dummy variable model for the seasonal component implies that sum of the seasonal com-
ponents over the S periods, 2]52_01 Yi-js has mean zero and variance 03,. In the seasonal AR model
(A1), each time series block of {z(;_n.1) }t>N and {7Y(;—s42): }+>(s—1) evolves as a Markov Chain.

Under our general state-space model, Eq. (2.2) in the main text, if we set hy = (1,24, 24-1,...,Zt-N+1)
and sy = (7, 71-1,---,7t—s42), then it reduces to the seasonal AR model (A1).

A2.2. Special case 2: structural time series models

The basic structural model assumes that a univariate time series is the sum of trend, seasonal and
irregular components, each of which follows an independent stochastic process (Harvey 1989).
The model is

jid
Yt = Ut + vt + €, €t S N(O, 03), (A2)

where ji; is the trend component, and <; and €; are the seasonal and irregular components,
respectively. The trend is often specified by a local level model

iid
Ut = Mp—1+ 0+ 1, e ~ N(0, (7,?), (A3a)
G = 6+ L RN(0,6D), (A3b)
where y; is the level and §; is the slope. 7; and (; are assumed mutually independent. For time

series with S periods, the seasonal component can be specified through the seasonal dummy
variable model

S—1
iid
Y= — Z Yi—j + Wi, Wy ~ N(O, (TZ",)- (A4)
j=1



which is the same as the seasonal component in the seasonal AR model (A1l). Alternatively,
the seasonal pattern can be modeled by a set of trigonometric terms at seasonal frequencies
A =2mj/S (Harvey 1989):

(5/2]
%= L % (A52)
j=1

'yj*,t _ COTC, A sinA; 'yi,t_l n an*,t / (A5b)
Vit —sinA; cosA; Vit-1 wj
where w;; and wj’it, j=1,...,[S/2], are independent and normally distributed with common

variance o2.

Under our general state-space model, Eq. (2.2) of the main text, if we take z; = y; 4+ €; and
hi = (p,6¢), then it specializes to structural time series models. In particular, for the dummy
variable seasonality of (A4), s; in the general model corresponds to s; = (v, Yi—1,---, Vt—5+2);
and for the trigonometric seasonality of (A5), s; in the general model corresponds to s; =

(’Yl,t/ ceey ,)/[5/2},15/ r)’itl ey ’Yiﬁs/z]’t)'

A2.3. Special case 3: additive innovations state-space models

An alternative to structural time series models, which have multiple sources of error, innovation
state-space model (Aoki 1987), where the same error term appears in each equation, is also pop-
ular. These innovation state-space models underlie exponential smoothing methods, which are
widely used in time series forecasting and have been proven optimal under many specifications
of the innovation state-space model (Ord et al. 1997; Hyndman et al. 2008). Among exponential
smoothing methods, Holt-Winters” method (Holt 1957; Winters 1960) is developed to capture
both trend and seasonality, and it postulates a model specification similar to the basic structural
model (A2)- (A4). In particular, Holt-Winters” additive method is

Yi = M1+ 01+7-st+E (Aba)
He = Hia + 5t—1 —+ €y, (A6b)
0 = Op-1+ Pet, (A60)
T = Yi-s T wet, (A6d)

where the components y;, §; and 7; represent level, slope and seasonal components of time

series, and €; MN (0,0?) is the only source of error. Since Eq. (A6a) can be rewritten as
Yr = Vt"")/t‘f’ (1—06—(0)€t,

we observe that model (A6) is special case of our general formulation with z; = y; + (1 —a — w)ey,
he = (pt,0¢) and st = (v, Yt—1,---, Yt—s+1) in Eq. (2.2) of the main text. The Holt-Winters model
is among a collection of innovation state-space models that are summarized in Hyndman et al.
(2008) using the triplet (E, T, S), which represents model specification for the three components:
error, trend and seasonality. For instance, (A6) is also referred to as local additive seasonal model
or ETS(A,A,A), where A stands for additive. Our general state-space formulation, Eq. (2.2) in
the main text, also incorporates many useful model extensions as special cases, including the



damped trend (Gardner Jr and McKenzie 1985) and multiple seasonal patterns (Gould et al.
2008; De Livera et al. 2011). For example, the damped trend double seasonal model extends
model (A6) to include a factor ¢ € [0,1) and a second seasonal component as follows:

Ye = pt—1+Por1 + ’)’,@51 + ’)’E)sz + €,

Mt = Hi—1 + Por_1 + aey,

O = Pdi—1 + ey, (A7)

1 1
'Yt( )= ’Vt(—)sl + wi€t,

2 1
'Y;S ) = ')’t(_)sz + wo€t.

Our general model contains this extended model, where z; = p;+ (1 —a — w1 — wa)er, 1 =

’)/El) + 752)1 ht = (,ut/ (St) and St = (,)/El)’ v 1751_)51_;'_1/ 7;2)/ oo 1753)524_1)'

A2.4. Motivation of the general formulation

The motivation of our general state-space formulation is to collectively consider all possible mod-
els under it and to semi-parametrically obtain the prediction under this large class of models. In
comparison, traditional time series studies often rely on parameter estimation of specified mod-
els such as those highlighted in the previous subsections. For instance, exponential smoothing
is tailored for computing the likelihood and obtaining maximum likelihood estimates of the in-
novation state-space models. For other parametric models with multiple sources of error, their
likelihood might be evaluated by the Kalman filter, but the parameter estimation can be difficult
in many cases. In the traditional parametric times series model setting, model selections are often
applied by optimizing certain selection criteria (e.g. AIC or BIC), but when the class of models
under consideration become really large such as Eq. (2.2) of the main text, traditional model se-
lection methods encounter serious challenges (as they lack scalability) to operate on such a wide
range of models. As a consequence, traditional parametric time series models often consider a
much smaller collection of models compared to Eq. (2.2) of the main text. The cost of focusing
on a small class of models is that the forecasting accuracy can substantially suffer as the risk of
model misspecification is high.

To relieve these challenges and improve the performance of forecasting, we use our general
state-space formulation to motivate a semi-parametric method for forecasting time series. We
derive and study a linear predictive model that is coherent with all possible models under Eq.
(2.2) of the main text. With forecasting as our main goal, we essentially transform the question
from the inference of a complicated class of state-space models into penalized regression and
forecasting based on a linear prediction formulation.

A3. Predictive Distributions for Forecasting

Under our general state-space model — Eq. (2.2) and Eq. (2.3) of the main text — given the histori-
cal data {y;.(;—1)} and contemporaneous exogenous time series {xi,. }, the predictive distribution

for forecasting y;.; (I > 0) at time t would be p(y;4; | yl:(t—l)/mtg:t)- In PRISM, we consider the



predictive distribution of y; by further conditioning on the latent seasonal component {~; }:

p(Yest | yl:(t—l)/’Yl;(t—1)1~’13t0:t)~ (A1)

Note that since z; = y; — 7 for all £, zy,(;,_1) is known given yy.;_q) and y1,;_1). The advantage of
working on (A1) is that we can establish a universal representation of the predictive distribution
as given by the next proposition.

Proposition 1. Under our model — Eq. (2.2) and (2.3) of the main text — y;; (I > 0) condi-
tioning on {z1.(;_1), V1:(t—1), Tt } follows a normal distribution with the conditional mean E(yy; |

Z1(t-1), V1:(t—1)s Ttoet) linear in zy. vy, 1.1y and .

As a partial result that leads to Proposition 1, we have, without the exogenous variables, the
conditional distribution of y;; | zy.(;—1), 71.¢:—1) is normal with mean linear in z;.;_1) and (1)

Based on Proposition 1, we can represent p (s | zlz(t,l),'yl:(t,l),a:too as
IR RUINE S () o id
Yerl =1+ ) & Ze—j + Y Ojf Yi—j + Y Biixit+e, e~ N(O, i), (A2)

where ygl) , uc](Zt), (5](12, ﬁglt) and 07, are fixed but unknown constants that are determined by original

parameters 0 and the initial values of the state vectors.

A4. Robustness to the Choice of Seasonal Decomposition Method

We compare the performance of PRISM with two seasonal decomposition methods: STL and
the classic additive decomposition. Both methods decompose target time series y; into the trend
component T;, the seasonal component S; and the irregular component R;:

ye =T+ St + Rs.

In the classic additive decomposition, the estimated trend component T; is calculated from the
moving average of {y;}. The seasonal component S; for a certain week is assumed to be the same
in each period, and is estimated by the average of the detrended value, y; — T} for the specific
week. For example, assuming 52 weeks in a year, the seasonal index for the fifth week is the
average of all the detrended fifth week values in the data.

In contrast, STL relies on a sequence of applications of loess smoother to generate the sea-
sonal and trend components. The implementation of STL involves two loops. In the outer loop,
robustness weights are assigned to each data point to reduce the effects of outliers, while the
inner loop iteratively updates the trend and seasonal components. In the inner loop iteration,
the seasonal components are updated using detrended time series similar to classic additive de-
composition, and the trend components are calculated by loess smoothing of the deseasonalized
time series.

Both STL and the classic additive seasonal decomposition are options in the R package of
PRISM with STL being the default setting. Table A2 describes the performance of PRISM with
the two different methods. The numerical result of PRISM is quite robust to the choice of the
seasonal decomposition method with STL providing slightly better overall result.
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Table A2: The performance of PRISM with two different seasonal decomposition methods: STL
and additive decomposition. RMSE and MAE are measured relative to the respective error of the
naive method. The boldface highlights the better performance for each metric and forecasting
horizon.

real-time forecast 1 wk forecast 2 wk forecast 3 wk

RMSE
additive decomposition 0.496 0.497 0.462 0.460
STL decomposition 0.498 0.492 0.453 0.467
MAE
additive decomposition 0.543 0.538 0.482 0.458
STL decomposition 0.542 0.534 0.479 0.465

A5. Effect of the Discount Factor

We tested the effect of the discount factor w. Lindoff (1997) suggested setting w between 0.95
and 0.995 for practical applications. Table A3 shows the performance of PRISM with different
w € [0.95,1] (note that w = 1 corresponds to no discount). The performance of PRISM is seen
to be quite robust for the different choices of w between [0.95,0.995]. The discount factor w is an
option in the R package of PRISM, and the default value is set to be 0.99. We can also see that
comparing with no discounting (w = 1), our default choice of discount factor can provide up to
3% more error reduction in terms of the relative errors to the naive method. This motivates us to
incorporate the discount factor in our model.

A6. Proof of Proposition 1

We first prove the case for [ = 0. Let r; = (z;,7¢)". Since y; = z; + ¢ for all £, y; | Y1.(—1), Y1:¢0-1)
is equivalent to z; + ¢ | Z1:(t—1), V1:(t—1)- By treating r; as a 2-dimensional observable and a; =
(hj, s;)" as the state vector, we can rewrite Eq. (2.2) of the main text as

re=® oy + &
t t+& (AD)
ar= Aoy 1+ 71
0 F O i
where @ = | , A= and (&, 7/) S N(0,H).
v O P

Denote r1; = (r},...,r})" and oy = (o], ..., ). According to the property of Gaussian
linear state-space model, r1; and ay; jointly follows a multivariate normal distribution. There-
fore, the sub-vector ry; is also normal, and r; | ry.;_) follows a bivariate normal distribution

with mean linear in 7y.;_1), i.e.

7t | r1—1) ~ N(Tery -1y, L), (A2)

where I'; and X; are determined by ®, A and H. For any given parameters, the above distribution
can be numerically evaluated through Kalman filter. Here, we focus only on the general analytical



Table A3: The performance of PRISM for the discount factor w € [0.95,1]. RMSE and MAE are
measured relative to the respective error of the naive method. The boldface highlights the best

performance for each metric and forecasting horizon.
real-time forecast 1 wk forecast 2 wk forecast 3 wk

RMSE
w=1 0.515 0.513 0.470 0.465
w = 0.995 0.512 0.501 0.463 0.462
w = 0.99 0.495 0.491 0.457 0.461
w = 0.985 0.494 0.486 0.462 0.466
w =098 0.506 0.489 0.471 0.472
w = 0.975 0.500 0.485 0.471 0.468
w =097 0.513 0.488 0.475 0.495
w = 0.965 0.516 0.488 0.485 0.479
w = 0.96 0.519 0.492 0.486 0.483
w = 0.955 0.525 0.502 0.502 0.497
w = 0.95 0.540 0.484 0.482 0.491
MAE
w=1 0.571 0.568 0.507 0.476
w = 0.995 0.556 0.546 0.487 0.467
w = 0.99 0.545 0.532 0.478 0.461
w = 0.985 0.538 0.522 0.480 0.460
w = 0.98 0.543 0.517 0.484 0.460
w = 0.975 0.540 0.516 0.481 0.461
w = 0.97 0.549 0.519 0.488 0.482
w = 0.965 0.555 0.523 0.495 0.465
w = 0.96 0.552 0.524 0.496 0.468
w = 0.955 0.563 0.533 0.511 0.477
w = 0.95 0.572 0.521 0.496 0.474

formulation. Following (A2) and y; = 1'r, we have

Yt | Tl:(tfl) ~ N(l’l"trlz(t,l),l’):tl).
Thus, given ry.;_y), or equivalently zq.;_q) and 7y.;—1), ¥+ has a univariate normal distribution
with mean linear in zy.;_1) and 7y.(;_1)-

When taking the exogenous variable z; into account, we have p(y; | rl:(t_l),wtozt) o« p(x; |
y1)p(ye | T1(4-1))- Since

1 _
p(xt | yi) < exp <—2(wt — px —yeB)' Q@ — px — %B)) , (A3)
it follows that
1 1—1 1 ! -1 ! 2
Pt | T1:(0—1), Tro:t) < exp —5(9% —px —yB) Q (Tt — pxr — y1B) — 5(1 L) (ye — 1Ty 1)) ) -

Hence, y; | T1.(t—1), Lt is normal, since the above equation is an exponential function of a



quadratic form of y;. By reorganizing the terms, we have

_ -1 _
E (yt | Tl;(t—l)/fﬂtg:t> = ((1/2'41) ! +5/Q_1,5'> ((1'Zt1) ! VTiry o) +8'Q  (w — ,ux)>

and 1
Var (e | i ) = (124) ' +4Q7'8)

Therefore, y; | z1.(4—1), Y1:(1—1), Tty:+ has a normal distribution with mean linear in zy,;_1), 71.(:—1)
and x;.
Next, we prove the case for [ > 1. We consider the following predictive distribution

p (yt+l | “f'to:trﬁ:(H)) & /P (yt+z/"“t | @it "“1:(t71)) dr
o /P (Yes1 | @t T16) P <’“t | wto:trﬁ;(t—l)) dry.
Since @y, is independent of y;,; conditional on y1.t, p(Veys | ©egt, 71:t) = P(Ysss | 71:4). Similarly,

xy.(—1) is independent of r; conditional on 71.;_1), which implies p(r; | @y, T1.4-1)) = p(7: |

xt, T1.(1—1)). Note that p (rt \ mtﬂ“l;(tq)) < p(x; | 7)p(re | r1:4—1)). Thus, we have

P (%Hﬂ“t | @iyt T1:(t—1)) < p(Yir1 | T1) P (Tt | @1, Tl:(t—l))
< p (Yerr | rr) p(@e | o) p(re | 7“1:(H))-

In the first part of the proof, we have learned that ry.(;,) is multivariate normal. Similar to (A2),

we can write 7, | r1; as
Py | T ~ N (Tpri, Zey), (Ad)

where I';; and X;; are determined by ®, A and H. Hence, y;y; | 714 ~ N (1T r, 154 1),
Combining the above results with (A3), we have

1 _ 2 1 _
p (ymﬂ“t | wtozt,rl;(tq)) X exp <_2(1/Zt,l]-) Y (Yr — VTyry)” — E(mt —py—B1Ur) Q7!

1 _
(mf — py — B1'ry) — E(Tt — Ty e1) Ty (e — rt—l,l’ﬁ:(t—l))) ,

(A5)

whose right hand side is an exponential function of a quadratic form of y;;; and r;. Hence,
Y1, Tt | Tyt T1:1—1) is multivariate normal. Consequently, the marginal distribution of y;; |



Tty:t, T1.(1—1) 1S Univariate normal. Moreover, the conditional expectation is

E (yt+z | @it "als(tfl))
= E <E Vet | 712t) | wtozt,ﬁ;(t—l))
= E <Ftll(r1:(t71),7‘£)/ | @4yt 7’1;(#1))
= Iy (riz(t,l),E(Tt | wtrrlz(t—l))/>/’

where E(r; | @i, 71,;_1)) is linear in @; and 7y.;_q). Therefore, yiy; | Ttyt, 71.;—1) is univariate
normal with mean linear in z; and ry,(;_y).

A7. Effect of Regularization

We now compare different types of regularization in fitting the coefficients of PRISM. The results
are given in Table A4. Note that for L, regularization, we replaced all the Li-norm penalties
in (2.5) with L, norms (i.e., using the Ridge regression). We can see the clear advantages of
adopting L; in error reduction, especially in farther-ahead forecasts. Unlike L; regularization,
the L, penalty will not give zeros in the fitted coefficients. That is, those less relevant search terms
will remain in the model with small, non-zero coefficients, which may lead to more variability in
the prediction. However, with the L; penalty, the noise and redundant information from these
search terms tend to be eliminated while only the most predictive search terms are selected to
remain in the model. The results here show that the noise reduction by L; penalty is quite
effective in improving the performance of PRISM.

Table A4: The performance of PRISM under different regularization over 2007 — 2016. RMSE is
measured relative to the respective error of the naive method. The boldface highlights the best

performance for each forecasting horizon.
real-time forecast 1 week forecast 2 week forecast 3 week

PRISM 0.498 0.492 0.453 0.467
PRISM with L, regularization 0.537 0.553 0.534 0.544
naive 1 1 1 1

A8. The Length of Training Window

Here we conducted an empirical analysis on the choice of the rolling window length in training
PRISM. With the limited, 5-year availability of weekly Google search data (more details in Section
2.1 and Supplementary Material Al), we varied the rolling window lengths between 2 and 4
years to keep the fitting and prediction within the same set of downloaded data. From Table
A5, we see that the default 3-year window gives the leading performance. It appears the 3-year
window length provides a good trade-off between the timeliness of short-term training data and
the statistical efficiency from long-term, large-size data. The 3-year rolling window choice is also
consistent with D’Amuri and Marcucci (2017). In addition, since Google data only starts in 2004,
the choice of 3-year training window enables us to have forecasts from 2007 onward, which is

10



important for evaluating the performance of PRISM (and other methods) during the entire period
of the financial crisis.

Table A5: The performance of PRISM under different rolling windows of training. RMSE is
measured relative to the respective error of the naive method. The boldface highlights the best

performance for each forecasting horizon.
real-time forecast 1 week forecast 2 week forecast 3 week

PRISM (default 3-year window) 0.498 0.492 0.453 0.467
PRISM with 2-year window 0.536 0.517 0.486 0.496
PRISM with 4-year window 0.499 0.496 0.459 0.468

naive 1 1 1 1

A9. Normality of Residuals

Here we provide empirical evidence on the normality of the residuals for constructing the pre-
dictive intervals. Figure A3 shows the normal Q-Q plot of the fitted residuals by PRISM from
2008-2016. Except for a few points, the vast majority of the fitted residuals fall along with the
normal distribution, which supports the construction of the predictive intervals by PRISM in
Section 2.8 of the main text.
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Figure A3: The normal Q-Q plot of fitted residuals by PRISM in 2008 — 2016.

A10. Fitted Coefficients of PRISM

We report the dynamically fitted coefficients by PRISM from each week’s prediction in 2008-2016
in Figure A4. Focusing on the coefficients of Google search terms (the bottom section of the
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heatmap), we can see the sparsity of coefficients from the L; penalty. On average, 6.20 out of the
25 search terms are selected and included in the each week’s model by PRISM during 2008-2016.
Note that all 25 terms have been included at some point. In addition, we can also see different
search terms come in and out of the model over time, indicating the dynamic movement for each
term in its contribution to the final forecasting.
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Figure A4: The heatmap illustrating the dynamically fitted coefficients by PRISM for each week
of forecasting in 2008 — 2016. Red color represents positive coefficients, blue color represents
negative coefficients, and white color represents zero.
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