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Accurate real-time tracking of influenza outbreaks helps public health
officials make timely and meaningful decisions that could save lives.
We propose an influenza tracking model, ARGO (AutoRegression
with GOogle search data), that uses publicly available online search
data. In addition to having a rigorous statistical foundation, ARGO
outperforms all previously available Google-search–based tracking
models, including the latest version of Google Flu Trends, even
though it uses only low-quality search data as input from publicly
available Google Trends and Google Correlate websites. ARGO
not only incorporates the seasonality in influenza epidemics
but also captures changes in people’s online search behavior
over time. ARGO is also flexible, self-correcting, robust, and scal-
able, making it a potentially powerful tool that can be used for real-
time tracking of other social events at multiple temporal and
spatial resolutions.

digital disease detection | seasonal influenza | big data | influenza-like
illnesses activity real-time estimation | autoregressive exogenous model

Big data sets are constantly generated nowadays as the activ-
ities of millions of users are collected from Internet-based

services. Numerous studies have suggested great potential of
these big data sets to detect/manage epidemic outbreaks [in-
fluenza (1–6), Ebola (7), dengue (8)], predict changes in stock
prices (9, 10) and housing prices (11), etc. In 2009, Google Flu
Trends (GFT), a digital disease detection system that uses the
volume of selected Google search terms to estimate current in-
fluenza-like illnesses (ILI) activity, was identified by many as a
good example of how big data would transform traditional sta-
tistical predictive analysis (12). However, significant discrep-
ancies between GFT’s flu estimates and those measured by the
Centers for Disease Control (CDC) in subsequent years led to
considerable doubt about the value of digital disease detection
systems (13). Although multiple articles have identified meth-
odological flaws in GFT’s original algorithm (14–16) and have led
to incremental improvements (14, 16) (see also googleresearch.
blogspot.com/2014/10/google-flu-trends-gets-brand-new-engine.html),
a statistical framework that is theoretically sound and capable of
accurate estimation is still lacking. Here we present such a
framework that culminates in a method that outperforms all
existing methodologies for tracking influenza activity using inter-
net search data.
Influenza outbreaks cause up to 500,000 deaths a year world-

wide, and an estimated 3,000–50,000 deaths a year in the United
States (17). Our ability to effectively prepare for and respond to
these outbreaks heavily relies on the availability of accurate real-
time estimates of their activity. Existing methods to predict the
timing, duration, and magnitude of flu outbreaks remain limited
(18). Well-established clinical methods to track flu activity, such
as the CDC’s ILINet, report the percentage of patients seeking
medical attention with ILI symptoms (www.cdc.gov/flu/). Although
CDC’s %ILI is only a proxy of the flu activity in the population, it
can help officials allocate resources in preparation for potential
surges of patient visits to hospital facilities. See refs. 19–21 for
further discussion.

CDC’s ILI reports have a delay of 1–3wk due to the time for
processing and aggregating clinical information. This time lag is
far from optimal for decision-making purposes. To alleviate this
information gap, multiple methods combining climate, demo-
graphic, and epidemiological data with mathematical models
have been proposed for real-time estimation of flu activity (18,
21–25). In recent years, methods that harness Internet-based
information have also been proposed, such as Google (1), Yahoo
(2), and Baidu (3) Internet searches, Twitter posts (4), Wikipedia
article views (5), clinicians’ queries (6), and crowdsourced self-
reporting mobile apps such as Influenzanet (Europe) (26),
Flutracking (Australia) (27), and Flu Near You (United States)
(28). Among them, GFT has received the most attention and
has inspired subsequent digital disease detection systems (3, 8,
29–32). Interestingly, Google has never made their raw data
public, thus making it impossible to reproduce the exact results
of GFT.
We highlight three limitations of the original GFT algorithm,

previously identified in refs. 15 and 16. First, it was shown that a
static approach, which does not take advantage of newly avail-
able CDC’s ILI activity reports as the flu season evolves, pro-
duced model drift, leading to inaccurate estimates. Second, the
idea of aggregating the multiple query terms (the independent
variables in the GFT model) into a single variable did not allow
for changes in people’s Internet search behavior over time (and
thus changes in query terms’ abilities to track flu) to be appro-
priately captured. Third, GFT ignored the intrinsic time series
properties, such as seasonality of the historical ILI activity, thus
overlooking potentially crucial information that could help pro-
duce accurate real-time ILI activity estimates.
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models for influenza epidemics at the national level of the
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Our Contribution
The methodology presented here produces robust and highly ac-
curate ILI activity level estimates by addressing the three afore-
mentioned shortcomings of the multiple GFT engines. In addition,
we provide a theoretical framework that, for the first time to our
knowledge, justifies the prevailing use of linear models in the
digital disease detection literature by incorporating causality
arguments through a hidden Markov model. This theoretical
framework contains, as a special case, the model developed in
ref. 16. Our model not only achieves the goal of (i) dynami-
cally incorporating new information from CDC reports as it
becomes available and (ii) automatically selecting the most
useful Google search queries for estimation as in ref. 16, but
also largely improves estimation by (iii) including the long-
term cyclic information (seasonality) from past flu seasons on
record as input variables and (iv) using a 2-y moving window
(which immediately precedes the desired date of estimation)
for the training period to capture the most recent changes in
people’s search patterns and time series behavior (33). Our
methodology efficiently builds a prediction model from individual
search frequency as well as the past records of ILI activity. It uses

both sources of information more efficiently than simply com-
bining GFT with autoregressive terms as suggested in ref. 15,
because GFT is not optimally aggregated to provide additional
information on top of time series information. Furthermore, we
provide a quantitative efficiency metric that measures the statis-
tical significance of the improvement of our methodology over
other alternatives. For example, our method is twice as ac-
curate as the method that combines GFT with autoregressive
terms. Finally, even though we use as input only the publicly
available, low-quality data from the Google Correlate and Google
Trends websites, our method has significant improvement over the
latest version of GFT.
We name our model ARGO, which stands for AutoRegression

with GOogle search data. Statistically speaking, ARGO is an autor-
egressive model with Google search queries as exogenous variables;
ARGO also employs L1 (and potentially L2) regularization to
achieve automatic selection of the most relevant information.

Results
Retrospective estimates of influenza activity (ILI activity level, as
reported by the CDC) were produced using our model, ARGO,

Table 1. Comparison of different models for the estimation of influenza epidemics

Whole period
(Mar 29, 2009
to Jul 11, 2015)

Off-season flu
H1N1

Regular flu seasons (week 40 to week 20 next year)

2010–2011 2011–2012 2012–2013 2013–2014 2014–15

RMSE
ARGO 0.608 0.640 0.596 0.807 0.687 0.306 0.438
GFT (Oct 2014) 2.216 0.773 1.110 3.023 4.451 0.986 0.700
Ref. 16 0.915 0.833 0.881 2.027 1.090 0.446 0.663
GFT+AR(3) 0.912 0.580 0.602 1.382 1.279 0.993 0.906
AR(3) 0.957 0.813 0.794 1.051 1.191 0.969 0.928
Naive 1 (0.348) 1 (0.600) 1 (0.339) 1 (0.163) 1 (0.499) 1 (0.350) 1 (0.465)

MAE
ARGO 0.649 0.584 0.574 0.748 0.650 0.391 0.530
GFT (Oct 2014) 1.834 0.777 1.260 3.277 5.028 0.891 0.770
Ref. 16 1.052 0.719 1.010 2.211 1.029 0.610 0.820
GFT+AR(3) 0.888 0.570 0.613 1.308 1.016 1.034 0.839
AR(3) 0.925 0.777 0.787 0.951 0.988 0.917 0.934
Naive 1 (0.201) 1 (0.425) 1 (0.259) 1 (0.135) 1 (0.325) 1 (0.212) 1 (0.295)

MAPE
ARGO 0.787 0.620 0.663 0.770 0.719 0.453 0.620
GFT (Oct 2014) 1.937 0.721 1.394 3.442 5.419 0.892 0.895
Ref. 16 1.381 0.765 1.380 2.306 1.251 0.754 0.958
GFT+AR(3) 1.037 0.683 0.698 1.407 0.986 1.062 0.828
AR(3) 1.003 0.894 0.814 0.947 0.939 0.891 0.916
Naive 1 (0.090) 1 (0.139) 1 (0.105) 1 (0.081) 1 (0.110) 1 (0.084) 1 (0.097)

Correlation
ARGO 0.986 0.985 0.989 0.928 0.968 0.993 0.993
GFT (Oct 2014) 0.875 0.989 0.968 0.833 0.926 0.969 0.986
Ref. 16 0.971 0.967 0.983 0.927 0.956 0.985 0.984
GFT+AR(3) 0.967 0.986 0.985 0.879 0.929 0.945 0.957
AR(3) 0.964 0.968 0.971 0.877 0.903 0.927 0.945
Naive 0.961 0.951 0.954 0.887 0.924 0.923 0.937

Correlation of increment
ARGO 0.758 0.806 0.810 0.286 0.527 0.938 0.912
GFT (Oct 2014) 0.706 0.863 0.702 0.484 0.502 0.847 0.918
Ref. 16 0.690 0.776 0.693 0.510 0.367 0.915 0.889
GFT+AR(3) 0.512 0.708 0.708 0.165 0.141 0.534 0.587
AR(3) 0.385 0.585 0.569 0.077 0.011 0.404 0.493
Naive 0.436 0.602 0.570 0.095 0.134 0.406 0.514

GFT+AR(3) stands for the model pt = μ+α1pt−1 + α2pt−2 +α3pt−3 + βGFTðtÞ, where the GFT estimate is treated as an exogenous vari-
able. Boldface highlights the best performance for each metric in each study period. RMSE, MAE, and MAPE are relative to the error of
naive method; that is, the number reported is the ratio of error of a given method to that of the naive method. The absolute error of
the naive method is reported in parentheses. All comparisons are based on the original scale of ILI activity level.
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for the time period of March 29, 2009 through July 11, 2015,
assuming we had access only to the historical CDC’s ILI reports
up to the previous week of estimation. We compared ARGO’s
estimates with the ground truth: the CDC-reported weighted ILI
activity level, published typically with 1- or 2-wk delay, by cal-
culating a collection of accuracy metrics described in Materials
and Methods. These metrics include the root-mean-squared error
(RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), correlation with estimation target, and correla-
tion of increment with estimation target. For comparison, we cal-
culated these accuracy metrics for (i) GFT estimates (accessed on
July 11, 2015), (ii) estimates produced using the method of
Santillana et al. (6, 16), (iii) estimates produced by combining GFT

with a lag-3 autoregressive model, AR(3), as suggested in ref.
15, (iv) estimates produced with an AR(3) autoregressive model
(4, 15), and (v) a naive method that simply uses the value of the
prior week’s CDC ILI activity level as the estimate for the current
one. For fair comparison, all benchmark models (ii–iv) are
dynamically trained with a 2-y moving window.
Table 1 summarizes these accuracy metrics for all estima-

tion methods for multiple time periods. The “Whole period”
column shows that ARGO’s estimates outperform all other
alternatives, in every accuracy metric for the whole time pe-
riod. The other columns of Table 1 show the performance of
all of the methods for the 2009 off-season H1N1 flu outbreak,
and each regular flu season since 2010. Fig. 1 displays the
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Fig. 1. Estimation results. (Top) The estimated ILI activity level from ARGO (thick red), contrasting with the true CDC’s ILI activity level (thick black) as well as
the estimates from GFT (green), method of ref. 16 (blue), GFT plus AR(3) model (dark yellow), and AR(3) model (dashed gray). The two background shades,
white and yellow, reflect two data sources, Google Correlate and Google Trends, respectively. The dash-dotted purple vertical line separates Google Cor-
relate data with search terms identified on March 28, 2009 and May 22,2010. (Middle) The estimation error, defined as estimated value minus the CDC’s ILI
activity level. (Bottom) Zoomed-in plots for estimation results in different study periods. (A) The H1N1 flu outbreak period. (B) The 2012–2013 regular flu
season. (C) The 2014–2015 regular flu season. A regular flu season is defined as week 40 of one year to week 20 of the following year.
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estimates against the observed CDC-reported ILI activity
level.
Close inspection shows that, in the post-2009 regular flu seasons,

ARGO uniformly outperformed all other alternative estimation
methods in terms of RMSE,MAE,MAPE, and correlation. ARGO
avoids the notorious overshooting problem of GFT, as seen in Fig.
1. During the 2009 off-season H1N1 flu outbreak, ARGO had the
smallest MAPE. In terms of RMSE and MAE, ARGO (relative
RMSE = 0.640, relative MAE = 0.584) had the second best
performance, underperforming slightly only the GFT+AR(3) model
(relative RMSE = 0.580, relative MAE = 0.570). In terms of
correlation, ARGO (r = 98.5%) had similar performance to
the (potentially in-sample data of) GFT (r = 98.9%) (14) and
GFT+AR(3) models (r = 98.6%) and outperformed all of the
other alternatives.
To assess the statistical significance of the improved prediction

power of ARGO, we constructed a 95% confidence interval for
the relative efficiency of ARGO compared with other bench-
mark methods. The relative efficiency of method 1 to method 2 is
the ratio of the true mean-squared error of method 2 to that of
method 1 (34), which can be estimated by its observed value (see
Eq. 4); its confidence interval can be constructed by stationary
bootstrap of the error residual time series (35). Table 2 shows
that ARGO is estimated to be at least twice as efficient as any
other alternative, and the improvement in accuracy is highly
statistically significant.
It is well known that CDC reports undergo revisions, weeks

after their initial publication, that respond to internal consistency
checks and lead to more accurate estimates of patients with ILI
symptoms seeking medical attention. Thus, the available histor-
ical CDC information, in a given week, is not necessarily as ac-
curate as it will be. We tested the effect of using (potentially
inaccurate) unrevised information by obtaining the historical un-
revised and revised reports, and the dates when the reports were
revised, from the CDC website for the time period of our study.
We used only the information that would have been available to
us, at the time of estimation, and produced a time series of esti-
mates for the whole time period described before. We compared
our estimates to all other methods and found that ARGO still
outperformed them all. Moreover, the values of all five accuracy
metrics for ARGO essentially did not change, suggesting a de-
sirable robustness to revisions in CDC’s ILI activity reports. The
results are shown in Table S1.
We faced an additional challenge in producing real-time es-

timates for the latest portion of the 2014–2015 flu season. At the
time of writing this article, the only data available to us for the
week of March 28, 2015 and later came from the Google Trends
website. The information from Google Trends has even lower
quality than from Google Correlate and changes every week.
These undesired changes affected the quality of our estimates.
To assess the stability of ARGO in the presence of these variations
in the data, we obtained the search frequencies of the same
query terms from Google Trends website on 25 different days

during the month of April 2015 and produced a set of 25
historical estimates using ARGO. The results of the accuracy
metrics associated to these estimates are shown in Table S2.
This table shows that, despite the observed variation in the
Google Trends data, ARGO is threefold more stable than
the method of ref. 16, and still outperforms on average any
other method.

Discussion
Strength of ARGO. The results presented here demonstrate the
superiority of our approach in terms of both accuracy and ro-
bustness, compared with all existing flu tracking models based on
Google searches. The value of these results is even higher given
the fact that they were produced with low-quality input variables.
It is highly likely that our methodology would lead to even more
accurate results if we were given access to the input variables that
Google uses to calculate their estimates.
The combination of seasonal flu information with dynamic

reweighting of search information appears to be a key factor in
the enhanced accuracy of ARGO. The level of ILI activity last
week typically has a significant effect on the current level of ILI
activity, and ILI activity half a year ago and/or 1 y ago could
provide further information, as shown in Fig. S1, which reflects
a strong temporal autocorrelation. The integration of time se-
ries information leads to a smooth and continuous estimation
curve and prevents undesired spikes. However, simply adding
GFT to an autoregressive model is suboptimal compared with
ARGO, because simply treating GFT as an individual variable
does not allow adjustment for time series information at the
resolution of individual query terms, and many terms included
in GFT may no longer provide extra information once time
series information is incorporated. In fact, once the time series
information is included, fewer Google search query terms re-
main significant. For example, among 100 Google Correlate
query terms, ARGO selected 14 terms, on average, each week,
whereas the method of ref. 16 and GFT (1) selected 38 and 45
terms, respectively, each week on average. The combination of
ARGO’s smoothness and sparsity lead to a substantial re-
duction on the estimation error, as observed in Tables 1 and 2,
where ARGO shows improved performance in all evaluation
metrics over the whole time period and is twice as efficient
as GFT+AR(3).
Our methodology allows us to transparently understand how

Google search information and historical flu information com-
plement one another. Time series models tend to be slow in re-
sponse to sudden observed changes in CDC’s ILI activity level.
The AR(3) model shows this “delaying” effect, despite its seem-
ingly good correlation. Google searches, on the other hand, are
better at detecting sudden ILI activity changes, but are also very
sensitive to public’s overreaction.
To investigate further the responsiveness (comovement) of

ARGO toward the change in ILI activity, we calculated the
correlation of increment between each estimation model and
CDC’s ILI activity level. The correlation of increment between
two time series at and bt is defined as Corrðat − at−1, bt − bt−1Þ,
which measures how well at captures the changes in bt. Table 1
shows that ARGO has similar capability to that of GFT and the
method of ref. 16 in capturing the changes in ILI level, and
outperforms the time series model AR(3) uniformly.
Time series information (seasonality) tends to pull ARGO’s

estimate toward the historical level. This was evident at the onset
of the off-season H1N1 flu outbreak (week ending at May 2,
2009), which resulted in ARGO’s underestimation. ARGO self-
corrected its performance the following week by shifting a por-
tion of model weights from the time series domain to the Google
searches domain. Inversely, at the height of 2012–2013 season,
ARGO, GFT, and the method of ref. 16 all missed the peak due to
an unprecedented surge of search activity. ARGO achieved the

Table 2. Estimate of relative efficiency of ARGO compared with
other models with 95% confidence interval (CI)

Point estimate 95% CI

GFT (Oct 2014) 12.85 [5.18, 91.82]
Ref. 16 2.02 [1.36, 2.83]
GFT+AR(3) 2.17 [1.23, 4.53]
AR(3) 2.40 [1.56, 3.69]

Relative efficiency being larger than 1 suggests increased predictive power
of ARGO compared with the alternative method. The estimates and the
bootstrap confidence intervals are constructed based on data from March 29,
2009 to May 17, 2015.
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fastest self-correction by redistributing the weights not only
across Google terms but also across time series terms, missing
the peak by only 1 wk, as opposed to 2 wk for ref. 16 and about
4 wk for GFT. It is important to note that although we have
used CDC’s ILI as our gold standard for influenza activity in
the US population, and data from Google Correlate/Trends as
our independent variables, our methodology can be immedi-
ately adapted to any other suitable ILI gold standard and/or set
of independent variables.

Limitations and Next Steps. Although ARGO displays a clear su-
periority over previous methods, it is not fail-proof. Because it
relies on the public’s search behavior, any abrupt changes to
the inner works of the search engine or any changes in the way
health-related search information is displayed to users will affect
the accuracy of our methodology (36, 37). We expect that ARGO
will be fast at correcting itself if any such change takes place in the
future. As in any predictive method, the quality of past perfor-
mance does not guarantee the quality of future performance. In
this article, we fixed the search query terms after 2010 so as to
directly compare our results with GFT, which has kept the same
query terms since 2010; future application of ARGO may update
search terms more frequently. ARGO can be easily generalized
to any temporal and spatial scales for a variety of diseases or
social events amenable to be tracked by Internet searches or
services (3, 4, 8, 9, 29, 30, 38, 39). Further improvements in
influenza prediction may come from combining multiple pre-
dictors constructed from disparate data sources (40). After the
initial submission of this article in May 2015, Google an-
nounced that GFT would be discontinued and that their raw
data would be made accessible to selected scientific teams. This
announcement happened soon after the GFT team published a
manuscript that proposed a new time series-based method for the
(now discontinued) GFT engine (41). This new development
makes our contribution timely and useful in providing a trans-
parent method for disease tracking in the future.

Materials and Methods
All data used in this article are publicly available. Therefore, IRB approval is
not needed.

Google Data. To avoid forward-looking information in our out-of-sample
predictions, and to make the search term selection in our approach con-
sistent with the main revision to GFT (14) immediately after the H1N1
pandemic, we obtained the highest-correlated terms to the CDC’s ILI using
Google Correlate (www.google.com/trends/correlate) for two different
time periods. For the first time period (pre-H1N1 period), we inserted only
CDC’s ILI data from January 2004 to March 28, 2009 into Google Correlate,
and used the resulting most highly correlated search terms as independent
variables for our out-of-sample predictions for the time period April 4,
2009 through May 22, 2010. For the second time period (post-H1N1), we
inserted only CDC’s ILI data from January 2004 to May 22, 2010 into
Google Correlate to select new search terms, as done in ref. 14. These last
search terms were used as independent variables for all subsequent pre-
dictions presented in this work. Tables S3 and S4 show all query terms
identified. For the pre-H1N1 period (the first time period), the terms from
Google Correlate include spurious (or overfitted) terms like “march va-
cation” or “basketball standings,” as discussed in ref. 15. However, Fig. S1
shows that these spurious terms were often not selected by ARGO, i.e.,
ARGO would give them zero weights, demonstrating its robustness. For
the post-H1N1 time period, the updated query terms from Google Cor-
relate include mostly flu-related terms (see Table S4). This suggests that
spurious terms were “filtered out” by including off-season flu data. For
the time period of March 28, 2015 up to the date of submission of this ar-
ticle, we acquired search frequencies for this set of query terms from Google
Trends (www.google.com/trends; date of access: July 11, 2015) as Google
Correlate only provides data up to March 28, 2015 at the time of writing
this article.

Google Correlate standardizes the search volume of each query to have
mean zero and SD 1 across time and contains data only from 2004 to March
2015. To make Google Correlate data compatible with Google Trends data,

we linearly transformed the Google Correlate data to the same scale of 0–100
in our analysis. We used Google Correlate data up to its last available date,
and then switched to Google Trends data afterward. This is indicated in Fig.
1 by different shades of the background. We used the latest version of GFT
(fourth version, revised in October 2014) weekly estimates of ILI activity level
as one of our comparison methods. GFT is available at www.google.org/
flutrends/about (date of access: July 11, 2015).

CDC’s Data. We use the weighted version of CDC’s ILI activity level as the
estimation target (available at gis.cdc.gov/grasp/fluview/fluportaldashboard.
html; date of access: July 11, 2015). The weekly revisions of CDC’s ILI are
available at the CDC website for all recorded seasons (from week 40 of a
given year to week 20 of the subsequent year). For example, ILI report re-
vision at week 50 of season 2012–2013 is available at www.cdc.gov/flu/
weekly/weeklyarchives2012-2013/data/senAllregt50.htm; ILI report revision
at week 9 of season 2014–2015 is available at www.cdc.gov/flu/weekly/
weeklyarchives2014-2015/data/senAllregt09.html.

Formulation of Our Model. Our model ARGO is motivated by a hidden Markov
model. The logit-transformed CDC-reported ILI activity level fytg is the in-
trinsic time series of interest. We impose an autoregressive model with lag
N on it, which implies that the collection of vectors fyðt −N+1Þ : tgt≥N is a
Markov chain (this captures the clinical fact that flu lasts for a period, but
not indefinitely). The vector of log-transformed normalized volume of Google
search queries at time t, Xt, depends only on the ILI activity at the same time,
yt (this follows the intuition that flu occurrence causes people to search flu-
related information online). The Markovian property on block yðt−N+1Þ : t
leads to the (vector) hidden Markov model structure.

y1:N → y2:ðN+1Þ → ⋯ → yðT−N+1Þ:T
↓ ↓ ↓
XN XN+1 XT

[1]

Our formal mathematical assumptions are

(assumption 1) yt = μy +
PN

j=1αjyt−j + et , et ∼
iid Nð0, σ2Þ

(assumption 2) Xt jyt ∼N Kðμx + ytβ,QÞ
(assumption 3) conditional on yt, Xt is independent of fyl ,X l : l≠ tg

where β= ðβ1, β2, . . . , βKÞ⊺, μx = ðμx1 , μx2 , . . . , μxK Þ⊺, and Q is the covariance
matrix. To make the variables more normal, we transform the original ILI
activity level pt from ½0,1� to R using the logit function, obtaining the yt, and
transform the Google search volumes from ½0,100� to R using the log func-
tion, obtaining Xt. The log function is appropriate because Google search
frequencies usually have an exponential growth rate near peaks and are
artificially scaled to ½0,100� by dividing the running maximum. Because
Google Trends is in integer scale from 0 to 100, we add a small number
δ= 0.5 before the transformation to avoid taking the log of 0. The predictive
distribution fðyt jy1 : ðt−1Þ,X1 : tÞ is normal with mean linear in yðt−NÞ : ðt−1Þ and Xt

and constant variance (see Supporting Information). This observation leads
to Eq. 2, which defines the ARGO model.

The ARGO Model. Let yt = logitðptÞ be the logit-transformed CDC’s (weighted)
ILI activity level pt at time t, and Xi,t the log-transformed Google search
frequency of term i at time t. Our ARGO model is given by

yt = μy +
XN
j=1

αjyt−j +
XK
i=1

βiXi,t + et , et ∼
iid N �0, σ2�, [2]

where Xt can be thought of as the exogenous variables to time series fytg.

Parameter Estimation of ARGO Model.We chose N= 52 (weeks) to capture the
within-year seasonality in ILI activity, and K = 100 (Google search terms)
following the data availability from Google Correlate. Because we have
more independent variables than the number of observations, the usual
maximum likelihood estimate (ordinary least squares) method will fail.
Therefore, we impose regularities for parameter estimation. In general we
have three kinds of penalties, L1 penalty (42), L2 penalty (43), and a linear
combination of L1 and L2 penalties (44). All parameters are dynamically
trained every week with a 2-y (104-wk) rolling window.

In a given week, the goal is to find parameters μy, α= ðα1, . . . , α52Þ, and
β= ðβ1, . . . , β100Þ that minimize
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X
t

 
yt − μy −

X
j=1

52

αjyt−j −
X
i=1

100

βiXi,t

!2

+λαkαk1 + ηαkαk22 + λβkβk1 + ηβkβk22
[3]

where λα, λβ, ηα, and ηβ are hyperparameters. Ideally, we would like to use
cross-validation to select all four hyperparameters. However, because we
have only 104 training data points at a given week due to the 2-y moving
window, the cross-validation result is highly noisy. Thus, we need to pre-
specify some of the hyperparameters. For model simplicity and sparsity,
combining with the evidence seen from cross-validation, we set ηα = ηβ = 0,
leading to L1 penalization on both autoregressive and Google search terms.
With the remaining λα and λβ, the cross-validation results still have consid-
erable variance. By the same sparsity and simplicity consideration, we fur-
ther constrained λα = λβ. Therefore, the ARGO model we finally propose is
Eq. 3 with constraint ηα = ηβ = 0 and λα = λβ. A detailed discussion of our
specification of the hyperparameters is provided in Supporting Information
(see Table S5).

Accuracy Metrics. The RMSE, MAE, and MAPE of estimator p̂ to the target ILI ac-
tivity level p are defined, respectively, as RMSEðp̂t ,ptÞ= ½ð1=nÞPn

t = 1ðp̂t −ptÞ2�1=2,
MAEðp̂t ,ptÞ= ð1=nÞPn

t=1jp̂t −pt j, and MAPEðp̂t ,ptÞ= ð1=nÞPn
t=1jp̂t −pt j=pt.

The correlation of estimator p̂ to the target ILI activity level p is their sample
correlation coefficient. The correlation of increment between p̂t and pt is
defined as

Corr.   of  incrementðp̂t ,ptÞ=Corrðp̂t − p̂t−1,pt −pt−1Þ.

The relative efficiency of estimator p̂ð1Þ to estimator p̂ð2Þ is eðp̂ð1Þ, p̂ð2ÞÞ=
MSEð2Þtrue=MSEð1Þtrue, where MSEðiÞtrue = E½ðp̂ðiÞ −pÞ2�, which can be estimated by

ê
�
p̂ð1Þ, p̂ð2Þ

�
=
MSEð2Þobs

MSEð1Þobs

where MSEðiÞobs =
1
n

Xn
t=1

�
p̂ðiÞ
t −pt

�2
. [4]

The 95% confidence interval can be constructed by the time series stationary
bootstrap method (35), where the replicated time series of the error residual
is generated using geometrically distributed random blocks with mean
length 52 (which corresponds to 1 y). We obtain the basic bootstrap confi-
dence interval for logfeðp̂ð1Þ, p̂ð2ÞÞg and then recover the original scale by
exponentiation. The nonparametric bootstrap confidence interval takes the
autocorrelation and cross-correlation of the errors into account, and is in-
sensitive to the mean block length.
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SI Materials and Methods
Details of our methodology are presented as follows. First, the
predictive distribution in the formulation of the ARGO model
and the corresponding assumptions are described; second, the
statistical strategy to determine the hyperparameters of the ARGO
model is explained; third, the results of two sensitivity analysis aimed
at testing the robustness of the ARGO methodology—(i) with
respect to subsequent revisions of CDC’s ILI activity reports and
(ii) with respect to observed variation of the input variables coming
from Google Trends data—are presented; fourth, the exact search
query terms identified by Google Correlate with different data
access dates are presented; and fifth, a heat map showing the
coefficients for the time series and Google search terms dynam-
ically trained by ARGO is included.
The R package that implements the ARGO method is avail-

able at the authors’ websites (www.people.fas.harvard.edu/∼skou/
publication.htm).

SI Predictive Distribution in the Formulation of ARGO Model
To improve normality for both the input variables and the de-
pendent variables, the CDC-reported ILI activity level was logit-
transformed, and the linearly normalized volume of Google
search queries were log-transformed. To avoid taking the log of 0,
we add a small number δ= 0.5 before the log transformation.
These transformations led to two sets of variables, the intrinsic
(influenza epidemics activity) time series of interest fytg and the
(Google search) variable vector X t at time t (that depends only
on yt). Our formal mathematical assumptions are

(assumption 1) yt = μy +
PN

j=1αjyt−j + et, et ∼
iid Nð0, σ2Þ

(assumption 2) X tjyt ∼N K ðμx + ytβ,QÞ
(assumption 3) conditional on yt, X t is independent of fyl,X l : l≠ tg

where β= ðβ1, β2, . . . , βKÞ⊺, μx = ðμx1 , μx2 , . . . , μxK Þ⊺, and Q is the
covariance matrix. The predictive distribution f ðyt+1jy1 : t,X1 : ðt+1ÞÞ
is given by

f
�
yt+1jy1 : t,X1 : ðt+1Þ

�

∼N
 �

1
σ2

+ β⊺Q−1β

�−1
 
μy +α⊺yðt−N+1Þ : t

σ2
+ β⊺Q−1ðX t+1 − μxÞ

!
,

�
1
σ2

+ β⊺Q−1β

�−1
!
,

[S1]

which is a normal distribution, whose mean is a linear combina-
tion of yðt−NÞ : ðt−1Þ and X t, and whose variance is a constant.

SI Determination of the Hyperparameters for ARGO
The optimized parameters of theARGOmodel, μy, α= ðα1, . . . , αNÞ,
and β= ðβ1, . . . , βKÞ, are obtained by

arg min
μy ,α, β

X
t

 
yt − μy −

X52
j=1

αjyt−j −
X100
i=1

βiXi,t

!2

+λαkαk1 + ηαkαk22 + λβkβk1 + ηβkβk22.
[S2]

The training period consists of a 2-y (104-wk) rolling window that
immediately precedes the desired date of estimation. The hyper-

parameters are λα, λβ, ηα, and ηβ. We tested the performance of
ARGO with the following specifications of hyperparameters:
(specification 1) restrict ηα = ηβ = 0 and λα = λβ, cross-validate
on λα. This is our proposed ARGO with the same L1 penalty
for Google search terms and autoregressive lags; (specification
2) restrict ηα = ηβ = 0, cross-validate on ðλα, λβÞ. This is ARGO
with separate L1 penalties for Google search terms and autore-
gressive lags; (specification 3) restrict ηα = ηβ and λα = λβ = 0,
cross-validate on ηα. This is ARGO with the same L2 penalty
for Google search terms and autoregressive lags; (specification
4) restrict λα = λβ = 0, cross-validate on ðηα, ηβÞ—this is ARGO
with separate L2 penalties for Google search terms and autore-
gressive lags; and (specification 5) restrict λα = λβ, ηα = ηβ, cross-
validate on ðλα, ηαÞ. This is ARGO with the same elastic net
(both L1 and L2) penalty for Google search terms and autore-
gressive lags.
Table S5 summarizes the in-sample estimation performance

for our proposed ARGO, together with the other specifications
of hyperparameters. It is apparent from the table that the L1
penalty generally outperforms the L2 penalty. The L1 penalty
tends to shrink the coefficients of unnecessary independent
variables to be exactly zero, and thus eliminates redundant in-
formation; on the other hand, the L2 penalty can only shrink the
coefficients to be close to zero. As a result, L2 penalized coef-
ficients are not as sparse as their L1 counterparts. Furthermore,
from Table S5, we see that ARGO with separate L1 penalties
(specification 2) outperforms ARGO with separate L2 penalties
(specification 4), in terms of both RMSE and MAE. Similarly,
ARGO with the same L1 penalty (specification 1) outperforms
ARGO with the same L2 penalty (specification 3), in terms of
both RMSE and MAE.
The elastic net model, which combines L1 penalty and L2

penalty, does not provide any error reduction. In the cross-
validation process of setting ðλα, ηαÞ for the elastic net model,
70 wk out of 116 in-sample weeks showed that the smallest cross-
validation mean error when restricting ηα = 0 (i.e., zero L2 pen-
alty) is within 1 SE of the global smallest cross-validation mean
error, suggesting that restricting L2 penalty term to be zero (i.e.,
ηα = 0) will introduce little bias. Therefore, for the simplicity and
sparsity of the model, we drop the L2 penalty terms and use only
the L1 penalty.
Next, we want to decide between the remaining two specifi-

cations, ARGO with separate L1 penalties (specification 2) and
ARGO with the same L1 penalty (specification 1). One might
argue that Google search terms and autoregressive lags are dif-
ferent sources of information and thus should have different L1
penalties. However, empirical evidence in Table S5 shows that,
again, giving extra flexibility to ðλα, λβÞ does not generate im-
provement compared with fixing λα = λβ. In the cross-validation
process of setting ðλα, λβÞ for separate L1 penalties, 99 wk out of
116 in-sample weeks showed that the smallest cross-validation
mean error when restricting λα = λβ (i.e., same L1 penalty) is
within 1 SE of the global smallest cross-validation mean error.
This may well be due to the gain from variance reduction when
imposing the restriction λα = λβ. Based on the same simplicity and
sparsity consideration, we finally decided to restrict ηα = ηβ = 0
and λα = λβ in the setting of hyperparameters for ARGO.

SI Revision of CDC’s ILI Activity Reports
Within a flu season, CDC reports are constantly revised to im-
prove their accuracy as new information is incorporated. Thus,
CDC’s weighted ILI figures displayed in previously published
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reports may change in subsequent weeks. As a consequence,
in a given week, the available CDC ILI information from the
most recent weeks may be inaccurate. To test the robustness of
ARGO in the presence of these revisions and mimic the real-
time tracking in our retrospective predictions, we trained ARGO
and all other alternative models based on the following schedule.
Suppose zi,j is the CDC-reported ILI activity level of week i

accessed at week j. Since CDC’s ILI activity report is often de-
layed for 1 wk, on week j, the historical ILI activity-level data we
have are fzi,j : i≤ j− 1g. Due to revisions, ILI activity level of
week i accessed at different weeks zi,i+1, zi,i+2, . . .may be different
but will converge to a finalized value zi,∞ eventually. Hence, to
avoid using forward-looking information, in week j, we train all
models with the ILI activity level accessed at that week,
fzi,j : i≤ j− 1g. In this sense, any future revision beyond week j
will not be incorporated in the training at week j. However, for
the accuracy metrics, the estimation target remains the finalized
the ILI activity level (zi,∞, i= 1,2, . . .).
Table S1 shows the estimation results when using the afore-

mentioned schedule. Note that ARGO still outperforms all other
alternative models. Moreover, the absolute values of all four
accuracy metrics for ARGO trained this way essentially do not
change compared with ARGO trained with finalized ILI activity
level as studied in Table 1 of the main text, indicating the ro-
bustness of ARGO.
The weekly revisions of CDC’s ILI activity reports are avail-

able at the CDC website from week 40 of the year to week 20 of
the subsequent year for all seasons studied in this article. For
example, ILI activity level revisions at week 50 of season 2012–
2013 are available at www.cdc.gov/flu/weekly/weeklyarchives2012-
2013/data/senAllregt50.htm; ILI activity report revision at week
9 of season 2014–2015 is available at www.cdc.gov/flu/weekly/
weeklyarchives2014-2015/data/senAllregt09.html (the webpage
has suffix “htm” for seasons before 2014–2015 and suffix “html”
for 2014–2015 season). In this retrospective case study, when the
revisions of ILI activity level were not available for a particular
week during the off-season period, the finalized ILI activity level
was used instead.

SI Variations of Google Trends Data
Google Trends historical data constantly change as a consequence
of renormalizations and algorithm updates. To study the robustness
of ARGO to Google Trends data revisions, we obtained the search
frequencies of the search query terms identified byGoogle Correlate

onMay 22, 2010 (see Fig. S1 and Table S4) from the Google Trends
website (www.google.com/trends) on 25 different days in April
2015. We studied the variability of ARGO’s performance when
using these 25 different versions of Google Trends data as input
variables for the common time period of September 28, 2014 to
March 29, 2015. We studied the 2014–2015 flu season only partially
(up to March 2015) because this is the longest study period covered
by all of the obtained versions of Google Trends data, at the time
(May 1, 2015) of the first submission of this article. We want to
emphasize that Google Correlate data were only available up to
February 2014 when accessed in April 2015.
Despite the inevitable variation to the revision of the low-

quality data from Google Trends, ARGO still achieves consid-
erable stability compared with the method of Santillana et al. (16)
during this time period. Table S2 suggests that ARGO is three-
fold more robust than the method of ref. 16. The incorporation of
time series information helps ARGO achieve stability. As an ex-
treme example, the AR(3) model focuses entirely on the time se-
ries information and is thus independent of Google Trends data
revisions. GFT, formulated with the original search variables as
inputs, is, by construction, insensitive to the changes in Google
Trends data. For this portion of the study, we included the signal
from GFT for context only, and we treat it as exogenous in our
analysis. Based on the results from previous time periods, it is
highly likely that if we had access to Google’s internal raw data
(i.e., historical search volume for disease-related phrases), we
would have achieved the same stability as well. However, even with
these low-quality data, ARGO outperforms GFT uniformly on all
versions of data in terms of both RMSE and MAE.

Detailed Description of Google Correlate Data. Tables S3 and S4 list
the search query phrases identified by Google Correlate as of
March 28, 2009 and May 22, 2010, respectively. The March 2009
version included spurious terms such as “college.basketball.
standings,” “march.vacation,” “aloha.ski,” “virginia.wrestling,” etc.
These spurious terms did not appear in the May 2010 version.

Dynamic Coefficients for ARGO. Fig. S1 shows the coefficients for
the time series and Google search terms dynamically trained by
ARGO via a heat map. The level of ILI activity last week is seen
to have a significant effect on the current level of ILI activity,
and ILI activity half a year ago and/or 1 y ago could provide further
information, as the figure shows. Among Google Correlate query
terms, ARGO selected 14 terms out of 100, on average, each week.
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Fig. S1. Dynamic coefficients for ARGO. Red color represents positive coefficients, blue color represents negative coefficients, white color represents zero, and gray
color represents missing values. Missing values can be the result of (i) query terms not identified by Google Correlate and (ii) Google Trends data not available for
particular query terms. Black horizontal dashed line separates Google query queries from autoregressive lags. Yellow vertical dashed line separates coefficients trained
on Google Correlate data from those trained on Google Trends data, and green vertical dashed line separates query terms identified on March 28, 2009 from those
identified on May 22, 2010.
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Table S1. Comparison of different models for the estimation of influenza epidemics, with weekly CDC’s ILI activity level that excludes
forward-looking information from ILI activity report revision

Off-season flu
Regular flu seasons (week 40 to week 20 next year)

Whole period: H1N1: 2010–2011: 2011–2012: 2012–2013: 2013–2014: 2014–2015:
Mar 29, 2009 to
Jul 11, 2015

Mar 29, 2009 to
Dec 27, 2009

Oct 3, 2010 to
May 22, 2011

Oct 2, 2011 to
May 20, 2012

Sep 30, 2012 to
May 19, 2013

Sep 29, 2013 to
May 18, 2014

Sep 28, 2014 to
May 17, 2015

RMSE
ARGO 0.565 0.630 0.509 0.608 0.622 0.298 0.434
GFT (Oct 2014) 2.003 0.702 0.971 1.878 4.387 0.885 0.714
Ref. 16 0.897 0.858 0.760 1.179 1.248 0.373 0.691
GFT+AR(3) 0.825 0.530 0.616 0.680 1.168 0.981 0.898
AR(3) 0.963 0.805 0.986 1.136 1.087 0.946 0.931
Naive 1.000 (0.385) 1.000 (0.661) 1.000 (0.388) 1.000 (0.263) 1.000 (0.506) 1.000 (0.391) 1.000 (0.456)

MAE
ARGO 0.557 0.595 0.483 0.555 0.627 0.339 0.501
GFT (Oct 2014) 1.465 0.670 1.093 2.026 5.082 0.747 0.787
Ref. 16 0.865 0.723 0.875 1.283 1.087 0.472 0.847
GFT+AR(3) 0.790 0.485 0.672 0.643 1.000 1.036 0.890
AR(3) 0.999 0.808 0.982 1.158 1.094 0.943 0.920
Naive 1.000 (0.252) 1.000 (0.494) 1.000 (0.299) 1.000 (0.218) 1.000 (0.322) 1.000 (0.253) 1.000 (0.289)

MAPE
ARGO 0.587 0.587 0.511 0.560 0.588 0.350 0.582
GFT (Oct 2014) 1.350 0.603 1.163 2.163 4.827 0.688 0.906
Ref. 16 0.970 0.709 1.141 1.363 1.143 0.545 0.937
GFT+AR(3) 0.848 0.599 0.749 0.669 0.819 1.068 0.964
AR(3) 1.067 0.915 1.051 1.169 1.050 0.945 0.935
Naive 1.000 (0.129) 1.000 (0.166) 1.000 (0.126) 1.000 (0.129) 1.000 (0.123) 1.000 (0.108) 1.000 (0.095)

Correlation
ARGO 0.985 0.979 0.988 0.911 0.971 0.992 0.992
GFT (Oct 2014) 0.875 0.989 0.968 0.833 0.926 0.969 0.986
Ref. 16 0.965 0.956 0.985 0.937 0.938 0.987 0.973
GFT+AR(3) 0.971 0.984 0.983 0.853 0.931 0.943 0.960
AR(3) 0.961 0.965 0.955 0.815 0.921 0.920 0.953
Naive 0.956 0.943 0.946 0.828 0.928 0.910 0.945

Correlation of increment
ARGO 0.742 0.751 0.772 0.262 0.633 0.898 0.892
GFT (Oct 2014) 0.706 0.863 0.702 0.484 0.502 0.847 0.918
Ref. 16 0.625 0.680 0.719 0.619 0.293 0.917 0.837
GFT+AR(3) 0.536 0.703 0.703 0.155 0.220 0.514 0.621
AR(3) 0.420 0.562 0.554 0.067 0.106 0.360 0.549
Naive 0.455 0.552 0.556 0.162 0.247 0.345 0.586

The estimation target is the finalized CDC’s ILI activity level. RMSE, MAE, and MAPE are relative to the error of the naive method. The absolute error of the
naive method is reported in parentheses. Boldface highlights the best performance for each metric in each study period.

Table S2. Mean and SD of accuracy metrics when using Google Trends data accessed at
different dates

RMSE MAE MAPE Correlation Correlation of increment

Mean
ARGO 0.226 0.304 0.079 0.981 0.831
GFT (Oct 2014) 0.262 0.366 0.089 0.985 0.920
Ref. 16 0.306 0.398 0.116 0.973 0.803
GFT+AR(3) 0.303 0.482 0.090 0.948 0.581
AR(3) 0.332 0.492 0.096 0.936 0.492

SD
ARGO 0.013 0.017 0.005 0.002 0.016
GFT (Oct 2014) 0.000 0.000 0.000 0.000 0.000
Ref. 16 0.029 0.049 0.013 0.005 0.050
GFT+AR(3) 0.000 0.000 0.000 0.000 0.000
AR(3) 0.000 0.000 0.000 0.000 0.000

The common study period is 2014–2015 partial season (September 28, 2014 to March 29, 2015). At the time of
first submitting this article, Google Correlate data covered only up to February 2014, which inspired us to study
the robustness of ARGO with respect to Google Trends data variability on the 2014–2015 season.
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Table S3. All search phrases identified by Google Correlate using data as of March 28, 2009

influenza.type.a painful.cough treatment.for.the.flu weather.march
flu.incubation fever.flu basketball.standing fevers
bronchitis over.the.counter.flu flu.test duration.of.flu
influenza.contagious pneumonia tussionex flu.contagious.period
flu.fever how.long.is.the.flu reduce.a.fever cold.vs.flu
influenza.a flu.how.long how.long.is.the.flu.contagious cure.the.flu
influenza.incubation treatment.for.flu treat.flu walking.pneumonia
flu.contagious fever.cough spring.break.family flu.vs..cold
treating.the.flu flu.medicine las.vegas.shows.march length.of.flu
type.a.influenza dangerous.fever how.to.reduce.a.fever influenza.a.and.b
symptoms.of.the.flu high.fever flu.or.cold flu.and.pregnancy
influenza.symptoms is.flu.contagious incubation.period.for.the.flu sinus.infections
flu.duration normal.body harlem.globe influenza.treatment
flu.report normal.body.temperature tussin jiminy.peak.ski
symptoms.of.flu how.long.does.the.flu.last. basketball.standings baseball.preseason
influenza.incubation.period symptoms.of.pneumonia sinus spring.break.date
how.to.treat.the.flu signs.of.the.flu upper.respiratory indoor.driving
treat.the.flu flu.vs.cold get.over.the.flu z.pack
symptoms.of.bronchitis low.body acute.bronchitis college.spring.break.dates
flu.treatment cough.fever body.temperature aloha.ski
symptoms.of.influenza vegas.shows.march college.basketball.standings concerts.in.march
treating.flu is.the.flu.contagious strep break.a.fever
flu.in.children type.a.flu march.weather influenza.duration
fever.reducer flu.treatments getting.over.the.flu robitussin
cold.or.flu remedies.for.the.flu march.vacation virginia.wrestling

Table S4. All search phrases identified by Google Correlate using data as of May 22, 2010

influenza.type.a get.over.the.flu type.a.influenza flu.care
symptoms.of.flu treating.flu i.have.the.flu how.long.contagious
flu.duration flu.vs..cold taking.temperature fight.the.flu
flu.contagious having.the.flu flu.versus.cold reduce.a.fever
flu.fever treatment.for.flu bronchitis cure.the.flu
treat.the.flu human.temperature how.long.flu medicine.for.flu
how.to.treat.the.flu dangerous.fever flu.germs flu.length
signs.of.the.flu the.flu cold.vs..flu cure.flu
over.the.counter.flu remedies.for.flu flu.and.cold exposed.to.flu
how.long.is.the.flu influenza.a.and.b thermoscan low.body
symptoms.of.the.flu contagious.flu flu.complications early.flu.symptoms
flu.recovery how.long.does.the.flu.last high.fever remedies.for.the.flu
cold.or.flu fever.flu flu.children flu.report
flu.medicine oscillococcinum the.flu.virus incubation.period.for.flu
flu.or.cold flu.remedies how.to.treat.flu break.a.fever
normal.body how.long.is.flu.contagious pneumonia flu.contagious.period
is.flu.contagious flu.treatments flu.headache influenza.incubation.period
treat.flu influenza.symptoms flu.cough cold.versus.flu
body.temperature cold.vs.flu ear.thermometer flu.in.children
is.the.flu.contagious braun.thermoscan how.to.get.rid.of.the.flu what.to.do.if.you.have.the.flu
reduce.fever fever.cough flu.how.long medicine.for.the.flu
flu.treatment signs.of.flu symptoms.of.bronchitis flu.and.fever
flu.vs.cold how.long.does.flu.last cold.and.flu flu.lasts
how.long.is.the.flu.contagious normal.body.temperature over.the.counter.flu.medicine incubation.period.for.the.flu
fever.reducer get.rid.of.the.flu treating.the.flu do.i.have.the.flu
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Table S5. Comparison of different specifications of hyperparameters for in-sample study period

Whole in-sample period:
Jan 7, 2007 to
Mar 29, 2009

2006–2007 partial
season: Jan 7, 2007 to

May 20, 2007

2007–2008 season:
Sep 30, 2007 to
May 18, 2008

2008–2009 partial season:
Sep 28, 2008 to
Mar 29, 2009

RMSE
ARGO w/ same L1 0.644 0.697 0.602 0.653
ARGO w/ sep. L1 0.658 0.672 0.637 0.629
ARGO w/ same L2 1.165 0.817 1.175 1.243
ARGO w/ sep. L2 1.010 0.740 0.946 1.173
ARGO w/ ElasticNet 0.669 0.757 0.585 0.766
Naive 1.000 (0.316) 1.000 (0.286) 1.000 (0.473) 1.000 (0.304)

MAE
ARGO w/ same L1 0.678 0.651 0.584 0.634
ARGO w/ sep. L1 0.691 0.671 0.621 0.593
ARGO w/ same L2 1.223 0.836 1.094 1.469
ARGO w/ sep. L2 1.149 0.753 0.943 1.401
ARGO w/ ElasticNet 0.738 0.718 0.613 0.780
Naive 1.000 (0.206) 1.000 (0.245) 1.000 (0.335) 1.000 (0.226)

Correlation
ARGO w/ same L1 0.987 0.977 0.983 0.977
ARGO w/ sep. L1 0.986 0.980 0.980 0.976
ARGO w/ same L2 0.969 0.984 0.976 0.955
ARGO w/ sep. L2 0.979 0.987 0.983 0.967
ARGO w/ ElasticNet 0.987 0.984 0.986 0.975
Naive 0.965 0.949 0.950 0.935

Correlation of increment
ARGO w/ same L1 0.779 0.643 0.857 0.646
ARGO w/ sep. L1 0.708 0.545 0.758 0.697
ARGO w/ same L2 0.828 0.793 0.864 0.799
ARGO w/ sep. L2 0.845 0.795 0.881 0.824
ARGO w/ ElasticNet 0.814 0.835 0.852 0.738
Naive 0.623 0.473 0.756 0.322

“ARGO w/ same L1” is ARGO with the same L1 penalty for Google search terms and autoregressive lags (specification 1). “ARGO w/
sep. L1” is ARGO with separate L1 penalties for Google search terms and autoregressive lags (specification 2). “ARGO w/ same L2” is
ARGO with the same L2 penalty for Google search terms and autoregressive lags (specification 3). “ARGO w/ sep. L2” is ARGO with
separate L2 penalties for Google search terms and autoregressive lags (specification 4). “ARGO w/ ElasticNet” is ARGO with the same
elastic net penalty for Google search terms and autoregressive lags (specification 5). The first column is for the entire in-sample study
period. The second column is for 2006–2007 partial season; 2006–2007 full season is not available because data before January 2007 are
used for training. The third column is for 2007–2008 full season. The fourth column is for 2008–2009 partial season; 2008–2009 full
season is not available because our out-of-sample study period starts in April 2009. RMSE and MAE are relative to the error of the naive
method. The absolute error of the naive method is reported in parentheses.
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