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ABSTRACT

In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods.

Since loops are often located on the protein surface, they can have significant roles in determining protein functions and

binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling

and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling

method, the Parallely filtered Energy Targeted All-atom Loop Sampler (PETALS) to rapidly locate low energy conformations.

PETALS explores both backbone and side-chain positions of the loop region simultaneously according to the energy func-

tion selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria.

The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective

at discovering conformations with near-native (or better) energy. Using the same energy function as the DiSGro algorithm,

PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accu-

racy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop

on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of

conformations.
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INTRODUCTION

Development of computational methods for protein

structure prediction from amino acid sequence has

received widespread attention since the 1970’s.1 Signifi-

cant progress has been made in homology modeling,

which uses experimentally determined structures as tem-

plates for building the prediction [for example Refs. 2,

3]. Such template-based methods have been quite suc-

cessful at identifying the overall fold of a protein and its

secondary structure elements. Loops are the regions that

connect regular secondary structure elements. As they

often occur on the protein surface, loops have an impor-

tant role in protein function. They are more challenging

to model correctly as loops often have low sequence

identity with structural templates. The accuracy of

homology models thus tend to be lowest in the loop

regions, and methods to improve the prediction of loops

without the aid of overall structural templates are neces-

sary. Some recent methods thus make use of local tem-

plates or fragment databases built specifically from loop

regions to aid prediction.4,5 The effectiveness of these

methods has improved as the size of the Protein Data

Bank (PDB) has increased over time. However, as loop

regions have highly variable 3D structures, a large por-

tion of the potentially viable conformational space can-

not be evaluated by template-based searches. For

example, as noted by the authors of the LoopIng

template-based loop prediction method,5 de novo meth-

ods have the potential to perform better than template-

based methods when the conformational space can be

adequately explored.
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This article focuses on de novo loop prediction. De

novo prediction does not assume any structural template,

and instead focuses on a more comprehensive explora-

tion of the conformational space of the loop region with

the guidance of an energy function to identify low-

energy candidates [for example Refs. 6–11]. The success

of this approach requires two main ingredients: a sam-

pling algorithm to generate loop candidates, and an

energy (or scoring) function to rank the loop conforma-

tions. These two are inextricably linked: low energy con-

formations must be found among the samples, for the

sampling to be considered successful; it is also necessary

for the energy function to be accurate, such that loop

conformations scoring favorably according to that spe-

cific energy function correspond to accurate structure

predictions. While this de novo approach is conceptually

promising, it is generally acknowledged that sampling is

a critical bottleneck.6,11,12 The method proposed in this

article addresses this need for a more effective loop sam-

pling procedure.

A good energy function should successfully discrimi-

nate native-like loop conformations from decoys. Various

energy functions have been proposed and used for loop

modeling, with some having been specifically designed

for that purpose.13–15 However, because of the

extremely large size of the space, it is challenging to

locate low-energy conformations especially for longer

loops (� 12 residues long). It is therefore necessary to

simultaneously achieve the twin goals of low-energy loop

samples and computational efficiency, and our method

offers progress toward these goals. Previous methods that

are able to achieve highly accurate predictions have

depended on a sequence of sampling and minimization

steps on coarse and fine-grained energy functions that

typically require many hours of CPU time to model one

loop region, for example, 320 hours for the KIC

method16 and 4–7 hours for the LEAP method17 for

length 12 loops; the PLOP method7 also includes further

constraints of known crystal packing that will be unavail-

able for de novo loop prediction applications. Methods

that complete in less computational time have suffered

from insufficient sampling, for example, see Table IV in

Ref. 12, in the sense that the energy of the loop in the

native structure is typically lower than all sampled con-

formations, when tested on loop reconstruction in

known structures. Our aim is to generate loop conforma-

tions with near-native energies according to any energy

function supplied, while having a low computational

cost.

The new method for loop sampling presented in this

article is named the Parallely filtered Energy Targeted

All-atom Loop Sampler (PETALS). It draws some inspi-

ration from chain growth strategies. In the context of

loops, a sampling algorithm must generate properly

closed (connected) conformations from the starting to

the ending residue of the loop region. Chain growth is a

general technique to construct closed loop conforma-

tions: amino acids are sequentially added, and con-

straints can be incorporated to favor the eventual closure

of the loop.18–22 Among these, the recent method DiS-

Gro13 uses a distance and energy guided Monte Carlo

sampling technique to sequentially grow the loop confor-

mation one amino acid at a time, which performed bet-

ter than many existing methods with a lower

computational cost. That technique has also been suc-

cessfully extended to the sampling of multiple interacting

loops in the same protein.23 In contrast, the SWA proto-

col24 also builds the loop one residue at a time using a

stepwise enumeration procedure to achieve high accu-

racy, although with a significant computational cost

(�5000 CPU hours). Other studies have also shown that

accounting for an energy function within the sampling

algorithm enables more near-native conformations to be

generated in loop reconstruction test sets.9,12,25 As these

studies indicate that energy and sampling have a tight

connection, we also want to leverage efficiency gains

from energy-guided sampling.

We briefly describe the salient features of our method

that help increase sampling efficiency. First, the positions

of both backbone and side-chain atoms are explored

jointly during each step of sequential growth. A filtered

list of low-energy side-chain positions is maintained to

ensure that a low energy side-chain state is available for

the completed loop conformation. Second, we construct

an entire ensemble of loop conformations together for a

loop region of interest rather than building them one at

a time, and the partially grown loop conformations are

probabilistically filtered after adding each amino acid to

retain the most promising candidates. This strategy is

designed to target high coverage of the low-energy

regions of the conformational space, while at the same

time avoiding the sampling of substantially identical con-

formations. At two residues remaining, we leverage the

CSJD analytical closure method26 to complete the

backbone.

We note that PETALS can be paired with any energy

function selected by the user, to efficiently generate low-

energy loop conformations according to the chosen

energy function. As an important application, we can use

PETALS to assess how well different energy functions

perform in the context of loop modeling in an indepen-

dent and fair manner.

The efficacy of these innovations is demonstrated on

benchmark loop datasets. We show that our method can

rapidly discover conformations with low, near-native

energies when tested with the commonly used DFIRE

potential27 and the DiSGro loop energy function,13

both of which are publicly available and have been used

successfully previously for loop modeling. The typical

time cost on a single 3.2 GHz Xeon CPU core for a

length 12 loop is 10 min. Thus, PETALS helps alleviate

the sampling bottleneck and will be useful for loop
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modeling problems when paired with a suitable energy

function. The low-energy loop conformations sampled

by PETALS would be effective for downstream applica-

tions that subsequently perform energy minimization on

the sampled structures.

We adopt usual loop modeling conventions through-

out: we assume that positions of the backbone atoms

from the C of the starting residue to the Ca of the end-

ing residue are unknown, and positions of all side-chain

atoms from the starting to ending residues are unknown.

The global RMSD of the backbone N, Ca, C, and O

atoms of the residues composing the loop region is cal-

culated when comparing sampled loop conformations to

the native conformation on loop reconstruction datasets.

MATERIALS AND METHODS

PETALS samples an entire ensemble of conformations

together for a given loop region of interest, by alternately

building one amino acid to each of its ends (N and C

terminus). For example, if residues 85–96 of a protein

compose the loop region, the order of construction in

PETALS is 85; 96; 86; 95; . . .. Specifically, building posi-

tion i from the N-terminus end places the coordinates of

atoms: C, O, and side-chain of residue i; N and Ca of

residue i 1 1. Building position j from the C-terminus

end places the coordinates of atoms: Ca, N, and side-

chain of residue j; C and O of residue j – 1. We let the

backbone dihedral angles ð/;w;xÞ and the side-chain

dihedral angles be the geometric degrees of freedom that

determine these coordinates, with all bond lengths and

angles fixed at standard values since they do not exhibit

much variation in high-resolution crystal structures.

As loop construction proceeds sequentially, we use the

term “seeds” to represent the current ensemble of partial

loop conformations. Growing the next residue involves

two steps. First, each seed goes through an exploration

step, which determines plausible choices of backbone

dihedral angles for the next residue. Then, all “seeds”

(that is, partial loop conformations) together go through

a filtering step that evaluates their energies, selects the

most promising seeds to continue growing, and elimi-

nates ones that are substantially identical. The algorithm

is initialized with a set of 100 empty seeds. The two steps

are detailed below, and an illustration of the two steps

for the construction of one residue is shown in Figure 1.

Exploration step

For each seed, this step explores the environment of

the next residue to be built. The dihedral angles ð/;wÞ
are discretized into 5

�
by 5

�
bins for this purpose, while

x is sampled from a Gaussian distribution with mean

180
�

and SD 2:75
�
. The exception is when the neighbor-

ing residue is Proline, when the mean of the Gaussian

used for x is 180
�

with probability 0.9 and 0
�

with

probability 0.1. A ð/;wÞ bin is deemed to be feasible if

the following five criteria are satisfied.

1. Feasible on Ramachandran plot: For loops, the relevant

dihedral angles for ð/;wÞ are based on the Ramachan-

dran density plot,28 for each of the 20 residue types

with secondary structure type “coil” according to

DSSP,29 since loop regions are of primary interest. To

create a probability mass function over the 5
�

by 5
�

bins, we tabulated the ð/;wÞ frequencies in each bin

over “coil” regions in proteins on the CulledPDB list

by PISCES30 on March 14, 2015 with these settings:

no >20% sequence similarity, resolution 2.0 Å, R-fac-

tor cutoff 0.25. We excluded PDBs that also appear in

the test sets. Dividing by the total count, empirical

probabilities for each bin are obtained. A bin is con-

sidered feasible if its empirical probability is> 0.00002.

Proline has 602 such bins; glycine has 2450. All other

residue types have �1600 bins.

2. Distance feasibility: We ensure that distances to the

current endpoint of the loop are feasible, for the num-

ber of residues remaining to be constructed. This

check increases the probability that we can eventually

form a properly closed loop conformation. Consider

building residue i from the N-terminus end (that is,

the C, O, and side-chain of residue i; N and Ca of res-

idue i 1 1), when there are l remaining residues to the

C-terminus end of the partially constructed loop con-

formation. Let d0 be the distance from the i-th Ca to

the ðl1iÞ-th Ca. For a given ð/;wÞ bin along with the

sampled value of x, the backbone coordinates of the

i-th C atom, and the ði11Þ-th N and Ca atoms are

determined. Let d1 be the distance from the i-th C to

the ðl1iÞ-th Ca, and d2 be the distance from the

ði11Þ-th Ca to the ðl1iÞ-th Ca. Then, each ð/;wÞ bin

maps to a distance pair (d1, d2). With these defini-

tions, distances should be sensible in two aspects: the

overall remaining distance (d1, d2), and the distance

increment toward the ending Ca: ðd12d0; d22d0Þ
given d0. Using the same database of proteins, we

found the empirical 0.01% and 99.99% quantiles for

d1 and d2 (for each l), and d12d0 and d22d0 (for

each combination of l and d0, with d0 rounded to the

nearest Angstrom). We then divided the range of these

respective 0.01% and 99.99% quantiles into 16 equally

spaced intervals, and tabulated the bivariate frequen-

cies of (d1, d2) and ðd12d0; d22d0Þ in the database in

each. Thus, we say a ð/;wÞ bin is feasible if its dis-

tance pairs (d1, d2) and ðd12d0; d22d0Þ fall in corre-

sponding table cells with nonzero frequencies.

Checking feasible distances for residues built from the

C-terminus end is analogous.

3. Steric feasibility of backbone atoms: The backbone of

the residue built consists of the atoms N, Ca, C, O,

and Cb (except Glycine). A ð/;wÞ bin is deemed

infeasible if one of these atoms has a steric clash with
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a backbone atom in the currently constructed loop con-

formation, or any backbone or side-chain atom from

outside the loop region. A steric clash is defined to be a

Lennard–Jones interaction between two atoms that

exceeds 10.0 kcal/mol, detected using a distance cutoff.

For feasible bins, we evaluate the total energy of these

backbone atoms (N, Ca, C, O, and Cb) according to the

provided energy function; this energy value will be used

later in the filtering step. Atoms that are >12 Angstroms

away from the current Ca are excluded from the energy

evaluation. Further, interacting atoms between 8 and 12

Angstroms away are evaluated on a coarser 10
�

grid and

interpolated. These approximations have little impact

on the accuracy of the computed energy, but yield large

computational savings.

4. Steric feasibility of side-chain atoms: For computational

efficiency, possible side-chain positions are represented

by rotamers. Energies of all rotameric positions in the

library are evaluated, using the rotamer definitions in

Ref. 31. For the bin to be feasible, at least one rotamer

must be free of steric clashes (that is, no Lennard-

Jones interaction �10.0 kcal/mol) with the rest of the

protein and the backbone of the loop region. To

reduce the occurrences of steric clashes because of

rigid rotamers, we allow the v1 dihedral angle to be

sampled from a Gaussian distribution centered at the

rotamer definition with SD 10
�
.

5. Possible placements of next residue: Lastly, the dihedral

space for the next residue conditional on the current ð
/;wÞ is scanned on a coarse 30

�
grid to check that

there is least one potential backbone placement free of

steric clashes within a 6 Angstrom radius. Using this

strategy of looking one residue ahead, upcoming dead-

ends are better foreseen and eliminated. When there

Figure 1
Illustration of the exploration and filtering steps to construct the next residue. (A) Starting seeds. These are the N partial loop conformations (six

shown to illustrate) for the residues constructed so far. (B) Beginning of exploration step. For each seed in panel A, all ð/;wÞ bins for the placement
of the next residue are evaluated for feasibility. (C) Result of exploration step. Feasible bins (up to 100 per seed) are identified and chosen; for exam-

ple, seed 1 has four feasible bins, while seed 3 has no feasible bins and is a dead end, as indicated by the “X”. (D) Beginning of filtering step. Each
feasible bin of each seed gives one partial loop conformation. Together, these make up the pool of conformations to be filtered; for example, seed 1

contributes four conformations, while seed 5 contributes two. The number of partial loop conformations in this pool will be much larger than N;

the filtering step selects the N most promising conformations, as indicated by the checkmarks. The remaining conformations are discarded, as indi-
cated by the “X”s. (E) Result of filtering step. The N partial loop conformations selected by filtering become the starting seeds for the construction

of the following residue; for example, the original seeds 1 and 6 each contribute two conformations after filtering, seeds 2 and 5 each contribute
one, while seed 4 contributes none.
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are exactly two residues remaining to be built in the

loop, this check is replaced by applying the CSJD ana-

lytical closure method.26 This ensures that the loop

conformation can close correctly; in this case the

energy of the closure backbone atoms are then evalu-

ated to check for clashes.

Among feasible ð/;wÞ bins, a maximum of 100 candi-

dates are randomly selected. Each seed of length l0 resi-

dues thus generates up to 100 partially built loop

conformations of length l011 for the filtering step. Some

seeds may turn out to have no feasible bins at all; these

are dead ends and are discarded.

Filtering step

The total number of partial loop conformations in the

ensemble is greatly expanded by the exploration step,

since each seed generates a maximum of 100 candidates;

for example, beginning with 100 empty seeds the ensem-

ble size can grow up to 10,000, 1 million, and 100 mil-

lion after one, two, and three exploration steps

respectively, if no conformations are discarded. Let N

denote the maximum number of seeds to be used during

the computation (N is set to 10,000 in our examples).

The goal of filtering is to select a total of N candidates

from the ensemble to use as seeds for the next explora-

tion step. Filtering is critical to enable further explora-

tion to target the promising low-energy regions of the

conformational space, and to eliminate essentially dupli-

cated loop conformations in the ensemble. We consider

conformations as essential duplicates if the RMSDs

between them are very small, that is,< 0.25 when the

loop to be modeled is of length �6, and< 0.05 when the

loop to be modeled is of length 4 to 5.

For each partial loop conformation, side chains can be

rotated while keeping the backbone fixed so it is prema-

ture to finalize side-chain positions before the backbone

is complete. At the same time, we wish to leverage the

information gained by having evaluated the energy

impact of side-chain rotamers with the rest of the pro-

tein during exploration. Our solution is to maintain a

small set of viable rotamer combinations for each seed

throughout growth. Specifically, for each partial loop

conformation the interactions of a maximum of nrot

rotamers for the current residue and nsc total rotamer

combinations for the l0 previously built residues are con-

sidered. Following energy evaluation, the lowest nsc com-

binations out of the total nrot 3nsc are retained. If nrot

and nsc are too small, a point may be reached where

there are no longer any rotamer combinations free of ste-

ric clashes, especially for long loops. Larger values of nrot

and nsc increase the likelihood that there are low energy

side-chain conformations throughout loop growth, at the

cost of more computation time. For loops tested up to

length 13, we found that setting nrot 5 20 and nsc 5 25

are sufficient; increasing these values further does not

improve the minimum energy of the final sampled loop

conformations. These interactions define the total energy

for each partial loop conformation: its backbone energy

plus the minimum energy of its retained side-chain

rotamer combinations. For details see Algorithm 1 in the

SI.

If the total number of partial loop conformations is

less than N, then we proceed directly to the exploration

step of the next residue. Otherwise, the list of partial

loop conformations must be filtered to select N seeds,

according to the sorted list of their total energies. First,

partial loop conformations originating from the same

seed are subject to a RMSD cutoff criterion: only the

lowest energy loop conformations that are not essential

duplicates are kept. Second, if the number of partial loop

conformations is still far in excess of N (we use a cutoff

of 10 N), the number of representatives kept from each

seed is further reduced to a maximum of the nrep lowest

energies. This avoids the problem of having one seed

being over-represented as sampling proceeds. Third, a

selection of N seeds is made with the composition of

two groups: (1) the pN loop conformations with the

lowest energies, (2) ð12pÞN loop conformations uni-

formly selected at random from all remaining ones that

are free of steric clashes, where 0 � p � 1. Intuitively,

low energy partial loop conformations should be retained

as they appear the most promising to form eventual low

energy complete loop conformations. However, the

energy evaluated on only a partial loop conformation

cannot be completely indicative of future success. There-

fore, the pool of seeds is enriched with selections from

the remaining partial loop conformations, which may

themselves become more promising as growth continues.

This strategy also ensures that a larger portion of the

conformational space is explored. The effect of the choice

of nrep and the fraction p was tested on a randomly cho-

sen set of 1000 loops of lengths 8, 10, and 12 from our

list based on CulledPDB (see step 1 of Exploration sec-

tion); based on those tests we suggest setting nrep 5 20

and p 5 0.90. Fourth, if there are partial loop conforma-

tions that are essential duplicates in this set, only the low-

est energy representative is kept (this pairwise RMSD

screening is fast: <2 s for lengths up to 13 when N 5 10,

000). Any discarded loop conformations are replaced by

a random selection from the remaining pool that are free

of steric clashes.

Output of final loop conformations

After the last filtering step, we will have an ensemble

of loop conformations and corresponding energy values

ranked from smallest to largest. Two final tasks are

applied to prepare a loop conformation for output in

standard PDB format. First, the side-chain positions

(except for the three closure residues) are set to the
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minimum energy side-chain rotamer combination found

during growth. The side chains of the three closure resi-

dues will be missing (as we used analytical closure for

these last residues; see step 5 of Exploration section), so

these are then added sequentially, choosing the lowest

energy rotamer for each when evaluated against the

whole protein. Second, to introduce flexibility into the

rotamers to mimic real proteins and stabilize their

energy, we pass through the loop residues one at a time

and run 15 Levenberg-Marquardt iterations (http://www.

ics.forth.gr/~lourakis/levmar/) to locally minimize the

energy of the individual side-chain. We find that two

such passes through the loop are sufficient; additional

iterations yield negligible further improvements on the

energy. If a loop conformation still has steric clashes in

its side chains after this procedure, it is discarded.

PETALS allows the user to specify the number of loop

conformations to output. We perform these two final

tasks on the loop conformations in our ensemble, one at

a time in order of energy values, until the specified num-

ber of loop conformations is reached.

Method availability

PETALS is freely available for Linux systems. It can be

downloaded from either of these links: http://www.stat.

ufl.edu/~swkwong/downloads/petals.tar.gz, or http://

www.people.fas.harvard.edu/~skou/papers/petals.tar.gz.

RESULTS

We tested PETALS on a number of loop reconstruc-

tion datasets that have been used by other authors in

previous studies: (a) the “Soto” set is the fifty-three 8-

residue, seventeen 11-residue, and ten 12-residue loops

considered for loop sampling in Ref. 12; (b) the “Canu”

set is the ten length 8 and ten length 12 loops described

in Ref. 32; (c) the “LoopBuilder” set is the length 8–13

loops in Ref. 12; (d) the “Fiser” set is the length 4–12

loops introduced originally in Ref. 33, with some low

quality structures removed as detailed in Ref. 34. The

number of final conformations we output is the same as

other studies: 1000 for the Fiser set, and 5000 for the

other sets.

PETALS can be paired with any energy function. For

this study we have implemented four energy functions

within PETALS: the first two are (1) DFIRE,27 (2) DiS-

Gro’s loop-specific energy function.13 Both have been

previously used for loop modeling studies effectively and

are publicly available. Since these are entirely atom

distance-based functions that do not consider whether

the dihedral angles ð/;wÞ of the backbone conformation

are realistic, we created a simple backbone torsion (BBT)

energy value for a loop residue using empirical log-

probabilities of the ð/;wÞ bins (see step 1 of Exploration

section). Incorporating these as an additive term, we

constructed simple composite energy functions: (3)

DFIRE 1 BBT, (4) DiSGro 1 BBT. Use of these functions

will encourage the higher probability regions on the

Ramachandran plot to be selected more frequently.

Low-energy sampling and filtering
performance

To test the ability of PETALS to discover low energy

loop conformations and the effectiveness of the proposed

filtering criteria, we applied the method to the Loop-

Builder set.

We compare PETALS to the DiSGro algorithm, which

has a similar time cost and also employs a chain-growth

strategy incorporating energy evaluation in the sampler

to find low energy conformations. The DiSGro sampling

algorithm uses the DiSGro energy function. Hence, we

applied PETALS using the same DiSGro energy function

for each loop target in the test to find the conformation

with the minimum energy. The DiSGro algorithm has a

separate step for selecting realistic backbone ð/;wÞ dihe-

dral angles during sampling, so to mimic this behavior

we also used the energy function DiSGro 1 BBT for sam-

pling. Thus we applied PETALS twice, once with the

DiSGro energy function, and a second time with the

DiSGro 1 BBT composite energy function. To obtain the

best possible energy results from the DiSGro algorithm,

we ran their program with a much larger sample size

than the default 5000, instead generating 100,000 closed

loop conformations to be scored. The results of using

PETALS with DiSGro 1 BBT are shown in Table I, which

Table I
Energy Sampling Comparison Between the DiSGro Algorithm and PET-

ALS on the LoopBuilder Dataset for Different Loop Lengths

Len. Targets PETALS DiSGro Native PETALS <DiSGro

8 63 2458 2398 2453 61 (out of 63)
9 56 2517 2432 2530 55 (out of 56)
10 40 2571 2438 2595 40 (out of 40)
11 54 2565 2422 2582 54 (out of 54)
12 40 2628 2445 2663 40 (out of 40)
13 40 2683 2443 2727 40 (out of 40)

Columns 3–6 represent respectively: average minimum DiSGro energy found by

PETALS, average minimum DiSGro energy found by the DiSGro algorithm, aver-

age DiSGro energy of the native loop conformations, number of cases where the

minimum DiSGro energy found by PETALS is lower than that found by the DiS-

Gro algorithm.

Table II
Comparison of the RMSD of the Lowest DiSGro Energy Conformation
Sampled by the DiSGro Algorithm and PETALS on the LoopBuilder

Dataset

Length 8 9 10 11 12 13

PETALS 1.30 1.91 2.16 2.63 2.75 3.56
DiSGro 1.78 2.22 2.60 3.37 3.84 5.38

Averages for each loop length are shown. (The detailed list of these conformations

is given in Supporting Information Table S2.).
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compares the minimum DiSGro energies found by PET-

ALS and the DiSGro algorithm averaged for each loop

length as well as the average DiSGro energies of the

native structures on the LoopBuilder set. We see that

PETALS is able to discover lower energy conformations

in the vast majority of cases than the DiSGro algorithm

for all loop lengths. The results of running PETALS with

the DiSGro energy function are shown in Supporting

Information Table S1 in the SI, where we obtain even

lower final DiSGro energy values. However, we believe

the DiSGro 1 BBT composite energy is a better and

more realistic energy function (see Assessment of energy

functions Section below). As shown in Table I, the

energy differences are the most pronounced at the lon-

gest loop lengths. In addition, the average energy gap

between the native and the best PETALS sampled confor-

mation is relatively small for all loop lengths, which

demonstrates the ability of PETALS to discover confor-

mations with near-native energies. The full data table

that lists the sampling results on each target of the Loop-

Builder set is provided in Supporting Information Table

S2 in the SI, where PETALS uses the DiSGro 1 BBT

composite energy for sampling.

To assess the geometric accuracy of these conforma-

tions (as listed in Supporting Information Table S2), we

compared the RMSD of the lowest DiSGro energy con-

formation sampled by the DiSGro algorithm and PET-

ALS for each loop target of the LoopBuilder set. The

averages for each loop length are shown in Table II,

which shows that PETALS’ lowest energy conformations

have lower RMSDs to the native structure compared to

the DiSGro algorithm for each loop length. In Support-

ing Information Figure S1 in SI we show this visually,

plotting for each loop length the (DiSGro energy,

RMSD) pairs of the lowest DiSGro energy conformation

sampled by the DiSGro algorithm and PETALS for each

loop target of the LoopBuilder set; the plots show that

PETALS’ lowest energy conformations have both lower

DiSGro energy and lower RMSDs on average. We want

to emphasize that the RMSD accuracy of conformations

with near-native energies is necessarily dependent on the

accuracy of the energy function used. The fact that PET-

ALS (and other methods) finds conformations with low

energy but high RMSD shows that energy functions have

their inaccuracies. However, this could provide useful

data (decoys) for future training of improved energy

functions.

The effectiveness of the PETALS filtering step can be

assessed by examining the RMSDs of the partial loop

conformations as each residue is grown. Table III shows

this for length 9 loops, which have six exploration and

filtering steps involving partially grown conformations.

We see that the average RMSDs of the conformations

selected as seeds for further growth at each filtering step

are lower than those discarded, thus having a cumulative

effect on the quality of sampled loops. We find a similar

pattern of results for all other loop lengths.

As a result of filtering, we expect loop conformations

generated by PETALS to have good coverage of the low

RMSD regions in the conformational space. To assess

this criterion, we group the sampled conformations

according to RMSD, and count the number of substan-

tively distinct conformations in each RMSD range. Here,

we consider conformations to be substantively distinct if

no pair is within 0.5 RMSD of each other. For both PET-

ALS and the DiSGro algorithm, we generated 5000 con-

formations for each loop target in the LoopBuilder

dataset. The results are summarized in Table IV, which

shows the average number of substantively distinct con-

formations in each RMSD range. PETALS samples signif-

icantly more distinct conformations than the DiSGro

algorithm in all the ranges below 3.0 RMSD from native.

Assessment of energy functions

We have shown that PETALS is effective at finding

loop conformations with energies quite close to the

native conformation. Thus as an important application,

the method can be used to gain insight into the accuracy

of different energy functions. For loop reconstruction

datasets, an ensemble of low-energy loop conformations

sampled according to an accurate energy function should

contain conformations with low RMSDs to the native

structure. An ideal energy function will be minimized

Table III
Average RMSDs of the Partial Loop Conformations Selected and Dis-

carded by Each Filtering Step, for Length 9 Loops

Filtering step 1 2 3 4 5 6

Avg RMSD selected 1.34 1.52 2.10 2.06 2.24 3.02
Avg RMSD discarded 1.38 1.62 2.38 2.36 2.63 3.13

Table IV
Average Number of Distinct Conformations Sampled by PETALS and the DiSGro Algorithm in Each RMSD Range for the LoopBuilder Dataset,
out of 5000 Sampled Conformations for Each Loop Target

RMSD to native

0.0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.01

PETALS 0.3 23.7 158 363 483 471 1886
DiSGro 0.1 7.6 76 224 360 391 2801

Conformations are considered to be substantively distinct if no pair is within 0.5 RMSD of each other.
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near the native structure, and thus few sampled confor-

mations should have a below-native energy.

We illustrate this assessment on the LoopBuilder set by

using PETALS with the four energy functions we have

implemented. Table V shows the minimum RMSDs in the

ensemble of loop conformations sampled by PETALS for

each energy function, averaged by loop length. It is clear

that the energy function used has an effect on loop con-

formation quality, and that backbone torsion angles (BBT)

is a useful component. The DiSGro-based energy functions

also have more cases where the native conformation has a

lower energy than all sampled conformations, compared

to DFIRE. These numbers are indicated within the square

brackets in Table V. From these results, the DiSGro 1 BBT

composite energy appears to be the most accurate among

the four tested, for low energies to translate effectively to

low RMSDs for loop reconstruction.

Loop sampling and prediction

For obtaining comparisons with other methods, we

use PETALS with the DiSGro 1 BBT composite energy

based on the results of the previous subsection.

First, we compare loop sampling methods according

to the minimum RMSD found, where the different

methods are used to generate an ensemble of 5000 loop

conformations for each loop target. Table VI lists the

minimum RMSDs on the loop targets in the Soto set

averaged by loop length, and Table VII lists the mini-

mum RMSDs for each loop target in the Canu set. We

expect methods that incorporate steric interactions and

scoring during sampling to perform the best according

to this metric; Direct Tweak, DiSGro, and PETALS fall

into this category. Among these three methods, PETALS

has the lowest RMSD average for each loop length con-

sidered. In particular, PETALS compares favorably to the

DiSGro algorithm which is also designed to sample low

energy conformations from its energy function during

loop construction.

Second, we compare loop prediction methods accord-

ing to the RMSD of the lowest energy conformation

found. Results for the Fiser set are shown in Table VIII,

where four methods are compared. The RMSDs of the

lowest energy conformation are shown in the “Pred.”

column. Overall, PETALS compares favorably to RAP-

PER,34 FALCm, and DiSGro on loop prediction accu-

racy. In addition to prediction results, Table VIII also

shows the minimum RMSDs and average RMSDs of the

sampled ensemble for each method, in the “Min.” and

“Avg.” columns respectively. These statistics are useful

for summarizing the overall quality of conformations

sampled by each method. PETALS has overall better

results than the other methods on these summary statis-

tics as well.

Table V
Minimum RMSD in the Ensemble of Loop Conformations Sampled by

PETALS for the LoopBuilder Dataset

Length Targets (1) (2) (3) (4)

8 63 0.78 [9] 0.70 [24] 0.65 [10] 0.62 [20]
9 56 1.02 [15] 0.82 [30] 0.82 [9] 0.73 [25]
10 40 1.32 [11] 0.99 [19] 1.02 [5] 0.83 [16]
11 54 1.92 [13] 1.36 [24] 1.46 [9] 1.08 [21]
12 40 2.28 [17] 1.50 [21] 1.55 [6] 1.21 [17]
13 40 3.22 [16] 2.19 [24] 2.64 [12] 1.64 [20]

Averages for each loop length are shown, using the different energy functions as

guidance: (1) DFIRE, (2) DiSGro, (3) DFIRE 1 BBT, (4) DiSGro 1 BBT. The

number of cases for each energy function where the native conformation has a

lower energy than all sampled conformations is shown in square brackets.

Table VI
Comparison of Different Sampling Methods’ Minimum RMSD from

Native in an Ensemble of 5,000 Loop Conformations, Averaged over
the Length 8, 11, and 12 Loops in Ref. 12

Method 8-res 11-res 12-res

Random Tweak 1.22 2.22 2.64
CCD 1.20 2.11 2.57
Wriggling 1.43 2.24 2.68
PLOP-build 0.99 2.18 2.69
Direct Tweak 0.69 1.20 1.48
LOOPYbb 0.89 1.51 1.80
DISGRO 0.80 1.19 1.28
PETALS 0.62 1.12 1.20

The best performing method in each length is boldfaced.

Table VII
Comparison of Different Sampling Methods’ Minimum RMSD from

Native for the Length 8 and 12 Loops in the Canu Set

Length Loop CCD CJSD SOS FALC FALCm DiSGro PETALS

8-res 1cruA_85 1.75 0.99 1.48 0.60 0.62 1.34 1.64
1ctqA_144 1.34 0.96 1.37 0.62 0.56 0.70 0.60
1d8wA_334 1.51 0.37 1.18 0.96 0.78 0.93 0.39
1ds1A_20 1.58 1.30 0.93 0.80 0.73 0.62 1.30

1gk8A_122 1.68 1.29 0.96 0.79 0.62 1.08 0.60
1i0hA_145 1.35 0.36 1.37 0.88 0.74 0.80 0.28
1ixh_106 1.61 2.36 1.21 0.59 0.57 0.39 0.37
1lam_420 1.60 0.83 0.90 0.79 0.66 0.63 0.46
1qopB_14 1.85 0.69 1.24 0.72 0.92 0.87 0.46
3chbD_51 1.66 0.96 1.23 1.03 1.03 0.67 0.51

Average 1.59 1.01 1.19 0.78 0.72 0.80 0.66
12-res 1cruA_358 2.54 2.00 2.39 2.27 2.07 1.84 1.46

1ctqA_26 2.49 1.86 2.54 1.72 1.66 1.36 0.86
1d4oA_88 2.33 1.60 2.44 0.84 0.82 1.50 0.82
1d8wA_46 4.83 2.94 2.17 2.11 2.09 1.17 1.01
1ds1A_282 3.04 3.10 2.33 2.16 2.10 1.82 0.69
1dysA_291 2.48 3.04 2.08 1.83 1.67 1.45 0.60
1eguA_508 2.14 2.82 2.36 1.68 1.71 2.13 1.31
1f74A_11 2.72 1.53 2.23 1.33 1.44 1.46 0.82
1qlwA_31 3.38 2.32 1.73 2.11 2.20 0.79 0.65

1qopA_178 4.57 2.18 2.21 2.37 2.36 1.77 1.32
Average 3.05 2.34 2.25 1.84 1.81 1.53 0.96

All methods sample 5,000 loop conformations for each loop target. Results for

the first five columns are taken from Table II of Ref. 35. For PETALS, the energy

function used is the composite E 5 DiSGro 1 BBT. The best performing method

for each loop target is boldfaced. The averages for each length are also shown in

italics.
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DISCUSSION AND
CONCLUSIONS

We applied our novel loop ensemble sampler, PETALS,

on loop reconstruction datasets and achieved good

results on a variety of criteria. Its key contribution is the

ability to discover near-native, low-energy loop confor-

mations with a small computational budget. This is

achieved by sequentially building the ensemble of loop

conformations in parallel with both backbone and side-

chain atoms, and probabilistically filtering to retain the

most promising conformations.

The speed of PETALS compares well with other loop

prediction methods. By default, PETALS is multithreaded

through the C11 openMP implementation, making use

of all available cores on the system for the computation.

For benchmarking purposes, we ran PETALS with a sin-

gle Xeon 3.2 GHz core only, on the 35 length 12 loops

in the Fiser set; with default settings the average compu-

tation time is 9.3 min (SD 2.6). Therefore PETALS

achieves speeds comparable to those reported in the DiS-

Gro article of 10 min for modeling length 12 loops, but

is much more effective at locating low-energy conforma-

tions. PETALS is significantly faster than FALCm,35

which requires 3 hr for modeling a 12-residue loop.

Decoy sets generated by PETALS contain conformations

that have low RMSDs to the native structure, low ener-

gies, and side chains included. Many other methods first

generate only the backbones of loop conformations,

requiring separate steps for building side chains and

scoring. The calculations in Table III of Ref. 12 indicate

that the methods Random Tweak,36 CCD,32 Wrig-

gling,37 PLOP-build,19 Direct Tweak ,12 and LOOPYbb9

would require 5, 38, 11, 36, 38, and 30 min, respectively,

to generate 5000 backbone conformations free of steric

clashes for a length 12 loop. CJSD26 and SOS25 are very

fast at generating the backbones of loop conformations,

requiring 3.6 and 95 s respectively to generate 5000

backbone conformations for a length 12 loop; however

the authors do not report the additional computing time

that would be needed for adding side chains and per-

forming energy minimization.

PETALS is highly extensible. The sampler can be

paired with any energy function that can be incremen-

tally evaluated as the loop is built. The DFIRE and DiS-

Gro energy functions were chosen for use in this study

as they were publicly available and previously used for

loop modeling, but may limit performance because of

the inaccuracies in these energy functions. From our

results we expect PETALS to have further RMSD

improvements on loop reconstruction tests, if paired

with more accurate energy functions than those tested in

this study. Further work can incorporate such additional

energy functions into PETALS. We also note here that

the choice of energy function to pair with a given sam-

pling method must be made judiciously to obtain good

results. For example, if a sampling method uses rigid

rotamer representations, then an energy function that

strongly penalizes side-chain atomic clashes would be

unlikely to perform well, as the rigid rotamers limit the

conformational space that can be sampled; thus, the low-

est energy conformations may not be found by the sam-

pling method, and ranking sampled conformations by

energy may not be informative. Likewise, if an energy

function includes terms involving hydrogen atoms explic-

itly, then a sampling method using that energy function

also needs to sample hydrogen atom positions to prop-

erly explore the low-energy conformational space. In the

current setting, DiSGro and PETALS have very similar

protein structure representations, and hence a direct

comparison of sampling efficacy according to the DiSGro

energy function can be made. If a different energy func-

tion is chosen for use with PETALS, appropriate modifi-

cations can be made to our method to sample flexible

bond lengths, angles, and hydrogen placements, and so

forth as necessitated by that energy function.

Table VIII
Comparison of the Loop Conformations Sampled by RAPPER, FALCm4, DISGRO and PETALS on the Fiser Set, Where Each Method is Used to

Generate an Ensemble of 1,000 Loop Conformations

RAPPER FALCm DISGRO PETALS

Len. #Targets Min. Avg. Pred. Min. Avg. Pred. Min. Avg. Pred. Min. Avg. Pred.

4 35 0.43 1.65 0.86 0.33 0.92 0.54 0.21 0.66 0.48 0.23 0.61 0.34
5 35 0.53 2.27 1.00 0.44 1.63 0.92 0.25 1.11 0.84 0.38 1.00 0.66
6 26 0.69 3.06 1.85 0.47 2.34 1.36 0.44 1.74 1.22 0.38 1.96 0.90
7 38 0.78 3.79 1.51 0.58 2.74 1.17 0.55 2.23 1.08 0.48 2.02 0.98
8 32 1.11 4.16 2.11 0.84 3.69 1.87 0.80 2.87 1.72 0.67 2.29 1.34
9 37 1.29 5.00 2.58 0.95 4.21 2.08 0.94 3.64 1.82 0.82 2.75 1.79
10 37 1.67 5.66 3.60 1.45 5.07 3.09 1.15 3.96 2.33 0.95 2.91 2.27
11 33 1.99 6.71 4.25 1.47 5.76 3.43 1.39 4.96 2.98 1.12 3.74 2.55
12 34 2.21 6.96 4.32 1.74 6.31 3.84 1.53 5.23 2.99 1.33 3.73 3.21

“Min.”, “Avg.”, and “Pred.” denote the minimum RMSD, the average RMSD of the ensemble, and the RMSD of the conformation selected as the prediction, respec-

tively, averaged over the loop targets of that length. The best performing method in each category is shown in boldface. The RAPPER, FALCm4, and DISGRO results

are reported in Table III of Ref. 13.
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Adaptations can be easily made for loop modeling

applications in inexact environments. For example, if

some parts in the protein outside the loop region are

uncertain, in particular side chains, those atoms can be

excluded from energy evaluation during loop construc-

tion. Even in these cases, the simultaneous construction

of side chains on the loop is still recommended, as their

interactions with the rest of the backbone will continue

to provide useful guidance.

The ability of PETALS to rapidly discover low-energy

loop conformations is also useful for further energy

function development. For example, sampled loop con-

formations that have energies below that of the native

loop conformation could be considered decoys. A com-

mon approach to training statistics-based energy func-

tions is discriminating natives from a reference state,38

and decoys that PETALS generates can be directly applied

for that purpose.

PETALS provides loop conformations that can be used

as starting points for further refinement, for example

through force field minimization or molecular dynamics

simulations. Since the energies of our sampled conforma-

tions are already of high quality, the efficiency of such

downstream procedures should also be improved.

In computational drug design, 3 D structural informa-

tion of a target protein is required in order to screen for

its ability to dock with ligands; homology models are

often used for this purpose when an experimental struc-

ture based on X-ray crystallography or nuclear magnetic

resonance (NMR) spectroscopy is unavailable.39,40 Loop

modeling is an important step for improving the quality

of homology models. Thus, we expect that PETALS can

be easily incorporated as an intermediate step in proto-

cols for such applications as well.
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