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ABSTRACT

A single enzyme molecule in a living cell is a nanometric system that catalyzes biochemical reactions in a nonequilibrium steady-state condition.
The chemical driving force, ∆µ, is an important thermodynamic quantity that determines the extent to which the reaction system is away from
equilibrium. Here we show that ∆µ for an enzymatic reaction in situ can be determined from the nonequilibrium time traces for enzymatic
turnovers of individual enzyme molecules, which can now be recorded experimentally by single-molecule techniques. Three different ∆µ
estimators are presented from principles of nonequilibrium statistical mechanics: fluctuation theorem, Kawasaki identity, and fluctuation
dissipation theorem, respectively. In particular, a maximum likelihood estimation method of ∆µ has been derived based on fluctuation theorem.
The statistical precisions of these three ∆µ estimators are analyzed and compared for experimental time traces with finite lengths.

Introduction. Biochemical reactions in living cells occur
in nonequilibrium conditions under which chemical kinetics
often governs their biological functions. Conventionally,
chemical kinetics has been studied outside living cells in two
scenarios. The first one is the equilibrium steady-state. For
example, the interconversion between two conformers can
be measured from its NMR line shape with motional
narrowing at high temperature.1 The second one is a
nonequilibrium non-steady-state. For instance, the stop-flow
and temperature-jump experiments monitor the relaxation
following a sudden perturbation.2 In living cells, however,
enzyme-mediated biochemical reactions are usually under
the condition of the nonequilibrium steady state (NESS).3-5

Consider a single enzyme molecule, such as an ATPase,
undergoing catalytic turnovers at a particular position inside
a cell (e.g., on a membrane), surrounded by constant
concentrations of substrates and products, [S] and [P],
respectively. As illustrated in Figure 1, an open isothermal-

isobaric system is denoted by the dashed circle comprising
the enzyme. [S] and [P] are kept constant by continuous
supplying of the substrate to and withdrawing the product
from the system because of certain cellular mechanisms. We
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Figure 1. Illustration of single-molecule enzymatic turnovers under
a nonequilibrium steady state (NESS). A single enzyme molecule
attached on a membrane, surrounded by substrates and products
molecules, undergoes catalytic turnovers. The dashed circle denotes
an open thermodynamic system in which substrates are continuously
converted to products but their concentrations, [S] and [P], are held
constant because of the exchange with the bath.
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assume that this enzyme molecule follows reversible Micha-
lis-Menten-Briggs-Haldane cycle kinetics (Figure 2) with
E, ES, andEP denoting the free enzyme, enzyme-substrate
complex, and enzyme-product complex, respectively.6 When
the enzyme completes a cycle, the system returns back to
its initial state with identical thermodynamic state functions
of the system. The continuous conversion of substrate to
product molecules under this setting represents a NESS in a
open system.

The Briggs-Haldane equation explicitly gives the depen-
dence of forward and backward reaction fluxesJ+ and J-

on [S], [P], and rate constants.6 The net reaction fluxJ ≡ J+

- J- from substrate to product is driven by the thermody-
namic driving force∆µ4

which is dependent upon [S] and [P]. The rate constants are
defined in Figure 2. For NESS,∆µ is a nonzero constant.
When ∆µ ) 0, the system is at equilibrium, in which [S]
and [P] satisfy

whereKeq is the equilibrium constant. The thermodynamic
quantity, ∆µ, is an intrinsic state function of a system,
quantitatively characterizing the tendency toward its equi-
librium. The larger the∆µ value, the greater the driving
force. Being a constant under NESS,∆µ governs the single-
molecule enzymatic kinetics in situ.

At the single enzyme level, chemical reactions are inher-
ently stochastic and can now be followed by single-molecule
techniques.7 For example, time traces of turnovers of single
cholesterol oxidase have been recorded in real time;8

individual steps of 120° rotation of a single F1-ATPase, a
rotary molecular motor on a membrane, have been resolved;9

discrete 8-nm stepping of a single kinesin molecule, a linear
motor walking along microtubule, has been monitored.10 All

of these single-molecule measurements in vitro are also
conducted in NESS because the reactions of a single enzyme
molecule have negligible effects on [S] and [P] of the
sounding environment. Given the ever increasing new single-
molecule techniques, it is anticipated that such a time trace
of a single enzyme under NESS can be recorded in a live
cell in the near future.

In this paper, we show the proof of principle that∆µ can
be determined directly from NESS time traces of enzymatic
turnovers in light of recent advances in both single-molecule
techniques and nonequilibrium statistical mechanical theories.
In principle,∆µ can be obtained by measuring [S] and [P],
together with the separated ensemble kinetic measurements
of the rate constants. In contrast, our approach deduces this
thermodynamic quantity from nonequilibrium dynamics.
From a practical standpoint, it is highly desirable to determine
∆µ without relying on sensors to measure local concentra-
tions of metabolites inside the cell as single-molecule
experiments are becoming common practice.

In the following sections, we first introduce the stochastic
time traces of single enzyme turnover under NESS. Then,
three relations for thermodynamic driving force are presented
and related to the principles of nonequilirium statistical
mechanics, specifically, fluctuation theorem (FT), Kawasaki
identity (KI), and fluctuation dissipation theorem (FDT). In
particular, we derive a maximum likelihood estimation
method of∆µ based on fluctuation theorem. The statistical
precisions of the above three theoretical estimators are
analyzed and compared for their efficiency in extracting∆µ
information from experimental time traces.

Stochastic Time Traces of Single Enzyme Turnover
under NESS.Although a particular fluctuating time trace
of single enzyme turnovers is not reproducible, its statistical
properties are. The stochasticity of the time traces contains
the crucial thermodynamic and kinetic information of the
system. The kinetic scheme in Figure 2 is a reversible cycle.
At equilibrium, the forward flux,J+, and the backward flux,
J-, cancel out, and the resulting net flux,J, is zero. When
∆µ > 0, the system exhibits a net flux from substrate to
product, but with occasional backward turnovers originating
from thermal fluctuations. The direction of the net flux,J,
reverses its sign when∆µ < 0. Quantitatively,∆µ ) kBT
ln(J+/J-), and∆µ × J is the entropy production rate that is
always positive for nonequilibrium processes.4,5

Monte Carlo simulations are carried out to mimic the time
traces recorded in a real single-molecule experiment. Figure
3 depicts the simulated turnover traces of a single enzyme
molecule under NESS with different thermodynamic driving
forces. We consider the sequence of eventsE f ESf EP
f E as a full forward cycle and the sequence of eventsE f
EP f ES f E as a full backward cycle. The cumulative
number of net cycles (the full forward cycles minus the full
backward cycles) is plotted as a function of time.

It is evident from Figure 3 that different net reaction
fluxes, J, (slope) originate from different thermodynamic
driving forces. Because of thermal fluctuations of the heat
bath, occasional backward turnover cycles occur when
the enzyme takes in ambient heat from the bath to do

Figure 2. Three-state reversible Michalis-Menten-Briggs-
Haldane kinetic scheme withE, ES, andEP denoting free enzyme,
enzyme-substrate complex, and enzyme-product complex, re-
spectively. The dependence of forward and backward reaction
fluxes,J+ andJ-, on [S], [P], and rate constants are given by the
Briggs-Haldane equation, ref 6. For NESS, the thermodynamic
driving force∆µ ) kBT ln((k1k2k3[S]/k-1k-2k-3[P])).

∆µ ) kBT ln( k1k2k3[S]

k-1k-2k-3[P]) (1)

[P]

[S]
)

k1k2k3

k-1k-2k-3
≡ Keq (2)
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chemical work, even though the time-averaged net flux is
positive, as required by the second law of thermo-
dynamics. Such fluctuation behavior is highly informative
because one can use it to extract the underlying thermody-
namic driving force, as we shall show in the following
section.

Because of these fluctuations, the number of net turnover
cycles accomplished within a given observation time window
t, dnt, is a stochastic variable rather than a constant. Figure
4 shows the broad distributions ofdnt for the corresponding
time trajectories in Figure 3. We seek to determine∆µ from
these distributions of the time traces.

Theoretical Relations between Thermodynamic Driving
Force and Nonequilibrium Time Traces. (a) Fluctuation
Theorem (FT) Relation.From chemical master equations
under NESS, it has been shown recently that

whereM is the positive integer. Equation 3 explicitly gives
the ratio between the probability ofM forward turnovers Pr-
(dnt ) M) and that of M backward turnover Pr(dnt )
-M).11-13 It is instructive to note that eq 3, which is the
consequence of microscopic reversibility, is general even
when the enzyme molecules exhibit more complex kinetic
pathways, as long as the enzyme cycles through a full
cycle.8,14,15

Equation 3 is intimately related to the remarkable fluctua-
tion theorem,16-26 which is valid for systems driven arbitrarily
far from equilibrium. In its general form, FT provides an
analytical expression to relate the probability of observing
a process of durationt with entropy productionDt ) A,
to that of a process with the same magnitude of entropy
change but where the entropy is consumed rather than
producedDt ) -A

By identifying (∆µ‚dnt /T) in eq 3 as the entropy production,
Dt, in isothermal reactions, one can find that eq 3 arises
readily from the general form of FT (eq 4), which is the
very reason that we term eq 3 as an FT relation.

(b) Kawasaki Identity (KI) Relation.We can derive the
following relation by directly integrating eq 3

This formula is similar to the so-called Kawasaki identity
〈exp(-Dt)〉 ) 1.27,28 Positivednt trajectories contribute to
the Kawasaki average function frequently, but each contribu-
tion is small in magnitude because of the negative sign in
the exponential. In contrast to their positive counterpart, the
infrequent negativednt trajectories contribute rarely to the
average, but each one is exponentially significant. The
exponential rarity of observing negativednt trajectories is
exactly compensated by the negative exponential in the
Kawasaki function. The consequence is that the Kawasaki
function has a constant value of unity for all timest. It is
obvious that, without the occurrence of negativednt trajec-
tories, it is impossible for KI to hold.

We note that the KI relation is closely related to other
recent advances in the theory of nonequilibrium statistical
mechanics, in particular, Jarzynski’s nonequilibrium work

Figure 3. Monte Carlo simulations of turnover traces of a single
enzyme molecule under NESS for different∆µ values, mimicking
the real time traces recorded in a single-molecule experiment. The
cumulative net turnover numbers,dn,are plotted against time. Blue
curve: k1[S] ) 368 s-1, k2 ) k3 ) k-1 ) k-2 ) 700 s-1, k-3[P] )
158 s-1, J+ ) 70 s-1, J- ) 30 s-1, and ∆µ ) 0.85 kBT; green
curve: k1[S] ) 315 s-1, k2 ) k3 ) k-1 ) k-2 ) 700 s-1, k-3[P] )
210 s-1, J+ ) 60 s-1, J- ) 40 s-1, and∆µ ) 0.41kBT; red curve:
k1[S] ) 263 s-1, k2 ) k3 ) k-1 ) k-2 ) 700 s-1, k-3[P] ) 263 s-1,
J+ ) 50 s-1, J- ) 50 s-1, and∆µ ) 0.

Figure 4. Histogram of enzyme turnoversdnt for the corresponding
stochastic trajectories in Figure 3. The time window,t, is chosen
to be 0.05 s. It is evident that thednt distribution is symmetric for
∆µ ) 0 and biased toward the positive direction for∆µ > 0.

Pr(dnt ) M)

Pr(dnt ) -M)
) exp(∆µ

kBT
M) (3)

P(Dt ) A)

P(Dt ) -A)
) exp(A) (4)

〈exp(-
∆µ

kBT
dnt)〉 )

∑
dnt)-∞

∞

Pr(dnt) exp(-
∆µ

kBT
dnt) ) ∑

dnt)-∞

∞

Pr(-dnt) ) 1 (5)
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relation for equilibrium states29-32 and Hatano and Sasa’s
nonequilibrium steady-state equality.33,34Recently, eq 5 has
been derived based on the generalization of Haldane equation
for enzyme kinetics.35

(c) Fluctuation Dissipation Theorem (FDT) Relation.
Applying cumulant expansion on the exponential function
of eq 5 up to the second order, we arrive at the following
simplification

where 〈dnt〉 and σdn
2 are the mean and variance of thednt

distribution, respectively. We will show that, after neglecting
the higher order cumulants, eq 6 can actually be seen as a
form of fluctuation dissipation theorem (FDT), which is valid
for small fluctuations in the linear response regime.

The first and second laws of thermodynamics state that
the mean work〈w〉 done to an isothermal-isobaric system
to bring about an increase in Gibbs free energy,∆G, is
always no less than the∆G increase for any arbitrary
processes〈w〉 g ∆G because of the energy dissipation. The
equality holds only when the process is carried out reversibly.
For systems that are near equilibrium in which FTD holds,
the energy dissipated is proportional to the system’s fluctua-
tions. FDT gives an estimate of∆G for the irreversible
process, after correcting the dissipation

whereσw
2 is the variance of the work distribution.36,37

In the NESS situation discussed here, the beginning and
the final states are the same; hence,∆G of the system is
zero. Meanwhile,w ) ∆µdnt, thus〈w〉 ) ∆µ〈dnt〉 andσw

2 )
σdn

2 ∆µ2. Then, one can solve eq 7 to obtain∆µ, which
leads to eq 6.

∆µ̂ Estimators under Finite Sampling. Let us consider
a real single-molecule experiment. For given time window
t, let N be the total number of repeated measurements for
dnt that an experimenter can collect. Thus, the product of
Nt is then the total length of the single-molecule time trace.
It is important to note that the above-presented three
theoretical relations are exact only for infinite (perfect)
sampling, namely,N f ∞. However, the finite sampling of
single-molecule trajectory is usually the bottleneck of data
processing in real experiments. Therefore, there is a strong
motivation to understand the statistical errors associated with
finite numbers of trials in order to choose appropriate an
estimator under given certain experimental conditions.38-40

In the following, we introduce three∆µ̂ estimators for a given
set ofN measurements ofdnt according to the corresponding
theoretical relations discussed in the preceding section.

According to the KI relation, we can solve eq 5 and define
a KI estimator

Similarly, based on FDT relation, eq 6, we can define a FDT
estimator

However, it is much more challenging to define a FT
estimator based on eq 3 because eq 3 only gives the relation
for various pairs of forward turnovers and backward turn-
overs. In other words, unlike eq 5 and eq 6, eq 3 itself is not
an equation for the overalldnt distribution. Therefore, to
extract one∆µ value with the best accuracy, we need to
define

To achieve the optimal statistical estimate for allM, here
we exploit a maximum likelihood estimation (MLE) ap-
proach. The result is as follows

whereNM is the occurrence thatM turnovers are observed.
The detailed derivation of MLE is described in the Appendix.

This∆µ̂FT works for any observation time windowt. When
t is approaching zero,M can only be-1, 0, and 1 in thednt

distribution. Under such a condition,∆µ̂FT expressed in eq
11 reduces back toNM)1/NM)-1 ) exp(∆µ/kBT), which is
exactly the same as the reaction flux relation∆µ )
kBT ln(J+/J-).4,5,35 Therefore,∆µ̂FT can be regarded as the
generalization of the reaction flux relation for any arbitrary
observation time window,t.

Statistical Precisions and Comparison among Three∆µ̂
Estimators. Now we characterize the statistical precisions
for the above three estimators. We can define the following
three important properties associated with each estimator38

where∆µ denotes the true value. The expectation value of
an estimator〈∆µ̂(N)〉 is obtained by averaging overW

∆µ σdn
2

2kBT〈dnt〉
) 1 (6)

∆G ≈ 〈w〉 -
σw

2

2kBT
(7)

∆µ̂KI ≡ nonzero root of
1

N
∑
i)1

N

exp(-
∆µ

kBT
dni) ) 1 (8)

∆µ̂FDT ≡
2kBT〈dn〉N

σdn
2

)

2kBT

N
∑
i)1

N

dni

1

N-1
∑
i)1

N

(dni - 〈dn〉N)2

(9)

∆µ̂FT ≡ ∆µ value that fits eq 3 best for allM (10)

∆µ̂FT ≡

nonzero root of∑
M)1

∞ MNMe-(∆µ/kBT)M

1 + e-(∆µ/kBT)M
) ∑

M)1

∞ MN-M

1 + e-(∆µ/kBT)M

(11)

systematic biasB(N) ) 〈∆µ̂(N)〉 - ∆µ

standard deviationSD(N) ) x〈(∆µ̂(N) - 〈∆µ̂(N)〉)2〉

root mean square errorRMSE(N) )

x〈(∆µ̂(N) - ∆µ)2〉 ) xB2(N) + SD2(N) (12)
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independent trials of∆µ estimates and lettingW f ∞

The comprehensive evaluation of the quality of an estimator
is RMSE(N), which is a combination of the systematic error
associated withB(N) and the statistical error associated with
SD(N). The smaller theRMSE(N) is, the more precise the
estimate is.

Here, enzyme turnover cycles are monitored by Monte
Carlo simulation. As an illustration, we choose the kinetic
parameters to haveJ+ ) 100 sec-1, J- ) 1 s-1, and∆µ )
4.6kBT (Figure 5). The time window,t, for dnt collection is
chosen to be 0.01 s, the time scale of the net reaction flux.
We only discuss the situations in which backward turnovers
can be observed in the sampling, permitting the utilization
of ∆µ̂FT and ∆µ̂KI.41 The statistical evaluation results are
plotted in Figure 5. The trend is general, even though the
specific error values depend on the chosen kinetic parameters
and time windowt.

Both RMSE(N) curves for∆µ̂FT and∆µ̂KI are below the
RMSE(N) curve of ∆µ̂FDT, which indicates that∆µ̂FT and
∆µ̂KI behave better than∆µ̂FDT. This trend is due to the fact
that FT and KI are theoretically accurate even far from
equilibrium, whereas FDT is valid only in the near equilib-
rium regime (small∆µ). ∆µ ) 4.6kBT used in the simulation
here is large enough to discriminate the far from equilibrium
from the near equilibrium regime. Our simulation demon-
strates that it will be more accurate to use∆µ̂FT and ∆µ̂KI

than∆µ̂FDT, when the∆µ is much larger thankBT.

More interestingly,∆µ̂FT is superior to∆µ̂KI, exhibiting a
faster convergence ofRMSEwith respect toN. One can track
the source of the difference between∆µ̂FT and ∆µ̂KI by
looking at theirB(N) and SD(N) (see eq 12). TakeN )
10 000 for example, the calculatedRMSE(N) for ∆µ̂KI and
∆µ̂FT are 0.678kBT and 0.295kBT, respectively. The corre-
spondingSD(N) are 0.180kBT and 0.179kBT, respectively;
theB(N) are 0.6535kBT and 0.2338kBT, respectively. There-
fore, it is the smaller systematic error rather than the
statistical error that makes∆µ̂FT superior to∆µ̂KI. We note
that this phenomenon is generally true for otherN.

We find that such different systematic errors,B(N),
between∆µ̂FT and ∆µ̂KI are deeply rooted in their distinct
estimation algorithms.∆µ̂FT mainly utilizes the turnover
events withM ) +1 and-1 in thedn distribution (see eq
11). However, the major contribution to∆µ̂KI comes from
the very rare backward turnovers with large negativeM
because of the exponential averaging (see eq 8). Compared
to samplingM ) +1 and-1 in thedndistribution for∆µ̂FT,
the insufficient sampling on the very rare backward turnovers
with large negativeM for ∆µ̂KI is more error-prone, generat-
ing bigger systematic error for finite sampling.

Conclusions.Life processes are always far-from-equilib-
rium. Macromolecular machineries common in biology, such
as molecular motors, manifest intrinsic fluctuation at the
single-molecule level. Such nonequilibrium fluctuations are
investigated in this paper in the context of biochemical
reactions of individual enzymes under NESS, in light of
recent statistical mechanical theory and single-molecule
techniques. Specifically, we have shown that∆µ, the
thermodynamic driving force of an enzymatic cycle, can be
extracted by the nonequilibrium turnover time traces of single
enzyme molecules in living cells that might be measurable
experimentally. We hope that the theoretical principles and
statistical techniques presented in this paper could provide
a general methodology for single-molecule nonequilibrium
dynamics in living systems.
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Appendix

Fluctuation theorem, eq 3, says that

We want to estimate∆µ by the method of maximum
likelihood. To do so, we first write down the likelihood
L((∆µ/kBT), p0, p1, p2, ...), the probability of observing the
outcome of{N0, N(1, N(2, N(3, ...}

Figure 5. Statistical precisions of three∆µ estimators. Root-mean-
square errors (RMSE) for∆µ̂FT, ∆µ̂KI, and∆µ̂FDT are plotted as
functions of the total number of repeated measurements, evaluated
using eqs 12 and 13. BothRMSE(N) curves for∆µ̂FT and∆µ̂KI are
below theRMSE(N) curve of∆µ̂FDT, indicating that∆µ̂FT and∆µ̂KI

behave better than∆µ̂FDT. ∆µ̂FT is even superior to∆µ̂KI, exhibiting
a faster convergence ofRMSEwith respect toN. In this calculation,
k1[S] ) 430 s-1, k2 ) k3 ) k-1 ) k-2 ) 1000 s-1, k-3[P] ) 4.3
s-1, J+ ) 100 sec-1, J- ) 1 s-1, and ∆µ ) 4.6kBT. The time
window, t, for dnt collection is chosen to be 0.01 s, the time scale
of net reaction flux.W ) 5000 in eq 13.

〈∆µ̂(N)〉 ≡ lim
Wf∞

1

W
∑
k)1

W

∆µ̂k(N) (13)

p-M ) pM exp(- ∆µ
kBT

M) M ) 1, 2, 3, ... (A.1)
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The MLE ∆µ̂ of ∆µ can be found by maximizing the
likelihood

Or equivalently

subject to the constraint

that is, the total probability should be 1.

To find its maximizer, we use the Lagrange multiplier

The MLEs are the solutions of

The final solution results in
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