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ABSTRACT

A single enzyme molecule in a living cell is a nanometric system that catalyzes biochemical reactions in a nonequilibrium steady-state condition.

The chemical driving force, Ap, is an important thermodynamic quantity that determines the extent to which the reaction system is away from
equilibrium. Here we show that ~ Ag for an enzymatic reaction in situ can be determined from the nonequilibrium time traces for enzymatic
turnovers of individual enzyme molecules, which can now be recorded experimentally by single-molecule techniques. Three different Ap
estimators are presented from principles of nonequilibrium statistical mechanics: fluctuation theorem, Kawasaki identity, and fluctuation

dissipation theorem, respectively. In particular, a maximum likelihood estimation method of Au has been derived based on fluctuation theorem.
The statistical precisions of these three Ay estimators are analyzed and compared for experimental time traces with finite lengths.

Introduction. Biochemical reactions in living cells occur Bath

in nonequilibrium conditions under which chemical kinetics e -

often governs their biological functions. Conventionally, @ <ﬁi(> System <:i> @
chemical kinetics has been studied outside living cells in two
scenarios. The first one is the equilibrium steady-state. For @
example, the interconversion between two conformers can @

be measured from its NMR line shape with motional
narrowing at high temperatuteThe second one is a s
nonequilibrium non-steady-state. For instance, the stop-flow @

and temperature-jump experiments monitor the relaxation ’
following a sudden perturbationln living cells, however,
~ membrane .

enzyme-mediated biochemical reactions are usually under e -
the condition of the nonequilibrium steady state (NESS). _ _ _ _
Figure 1. lllustration of single-molecule enzymatic turnovers under

Cons@er a smg[e enzyme molecule,_ such as an ATPgsea nonequilibrium steady state (NESS). A single enzyme molecule
undergoing catalytic turnovers at a particular position inside atached on a membrane, surrounded by substrates and products
a cell (e.g., on a membrane), surrounded by constantmolecules, undergoes catalytic turnovers. The dashed circle denotes
concentrations of substrates and products, [S] and [P], an open thermodynamic system in which substrates are continuously

respectively. As illustrated in Figure 1, an open isothermal converted to products but their concentrations, [S] and [P], are held
constant because of the exchange with the bath.
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ES of these single-molecule measurements in vitro are also
conducted in NESS because the reactions of a single enzyme

k1[S]
/ molecule have negligible effects on [S] and [P] of the

k_1 sounding environment. Given the ever increasing new single-

E k k molecule techniques, it is anticipated that such a time trace
-2 2 of a single enzyme under NESS can be recorded in a live

‘%‘1{3 cell in the near future.

In this paper, we show the proof of principle thgt can

k_3[P] E P be determined directly from NESS time traces of enzymatic
turnovers in light of recent advances in both single-molecule
Figure 2. Three-state reversible Michatidlenten-Briggs— techniques and nonequilibrium statistical mechanical theories.

Haldane kinetic scheme with, ES andEP denoting free enzyme, | principle, Au can be obtained by measuring [S] and [P],
:Sézmz)s/f‘l?rsli;atge;‘ér:géi’éeagfd ;R;gmmgggcéaﬁugﬁx’rerzétion together with the separated ensemble kinetic measurements
fluxes, J, andJ_, on [S], [P], and rate constants are given by the of the rate constants. In contrast, our approach deduces this
Briggs—Haldane equation, ref 6. For NESS, the thermodynamic thermodynamic quantity from nonequilibrium dynamics.
driving force Au = kgT In((Kikoka[ S)/k-1k_2k_3[P])). From a practical standpoint, it is highly desirable to determine
Au without relying on sensors to measure local concentra-
assume that this enzyme molecule follows reversible Micha- tions of metabolites inside the cell as single-molecule
lis—Menten-Briggs—Haldane cycle kinetics (Figure 2) with ~ experiments are becoming common practice.
E, ES andEP denoting the free enzyme, enzymsubstrate In the following sections, we first introduce the stochastic
complex, and enzymeproduct complex, respectivelyWhen time traces of single enzyme turnover under NESS. Then,
the enzyme completes a cycle, the system returns back toathree relations for thermodynamic driving force are presented
its initial state with identical thermodynamic state functions and related to the principles of nonequilirium statistical
of the system. The continuous conversion of substrate to mechanics, specifically, fluctuation theorem (FT), Kawasaki
product molecules under this setting represents a NESS in adentity (KI), and fluctuation dissipation theorem (FDT). In

open system. particular, we derive a maximum likelihood estimation
The Briggs-Haldane equation explicitly gives the depen- method ofAu based on fluctuation theorem. The statistical
dence of forward and backward reaction fluxkesand J- precisions of the above three theoretical estimators are
on [S], [P], and rate constarft3.he net reaction flud = J; analyzed and compared for their efficiency in extractiag
— J- from substrate to product is driven by the thermody- information from experimental time traces.
namic driving forceAu* Stochastic Time Traces of Single Enzyme Turnover
under NESS. Although a particular fluctuating time trace
K KoKs[S] of single enzyme turnovers is not reproducible, its statistical
Au=kgT I”(m) @) properties are. The stochasticity of the time traces contains

the crucial thermodynamic and kinetic information of the

hich is d dent ST and [P1. The rat tant system. The kinetic scheme in Figure 2 is a reversible cycle.
which IS dependen upon [S] an [_ J. The rate constants areat equilibrium, the forward flux,J;+, and the backward flux,
defined in Figure 2. For NESS\u is a nonzero constant.

. o . . J_, cancel out, and the resulting net flu,is zero. When
When A » 0, the system is at equilibrium, in which [S] Au > 0, the system exhibits a net flux from substrate to
and [P] satisfy product, but with occasional backward turnovers originating
from thermal fluctuations. The direction of the net fluk,
B: kiKokg K @) reverses its sign wheAu < 0. Quantitatively, Au = kgT
[§9 kokok g In(J;+/J-), andAu x Jis the entropy production rate that is
always positive for nonequilibrium procesgés.

whereKeq is the equilibrium constant. The thermodynamic ~ Monte Carlo simulations are carried out to mimic the time
quantity, Au, is an intrinsic state function of a system, traces recorded in a real single-molecule experiment. Figure
quantitatively characterizing the tendency toward its equi- 3 depicts the simulated turnover traces of a single enzyme
librium. The larger theAu value, the greater the driving molecule under NESS with different thermodynamic driving
force. Being a constant under NES$; governs the single- ~ forces. We consider the sequence of evénts ES— EP
molecule enzymatic kinetics in situ. — E as a full forward cycle and the sequence of evénts

At the single enzyme level, chemical reactions are inher- EP —~ ES— E as a full backward cycle. The cumulative
ently stochastic and can now be followed by single-molecule number of net cycles (the full forward cycles minus the full
techniques.For example, time traces of turnovers of single backward cycles) is plotted as a function of time.
cholesterol oxidase have been recorded in real fime; It is evident from Figure 3 that different net reaction
individual steps of 120rotation of a single F1-ATPase, a fluxes, J, (slope) originate from different thermodynamic
rotary molecular motor on a membrane, have been resélved; driving forces. Because of thermal fluctuations of the heat
discrete 8-nm stepping of a single kinesin molecule, a linear bath, occasional backward turnover cycles occur when
motor walking along microtubule, has been monitotzAll the enzyme takes in ambient heat from the bath to do
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Figure 3. Monte Carlo simulations of turnover traces of a single
enzyme molecule under NESS for differeXst values, mimicking

the real time traces recorded in a single-molecule experiment. The
cumulative net turnover numbemdn, are plotted against time. Blue
curve: kl[q =368 s, ko =ks=k_; =k, =700 s1, k73[P] =

158 s1, J;y = 70 s'1, J_ = 30 s'1, andAu = 0.85kgT,; green
curve: k[§ =315s, kp=ks =k 1=k ,=700s7, k5[P] =
210s%, 3. =605, J- =40 s, andAu = 0.4XkgT,; red curve:

ki[9 =263 s ky=ks=k 1=k ,=700s? k 3[P] = 263 5%,
J; =50s?tJ =50s1 andAu = 0.
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Figure 4. Histogram of enzyme turnoveds for the corresponding
stochastic trajectories in Figure 3. The time windawis chosen
to be 0.05 s. It is evident that thy distribution is symmetric for
Au = 0 and biased toward the positive direction foz > 0.

chemical work, even though the time-averaged net flux is
positive, as required by the second law of thermo-
dynamics. Such fluctuation behavior is highly informative
because one can use it to extract the underlying thermody-
namic driving force, as we shall show in the following
section.

Because of these fluctuations, the number of net turnover
cycles accomplished within a given observation time window
t, dn, is a stochastic variable rather than a constant. Figure
4 shows the broad distributions dfy for the corresponding
time trajectories in Figure 3. We seek to determtpefrom
these distributions of the time traces.
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Theoretical Relations between Thermodynamic Driving
Force and Nonequilibrium Time Traces. (a) Fluctuation
Theorem (FT) RelationFrom chemical master equations
under NESS, it has been shown recently that

)

whereM is the positive integer. Equation 3 explicitly gives
the ratio between the probability df forward turnovers Pr-
(dn. = M) and that of M backward turnover Pdfx =
—M).1"13 |t is instructive to note that eq 3, which is the
consequence of microscopic reversibility, is general even
when the enzyme molecules exhibit more complex kinetic
pathways, as long as the enzyme cycles through a full
cycle814.15

Equation 3 is intimately related to the remarkable fluctua-
tion theoremt& 26 which is valid for systems driven arbitrarily
far from equilibrium. In its general form, FT provides an
analytical expression to relate the probability of observing
a process of duratioh with entropy productiorD; = A,
to that of a process with the same magnitude of entropy
change but where the entropy is consumed rather than
producedD; = —A

Pr(dnt M)

Pr(dnt =- 3

P(D, = A)

PO, =—n ¢

4)

By identifying (Au-dn /T) in eq 3 as the entropy production,
Dy, in isothermal reactions, one can find that eq 3 arises
readily from the general form of FT (eq 4), which is the
very reason that we term eq 3 as an FT relation.

(b) Kawasaki Identity (KI) RelationWe can derive the
following relation by directly integrating eq 3

Au
@XF’(‘QC’W)D:
S Prdn) A S Pr(-dn) =1 (5)
r@dn) exq— —dn| = r(—dn) =
3P~ )= 5

This formula is similar to the so-called Kawasaki identity
[exp(—Dy) 0= 12728 Positive dn, trajectories contribute to
the Kawasaki average function frequently, but each contribu-
tion is small in magnitude because of the negative sign in
the exponential. In contrast to their positive counterpart, the
infrequent negativeln trajectories contribute rarely to the
average, but each one is exponentially significant. The
exponential rarity of observing negatis trajectories is
exactly compensated by the negative exponential in the
Kawasaki function. The consequence is that the Kawasaki
function has a constant value of unity for all timedt is
obvious that, without the occurrence of negatilretrajec-
tories, it is impossible for Kl to hold.

We note that the Kl relation is closely related to other
recent advances in the theory of nonequilibrium statistical
mechanics, in particular, Jarzynski's nonequilibrium work
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nonequilibrium steady-state equali?*Recently, eq 5 has Al = nonzero root of-
been derived based on the generalization of Haldane equation
for enzyme kineticg®

(c) Fluctuation Dissipation Theorem (FDT) Relation.
Applying cumulant expansion on the exponential function
of eq 5 up to the second order, we arrive at the following

relation for equilibrium staté%32 and Hatano and Sasa’s 1 N Au
expg — —Tdn =1 (8)

Similarly, based on FDT relation, eq 6, we can define a FDT
estimator

simplification E S dn
2k TrNG N &
ANigpr = = )
25;;? ol © T * N(d — [ng)?
s 0N N—l.Z A

where [dnJand o3, are the mean and variance of tHa
distribution, respectively. We will show that, after neglecting
the higher order cumulants, eq 6 can actually be seen as

However, it is much more challenging to define a FT
estimator based on eq 3 because eq 3 only gives the relation
. Lo o 35S Jor various pairs of forward turnovers and backward turn-
form of quctuatlor} dlss.|pat|on.theorem (FDT), Wh'.Ch is valid overs. In other words, unlike eq 5 and eq 6, eq 3 itself is not
for small fluctuations in the linear response regime. an equation for the overalln distribution. Therefore, to

the mean workwlldone to an isothermalsobaric system  define

to bring about an increase in Gibbs free energyg, is
always no less than thAG increase for any arbitrary Afigr = Au value that fits eq 3 best for all~ (10)
processe&i[1> AG because of the energy dissipation. The
equality holds only when the process is carried out reversibly.
For systems that are near equilibrium in which FTD holds,
the energy dissipated is proportional to the system’s fluctua-
tions. FDT gives an estimate &G for the irreversible
process, after correcting the dissipation

To achieve the optimal statistical estimate for Idl] here
we exploit a maximum likelihood estimation (MLE) ap-
proach. The result is as follows

Ajtgr =
2 o MN,e @™« MN_,

w @ nonzero root of = RZ
2kgT =114 e (DM sy 4 g (AlkeDM
(11)

AG ~ Wl

whered?, is the variance of the work distributicf3’

In the NESS situation discussed here, the beginning and
the final states are the same; hena& of the system is
zero. Meanwhilew = Audn, thusiW= AuldnCando?, =

whereNy is the occurrence thadl turnovers are observed.
The detailed derivation of MLE is described in the Appendix.

This Aiier works for any observation time windouVhen

. t is approaching zerdyl can only be-1, 0, and 1 in theln,

2 2
IOdndAﬂt' Th%n' one can solve eq 7 to obtal, which distribution. Under such a condition\isr expressed in eq
ea f 0 gq : o . ) 11 reduces back tbly=1/Nv=-1 = exp@u/ksT), which is
a real single-molecule experiment. For given time window .1 In(J4/J-).4535 Therefore Aiier can be regarded as the
t, let N be the total number of repeated measurements for generalization of the reaction flux relation for any arbitrary
dn that an experimenter can collect. Thus, the product of gpservation time windowt,
Ntis then the total Iength of the Single'm0|eCU|e time trace. Statistical Precisions and Comparison among ThreAﬁ
It is important to note that the above-presented three gstimators. Now we characterize the statistical precisions
theoretical relations are exact only for infinite (perfect) for the above three estimators. We can define the following

sampling, namelyN — o. However, the finite sampling of  three important properties associated with each estiffator
single-molecule trajectory is usually the bottleneck of data

processing in real experiments. Therefore, there is a strong systematic biaB(N) = A(N)T— Au
motivation to understand the statistical errors associated with
finite numbers of trials in order to choose appropriate an standard deviatio8D(N) = x/EQAﬁ(N) — MAR(N)DPO
estimator under given certain experimental conditin®.
In the following, we introduce thre&: estimators for a given
set ofN measurements aln according to the corresponding x/EﬂAﬁ(N) — Au)’= JBZ(N) + SD(N) (12)
theoretical relations discussed in the preceding section.

According to the Kl relation, we can solve eq 5 and define whereAu denotes the true value. The expectation value of
a Kl estimator an estimatorfAiz(N)Ois obtained by averaging ovei

root mean square err®@MSEN) =

2376 Nano Lett., Vol. 5, No. 12, 2005



101 —A&— FDT |
F —o—KI
(- —a—FT
S;n A A A A A
5 o
1 F \. 3
:
0.1 ) '
1000 10000
N

Figure 5. Statistical precisions of thre®u estimators. Root-mean-
square errors (RMSE) fohiirr, Afiki, and Afipr are plotted as

More interestingly Afier is superior toAfix;, exhibiting a
faster convergence &MSEwith respect td\. One can track
the source of the difference betweéier and Ajix by
looking at theirB(N) and SD(N) (see eq 12). Tak&l =
10 000 for example, the calculat®MSEN) for Ajix, and
Aner are 0.678sT and 0.29%gT, respectively. The corre-
spondingSD(N) are 0.188sT and 0.178gT, respectively;
the B(N) are 0.653&sT and 0.233BgT, respectively. There-
fore, it is the smaller systematic error rather than the
statistical error that makesier superior toAjix,. We note
that this phenomenon is generally true for other

We find that such different systematic erroi3(N),
betweenAjisr and Ajix, are deeply rooted in their distinct
estimation algorithmsAjier mainly utilizes the turnover
events withM = +1 and—1 in thedn distribution (see eq
11). However, the major contribution #iix, comes from

functions of the total number of repeated measurements, evaluatedhe very rare backward turnovers with large negatite

using egs 12 and 13. BoRMSHN) curves forAjier andAfix, are
below theRMSEN) curve ofAiirpr, indicating thatAfier andAji
behave better thajirpr. Afier is even superior t\i,, exhibiting

a faster convergence BIMSEwith respect td\. In this calculation,
k]_[a = 430 S_l, ko = ks = k-1 = k-, = 1000 Sl, kfg[P] =4.3
s1, J; =100 sect, J- = 1 s% andAu = 4.6kgT. The time
window, t, for dn collection is chosen to be 0.01 s, the time scale
of net reaction fluxW = 5000 in eq 13.

independent trials oAu estimates and lettingV — oo

N 12
[Ai(N)E= lim \TVKZl Afy(N) (13)

because of the exponential averaging (see eq 8). Compared
to samplingM = +1 and—1 in thedn distribution forAjier,

the insufficient sampling on the very rare backward turnovers
with large negativéM for Ak is more error-prone, generat-
ing bigger systematic error for finite sampling.

Conclusions.Life processes are always far-from-equilib-
rium. Macromolecular machineries common in biology, such
as molecular motors, manifest intrinsic fluctuation at the
single-molecule level. Such nonequilibrium fluctuations are
investigated in this paper in the context of biochemical
reactions of individual enzymes under NESS, in light of
recent statistical mechanical theory and single-molecule
techniques. Specifically, we have shown that, the
thermodynamic driving force of an enzymatic cycle, can be

The comprehensive evaluation of the quality of an estimator extracted by the nonequilibrium turnover time traces of single

is RMSHEN), which is a combination of the systematic error
associated witB(N) and the statistical error associated with
SD(N). The smaller the(RMSEN) is, the more precise the
estimate is.

enzyme molecules in living cells that might be measurable
experimentally. We hope that the theoretical principles and
statistical techniques presented in this paper could provide
a general methodology for single-molecule nonequilibrium

Here, enzyme turnover cycles are monitored by Monte dynamics in living systems.

Carlo simulation. As an illustration, we choose the kinetic
parameters to havé. = 100 sec!, J- = 1 s'%, andAu =
4.6ksT (Figure 5). The time windowt, for drx collection is

chosen to be 0.01 s, the time scale of the net reaction flux.
We only discuss the situations in which backward turnovers
can be observed in the sampling, permitting the utilization

of Afirr and Ajix.** The statistical evaluation results are

plotted in Figure 5. The trend is general, even though the
specific error values depend on the chosen kinetic parameters

and time windowt.

Both RMSEN) curves forAjier and Ajik, are below the
RMSHEN) curve of Aiirpr, Which indicates that\iier and
Ajix) behave better thanjigpr. This trend is due to the fact
that FT and Kl are theoretically accurate even far from
equilibrium, whereas FDT is valid only in the near equilib-
rium regime (smallu). Au = 4.6ksT used in the simulation

Acknowledgment. We thank Chris Jarzynski and Binny
Cherayil for helpful discussions, and supports from NSF and
DOE, Office of Science, Office of Basic Energy Science,
Chemical Sciences.

Appendix

Fluctuation theorem, eq 3, says that

D_y1 = Py X —kés_ﬁrlvl) M=1,23 .. (Al

here is large enough to discriminate the far from equilibrium We want to estimateAu by the method of maximum

from the near equilibrium regime. Our simulation demon-
strates that it will be more accurate to uSger and Afix
than Aiirpr, when theAu is much larger thaksT.
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likelihood. To do so, we first write down the likelihood
L((Au/ksT), po, P1, P2, --.), the probability of observing the
outcome Of{ No, N+, Nio, Nig, ..}
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L

Au
T pov pl! p2' =

ke T
N! © © Au N_w
NM NQ NM
Py’ O P pw’'l Py X — —M
o Ml:l—oo M 0 l\lll:ll o F{ ke T
|_| Ni!
M=—00
(A.2)

The MLE Az of Au can be found by maximizing the
likelihood

G = Au
Ap = arg max L(kBT, Po, Py P2, ) (A.3)

Or equivalently

AA— I L_

it = arg max|lo » Po» Py, Py -
g A g KT 0 M1 M2

= arg max{Nylog p, + '; [(Ny + N_y) log py] —
A‘u =1

A 2
—NZ MN_,,| (A.4)
ke T ¥f=1
subject to the constraint
5 ot Mal=1 s
p g p exd ——M|| = .
0 Z M kBT
that is, the total probability should be 1.
Denotel|
enotell—, Py, Py Poy - =
kT Po: P, P2
N log py + NZ [(Ny + N_y) log py] — _NZ MN_y,
=1 kBT =1

To find its maximizer, we use the Lagrange multiplier

L =|[— -
a » Pos P1s Pos -
g | Pos P1: P2

Aot S o1+ Al = 1b ae)
Po ; Pwm expg—— - .
= ke T
The MLEs are the solutions of
oLag —0 oLag =0
IAU | (A7 popyB ) o | (anpypyps )
iLag —o dag =0 (A7)
9P | (A popy s ) M (ad b,
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The final solution results in

Al = positive root of
© MN,e @M MN_,,

=1 1 4+ @ (BukeTM gl 1 4+ g (AukeIM

(A.8)

References

(1) Anderson, P. WJ. Phys. Soc. Jprl954 9, 316.

(2) Steinfeld, J. I.; Francisco, J. S.; Hase, WQhemical Kinetics and
Dynamics,2nd ed.; Prentice-Hall: New Jersey, 1999.

(3) Wyman, JProc. Natl. Acad. Sci. U.S.A975 72, 3983.

(4) Hill, T. L. Free Energy Transduction and Biochemical Cycle Kinetics;
Springer: New York, 1989.

(5) Qian, H.; Beard, D. ABiophys. Chem2005 114, 213.

(6) Segel, I. HEnzyme KinetigsJohn-Wiley-Interscience: New York,
1975.

(7) For arecentreview, see Tinnefeld, P.; SauerAkigew. Chem., Int.
Ed. 2005 44, 2642.

(8) Lu, H. P.; Xun, L.; Xie, X. S.Sciencel998 282 1877.

(9) Yasuda, R.; Noji, H.; Yoshida, M.; Kinosita, K.; Itoh, HNature
2001, 410, 898.

(10) Asbury, C. L.; Fehr, A. N.; Block, S. MScience2003 302, 2130.

(11) Gaspard, PJ. Chem. Phys2004 120, 8898.

(12) seifert, UJ. Phys. A: Math. Ger004 37, L517.

(13) Seifert, U.Europhys. Lett2005 70, 36.

(14) Flomenbom, O.; Velonia, K.; Lop®D.; Masuo, S.; Cotlet, M.;
Engelborghs, Y.; Hofkens, J.; Rowan, A. E.; Nolte, R. J. M.; van
der Auweraer, M.; de Schryver F. C.; Klafter,BProc. Natl. Acad.
Sci. USA2005 102 2368.

(15) Kou, S. C.; Cherayil, B. J.; Min, W.; English, B. P.; Xie, X. &.
Phys. Chem. BR005 109, 19068.

(16) Evans, D. J.; Cohen, E. G. D.; Morriss, G.Hhys. Re. Lett. 1993
71, 2401.

(17) Gallavotti, G.; Cohen, E. G. DRhys. Re. Lett. 1995 74, 2694.

(18) Kurchan, JJ. Phys. A: Math. Genl998 31, 3719.

(19) Crooks, G. EPhys. Re. E 1999 60, 2721.

(20) Evans, D. J.; Searles, D.Adv. Phys.2002 51, 1529.

(21) van Zon, R.; Cohen, E. G. [Phys. Re. Lett.2003 91, 110601.

(22) Wang, G. M.; Sevick, E. M.; Mittag, E.; Searles, D. J.; Evans, D. J.
Phys. Re. Lett. 2002 89, 050601.

(23) Carberry, D. M.; Reid, J. C.; Wang, G. M.; Sevick, E. M.; Searles,
D. J.; Evans, D. JPhys. Re. Lett. 2004 92, 140601.

(24) Jarzynski, C.; Wojcik, D. KPhys. Re. Lett. 2004 92, 230602.

(25) Bustamante, C.; Liphardt, J.; Ritort, Fhysics Todap005 58, 43.

(26) Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S. B.; Tinoco, I., Jr.;
Bustamante, CNature 2005 437, 231.

(27) Yamada, T.; Kawasaki, KProg. Theor. Phys1967 38, 1031.

(28) Carberry, D. M.; Williams, S. R.; Wang, G. M.; Sevick, E. M.; Evans,
D. J.J. Chem. Phys2004 121, 8179.

(29) Jarzynski, CPhys. Re. Lett. 1997, 78, 2690.

(30) Hummer, G.; Szabo, Rroc. Natl. Acad. Sci. U.S.2001 98, 3658.

(31) Liphardt, J.; Dumont, S.; Smith, S. B.; Tinoco, I., Jr.; Bustamante,
C. Science2002 296, 1832.

(32) Schurr, J. M.; Fujimoto, B. Sl. Phys. Chem. B003 107, 14007.

(33) Hatano, T.; Sasa, Phys. Re. Lett. 2001, 86, 3463.

(34) Trepagnier, E. H.; Jarzynski, C.; Ritort, F.; Crooks, G. E.; Bustamante,
C.; Liphardt, J.Proc. Natl. Acad. Sci. U.S.£2004 101, 15038.

(35) Qian, H.; Xie, X. S. Submitted for publication, 2005.

(36) Callen, H. B.; Welton, T. APhys. Re. 1951, 83, 34.

(37) Herman, JJ. Phys. Chem1991, 95, 9029.

(38) Gore, J.; Ritort, F.; Bustamante, Broc. Natl. Acad. Sci. U.S.A.
2003 100, 12564.

(39) Zuckerman, D. M.; Woolf, T. BPhys. Re. Lett.2002 89, 180602.

(40) Shirts, M. R.; Bair, E.; Hooker, G.; Pande, V. Bhys. Re. Lett.
2003 91, 140601.

(41) We note that, for the use aiirpr, such a backward turnover
sampling is not required, becaudérpt needs only the mean and
the variance of then distribution (see eq 9). Such a straightforward
algorithm of Aiirpr provides a simple and quick estimation &t
even the backward turnover is not observed in the sampling.

NL0521773

Nano Lett., Vol. 5, No. 12, 2005



