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Diffusion process models are widely used in science, engineering, and finance. Most diffusion processes are described by stochastic
differential equations in continuous time. In practice, however, data are typically observed only at discrete time points. Except for a few very
special cases, no analytic form exists for the likelihood of such discretely observed data. For this reason, parametric inference is often achieved
by using discrete-time approximations, with accuracy controlled through the introduction of missing data. We present a new multiresolution
Bayesian framework to address the inference difficulty. The methodology relies on the use of multiple approximations and extrapolation
and is significantly faster and more accurate than known strategies based on Gibbs sampling. We apply the multiresolution approach to three
data-driven inference problems, one of which features a multivariate diffusion model with an entirely unobserved component.
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1. INTRODUCTION

Diffusion processes are commonly used in many applications
and disciplines. For example, they have served to model price
fluctuations in financial markets (Heston 1993), particle move-
ment in physics (McCann, Dykman, and Golding 1999), and
the dynamics of biomolecules in cell biology and chemistry
(Golightly and Wilkinson 2008). Most diffusion processes are
specified in terms of stochastic differential equations (SDEs).
The general form of a one-dimensional SDE is

dYt = μ (Yt , θ ) dt + σ (Yt , θ ) dBt,

where t is continuous time; Yt is the underlying stochastic pro-
cess; μ(·) is the drift function, a function of both Yt and a set of
parameters θ ; σ (·) is the diffusion function; and Bt is Brownian
motion.

While an SDE model is specified in continuous time, in
most applications, data can only be observed at discrete time
points. For example, measurements of physical phenomena are
recorded at discrete intervals—in chemistry and biology, molec-
ular dynamics are often inferred from the successive images of
camera frames. The price information in many financial mar-
kets is recorded at intervals of days, weeks, or even months.
Inferring the parameters θ of an SDE model from discretely
observed data is often challenging because it is almost never
possible to analytically specify the likelihood of these data (the
list of special cases of SDEs that do admit an analytic solution
is surprisingly brief). Inferring the parameters of a discretely
observed SDE model is the focus of this article.

One intuitive approach to the problem is to replace the
continuous-time model with a discrete-time approximation. To
have the desirable accuracy, one often has to use a highly dense
discretization. Dense discretization, however, leads to two chal-
lenging issues: (1) accurate discrete-time approximations often
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require the discretization time length to be shorter than the time
lag between real observations, creating a missing data problem;
(2) highly dense discretization often imposes an unbearable
computation burden. In this article, we propose a new multires-
olution Monte Carlo inference framework, which operates on
different resolution (discretization) levels simultaneously. In let-
ting the different resolutions communicate with each other, the
multiresolution framework allows us to significantly increase
both computational efficiency and accuracy of estimation.

1.1 Background

With direct inference of SDE parameters typically being in-
feasible, researchers have experimented with a wide number
of approximation schemes. The methods range from using an-
alytic approximations (Aı̈t-Sahalia 2002) to using approaches
that rely heavily on simulation (see Sørensen 2004 for a survey
of various techniques). An alternate strategy to approximating
the likelihood directly is to first approximate the equation it-
self and subsequently find the likelihood of the approximated
equation. Among possible discretizations of SDEs (see Pardoux
and Talay 1985 for a review), the Euler–Maruyama approach
(Maruyama 1955; Pedersen 1995) is perhaps the simplest. It
replaces the SDE with a stochastic difference equation:

�Yt = μ (Yt−1, θ )�t + σ (Yt−1, θ )
√
�tZt ,

where�Yt = Yt − Yt−1,�t is the time lag between observations
Yt−1 and Yt , and Zt are iid normal N (0, 1) random variables.
In most cases, one cannot choose the rate at which data are
generated—observation rate is typically dictated by equipment
limitations or by historical convention—and applying the dis-
cretization scheme directly to the observed data may yield very
inaccurate estimates.

More accurate inference is made possible, however, by in-
corporating the idea of missing data into the approximation ap-
proach. In this framework, the �t of the discretization scheme
can be reduced below the rate at which data are actually gathered.
The complete data Yt of the specified model then becomes either
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missing or observed. Simulation could be used to integrate out
the missing data and compute maximum likelihood estimates of
the parameters (Pedersen 1995). The difficulty of this simulated
maximum likelihood estimation method lies in the difficulty of
finding an efficient simulation method. See Durham and Gallant
(2002) for an overview.

The same methodology—combining the Euler–Maruyama
approximation with the concept of missing data—can also
be used to estimate posterior distributions in the context of
Bayesian inference. For example, one can use the Markov chain
Monte Carlo (MCMC) strategy of a Gibbs sampler to condi-
tionally draw samples of parameters and missing data and form
posterior estimates from these samples (Jones 1998; Elerian,
Chib, and Shephard 2001; Eraker 2001). While the approxima-
tion can be made more accurate by reducing the discretization
step size �t , this will generally cause the Gibbs sampler to
converge at a very slow rate. Not only does the reduction in dis-
cretization step size lead to more missing data—requiring more
simulation time per iteration—but also adjacent missing data
values become much more correlated, leading to substantially
slower convergence.

For more efficient computation, Elerian, Chib, and Shephard
(2001) suggested conditionally drawing missing data using ran-
dom block sizes. Along similar lines but from a general per-
spective, Liu and Sabatti (2000) adapted group Monte Carlo
methodology to this problem: changing the block size and us-
ing group Monte Carlo to update the blocks. Another possible
approach to drawing missing data is to attempt to update all val-
ues in a single step. Roberts and Stramer (2001) proposed first
transforming the missing data so that the variance is fixed and
constant; then a proposal for all transformed missing data be-
tween two observations is drawn from either a Brownian bridge
or an Ornstein–Uhlenbeck (OU) process and accepted using
the Metropolis algorithm. Chib, Pitt, and Shephard (2004) pro-
posed a different transformation method, avoiding the use of
variance-stabilizing transformations. Golightly and Wilkinson
(2008) extended this approach, proposing a global Gibbs sam-
pling scheme that can be applied to a large class of diffusions
(where reducibility is no longer required). Stuart, Voss, and
Wilberg (2004) also investigated conditional path sampling of
SDEs but employed a stochastic PDE-based approach instead.
Beskos et al. (2006) proposed a method that not only draws
all the missing data at once, as these other researchers have
suggested, but does so using the actual SDE, rather than an
Euler–Maruyama discretization. This is accomplished using ex-
act retrospective sampling of the actual diffusion paths. For fur-
ther details on this inference approach, see Beskos and Roberts
(2005) and Beskos, Papaspiliopoulos, and Roberts (2009).

1.2 The Multiresolution Approach

While there has been much investigation on how to up-
date missing data values in a Euler–Maruyama approximation
scheme, all such schemes rely on a single discretization level
for approximating the true likelihood. This leads to a delicate
balance: on one hand, low-resolution (large�t) approximations
require less computation effort, but the results are inaccurate;
on the other hand, high-resolution (small �t) approximations
are more accurate, but they require very intense computation.

We propose a multiresolution framework, which simultaneously
considers a collection of discrete approximations to estimate the
posterior distributions of the parameters, such that different lev-
els of approximations are allowed to communicate with one
another. There are three critical advantages to this approach
over using only one approximation level. First, the conver-
gence rate of the MCMC simulation can be substantially im-
proved: coarser approximations help finer approximations con-
verge more quickly. Second, a more accurate approximation
to the diffusion model can be constructed using multiple dis-
cretization schemes: each level’s estimates of the posterior dis-
tribution can be combined and improved through extrapolation.
Third, the overall accuracy of the posterior estimates can be
augmented incrementally. If a smaller value of �t is later de-
termined necessary, the computational burden is considerably
lower relative to starting a brand new sampler at the new value
of �t . This last feature allows the multiresolution framework
to be most useful in practice, as the appropriate value of �t is
typically unknown at the outset of analysis. Allowing its value
to be decreased incrementally over the course of analysis can be
of great practical service.

Taken in combination, these three features of the multireso-
lution method allow for more computationally efficient, more
accurate, and more convenient inference of the parameters. The
remainder of this article is organized as follows: Section 2 in-
troduces the general notation used in this article. Section 3 in-
troduces the multiresolution sampler, a cross-chain MCMC al-
gorithm between Euler–Maruyama approximations at different
resolution levels. Section 4 describes how samples from these
levels can be combined through extrapolation to form more
accurate estimates of the true posterior distribution. Practical
implementations of the multiresolution approach—combining
multiresolution sampling with extrapolation—are presented in
Section 5. The performance of the proposed method is illus-
trated with three different SDE applications (one in biophysics
and two in finance) where no analytic form of the likelihood
is presently known. The article concludes with a discussion in
Section 6.

2. NOTATION AND TWO ILLUSTRATIVE EXAMPLES

It is instructive to examine simple examples of diffusions to
better understand the details of different inference strategies.
One of the simplest SDEs is the OU process:

dYt = γ (μ− Yt ) dt + σdBt .

It is fortunate that the exact solution to this equation is known,
thus allowing us to directly examine the error introduced by
approximate inference strategies.

Let Y = (Y0, Y1, . . . , Yn) denote the n+ 1 values of observed
data, beginning with an initial value Y0. For simplicity, it is
assumed that the observations Y have been made at regular time
intervals of�T . The exact likelihood of Y under the OU process
is:

fexact (Y | μ, γ, σ ) =
n∏
t=1

1√
πgσ

exp

{
− 1

gσ 2

(
(μ− Yt )

−
√

1− γg (μ− Yt−1)
)2
}
,
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Figure 1. Euler–Maruyama approximation of the posterior of σ and γ in the OU process. Posteriors are based on 200 points of simulated data
with �T = 0.5, μ = 0, and σ = γ = 1. The prior is p(μ, γ, σ ) ∝ γ /σ . The third panel is a contour plot showing the joint parameter space. (a)
fk(σ | Y ), (b) fk(γ | Y ), (c) fk(σ, γ | Y ).

where g = (1− exp(−2γ�T ))/γ , and for simplicity, we ig-
nore the initial distribution of Y0 and treat it as a fixed value.
To contrast this exact likelihood with Euler–Maruyama approx-
imations to the likelihood, we introduce notation to describe
the complete data—the union of the observations Y with the
intermediate values of missing data. Let Y (k) be the vector of
complete data, where we put 2k − 1 regularly spaced values of
missing data between two successive observations, such that
the complete data interobservation time in Y (k) is�t = �T/2k .
For example, Y (0) = Y and Y (1) = (Y (1)

0 , Y
(1)
1 , . . . , Y

(1)
2n−1, Y

(1)
2n ).

In this example with k = 1, the even indices correspond to ob-
served values and the odd indices to missing values. Generally,
the elements of the vector Y (k) are labeled from 0 to 2kn, with
every 2kth element corresponding to an actual observation. The
likelihood of the complete data under the Euler–Maruyama ap-
proximation is

fk
(
Y (k) | μ, γ, σ ) = 2kn∏

j=1

1√
2π�tσ

exp

{
− 1

2�tσ 2

×
(
Y

(k)
j − Y (k)

j−1 − γ�t
(
μ− Y (k)

j−1

))2}
.

Note that two different choices of k correspond to two different
Euler–Maruyama approximations. The observed data will be
the same, yet correspond to differently indexed elements. For
instance, if Y (k)

j is an observed value of the process, then Y (k+1)
2j

will be the identical value. For convenience, we use Y {k} to
denote all the missing data in the kth approximation scheme,
Y {k} = Y (k) \ Y .

The exact posterior distribution of the parameters
in the OU process can be found by specifying
a prior p(μ, γ, σ ): fexact(μ, γ, σ | Y ) ∝ p(μ, γ, σ )fexact(Y |
μ, γ, σ, Y0). The Euler–Maruyama approximation is found by
integrating out the missing data:

fk (μ, γ, σ | Y ) ∝
∫

Y {k}
p (μ, γ, σ ) fk(Y (k) | μ, γ, σ )dY {k}.

For the OU process, the posterior density fk(μ, γ, σ | Y ) can
be calculated analytically. As k→∞, fk(μ, γ, σ | Y ) will ap-
proach the true posterior fexact(μ, γ, σ | Y ). This is illustrated in
Figure 1, which plots the posteriors of fk(σ | Y ) and fk(γ | Y )
for several values of k, along with the respective true posteriors.

These posteriors are based on 200 observations of a simulated
OU process with �T = 0.5, μ = 0, γ = 1, and σ = 1. The
noninformative (improper) prior p(μ, γ, σ ) ∝ γ /σ was used,
following the example of Liu and Sabatti (2000).

As described in the introduction, the difficulty with this ap-
proximation scheme lies in the integration of the missing data.
Unlike the OU process, most SDE applications require sam-
pling of both the parameters and the missing data, and these are
all strongly dependent on one another. Consider the common
solution of using a Gibbs sampler to integrate out the missing
data: the joint posterior of both parameters and missing data is
sampled conditionally, one parameter or missing data value at
a time. As k increases, not only does it take longer to iterate
the sampler—as there is more missing data—but also each se-
quential draw is increasingly correlated. With all other values
held constant, the conditional draws are almost deterministic:
the sampler becomes nearly trapped. To illustrate this difficulty,
a Gibbs sampler was run to generate samples from the posterior
distributions of the parameters, using the same set of simulated
data of the OU process as in Figure 1. The autocorrelations
of sampled σ and γ are shown in Figure 2, both increasing
substantially with k. This highlights the trade-off in using the
Euler–Maruyama approximation approach. While it allows for
numerical tractability, it can be very computationally expensive
to achieve a high degree of accuracy relative to the true posterior
specified by the original diffusion.

With its constant diffusion function, the OU process is a
very special example of an SDE. A more complex SDE can
help demonstrate some of the practical difficulties in working
with these types of models. A good example of this is the
Feller process—frequently referred to as the CIR model in the
economics literature (Cox, Ingersoll, and Ross 1985)—where
the diffusion function is not constant. The Feller process is

dYt = γ (μ− Yt ) dt + σ
√
YtdBt . (2.1)

The support of Yt is 0 to ∞, and the parameters γ, μ, and σ
are also constrained to be nonnegative. A closed-form solution
to the joint posterior of parameters of the Feller process can
be written using the special function Ia(·), the modified Bessel
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Figure 2. Autocorrelation of the posterior samples of σ and γ of
the OU process from a Gibbs sampler output. Convergence slows as k
increases. (a) Autocorrelation of σ , (b) autocorrelation of γ .

function of order a (Kou and Kou 2004):

fexact (μ, γ, σ | Y ) ∝ p (μ, γ, σ )

(
2γ eγ�T ( μγ

σ2 − 1
2 )

σ 2(1− e−γ�T )

)n−1

×
n−1∏
i=1

(Yi/Yi−1)
μγ

σ2 − 1
2 exp

[
−2γ (Yi + e−γ�T Yi−1)

σ 2(1− e−γ�T )

]

I 2μγ
σ2 −1

(
4γ
√
Yi−1Yie−γ�T

σ 2(1− e−γ�T )

)
. (2.2)

This expression allows the error resulting from the
Euler–Maruyama approximation to be examined directly.
Figure 3 shows an example of different approximate posteri-
ors using a simulated dataset from the Feller process. A total of
200 data points were drawn using�T = 0.5, andμ, γ , and σ all
equal to 1. We use the same prior p(μ, γ, σ ) ∝ γ /σ as before.

Here, the approximate Euler–Maruyama parameter posterior
fk(μ, γ, σ | Y ) cannot be obtained analytically: a Gibbs sam-
pler is used to integrate out the missing data instead. Using the
prior above, the conditional distributions of each parameter γ ,
κ = γμ, and σ 2 are standard distributions: either a (truncated)
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Figure 3. Posterior distributions of σ and γ in the Feller process
based on Euler–Maruyama approximations. Posteriors are based on
200 points of simulated data with �T = 0.5, and μ = σ = γ = 1.
p(μ, γ, σ ) ∝ γ /σ . (a) fk(σ | Y (0), Y0), (b) fk(γ | Y (0), Y0).

normal or an inverse gamma. The conditional distribution of
each value of missing data, however, is not a traditional one:

fk
(
Y

(k)
j

∣∣μ, σ, γ, Y (k)
j−1, Y

(k)
j+1

)
∝ (

Y
(k)
j

)−1/2
exp

[
− 1

2σ 2�t

((
Y

(k)
j

)2

Y
(k)
j−1

−
(

1− γ 2�t2

+ 2γμ�t

Y
(k)
j−1

)
Y

(k)
j +

1

Y
(k)
j

(
Y

(k)
j+1 − γμ�t

)2
)]
. (2.3)

For most SDEs, the conditional distribution of missing data
will not be a familiar one that can be easily sampled from.
One possibility is to use a Metropolized-Gibbs step: first draw
a new value of the missing data from a proposal distribution,
then accept or reject the proposed draw according to the
Metropolis–Hastings rule. Among many possible proposal
distributions, a convenient one is

πk
(
Y

(k)
j | θ , Y (k)

j−1, Y
(k)
j+1

)
∼ N ((Y (k)

j+1 + Y (k)
j−1

)
/2, σ 2

(
Y

(k)
j−1, θ

)
�t/2

)
.
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Figure 4. Autocorrelation of Feller process posterior samples σ and
γ from the output of a Gibbs sampler. Convergence slows as k increases.
(a) Autocorrelation of σ , (b) autocorrelation of γ .

This normal proposal has the advantage of being readily drawn
from and asymptotically correct: as �t → 0, the acceptance
rate approaches 1 (Eraker 2001). Note that when the support of
the process is strictly positive, we can simply use a truncated
normal distribution. Using this proposal, we applied the
(Metropolized) Gibbs sampler to the Feller process. The results
serve as a second illustration of the difficulty of using the
Gibbs approach to integrate out the missing data as k becomes
large. Figure 4 shows how the autocorrelations of σ and γ
substantially increase with k.

The OU and Feller processes highlight the problems asso-
ciated with applying a Gibbs sampler to computing posteriors
under Euler–Maruyama approximations. While it may be theo-
retically possible to achieve arbitrary accuracy by selecting the
appropriate value of k, it may not be practically feasible to wait
for the Gibbs sampler to converge. Furthermore, the OU process
and the Feller process are the rare cases where the difference
between the approximate and true posteriors can be observed.
In practice, the accuracy of a selected Euler–Maruyama approx-
imation is unknown. One only knows that it converges to the
correct distribution as k→∞.

3. MULTIRESOLUTION SAMPLING

3.1 The Sampler

Traditionally, the use of an Euler–Maruyama approximation
requires a single resolution choice (corresponding to a single
choice of �t). The selection of a low resolution (large �t)
will result in a quickly converging sampling chain, which is,
unfortunately, inaccurate. A high-resolution choice (small �t)
can result in a highly accurate estimate, yet will be slow—many
samples will be required both for convergence and to build up
an estimate of the posterior distribution.

In contrast, our proposed multiresolution sampler employs a
collection of Euler–Maruyama discretization schemes at differ-
ent resolutions. “Rough” approximations are used to locate the
important regions of the parameter space, while “fine” approx-
imations fill in and explore the local details. Low-resolution
approximations quickly explore the global (parameter) space
without getting stuck in one particular region; high-resolution
approximations use the information obtained at the low-
resolution explorations to yield accurate estimates in a relatively
short time. By combining the strength of low and high resolu-
tions (and mixing global and local explorations), this approach
provides an inference method that is both fast and accurate. The
key ingredient of the multiresolution sampler is to link different
resolution approximations, using the empirical distribution of
the samples collected at low resolutions to leap between states
during high-resolution exploration.

In the multiresolution sampler, Euler–Maruyama approxima-
tions at m consecutive resolutions k, k + 1, . . . , k +m− 1 are
considered together. A sampling chain associated with each res-
olution is constructed. The multiresolution sampler starts from
the lowest resolution chain k. This initial chain is sampled using
any combination of local updates. For example, one may use the
simple Gibbs algorithm to update the missing data Y {k} and the
parameters θ . Alternatively, one could combine the Gibbs algo-
rithm with the block-update strategy of Elerian, Chib, and Shep-
hard (2001) or the group-update algorithm of Liu and Sabatti
(2000) to evolve (Y {k}, θ ).

After an initial burn-in period, an empirical distribution of
(Y {k}, θ ) is constructed from the Monte Carlo samples. The
multiresolution sampler then moves to the second lowest reso-
lution chain, at level k + 1. At each step of the multiresolution
sampler, the state of (Y {k+1}, θ ) is updated using one of two
operations. With probability 1− p, say 70%, the previous sam-
ple (Y {k+1}

old , θold) undergoes a local update step to yield the next
sample. For example, in the case of Gibbs, this involves con-
ditionally updating each element of θold and each missing data
value in Y {k+1}

old . With probability p, say 30%, a global, cross-
resolution move is performed to leap (Y {k+1}

old , θold) to a new state.
The cross-resolution move is accomplished in three stages.

First, a state (Y {k}trial, θ trial) is drawn uniformly from the empirical
distribution formed by the earlier chain at resolution k. Second,
(Y {k}trial, θ trial) is augmented to (Y {k+1}

trial , θ trial) by generating the
necessary additional missing data values (as missing data in
the Euler approximations at levels k and (k + 1) have different
dimensions). Third, (Y {k+1}

trial , θ trial) is accepted to be the new
sample with a Metropolis–Hastings type probability. As this
cross-resolution step plays a pivotal role in the multiresolution
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sampler’s effectiveness, we shall describe it in full detail in
Section 3.2.

After running the (k + 1)-resolution chain for a burn-in pe-
riod, an empirical distribution of (Y {k+1}, θ ) is constructed from
the posterior samples; this empirical distribution will in turn help
the (k + 2)-resolution chain to move. The multiresolution sam-
pler on the (k + 2)-resolution chain is then started and updated
by the local move and the global cross-resolution move with
probabilities 1− p and p. In the cross-resolution move, the old
sample (Y {k+2}

trial , θ trial) leaps to a new state with the help of the em-
pirical distribution constructed by the (k+1)-resolution chain. In
this way, the multiresolution sampler successively increases the
resolution level until the Euler–Maruyama approximation with
the finest resolution k + m− 1 is reached. Each sampling chain
(other than the one at the lowest resolution) is updated by two
operations: the local move and the cross-resolution move. The
basic structure of the multiresolution sampler is summarized in
Algorithm 1.

Algorithm 1 The Multiresolution Sampler
1. Let i = 0. Start from the k-resolution chain. Collect sam-

ples from fk(θ ,Y {k} | Y ) using any combination of local
updating algorithms.

2. Discard some initial samples as burn-in, and retain the
remaining samples as the empirical distribution of (Y {k}, θ )
from fk(θ ,Y {k} | Y ).

3. Let i ← i + 1. Start the (k + i)-resolution chain. Initialize
the chain to a state (Y {k+i}old , θold).

4. With probability 1− p, perform a local update step to
generate a new sample from fk+i(θ,Y {k+i} | Y ), using any
combination of local updates.

5. With probability p, perform a cross-resolution move:
a. Randomly select a state (Y {k+i−1}

trial , θ trial) from the em-
pirical distribution of the (k + i − 1)-chain.

b. Augment (Y {k+i−1}
trial , θ trial) to (Y {k+i}trial , θ trial) by generat-

ing additional missing data values.
c. With a Metropolis–Hasting type probability r , accept

(Y {k+i}trial , θ trial) as the next sample in the chain; with prob-
ability 1− r , keep the previous values of (Y {k+i}old , θold)
as the next sample in the chain.

6. Rename the most recent draw as (Y {k+i}old , θold), and repeat
from Step 4 until a desired number of samples are achieved
(typically determined in part by monitoring the chain for
sufficient evidence of convergence).

7. Discard some initial samples of the chain as burn-in, and
retain the remaining samples to form an empirical distri-
bution of (Y {k+i}, θ ) from fk+i(θ,Y {k+i} | Y ). If a finer
approximation to the SDE is desired, repeat from Step 3.

3.2 The Cross-Resolution Move

The cross-resolution move provides the means for successive
resolution approximations to communicate with each other, al-
lowing a rapidly mixing low-resolution approximation to speed
up the convergence of a higher-resolution chain. There are two
key insights behind the move. (1) As the amount of missing data
increases, the posterior distributions of the parameters under dif-
ferent resolutions become closer; an example of this can be seen

k = 1

k = 2

k = 3

Figure 5. Graphic depicting three Euler–Maruyama approxima-
tions. Shaded circles represent observed data, while empty circles
represent missing data. The arrows show how a draw from one ap-
proximation can be partially used as a proposal in the next.

in Figures 1 and 3, which illustrate how the posterior distribu-
tions of θ overlap to an increasing degree as k, the resolution
level, increases. Notably, the high-resolution cases are where
help is most needed because of the slow convergence of the local
update. This suggests that in the sampling of a high-resolution
chain (say k = 5), generating proposals (independently) from a
lower-resolution chain (k = 4) will have a high chance of be-
ing accepted and will significantly speed up the high-resolution
chain’s convergence. (2) Although it is not feasible to directly
draw from an Euler–Maruyama distribution, we can employ the
empirical distribution to resolve this difficulty. With a sufficient
number of samples, the empirical distribution built on them will
be nearly identical to the analytic one. Furthermore, it is trivial
to draw from an empirical distribution: simply select uniformly
from the existing samples.

Based on these two insights, the cross-resolution move is
implemented in the multiresolution sampler by using the em-
pirical distribution of a low-resolution chain to generate a new
sample for the high-resolution chain. To carry this move out, it
is important to note that different resolution levels do not share
the same dimensionality. Thus, once a sample is drawn from the
empirical distribution of a lower-resolution scheme, we must
augment it with additional missing data values. A natural way
of doing this is to divide the missing data at resolution (k + 1)
into two groups, Y {k+1} = Y {k} ∪ Z{k+1}, where Z{k+1} are the
additional missing data at resolution (k + 1). Figure 5 illustrates
how such successive approximations line up relative to one
another. Thus, the lower-resolution chain k generates the
missing Y {k}, and we are free to propose the remaining Z{k+1}

from any distribution

Tk+1(Z{k+1} | θ ,Y {k},Y ).

Typically, the dimensionality of Z{k+1} is high, but each of
its components is independent of each other, conditioned on
θ ,Y {k}, and Y , such that Tk+1 boils down to independent draws
from univariate distributions (or d-dimensional distributions for
a d-dimensional SDE), which are much easier to construct.

Algorithm 2 summarizes the cross-resolution move from the
kth approximation to the (k + 1)th approximation. A reader
familiar with the equi-energy sampler (Kou, Zhou, and Wong
2006) might note that the idea of letting different resolutions
communicate with each other echoes the main operation of
the equi-energy sampler, in which a sequence of distributions
indexed by a temperature ladder is simultaneously studied: the
flattened distributions help the rough ones to be sampled faster.
Indeed, it was the equi-energy sampler’s noted efficiency that
motivated our idea of the cross-resolution move. We conclude
this section by giving practical guidelines for how to choose the
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Algorithm 2 Cross-Resolution Move of Multiresolution
Sampler

1. Let (θold,Y {k+1}
old ) be the current set of parameters and miss-

ing data. Draw (θ trial,Y {k}trial) from the empirical distribution
of fk(θ ,Y {k} | Y ). Let π trial

k = fk(θ trial,Y {k}trial | Y ).
2. Draw Z{k+1}

trial from a distribution Tk+1(Z{k+1} | θ trial,

Y {k}trial,Y ). Let τ trial
k+1 = Tk+1(Z{k+1}

trial | θ trial,Y {k}trial,Y ). Recall

that Y {k+1}
trial = Y {k}trial ∪ Z{k+1}

trial . Let π trial
k+1 = fk+1(θ trial,

Y {k+1}
trial | Y ).

3. Similarly, let πold
k =fk(θold,Y {k}old | Y ), τ old

k+1=Tk+1(Z{k+1}
old |

θold,Y {k}old,Y ), and πold
k+1 = fk+1(θold,Y {k+1}

old | Y ). Accept

(θ trial,Y {k+1}
trial ) as the next sample from fk+1(θ,Y {k+1} | Y )

with probability

r = min

{
1,
π trial
k+1/

(
π trial
k τ trial

k+1

)
πold
k+1/

(
πold
k τ old

k+1

) } .
Otherwise, with probability 1− r , keep (θold,Y {k+1}

old ) as
the next sample.

proposal distribution Tk+1, and how to determine the appropriate
probability p of a cross-resolution move.

3.2.1 Choosing Tk+1. We are free to choose the distribu-
tion Tk+1 to conditionally augment the additional missing data
(Step 2 of Algorithm 2). A good choice, however, will make
the acceptance rate of the independence move approach 1 as k
increases. A simple proposal is

Tk+1
(
Y

(k+1)
j

∣∣θ , Y (k+1)
j−1 , Y

(k+1)
j+1

)
∼ N ((Y (k+1)

j+1 + Y (k+1)
j−1

)/
2, σ 2

(
Y

(k+1)
j−1 , θ

)
�t/2

)
independently for each Y (k+1)

j ∈ Z{k+1}, where�t = �T/2k+1.
This is the proposal used to update the missing data in the Gibbs
sampler of Section 2. To see how the cross-resolution move
improves the Monte Carlo convergence, let us turn to the OU
example process introduced in Section 2. The autocorrelations
of the OU process parameters σ and γ under the cross-resolution
move are shown in Figure 6. These can be directly contrasted
with the Gibbs sampler autocorrelations shown in Figure 2, as
the identical dataset was used in both samplers. In addition to
the evident improvement of the autocorrelation, we note that
in the cross-resolution move—in contrast to the local update
move—the autocorrelation decreases as k increases. This re-
flects the fact that the acceptance rate is increasing as the suc-
cessive Euler–Maruyama approximations increasingly overlap
with one another.

A good choice of Tk+1 can make the multiresolution sam-
pler very efficient. On the other hand, a poor choice of Tk+1

can result in a low acceptance rate of the cross-resolution pro-
posal. There does not appear to be, however, a foolproof recipe
that guarantees a good distribution Tk+1 for any arbitrary SDE.
One useful technique that can make Tk+1 easier to choose is
to transform some aspect of the SDE to stabilize the variance
(Roberts and Stramer 2001). For instance, if Yt is a Feller pro-
cess (2.1) and we let Zt = f (Yt ) = 2

√
Yt , then by Itō’s formula

dZt = ( 2μ
Zt
− Zt

2 − σ 2

2Ztγ
)γ dt + σdBt . The distribution of miss-

ing data under Zt , with its constant variance function, is much
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Figure 6. Autocorrelation of OU process parameters σ and γ from
the output of a multiresolution sampler. Convergence improves as k
increases. (a) Autocorrelation of σ , (b) autocorrelation of γ .

closer to a normal than the original Yt . Figure 7 shows the
autocorrelation of σ and γ from the output of the multireso-
lution sampler on Zt . As k increases, the convergence rate of
the multiresolution sampler improves. This stands in contrast to
Figure 4 of the Gibbs sampler.

3.2.2 Choosing p. The probability p of making a cross-
chain move in the multiresolution sampler (or the fraction of
moves on a deterministic schedule) can be chosen as follows.
Consider a local-update MCMC algorithm (e.g., the Gibbs sam-
pler or the block update algorithm). For a given quantity of
interest τ = h(θ), we may approximate the effective sample
size EG of these local updates up to first order by

EG ≈ N 1− η
1+ η ,

where N is the number of MCMC iterations and η is the lag-
1 autocorrelation of τ : η = cor(τ (t), τ (t+1)) (see, for instance,
Liu 2001, sec. 5.8). Now suppose that at each cycle of the lo-
cal updates, a cross-resolution move targeting p(θ,Y {k+1} | Y )
with acceptance rate a is made with probability p. Then τ (t) and
τ (t+1) are independent with probability ap and have correlation
η with probability 1− ap, such that the lag-1 autocorrelation
of τ using these cross-resolution moves decreases to (1− ap)η.
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Figure 7. Autocorrelation of variance-stabilized Feller process pa-
rameters σ and γ from the output of a multiresolution sampler. Con-
vergence improves as k increases. (a) Autocorrelation of σ , (b) auto-
correlation of γ .

If EM denotes the effective sample size of the multiresolution
sampler combining local updates with cross-resolution propos-
als, the efficiency of this algorithm relative to the local updates
alone can be measured as

EM

EG
= (1− η + apη)(1+ η)

(1+ η − apη)(1− η)
. (3.1)

The value of p can then be adjusted if a and η are known, or es-
timated after an initial pilot run. For instance, if the basic Gibbs
sampler has lag-1 autocorrelation η = 0.75 for a parameter of
interest, it takes ap = 0.25 to double the effective sample size.
For η = 0.9, we only need ap = 0.1, which helps quantify the
great potential of multiresolution sampling when the autocorre-
lations of the local updates are high.

4. MULTIRESOLUTION INFERENCE

The multiresolution sampler uses the rapid convergence of
low-resolution chains to in turn speed up the high-resolution
chains. At the completion of sampling, the multiresolution sam-
pler has samples from several approximation levels. For the
subsequent statistical inference, a naive approach might be to

simply focus on the highest resolution approximation—since it
is the most accurate—and ignore the low-resolution samples,
treating them as merely a computational by-product of the pro-
cedure. This approach, however, does not use all the samples
effectively, wasting a great deal of both information and com-
putation. In fact, the different approximations can be combined
by extrapolation to significantly reduce the estimation error.

4.1 Multiresolution Extrapolation

Extrapolation is a technique often used in numerical anal-
ysis. It is a series acceleration method that combines succes-
sive approximations to reduce error. Richardson extrapolation
(Richardson 1927) is a general statement of the approach, which
can be applied whenever a function F (h) converges to a value
F0 = limh→0 F (h). Consider the expansion of such a limit:

F0 = F (h)+ amhm +O(hm
′
), (4.1)

where m′ > m and am �= 0. Taking the view that F (h) is an
approximation to the limit F0, two successive approximations
F (h) and F ( h

s
) can be combined to form a more accurate esti-

mate of F0 by eliminating the amhm term in the expansion:

R(h) = smF ( h
s
)− F (h)

sm − 1
= F0 +O(hm

′
).

Compared with F (h), the error in R(h) is at least an order
smaller. Additional extrapolation can be applied recursively to
R(h) to eliminate even higher-order terms in the expansion. The
Romberg method of integration is an example of Richardson
extrapolation applied to numerical integration (Romberg 1955).
Richardson extrapolation has also been applied to simulating
and numerically solving SDEs (Talay and Tubaro 1990; Kloe-
den, Platen, and Hofmann 1995; Durham and Gallant 2002).

In our Bayesian inference of diffusions, the multiresolution
sampler gives us samples from several Euler–Maruyama ap-
proximations of the posterior distribution. Our goal is to com-
bine them to have a more accurate estimate of the true posterior.
To do so, we perform extrapolation. This multiresolution ex-
trapolation allows us to reduce the discretization error by an
order or more. For example, suppose a function g(θ) of the pa-
rameters is of scientific interest. An extrapolated point estimate
can be obtained by first calculating the posterior mean or me-
dian of g(θ) based on the samples from each Euler–Maruyama
approximation and then performing an extrapolation. Similarly,
a 1− α credible interval of g(θ) can be obtained by calculat-
ing its α/2 and 1− α/2 quantiles from each Euler–Maruyama
approximation and then performing an extrapolation on these
quantiles. For most inference problems, point and interval es-
timation suffices. Occasionally, one might want to look at the
marginal posterior density of a particular parameter θj . In this
case, we can perform extrapolation on a kernel density estimate
f̂ (θj ) at each value of θj on a grid. By piecing together these
extrapolated values, we obtain an extrapolated estimate for the
marginal posterior density of θj .

A key ingredient of successful extrapolation is establishing
the exponent m in Equation (4.1). We will show in the Appendix
that the Euler–Maruyama approximation for the posterior distri-
bution has the exponentm = 1 for the posterior mean, quantiles,
and kernel density estimates.

As an example of the method, consider combining the k =
2 and k = 3 approximations of a given quantile α of θj . Let
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us designate this extrapolated quantile estimate as R−1
α (2 ∪ 3).

With m = 1, and with the k = 3 approximation having twice
the discretization rate as the k = 2 approximation, we have the
formula

R−1
α (2 ∪ 3) = 2F−1

α (k = 3)− F−1
α (k = 2).

Combining k = 3 and k = 4 is similar:

R−1
α (3 ∪ 4) = 2F−1

α (k = 4)− F−1
α (k = 3).

Combining k = 2, k = 3, and k = 4, however, is different.
Rather than combine the quantiles directly, we (recursively)
combine the extrapolated estimates R−1

α (2 ∪ 3) and R−1
α (3 ∪ 4)

together:

R−1
α (2 ∪ 3 ∪ 4) = 1

3

(
4R−1

α (3 ∪ 4)− R−1
α (2 ∪ 3)

)
.

Note that here this combination is to eliminate the next higher-
order term; thus, in this formula, m = 2.

4.2 Illustration of Multiresolution Extrapolation

To provide an illustrative example, extrapolated density ap-
proximations for the OU, Feller, and variance-stabilized Feller
processes are displayed in Figure 8. Several observations im-
mediately follow from this figure:

1. Combining two posterior estimates through extrapolation
significantly reduces the error. Combining the approxi-
mations by using only 3 and 7 interpolated missing data
points between observations (k = 2 and k = 3), for exam-
ple, generally produces an estimate that is as accurate or
even more accurate than the corresponding estimate based
on a single approximation using 31 values of missing data
(k = 5). This illustrates a major advantage of the mul-
tiresolution approach: using the combined strength of the
multiresolution sampler and extrapolation, one does not
always require a highly dense discretization rate for an
accurate result; proper combination of low-resolution ap-
proximations can often lead to a better result than a single
high-resolution approximation.

2. A comparison between the Feller and variance-stabilized
Feller results again highlights the advantage of using a
variance-stabilizing transformation wherever possible.

3. Combining three Euler–Maruyama approximation
schemes (in this example, k = 2, 3, and 4) can be
effective at reducing the overall error, as this eliminates
both the first- and second-order errors. Thus, even in cases
where the discretization error is largely in higher-order
terms, the benefit derived from using extrapolation has
the potential to be quite significant.

These observations suggest that whenever the computa-
tional challenge of sampling from a high-dimensional Euler–
Maruyama approximation is substantial, it can be more efficient
to sample from several lower-dimensional approximations and
combine the resulting estimates with a final extrapolation step.

5. MULTIRESOLUTION METHOD IN PRACTICE

In this section, we shall apply the multiresolution approach
to three realistic SDE models, one in biophysics and two in

finance. Comparisons were made to chains that used only the
simple Gibbs-type local updates. However, it is worth empha-
sizing that any strategy that increases the efficiency of the Gibbs
sampler can be incorporated into the multiresolution sampler’s
local updates. This includes the block-update strategies of Ele-
rian, Chib, and Shephard (2001) or the group moves of Liu and
Sabatti (2000). The metric we use for comparison is the relative
mean squared error (MSE) R̂, the ratio of the MSE of the Gibbs
approach to the MSE of the multiresolution approach. Both
MSEs are taken relative to the true posterior parameter distribu-
tion in each example. Since the true posterior in these nontrivial
examples cannot be obtained analytically, we performed an
exhaustive search. Higher and higher resolution chains were
run to full convergence (many millions of iterations), until the
last chain matched the extrapolated estimate of the two chains
directly below it to within 0.1 standard deviations on 50 equally
spaced quantiles of each parameter’s marginal density. This
last chain was then retained as a proxy for the ground truth.

5.1 Double-Well Potential Model for Optical Trap

The following general potential model is used to model a
wide number of natural phenomena:

dYt = −U ′ (Yt ) dt + σdBt,

whereU (x) is a potential function andU ′(x) is the first derivative
of U (x) with respect to x. In a variety of circumstances, such as
enzymatic reactions and electron transfer, the potential function
is characterized as having a double well. In such cases, the
following potential is often used as a model:

U (x) = γ (x2 − β2)2 + γ c(x3/3− β2x).

The SDE model corresponding to data Yt observed in this po-
tential is thus

dYt = −
(
4Y 3

t + cY 2
t − 4β2Yt − cβ2

)
γ dt + σdBt .

Note that U (x) has local minima at ±β and a local maximum
at −c/4, provided c < 4|β|. Figure 9(a) plots the double-well
potential U (x).

We apply this model to an example from biophysics. In this
case, Yt describes the location of a particle when placed in an
optical trap. McCann, Dykman, and Golding (1999) studied
the behavior of a submicrometer-sized dielectric particle in
a double-well optical trap. They acquired the location of the
particle in time using a high-speed camera. While McCann,
Dykman, and Golding have not made their data publicly avail-
able, they have published their estimates of the double-well
potential itself, as well as some of the inferred particle positions
over time. We fit the double-well potential model to these
results and found values of β = 0.1725, c = 0.0259, γ = 5000,
and σ = 3. Using these parameters, we simulated this process
and sampled observations at a rate of �T = 1 ms to record a
total of 500 data points. An example of simulated observations
from the process are plotted in Figure 9(b).

Using an exhaustive numerical search, we determined that
resolution level k = 5 was indistinguishable from our proxy
for the ground truth. We compare the ratio of the MSE of the
Gibbs approach to that of the multiresolution method as fol-
lows. After a burn-in period of 10,000 iterations, we ran the
Gibbs sampler for 1000 iterations at resolution k = 5, that is,
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Figure 8. Posterior distribution estimates of σ and γ for different diffusions. Posterior estimates are created by combining two or more
Euler–Maruyama estimates of the posterior quantiles and reconstructing the estimate of the distribution. (a) fk(σ | Y ), OU process; (b) fk(γ | Y ),
OU process; (c) fk(σ | Y ), Feller process; (d) fk(γ | Y ), Feller process; (e) fk(σ | Y ), variance-stabilized Feller; (f) fk(γ | Y ), variance-stabilized
Feller.

with 31 values of missing data between observations. A prior
p(γ, β2, c, σ ) ∝ γ /σ · 1{c < 4|β|} is used to obtain the param-
eter posteriors, where 1{·} denotes the indicator function. With
this prior the conditional parameter draws of γ , κ = γ c, β2,
and σ 2 are truncated normals or inverse gamma. We recorded

the time it took to draw these 1000 samples, then gave the same
time budget to the multiresolution sampler on levels k = 3 and
k = 4, that is, with 7 and 15 values of missing data between ob-
servations. At level k = 4, the lag-1 parameter autocorrelations
were around 0.85 and the cross-resolution proposals from k = 3
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Figure 9. Example of simulated data from a double-well potential
model. β = 0.1725, c = 0.0259, γ = 5000, and σ = 3. (a) Double-
well potential, (b) simulated data.

to k = 4 had a 30% acceptance rate. We set the cross-resolution
proposal rate to p = 0.5, such that the multiresolution sampler
at k = 4 is expected to have twice the effective sample size of
the Gibbs sampler at k = 4 according to the rule-of-thumb in
(3.1).

Each sampler (Gibbs and multiresolution) was run many
times starting from different initial values, to produce the ratio
of MSE between the Gibbs and multiresolution estimates dis-
played in Table 1. Here, the multiresolution sampler is roughly
two to three times as efficient as a single Gibbs sampler. This is
roughly the value we expect, assuming that (3.1) holds and that
the computation time for Gibbs samplers doubles with each k.

5.2 Generalized CIR Model for U.S. Treasury Bill Rate

Diffusions are often used as models for short-term interest
rates in the field of mathematical finance. Chan et al. (1992)
had suggested using the generalized Cox, Ingersoll, and Ross
(gCIR) model:

dYt = γ (μ− Yt ) dt + σYψt dBt,

Table 1. Ratios of MSE. Estimates of posterior quantiles from a
Gibbs sampler versus those from the multiresolution method for the
double-well potential model over the same amount of computer time

γ MSE ratio c MSE ratio

R̂ ± ŝd(R̂) R̂ ± ŝd(R̂)

Q0.05 2.4± 0.65 Q0.05 1.6± 0.34
Q0.25 2.3± 0.64 Q0.25 2.2± 0.45
Q0.5 2.2± 0.59 Q0.5 3.1± 0.66
Q0.75 2.1± 0.54 Q0.75 3.0± 0.59
Q0.95 1.8± 0.45 Q0.95 2.8± 0.59

where γ , μ, σ , ψ , and Yt are all nonnegative. Both the OU and
Feller processes are special cases of this generalized process:
ψ = 0 is the OU process and ψ = 1/2 is the Feller process.

We apply the gCIR model to interest rate data consist-
ing of 16 years of monthly records, from August 1982 to
November 1998, of the 3-month U.S. Treasury Bill rate, as
compiled by the Federal Reserve Board. This data, shown in
Figure 10, is available for download at http://research.stlouisfed.
org/fred2/series/TB3MA/downloaddata?cid=116. The data has
been converted into a fraction by dividing by 100 (thus 0.1 is a
rate of 10%). There are 196 observations in total.

The prior used in our investigations is p(γ, μ, σ,ψ) ∝
γ /σ · 1{0 ≤ ψ ≤ 1}. This is the same prior on ψ used by
Roberts and Stramer (2001). We used�T = 1/12 to reflect that
the data were recorded monthly. Our exhaustive numerical eval-
uation of the ground truth yielded posterior means of μ, γ , σ ,
andψ equal to 0.0471, 0.1923, 0.0628, and 0.6851. respectively.

Following burn-in (10,000 iterations), we ran the Gibbs sam-
pler for 10,000 iterations at the appropriate level k = 5 (as de-
termined by the exhaustive numerical search). We ran the mul-
tiresolution sampler on k = 2 and k = 3 for the same amount
of time allocated to the Gibbs sampler. In this case, the lag-1
autocorrelations for k = 3 were around 0.95 while the multires-
olution acceptance rate was again around 30%. Setting the cross-
resolution move probability top = 0.5 was expected to increase
efficiency by a factor of 4. The resulting posteriors of the two
chains k = 2 and k = 3 were combined using multiresolution
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Figure 10. Sixteen years of monthly 3-month U.S. Treasury Bill
rate data, as compiled by the Federal Reserve Board.
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Table 2. Ratios of MSE. Estimates of posterior quantiles from a
Gibbs sampler versus those from the multiresolution method for the

gCIR process over the same amount of computer time

σ MSE ratio ψ MSE ratio

R̂ ± ŝd(R̂) R̂ ± ŝd(R̂)

Q0.05 32± 6.2 Q0.05 13± 2.0
Q0.25 17± 3.8 Q0.25 10± 1.7
Q0.5 11± 2.0 Q0.5 10± 1.5
Q0.75 11± 1.8 Q0.75 16± 2.7
Q0.95 18± 2.4 Q0.95 38± 6.0

extrapolation into final estimates of posterior quantiles. The sim-
ulation was independently repeated multiple times for both the
Gibbs sampler and the multiresolution method.

Table 2 shows the ratio of the MSE of the Gibbs estimate to
the MSE of the multiresolution approach, for a range of posterior
quantiles of σ and ψ , two parameters of particular interest to
researchers studying short-term interest rate. For this particular
model and dataset, extrapolation allows us to skip two resolution
levels k = 4 and k = 5, such that the multiresolution approach
is seen to be 10 to 30 times more efficient than a standard Gibbs
sampler.

5.3 Stochastic Volatility Model

So far, we have benchmarked the multiresolution approach
against a single Gibbs sampler of an Euler–Maruyama approxi-
mation. The added cost of obtaining multiresolution samples is
well offset by the increasing autocorrelation as the resolution k
increases. It should be pointed out, however, that for univariate
SDEs, there exists an alternative data augmentation scheme that
does not use Euler–Maruyama discretization, or any direct dis-
cretization of the complete diffusion path Yt itself. Instead, it is
based on a factorization of Yt with respect to a parameter-free
Brownian measure, made possible by the Girsanov change-of-
measure theorem. This approach was first considered by Roberts
and Stramer (2001) and has been developed, for instance, in
Beskos et al. (2006).

Borrowing from the terminology employed by these au-
thors, we have implemented one such “exact-path” scheme on
the double-well and gCIR models presented earlier. Although
the conditional parameter draws are more difficult than with the
Euler–Maruyama approximation, the autocorrelations of θ were
much lower, both discretization schemes having the same level
of accuracy for a given resolution k. While it is possible to im-
plement a multiresolution sampler on the exact-path scheme,
the benefit of reducing small parameter autocorrelations even
further is rather modest and generally does not make up for the
cost of obtaining multiresolution samples in the first place.

An important step of the exact-path scheme above is to trans-
form the given diffusion process Yt to a different diffusion pro-
cess Zt = η(Yt , θ ) with unit diffusion

dZt = α(Zt, θ )dt + dBt .

It is easy to show that η(y, θ ) = ∫ σ−1(y, θ )dy satisfies this re-
quirement in the univariate case. However, for multidimensional
diffusion processes, such a transformation generally does not ex-
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Figure 11. Weekly observations of 3-month U.S. Treasury Bill rates.

ist. A simple example is Heston’s (1993)) stochastic volatility
model for a financial asset St ,

dSt = αStdt + V 1/2
t St dBSt

dVt = −γ (Vt − μ)dt + σV 1/2
t dBV t , (5.1)

where the two Brownian motions BSt and BV t have correlation
cor(BSt , BV t ) = ρ. In typical applications, only discrete obser-
vations S = (S0, . . . , Sn) of the financial asset are recorded. The
“instantaneous variance” or volatility process Vt is completely
unobserved.

Implementation of the exact-path scheme for Heston’s model
is not as simple as in the univariate case, but can be achieved
by using simultaneous time-scale transformations t �→ ϑV (t)
and t �→ ϑS(t) (Kalogeropoulos, Roberts, and Dellaporta 2010).
Even then, the transformations are only possible because the
volatility Vt is itself marginally a diffusion process. While ex-
tending the exact-path approach to the more general multivariate
setting appears to pose a considerable technical challenge, the
Euler–Maruyama Gibbs-type scheme can easily be adapted to
multiple dimensions. This simple scheme does, however, suffer
from a heavy computational burden, which stands to be greatly
alleviated by the multiresolution approach.

We have fit Heston’s stochastic volatility model to 400 weekly
3-month U.S. Treasury Bill rates from November 5, 1965, to
June 29, 1973, displayed in Figure 11. Inference was per-
formed using Euler–Maruyama posterior approximations on
the transformed process Xt = log(St ) and Zt = 2V 1/2

t . Since
there are 252 trading days in a year, the financial conven-
tion for weekly data is to set �T = 5/252. We used the prior
p(α, γ, μ, σ, ρ) ∝ γ σ 2: a variety of noninformative priors were
found to give very similar results.

Posterior densities and autocorrelations for σ and ρ are dis-
played in Figure 12, for Gibbs samplers at resolution levels
k = 0 to k = 4. Since the volatility process Vt is unobserved,
the n+ 1 = 400 volatility points V = (V0, . . . , Vn) correspond-
ing to the observed data S must also be integrated out, which
has a considerable impact on the mixing time of the Gibbs sam-
plers. Even at the lowest level k = 0, the lag-1 autocorrelation
of σ is 0.98, the highest of any autocorrelation encountered in
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Figure 12. Densities and autocorrelations for Heston’s model parameters σ and ρ. (a) fk(σ | Y ), (b) fk(ρ | Y ), (c) autocorrelation of σ , (d)
autocorrelation of ρ.

the previous examples. At level k = 4, over 20 million Gibbs
samples were required to give the posterior densities their full
convergence shape.

In the following evaluation, we compare the multiresolu-
tion approach not only to a single k = 4 Gibbs sampler, but
also to parallel Gibbs samplers running at k = 2 and k = 3.
This accounts for the widespread availability of simultane-
ous computing resources, allowing researchers to run several
Euler–Maruyama approximations at once and later combine
them to produce estimates by extrapolation.

In total, three Gibbs samplers were run for 200,000 iterations
each, at k = 2, 3, and 4. The first two Gibbs samplers k = 2 and
k = 3 were combined to form extrapolated parameter estimates.
To benefit from available technology, a parallelized version of
the multiresolution sampler was implemented as follows. First,
a Gibbs sampler is started at k = 0 and run for some burn-in pe-
riod. Then, another Gibbs sampler is started at k = 1, and both
samplers are run simultaneously; the cross-resolution proposals
linking these samplers can now be drawn uniformly from an
ever-increasing pool of samples. After another burn-in period, a
third Gibbs sampler is started at k = 2 and run alongside the two
others. It is linked to the k = 1 sampler by cross-resolution pro-
posals, which continue to link k = 1 to k = 0. Finally, the k = 3
Gibbs sampler is added to the ensemble, with cross-resolution
proposals connecting all four samplers. Multiresolution extrap-

olation is then performed using the last two levels k = 2 and
k = 3.

A direct time comparison between the Gibbs samplers and
the multiresolution sampler is difficult and perhaps uninforma-
tive in this setting. Instead, we assume that the computation
time for Gibbs samplers at different resolutions scales as O(2k)
for the same number N of posterior iterations. We also assume
that the cost of computing one cross-resolution proposal and ac-
ceptance rate, when correctly implemented, is negligible com-
pared with the cost of computing one full cycle of missing data
and parameter updates in the Gibbs sampler. In our experience,
this tends to be the case when the complete data themselves
are the parameters’ sufficient statistics. Thus, each step of the
multiresolution sampler consists of both a local update cycle
and a cross-resolution move. Now, suppose that the multires-
olution sampler is given N iterations at k = 0, then spends N
iterations running at k = 0 and k = 1 together; N iterations at
k = 0, 1, 2; and N iterations at k = 0, 1, 2, 3. This is equiva-
lent to N (1+ 1/2+ 1/4+ 1/8) ≈ 2N iterations of the Gibbs
sampler at k = 3 and N iterations of the Gibbs sampler at k = 4.

Extrapolated quantiles using multiresolution samplers with
N = 100,000 iterations are compared with the extrapolated
quantiles of the Gibbs samplers at k = 2 and k = 3 in Table 3.
Even though the cross-resolution acceptance rate is only around
15%, the MSE of the extrapolated Gibbs samplers is generally
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Table 3. Ratio of MSEs for extrapolated Gibbs samplers (k = 2, 3) to multiresolution sampler

α MSE ratio γ MSE ratio β MSE ratio

R̂ ± ŝd(R̂) R̂ ± ŝd(R̂) R̂ ± ŝd(R̂)

Q0.05 9.6± 2.3 Q0.05 10± 2.8 Q0.05 12± 3.4
Q0.25 1.4± 0.39 Q0.25 7.4± 1.8 Q0.25 6.6± 1.6
Q0.5 1.1± 0.34 Q0.5 5.1± 1.1 Q0.5 4.6± 1
Q0.75 1.6± 0.5 Q0.75 4.2± 0.85 Q0.75 3.9± 0.85
Q0.95 9.6± 2.9 Q0.95 3.3± 0.4 Q0.95 2.6± 0.4

σ MSE ratio ρ MSE ratio

R̂ ± ŝd(R̂) R̂ ± ŝd(R̂)

Q0.05 11± 2.8 Q0.05 18± 2.5
Q0.25 5.6± 1.2 Q0.25 14± 2.2
Q0.5 3.9± 0.75 Q0.5 10± 1.5
Q0.75 3.3± 0.6 Q0.75 8.3± 1.3
Q0.95 2.2± 0.3 Q0.95 7.9± 1.2

three to ten times higher than for the multiresolution sampler.
Moreover, this assumes that the user running the Gibbs samplers
either knows that extrapolation between k = 2 and k = 3 is suf-
ficient or happens to run them in parallel at the first step of the
analysis. With the multiresolution sampler, it is not as crucial
to know or guess the “correct” resolution (or combination of
resolution levels) in advance, as higher-resolution levels can be
sampled incrementally at a substantially lower cost.

We next give N = 200,000 iterations to each step of the
parallelized multiresolution sampler—N iterations for k =
{0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}—to compare with the 200,000
iterations of the single Gibbs sampler at k = 4. Both samplers
require about the same amount of computation as discussed in
the previous paragraph. Ratios of MSEs comparing the single
Gibbs sampler to the multiresolution sampler with extrapola-
tion are computed in Table 4. In this case, the multiresolution
approach is 5 to 20 times more efficient than a single Gibbs
sampler.

6. CONCLUSION

We have proposed a multiresolution Bayesian inference ap-
proach for estimating the parameter posterior of diffusion mod-
els. The method calls for samples to be drawn not just from one
but multiple Euler–Maruyama approximations that communi-
cate with each other. The fast but rough approximations help
speed up the fine ones using cross-resolution moves. Moreover,
combining the samples using multiresolution extrapolation can
improve accuracy by an order or more, allowing the overall dis-
cretization level to be much lower than if a single chain had
been used.

In our illustrations of the multiresolution sampler, we used
the Gibbs-type move for local updating. In practice, any strategy
that increases the sampling efficiency at a fixed resolution can be
incorporated into the multiresolution sampler as well. This in-
cludes, for example, the block-update strategy of Elerian, Chib,
and Shephard (2001) or the group-update strategy of Liu and
Sabatti (2000). Our multiresolution approach thus complements

Table 4. Ratio of MSEs for single Gibbs sampler (k = 4) to multiresolution sampler

α MSE ratio γ MSE ratio β MSE ratio

R̂ ± ŝd(R̂) R̂ ± ŝd(R̂) R̂ ± ŝd(R̂)

Q0.05 120± 26 Q0.05 17± 4.4 Q0.05 17± 4.6
Q0.25 22± 5 Q0.25 5.8± 1.4 Q0.25 4.2± 1.2
Q0.5 8.8± 2.2 Q0.5 5.4± 1.2 Q0.5 4.8± 1.2
Q0.75 9.1± 2.3 Q0.75 6± 1.2 Q0.75 7.2± 1.6
Q0.95 87± 19 Q0.95 8.5± 1.6 Q0.95 27± 4

σ MSE ratio ρ MSE ratio

R̂ ± ŝd(R̂) R̂ ± ŝd(R̂)

Q0.05 26± 7 Q0.05 60± 10
Q0.25 6.3± 1.3 Q0.25 41± 8
Q0.5 3.2± 0.65 Q0.5 21± 5
Q0.75 2.9± 0.55 Q0.75 16± 3.8
Q0.95 3.3± 0.6 Q0.95 14± 2.8
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these existing methods by allowing them to be accelerated by
cross-resolution moves.

Another practical advantage of the multiresolution method
is how the precision of its estimates can be improved incre-
mentally. Rarely does one know ahead of time what the correct
value of (2k − 1)—the number of missing data values between
observations—will actually be. The idea of running a computa-
tionaly intensive sampler at some level k only to find out that an
even higher-level approximation must be started from scratch is
certainly unappealing. In contrast, the additional computation
time for each level of the multiresolution sampler is consider-
ably smaller. Proceeding incrementally allows the appropriate
level k to be naturally determined over the course of the analysis.

We have implemented the multiresolution approach in one-
and two-dimensional settings. The same methodology can be ap-
plied to general multidimensional diffusions, and even to jump
diffusions (e.g., Kou 2002), and infinite-activity processes such
as the variance-gamma process (Madan, Carr, and Chang 1998)
as well. It is likely that in these more complicated settings, a fully
parallel version of the multiresolution sampler as in Section 5.3
will be most desirable. This version of the sampler is referred
to as an interacting MCMC algorithm by Fort, Moulines, and
Priouret (2011), evoking the one-way relation between the “tar-
get” chain at level k + 1 and the “auxiliary” chain at level k.
In their article, Fort, Moulines, and Priouret established several
convergence results for a similar implementation of the equi-
energy sampler, contingent on (1) the choice of local updates
and (2) a regularity condition on the target and auxiliary den-
sities, which can be routinely verified in practice. It would be
very interesting to see whether such results can be established
for the multiresolution sampler as well. More complicated infer-
ential settings may also call for more creative cross-resolution
missing data proposals Tk+1. With the absence of a variance-
stabilizing transformation in multiple dimensions, the multires-
olution sampler could potentially be combined with dynamic
importance weighting (Wong and Liang 1997) to achieve higher
cross-resolution acceptance rates. Further investigation of these
ideas is currently under way.

APPENDIX: THE EXPANSION ORDER
OF POSTERIOR ESTIMATES

In this section, we show that the posterior mean, quantiles, and kernel
density estimates of parameters under the Euler–Maruyama discretiza-
tion scheme have exponentm = 1 in the expansion (4.1). Let us restate
the general form of the SDE as

dYt = μ(Yt , t, θ )dt + σ (Yt , t, θ )dBt .

We assume the discrete observations Y = Y (0) occur at times t =
{t0, . . . , tn}. For notational ease, we rewrite Y as y = (y0, . . . , yn) and
denote Y (t) = {Y (t1), . . . , Y (tn)}.

Without loss of generality, let us assume t0 = 0. Then the Euler-
Maruyama approximation Y (k)(t), with time discretization �t =
�T/2k , is given by

Y (k) ((j + 1)�t) = Y (k) (j�t)+ μ(Y (k) (j�t) , j�t, θ )�t

+ σ (Y (k) (j�t) , j�t, θ
) (
B(j+1)�t − Bj�t

)
,

where j = 0, 1, 2, . . .. Using the notation established in Section 2,
p(θ) is the prior distribution of θ , f is the density function of Y(t),
and fk is the density function of the Euler–Maruyama approximation

Y (k)(t). We assume that Y (k)(0) and Y (0) are drawn from the same
distribution.

In examining weak convergence, we are interested in determin-
ing how the posterior expectation E(g(θ)|Y (k)(t) = y) under the
Euler–Maruyama discretization approximates the true posterior ex-
pectation E(g(θ )|Y (t) = y) as a function of k. In real applications,
however, owing to measurement, equipment, and rounding errors,
the realistic posterior expectation accessible to us is best stated as
E(g(θ)|Y (t) ∈ ( y − ε, y + ε)), where ε is a small number correspond-
ing to the level of numerical precision. This posterior expectation

E (g (θ ) |Y (t) ∈ ( y − ε, y + ε))

=
∫

dθ
∫ y0+ε
y0−ε · · ·

∫ yn+ε
yn−ε g(θ )p(θ)f (Y (t)|θ )dY (t)∫

dθ
∫ y0+ε
y0−ε · · ·

∫ yn+ε
yn−ε p(θ)f (Y (t)|θ )dY (t)

involves many step functions 1[yi−ε,yi+ε](z), which are not mathemati-
cally convenient. Thus, we replace the step function by a smooth (four
times continuously differentiable) kernel density function w and focus
instead on how Eε,w(g(θ)|Y (k)(t) � y), our shorthand notation for

Eε,w(g(θ)|Y (k)(t) � y)

=
∫

dθ · · · ∫ g(θ )p(θ)fk(Y (k)(t)|θ )
∏

i

[
1
ε
w
(
Y (k)(ti )−yi

ε

)]
dY (k)(t)∫

dθ · · · ∫ p(θ)fk(Y (k)(t)|θ)
∏

i

[
1
ε
w
(
Y (k)(ti )−yi

ε

)]
dY (k)(t)

,

approximates

Eε,w(g(θ )|Y (t) � y)

=
∫

dθ · · · ∫ g(θ)p(θ)f (Y (t)|θ )
∏

i

[
1
ε
w
(
Y (ti )−yi

ε

)]
dY (t)∫

dθ · · · ∫ p(θ )f (Y (t)|θ )
∏

i

[
1
ε
w
(
Y (ti )−yi

ε

)]
dY (t)

.

Theorem 1. Suppose the following three conditions hold for an
SDE:

1. μ(x, t, θ ) and σ 2(x, t, θ ) have linear growth, that is,μ2(x, t, θ )+
σ 2(x, t, θ ) ≤ K(θ)(1+ x2) for every θ ;

2. μ(x, t, θ ) and σ 2(x, t, θ ) are twice continuously differentiable
with bounded derivatives for every θ ; that is, | ∂

∂t
μ(x, t, θ )|,

| ∂
∂x
μ(x, t, θ )|, | ∂2

∂x2μ(x, t, θ )|, | ∂
∂t
σ 2(x, t, θ )|, | ∂

∂x
σ 2(x, t, θ )|, and

| ∂2

∂x2 σ
2(x, t, θ )| are all bounded by N (θ);

3. σ 2(x, t, θ ) is bounded from below for every θ , that is,
σ 2(x, t, θ ) ≥ λ(θ ) > 0.

Then, for any integrable function g,

Eε,w(g(θ )|Y (k)(t) � y)− Eε,w(g(θ)|Y (t) � y) = Cg

2k
+ o(2−k),

where Cg is a constant that does not depend on k.

Proof. We note

Eε,w(g(θ)|Y (k)(t) � y)

=
∫
p(θ)g(θ)E

{∏n

i=1

[
1
ε
w
(
Y (k)(ti )−yi

ε

)]∣∣∣θ}dθ∫
p(θ )E

{∏n

i=1

[
1
ε
w
(
Y (k)(ti )−yi

ε

)]∣∣∣θ}dθ
.

(A.1)

Denote vj (Y (k)(tj ), θ ) = E{∏n

i=j+1[ 1
ε
w( Y

(k)(ti )−yi
ε

)]|Y (k)(tj ), θ}, and

uj (Y (tj ), θ ) = E{∏n

i=j+1[ 1
ε
w( Y (ti )−yi

ε
)]|Y (tj ), θ}. Then, we have the

recursion

vl(Y
(k)(tl), θ )

= E
{

1

ε
w

(
Y (k)(tl+1)− yl+1

ε

)
vl+1(Y (k)(tl+1), θ )

∣∣∣∣Y (k)(tl), θ

}
ul(Y (tl), θ) = E

{
1

ε
w

(
Y (tl+1)− yl+1

ε

)
ul+1(Y (tl+1), θ )

∣∣∣∣Y (tl), θ

}
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from the Markov property. By theorem 14.1.5 of Kloeden and Platen
(1992), for any smooth (fourth continuously differentiable) function q,

E{q(Y (k)(tl+1), θ )|Y (k)(tl) = y, θ} − E{q(Y (tl+1), θ)|Y (tl) = y, θ}
= Aq

2k
+ o(2−k),

where the constant Aq does not depend on k, y, or l. It follows that if
we assume vl+1(y, θ )− ul+1(y, θ ) = Bl+1/2k + o(2−k), then

vl(y, θ )

= E
{

1

ε
w

(
Y (k)(tl+1)− yl+1

ε

)
vl+1(Y (k)(tl+1), θ )

∣∣∣∣∣Y (k)(tl) = y, θ
}

= E
{

1

ε
w

(
Y (k)(tl+1)− yl+1

ε

)[
ul+1(Y (k)(tl+1), θ )

+ Bl+1

2k
+ o(2−k)

]∣∣∣∣∣Y (k)(tl) = y, θ
}

= E
{

1

ε
w

(
Y (k)(tl+1)− yl+1

ε

)
ul+1(Y (k)(tl+1), θ )

∣∣∣∣∣Y (k)(tl) = y, θ
}

+ Bl+1

2k
+ o(2−k)

= E
{

1

ε
w

(
Y (tl+1)− yl+1

ε

)
ul+1(Y (tl+1), θ )

∣∣∣∣∣Y (tl) = y, θ
}

+ A

2k
+ Bl+1

2k
+ o(2−k)

= ul(y, θ )+ A+ Bl+1

2k
+ o(2−k).

Therefore, using backward induction, we obtain that v0(x, θ )−
u0(x, θ ) = B0/2k + o(2−k), which, combined with the assumption that
Y (k)(t0) and Y (t0) have the same distribution, implies that

E

{
n∏
i=1

[
1

ε
w

(
Y (k)(ti)− yi

ε

)]∣∣∣∣∣ θ
}

−E
{

n∏
i=1

[
1

ε
w

(
Y (ti)− yi

ε

)]∣∣∣∣∣ θ
}
= C(θ )

2k
+ o(2−k),

for some constant C(θ ) depending on θ . Taking this result back to
(A.1), we obtain

Eε,w(g(θ)|Y (k)(t) � y)

=
{∫

p(θ)g(θ)E
{ n∏
i=1

[1

ε
w

(
Y (ti)− yi

ε

)]∣∣∣θ}dθ

+ �T
2k

∫
p(θ)g(θ)C(θ )dθ + o(2−k)

}/{∫
p(θ)

×E
{ n∏
i=1

[1

ε
w

(
Y (ti)− yi

ε

)]∣∣∣θ}dθ+�T
2k

∫
p(θ )C(θ)dθ+o(2−k)

}

=
∫
p(θ)g(θ )E

{∏n

i=1

[
1
ε
w
(
Y (ti )−yi

ε

) ]∣∣∣θ}dθ∫
p(θ)E

{∏n

i=1

[
1
ε
w
(
Y (ti )−yi

ε

) ]∣∣∣θ}dθ
+ Cg

2k
+ o(2−k)

= Eε,w(g(θ)|Y (t) � y)+ Cg
2k
+ o(2−k).

�
We make explicit use of this theorem by noting the following corol-

lary on the posterior cdf and quantiles:

Corollary 1. The posterior cdf F j
ε,w of the jth parameter θj satisfies

F j
ε,w(z|Y (k)(t) � y) : = Eε,w(1(θj ≤ z)|Y (k)(t) � y)

= F j
ε,w(z|Y (t) � y)+ C

2k
+ o(2−k).

If the posterior cdf F j
ε,w has nonzero derivative, then the quantile F−1

ε,w,j

of θj satisfies

F−1
ε,w,j (α|Y (k)(t) � y) = F−1

ε,w,j (α|Y (t) � y)+ C
′

2k
+ o(2−k),

for fixed 0 < α < 1.

Proof. Taking g(θ ) of Theorem 1 to be the indicator function 1(θj ≤
z) immediately yields the first equation. The assumption that F j

ε,w

has nonzero derivative enables us to invert it to obtain the second
equation. �

We can make the connection between Corollary 1 and Equation (4.1)
explicit by noting h = �T/2k . Therefore, to apply extrapolation to the
quantiles of a parameter posterior, we should use the exponent m = 1.

Similarly, suppose that we wish to estimate the density f (θj ) of
parameter j at a specific value θj = x. Suppose that a kernel density
estimate f̂ (x) is of the form

f̂ (x) = 1

Nh

N∑
i=1

K

(
x − θ (i)

j

h

)
,

where K is a (symmetric) kernel, h is a bandwidth parameter, and
θ

(1)
j , . . . , θ

(N)
j is a collection of N samples from f (θj ). In this case, for

fixed h, f̂ (x) can be seen as a sample estimate of

E

{
1

h
K

(
x − θj
h

)∣∣∣∣Y (t) � y
}
,

such that g(θ ) = K((x − θj )/h)/h. As long as the kernel K is inte-
grable, Theorem 1 also applies. Moreover, if the kernel density esti-
mate f̂ (x) at each resolution level is normalized, then so is the density
estimate obtained by extrapolation.

[Received June 2011. Revised July 2012.]
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