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ABSTRACT: Targeted metabolomics and biochemical studies com-
plement the ongoing investigations led by the Human Proteome
Organization (HUPO) Biology/Disease-Driven Human Proteome
Project (B/D-HPP). However, it is challenging to identify and
prioritize metabolite and chemical targets. Literature-mining-based
approaches have been proposed for target proteomics studies, but text
mining methods for metabolite and chemical prioritization are
hindered by a large number of synonyms and nonstandardized
names of each entity. In this study, we developed a cloud-based
literature mining and summarization platform that maps metabolites
and chemicals in the literature to unique identifiers and summarizes the
copublication trends of metabolites/chemicals and B/D-HPP topics
using Protein Universal Reference Publication-Originated Search
Engine (PURPOSE) scores. We successfully prioritized metabolites and chemicals associated with the B/D-HPP targeted
fields and validated the results by checking against expert-curated associations and enrichment analyses. Compared with existing
algorithms, our system achieved better precision and recall in retrieving chemicals related to B/D-HPP focused areas. Our
cloud-based platform enables queries on all biological terms in multiple species, which will contribute to B/D-HPP and targeted
metabolomics/chemical studies.

KEYWORDS: metabolomics, chemicals, Biology/Disease-Driven Human Proteome Project, literature mining,
Protein Universal Reference Publication-Originated Search Engine (PURPOSE),
Finding Associated Concepts with Text Analysis (FACTA+), Biomedical Entity Search Tool (BEST)

■ INTRODUCTION

The Human Proteome Organization (HUPO) Biology/
Disease-Driven Human Proteome Project (B/D-HPP) is a
coordinated comprehensive proteomics profiling effort that
focuses on human biology and diseases.1−3 Investigations of
metabolites and chemicals associated with human biology and
diseases can enhance and complement the ongoing studies on
B/D-HPP.1 With the advancement of targeted assays,
researchers can quantify hundreds of metabolites or chemical
compounds simultaneously.4 These high-throughput ap-
proaches have the potential to characterize the chemical
landscape of human biology in various organs and identify
metabolomics disturbances under disease conditions,5,6 which
will contribute to a holistic understanding of biology and
diseases.

Similar to proteomics studies, target prioritization is crucial
for targeted metabolomics and chemical investigations.7 There
are more than tens of thousands of metabolites and hundreds
of thousands of exogenous and endogenous chemicals;8

however, many modern targeted assays can handle only
hundreds to thousands of targets at a time.9 In order to
maximize the utility of the targeted approaches, it is crucial to
prioritize the metabolites and chemicals relevant to the study.
Previously, researchers have proposed computational ap-
proaches to prioritize proteins using literature mining
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algorithms.10−12 Nevertheless, because of the plethora of
metabolites and chemicals, a comprehensive tool for their
prioritization is lacking. In addition, many metabolites and
chemicals have a great number of synonyms and non-
standardized names,13,14 which has hindered the development
of automated approaches for their identification.15

Recent studies have presented efficient algorithms that
summarize the strength and specificity of protein-topic
copublication patterns in the PubMed literature.11,12 Such
methods prioritize the associations between any topic and any
protein in the PubMed abstract. With the ongoing curation
efforts of the Human Metabolome Database (HMDB),8

Chemical Entities of Biological Interest (ChEBI),16 and
updates in the Medical Subject Headings (MeSH),17 there is
an opportunity to extend the literature mining algorithms to
characterize the relations between metabolites/chemicals and
any search topic systematically.
In this study, we implemented a cloud-based system for

prioritizing metabolites and chemicals for the B/D-HPP
targeted fields and any custom search terms. Our system
employs the state-of-the-art approach of bioentity tagging and
PubMed literature mining,18 searches the PubMed database in
real time, compiles the results automatically, and ranks the
retrieved metabolites and chemicals within a few seconds using
an efficient copublication summarization algorithm.12 Our
system will enable comprehensive investigations of metabolites
and chemicals in all targeted areas of B/D-HPP, complement-
ing the ongoing efforts on proteomic profiling in these areas of
interest.

■ METHODS

Data Retrieval for Literature Mining

The targeted areas of B/D-HPP are retrieved from the B/D-
HPP Web site.19 The identified B/D-HPP topics are brain,
cancers, cardiovascular, diabetes, extreme conditions, EyeOme,
food and nutrition, glycoproteomics, immune-peptidome,
infectious diseases, kidney and urine, liver, mitochondria,
model organisms, musculoskeletal, PediOme, plasma, protein
aggregation, and rheumatic disorders. Table S-1 shows the
PubMed search terms for the B/D-HPP targeted fields.
To systematically identify metabolites and chemicals from

the PubMed literature, the chemical and species tags from
PubTator were obtained for each PubMed article.18 The
retrieved tags were intersected with the MeSH subtrees17 of
known chemicals. Through obtaining the PubTator taggings
and filtering them by the MeSH ontology tree, the unique
identifier of each chemical was identified. This approach
effectively mapped the synonyms of chemicals to unique
identifiers. To ensure that the most updated metabolite,
chemical, and species tags were retrieved, an automated
downloader was implemented to retrieve PubTator data files
from its File Transfer Protocol (FTP) site periodically. To
enable metabolite prioritization, the list of human metabolites
was retrieved from the HMDB.8 The chemicals included in the
HMDB list were employed in the metabolite prioritization
tasks.
For each PubMed article with relevant tags, the NLM Entrez

Programming Utilities (E-utilities)20 were used to obtain the
title, authors, journal, year of publication, and number of
citations.

Metabolite and Chemical Prioritization through PURPOSE
Scores

Protein Universal Reference Publication-Originated Search
Engine (PURPOSE) scores were used to prioritize metabolites
and chemicals for each of the B/D-HPP targeted areas.12 The
PURPOSE score is defined as
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where nTC is the number of papers associated with both the
topic and the chemical/metabolite (TC), Sum(Cit/Year) is
the sum of yearly citation numbers of TC, nU is the number of
PubMed publications, nT is the number of publications related
to the topic, and nC is the number of publications associated
with the chemical/metabolite. This scoring scheme accounts
for the strength and the specificity of topic−chemical
associations. In particular, the quantity in the first set of
parentheses in the formula summarizes the frequency of the
topic−chemical copublication, and the number of annualized
citations is included in the algorithm to put higher weights on
seminal papers and landmark studies.12 The quantity in the
second set of parentheses in the formula takes into account the
overall popularity of the queried topic and the chemicals. This
scoring formula is related to the term frequency−inverse
document frequency statistic,21 and a similar approach
achieved superior performance in proteomics literature
mining.12

Enrichment Analyses and Pathway Visualization

In order to identify the biological pathways associated with the
retrieved chemicals and metabolites, the Search Tool for
Interactions of Chemicals (STITCH) tool was employed to
identify the known associations among chemicals, metabolites,
genes, and proteins.22 The STITCH tool conducts enrichment
analysis on an open-source database containing 500 000
chemicals, 9.6 million proteins, and 1.6 billion interactions.22

The database is maintained by the European Molecular
Biology Laboratory, the Swiss Institute of Bioinformatics,
and the Center for Protein Research.22 Gene Ontology
enrichment analyses, KEGG pathway analyses, and network
analyses were performed by the STITCH tool.22 Network
statistics of the gene−metabolite and gene−chemical inter-
action networks, including centralization, Krackhardt effi-
ciency, transitivity, and connectedness scores, were computed
using the R package sna.23 The centralization of a network was
evaluated by Freeman’s centrality score.24 The Krackhardt
efficiency score computed the proportion of necessary edges
that could not be removed without disconnecting the nodes in
the network. The transitivity score assessed the proportion of
connections where transitivity holds (whether node A is
directly connected to node C when node A is connected to
node B and node B is connected to node C). The
connectedness score identified the proportion of connected
node pairs in the networks.23 The Metscape app25−27 in
Cytoscape28 was used to visualize the interactions among
metabolites, genes, and enzymes. All of the analyses were
conducted on May 20, 2018.
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Metabolites/Chemicals−B/D-HPP Linkage Visualization

To summarize the linkages among the B/D-HPP and
metabolites/chemicals, the correlations among B/D-HPP
targeted fields and the associations between the most
prominent metabolites/chemicals and the related B/D-HPP
areas were visualized. For each pair of B/D-HPP targeted
areas, the pairwise Spearman’s correlation coefficient was
computed for the associated metabolites’ or chemicals’
PURPOSE scores, and 1 minus the Spearman’s correlation
coefficient was defined as the distance between the B/D-HPP
fields. Multidimensional scaling (MDS)29 was employed to
map the distances between B/D-HPP fields into a two-
dimensional graph. The most prominent metabolites and
chemicals were added to the resulting graph. The pairwise
distances among the B/D-HPP areas reflected their correla-
tions in the PURPOSE scores, and the connections between
metabolites/chemicals and B/D-HPP areas visualized the most
prominent linkages (metabolites and chemicals were shown in
the graphs if their PURPOSE scores in the respective B/D-
HPP areas were in the top 2.5 percentile and the scores were
greater than 20). For metabolites/chemicals strongly asso-
ciated with only one B/D-HPP, the distances between the
metabolites/chemicals and the B/D-HPP areas were inversely

proportional to their PURPOSE scores. For metabolites/
chemicals strongly correlated with two or more B/D-HPP
areas, the distances between the metabolites/chemicals and the
associated B/D-HPP areas reflected both their PURPOSE
scores in the associated B/D-HPP areas and the general
correlations among the associated B/D-HPP areas. The figures
were generated by R version 3.3 on the Extreme Science and
Engineering Discovery Environment (XSEDE) platform.30

Evaluation of the Prioritization Results

Curated chemical−topic associations in the Comparative
Toxicogenomics Database (CTD)31 were employed as the
ground truth for evaluating the chemical prioritization results.
The precision, recall, and F1 measure (the harmonic mean of
precision and recall) of the PURPOSE algorithm and those of
the Finding Associated Concepts with Text Analysis (FACTA
+) tool32,33 and the Biomedical Entity Search Tool (BEST)34

were compared. MeSH terms were used to aggregate the
synonyms of a chemical. The B/D-HPP areas cancers,
diabetes, rheumatic, and liver were selected as the topics for
evaluation because of the availability of the curated annotations
and their clean MeSH organization.

Figure 1. Summary of metabolite and chemical publication patterns in the B/D-HPP targeted areas. (A) Numbers of all PubMed publications on
human, publications associated with any chemical, and publications associated with any metabolite since 1950. The numbers of PubMed
publications have increased exponentially since 1975. (B) Number of publications, total citations, citations per year (Sum_Cit/year), and number
of associated metabolites in each of the B/D-HPP fields. (C) Number of publications, total citations, citations per year (Sum_Cit/year), and
number of associated chemicals in the B/D-HPP areas. It should be noted that in (B) and (C) the X axis is log10-transformed. Abbreviations: B,
brain; Ca, cancers; CV, cardiovascular; D, diabetes; Ex, extreme conditions; Ey, EyeOme; FN, food and nutrition; G, glycoproteins; Im, immune-
peptidome; In, infectious diseases; K, kidney and urine; L, liver; Mi, mitochondria; Mo, model organisms; Mu, musculoskeletal; PA, protein
aggregation; Pe, PediOme; Pl, plasma; R, rheumatic disorders.
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Figure 2. continued
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Figure 2. continued
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Cloud-Based User Interface

To facilitate user interaction, a user interface was built with the
shiny package in R. The system has been deployed to a cloud
server, allowing researchers to access the system with ease. All
statistical analysis was conducted using R version 3.3. The
source codes for the cloud-based system, the literature mining
back end, and the automated updater for PubTator data files
are available at http://rebrand.ly/metapurposesourcecode.

■ RESULTS

Summary of Metabolites and Chemicals Published in the
PubMed Literature

At the time of evaluation, there were 27 million PubMed
articles. PubTator tagged 79 948 chemicals in 9.04 million
PubMed articles; 7508 chemicals (9.39%) are labeled as
human metabolites by the HMDB and are mentioned in 7.29
million articles in PubMed. The publication trends of all

PubMed articles on human and articles associated with at least
one chemical or metabolite since 1950 are shown in Figure 1A.
The numbers of publications per year on human, chemicals
related to human, and human metabolites have increased
steadily since 1950. The annualized number of publications on
human is strongly correlated with the annualized number of
papers describing human metabolites (Spearman’s correlation
coefficient = 0.998) and the annualized number of publications
mentioning chemicals related to human (Spearman’s correla-
tion coefficient = 0.996).

Publication Patterns of Metabolites and Chemicals
Related to the B/D-HPP Targeted Areas

To prioritize the metabolites and chemicals associated with the
B/D-HPP targeted areas through literature mining, we
implemented the PURPOSE algorithm to summarize the
topic−metabolite/chemical copublication strengths in the
PubMed literature. For each targeted area of the B/D-HPP,

Figure 2. Metabolite prioritization in the selected B/D-HPP targeted areas. (A) Distributions of the Protein Universal Reference Publication-
Originated Search Engine (PURPOSE) scores of the top metabolites associated with cancers, diabetes, glycoproteomics, and the musculoskeletal
system. In each graph, the top X axis is the PURPOSE score and the bottom X axis is log10(value), where “value” is either nC (the number of
publications associated with the metabolite), nTC (the number of papers associated with both the topic and the metabolite (TC)), or Sum_Cit/
Year (citations per year of TC). (B) Network analysis results using the Search Tool for Interactions of Chemicals (STITCH) tool. Metabolites with
the highest PURPOSE scores and their interacting proteins are shown. (C) Multidimensional scaling (MDS) visualization of the connections
among B/D-HPP targeted fields and their associated metabolites. B/D-HPP fields with higher correlation in their associated metabolites’
PURPOSE scores have shorter distances on the graph.
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Figure 3. continued
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the numbers of associated metabolites/chemicals, publications,
total citations, and citations per year are summarized in Figure
1B,C. The total number of metabolites associated with each B/
D-HPP area is between 405 (rheumatic) and 2483 (plasma),
whereas that of chemicals is between 705 (rheumatic) and
14 070 (model organisms). Across the B/D-HPP topics, the
Spearman’s correlation coefficient between the number of
identified chemicals and that of metabolites is 0.98. The
targeted areas with the greatest number of metabolite-related
publication are cancers (310 537 publications), plasma
(281 874), model organisms (172 860), PediOme (153 053),
and glycoproteomics (137 234). The areas with the most
chemical-related publications are also cancers (378 929
publications), plasma (321 201), model organisms (205 747),
PediOme (181 353), and glycoproteomics (172 064). For the
19 B/D-HPP topics, the Spearman’s correlation coefficient
between the number of publications associated with metabo-
lites and the number of publications associated with chemicals
is 0.998, and the correlation coefficient between the annualized
citation numbers associated with metabolites and that of
chemicals is 0.875. All of the B/D-HPP topics have at least
2150 publications associated with metabolites or chemicals,
indicating the rich information in the published literature.

Prioritizing Metabolites in the B/D-HPP Targeted Fields

To prioritize metabolites related to the B/D-HPP targeted
areas, a list of human metabolites were identified from the
HMDB,8 where a number of drugs, drug metabolites, and
chemical compounds were annotated as metabolites. The
metabolites associated with each B/D-HPP area were ranked
by their PURPOSE scores, which balanced the strength
(quantified by the number of copublications in PubMed and
the citation numbers of the papers per year) and the specificity
(quantified by the number of publications associated with the
topics and that of the proteins in general) of the associations.12

As an illustration, L-tyrosine (PURPOSE score = 43.44),
sirolimus (43.13), 17a-ethynylestradiol (41.67), docetaxel
(41.62), and progesterone (41.32) were the metabolites with
the highest PURPOSE scores in cancers (Figure 2A). These
metabolites were enriched in the epidermal growth factor
receptor signaling, protein autophosphorylation, and Fc
receptor signaling pathways (Figure 2B). Metscape revealed
that these metabolites participated in the metabolism of

phosphatidylinositol phosphate and purine (Figure S-1). For
diabetes, the metabolites D-glucose (44.95), 1,1-dimethylbi-
guanide (39.80), cholesterol (37.59), adenosine monophos-
phate (36.64), and creatinine (36.43) had the highest scores
(Figure 2A). These metabolites and chemicals were enriched
in the PPAR signaling pathway and a number of biological
processes, including regulation of the cellular ketone metabolic
process (Figure 2B). Metscape showed that the prioritized
metabolites were involved in glycolysis, gluconeogenesis,
cholesterol biosynthesis, and de novo fatty acid biosynthesis
pathways (Figure S-1). The metabolites L-tyrosine (39.49),
adenosine triphosphate (39.08), D-glucose (37.05), hyaluronan
(36.47), and N-acetylneuraminic acid (36.37) attained the
highest scores in glycoproteomics (Figure 2A). These
metabolites participated in the aminosugar metabolism,
fructose and mannose metabolism, and glycerophospholipid
metabolism pathways (Figures 2B and S-1). Calcium (39.97),
L-tyrosine (38.05), tartaric acid (37.06), adenosine triphos-
phate (36.74), and D-glucose (36.63) were the metabolites
most relevant to the musculoskeletal system (Figure 2A).
Pathway analysis revealed that these metabolites were
associated with the metabolism pathways of carbohydrates
(including fructose, mannose, and galactose) and amino acids
(e.g., tyrosine, arginine, proline, glutamate, aspartate, and
asparagine) (Figures 2B and S-1). The results indicated that
our methods successfully retrieved many known associations
between metabolites and the B/D-HPP areas. Network
analysis across the four areas revealed that these gene−
metabolite interaction networks (Figure 2B) were highly
connected (connectedness scores (proportions of connected
node pairs in the network) > 0.93) and moderately centralized
(centralization scores of 0.40−0.51). In addition, there were
multiple interactions connecting the nodes, resulting in
moderate connectivity efficiency (efficiency scores (propor-
tions of edges that could not be removed without
disconnecting the nodes) of 0.54−0.72) and transitivity
(transitivity scores (probabilities that nodes A and C are
directly connected in the network when node A is connected
to node B and node B is connected to node C) of 0.53−0.65)
(Figure S-2A). We further computed the scores of all related
metabolites for each of the B/D-HPP targeted areas, and the
results are summarized in Data S-1. Figure 2C shows the

Figure 3. Chemical prioritization in the selected B/D-HPP targeted areas. (A) Distributions of the PURPOSE scores of the top chemicals
associated with cancers, diabetes, glycoproteomics, and the musculoskeletal system. In each graph, the top X axis is the PURPOSE score and the
bottom X axis is log10(value), where “value” is either nC, nTC, or Sum_Cit/Year. (B) Network analysis results using the STITCH tool. Chemicals
with the highest PURPOSE scores and their interacting proteins are shown. (C) PURPOSE scores of the top chemicals associated with coronary
artery disease.
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correlations among the B/D-HPP targeted areas and highlights
metabolites strongly associated with each B/D-HPP. Bio-
logically related concepts, such as cardiovascular, diabetes, and
food and nutrition, formed a cluster in the figure.

Prioritizing Chemicals in the B/D-HPP Targeted Fields

In addition to metabolites, our algorithm successfully
prioritized chemicals associated with the B/D-HPP targeted
fields (Data S-2). The identified chemicals ranged from
endogenous chemicals (including hormones and neuro-
transmitters) to drugs, drug metabolites, ions, and environ-
mental pollutants, as defined by the PubTator tool.18 On the
basis of the DrugBank35 definition, 1630 chemicals tagged by
PubTator are drugs. Drugs tended to have more PubMed
publications (median number of publications = 1195.5) than
nondrug chemicals (median number of publications = 4).
Using the PURPOSE scores, we identified chemicals

implicated with each of the B/D-HPP focused areas. For
instance, gefitinib (PURPOSE score = 44.35), vemurafenib
(42.50), decitabine (42.38), temozolomide (41.79), and
lapatinib (41.73) scored the highest among all chemicals in
cancers (Figure 3A). These chemicals were enriched in the
protein autophosphorylation and transmembrane receptor
protein tyrosine kinase signaling pathways (Figure 3B). For
diabetes, insulin (44.00), C-peptide (42.61), and blood glucose
(41.90) had the highest scores (Figure 3A). These chemicals
are involved in the PPAR signaling pathway and carbohydrate
metabolism mechanisms (Figure 3B). The chemicals proteo-
glycans (39.15), alpha-1-antitrypsin (38.62), hyaluronic acid
(37.35), and glycosylphosphatidylinositols (37.17) scored the
highest in glycoproteomics (Figure 3A). The chemicals were

highly enriched in the cholesterol metabolic process,
carbohydrate derivative binding, and ATP binding functions
(Figure 3B). For the musculoskeletal system, parathyroid
hormone (39.77), collagen type I trimeric cross-linked peptide
(37.85), 1,25-dihydroxyvitamin D (35.96), zoledronic acid
(35.82), and diphosphonates (35.74) were the highest-scoring
chemicals (Figure 3A). Pathway analysis revealed that these
chemicals were associated with positive regulation of vitamin D
24-hydroxylase activity and the vitamin D catabolic process
(Figure 3B). Quantitative analyses on the gene−chemical
interaction networks (Figure 3B) showed that these networks
are less well-connected than the gene−metabolite interaction
networks (Figure 2B) of the same query topic (connectedness
scores of 0.54−0.87) with low to moderate centralization
scores (0.33−0.41). In these B/D-HPP targeted fields, many
drugs had high PURPOSE scores, which is consistent with the
fact that there were more publications associated with drugs
than nondrugs in general. Compared with the gene−
metabolite interaction networks, the gene−chemical inter-
action networks had relatively sparse edge connections,
resulting in higher connectivity efficiency scores in general
(efficiency scores of 0.58−0.90) and variable transitivity scores
(0.20−0.66) (Figure S-2B). Figure S-3 visualizes the
connections among the B/D-HPP targeted areas and illustrates
chemicals strongly associated with each B/D-HPP.
Our algorithm can also identify the chemicals associated

with specific biological or medical conditions. As an
illustration, in response to the query “coronary artery disease”
in human, our method retrieved many well-known chemicals
associated with the disease (Figure 3C), such as cholesterol
(PURPOSE score = 40.18), HDL (32.87), triglycerides

Figure 4. Performance comparison among Protein Universal Reference Publication-Originated Search Engine (PURPOSE), Finding Associated
Concepts with Text Analysis (FACTA+), and Biomedical Entity Search Tool (BEST). Precision−recall curves for chemical prioritization for
cancers, diabetes, rheumatic diseases, and liver are shown. Biologist-curated topic−chemical relations from the Comparative Toxicogenomics
Database (CTD) were used as the ground truth. PURPOSE achieved the best precision and recall in cancers, diabetes, and liver and exhibited
similar performance in rheumatic diseases compared with FACTA+ and BEST. BEST performed better than FACTA+ in liver but worse in cancers,
and the two systems had similar performance in diabetes and rheumatic diseases.
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(32.42), LDL (32.13), brain natriuretic peptide (31.54), and
homocysteine (29.62). In addition, many drugs related to the
treatment of coronary artery disease and related comorbidities
were identified by our system. For instance, clopidogrel
(38.39) and aspirin (31.55) ranked among the top 10
chemicals in this query. These results suggested the
extensibility of the PURPOSE algorithm to specific biomedical
conditions of clinical importance.
Evaluation of the Prioritization Results

In comparison with the curated topic−chemical relations
obtained from the CTD,31 our tool successfully retrieved
relevant chemicals from the literature. The precision and recall
of our tool were better than those of the FACTA+32 and
BEST34 systems in most B/D-HPP fields with CTD
annotations (Figure 4). Among the top 500 retrieved
chemicals associated with cancers, diabetes, or liver, our tool
achieved a 5.2−11.4% improvement in precision and a 2.0−
5.7% improvement in recall compared with FACTA+ and a
5.2−16.8% improvement in precision and a 1.6−3.2%
improvement in recall compared with BEST. FACTA+
performed better than BEST in cancers but had worse
performance in liver, and the two systems had similar
performance in diabetes. For rheumatic diseases, which had
the least number of PubMed publications, the first 390
chemicals retrieved by PURPOSE attained the highest
precision and recall among all three tools, but the precision
gradually decreased as we went further down the retrieved list
to include chemicals with lower PURPOSE scores, indicating
that the PURPOSE algorithm worked better in well-published
fields and for well-studied chemicals. These results validated
the relevance of the PURPOSE algorithm in chemical
prioritization tasks.
Cloud-Based System Deployment

To facilitate real-time metabolite and chemical prioritization, a
cloud-based system was deployed. In addition to the B/D-HPP
targeted areas, our system allows users to input any search
term of interest and retrieves the results in a few seconds.
Modules for enrichment analyses, visualization of PURPOSE
score distributions, and summarization of highly cited
publications are available in the browser-based user interface.
Our system is freely accessible at http://rebrand.ly/
metapurpose.

■ DISCUSSION
We have presented a novel general-purpose tool for metabolite
and chemical prioritization with direct applications to the
ongoing B/D-HPP investigations.1−3 Our cloud-based system
automatically obtains the most updated PubMed literature and
bioentity taggings and employs the state-of-the-art literature
mining approach to prioritizing metabolites and chemicals, and
the results were successfully validated in the curated
Comparative Toxicogenomics Database.31 Our approach will
facilitate targeted metabolomics and chemical analyses, which
is expected to expedite multiomics integration for inves-
tigations of human biology and disease states.5,36,37

As many metabolites and chemicals possess a number of
evolving synonyms,13 it was difficult to track their publication
trends, and there was no available tool that prioritizes
metabolites for targeted investigations. To address this
challenge, our system employs the tagged entities from
PubTator,18 identifies tags for chemicals using the MeSH
ontological structure,17 and filters known human metabolites

using the curated information from the HMDB.8 In addition,
we demonstrated the extensibility of the PURPOSE
algorithm,12 which achieved improved precision and recall
compared with the previously proposed literature mining
methods.32,34 Our system allows users to input any search term
of interest, queries the most updated PubMed database,
retrieves and prioritizes the metabolites and chemicals in real
time, and summarizes the results for the users. Our cloud-
based system enables enrichment analyses of the retrieved
results,14 provides external links to curated databases,8 and
shows the landmark publications describing the relations
between the queried topic and the prioritized metabolites and
chemicals.
Our results demonstrate that there are a great number of

publications describing metabolites and chemicals associated
with each of the B/D-HPP targeted fields, indicating the
feasibility of building literature mining systems for prioritizing
metabolites and chemical targets. The numbers of publications
on human metabolites and chemicals have increased steadily
since 1950. In recent years, more than 70 000 new publications
on human metabolites and chemicals (including more than
50 000 papers mentioning drugs) have been added to the
literature each year. The amount of information posed a
challenge to manual literature curation but a unique
opportunity for text mining algorithms in retrieving and
aggregating the most updated and relevant information from
the literature.38 Our system showcases a novel way of utilizing
such information, and the prioritized metabolites and
chemicals can guide targeted analysis as well as serve as
dynamic summaries of the publication trends in the queried
fields.
One limitation of our approach is that some newly

synthesized chemicals may not have a MeSH term or identifier.
Such new chemicals could be missed by PubTator tagging and
hence not prioritized by our system. To address this challenge,
we have implemented an automated updater to obtain the
most recent MeSH entries and PubTator taggings regularly. In
addition, like all literature mining tools, undiscovered topic−
chemical associations would not receive high PURPOSE
scores. The ongoing efforts on high-throughput metabolomics
and chemical profiling could mitigate this issue.39

In summary, our system successfully identifies relevant
metabolites and chemicals associated with each of the B/D-
HPP focused fields. Together with the previously described
protein prioritization framework,12 our tools can compile lists
of proteins, metabolites, and chemicals related to the B/D-
HPP targeted areas and other human organ systems or disease
states, which will facilitate the design of targeted proteomic,
metabolomic, and biochemical profiling methods and expedite
integrative multiomic analyses. The cloud-based metabolites
and chemicals prioritization platform can accommodate any
custom search term, enabling scientific investigations of any
diseases or organs of interest, and contribute to the
development of precision medicine.
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Metscape visualized the pathways involved with the
prioritized metabolites (Figure S-1); quantitative net-
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work statistics of the gene-metabolite interaction and
gene-chemical interaction networks (Figure S-2); MDS
visualization of the connections among B/D-HPP
targeted fields and their associated chemicals (Figure
S-3); PubMed search terms for the B/D-HPP targeted
fields (Table S-1) (PDF)
Data S-1: metabolite prioritization results for B/D-HPP
(XLSX)
Data S-2: chemical prioritization results for B/D-HPP
(XLSX)
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