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This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the
Michaelis—-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments
typically measure the probability densifff) of the stochastic waiting timefor individual turnovers. While

f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular,
it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the
interconversion among the enzyme’s conformers with different catalytic rate constants. In the presence of
dynamic disorderf(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and
a monoexponential decay at low substrate concentrations. We derive a single-molecule Midfiapten
equation for the reciprocal of the first momentf@), 1/EC] which shows a hyperbolic dependence on the
substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule
Michaelis—Menten equation holds under many conditions, in particular when the intercoversion rates among
different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation,
the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis
Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also
suggest that the randomness parametelefined ad{t — E)2UE?E, can serve as an indicator for dynamic
disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate
concentrations in the presence of dynamic disorder.

1. Introduction reconciled, and what new information is available from single
molecule data.

At the single-molecule level, an enzymatic reaction is a
stochastic event, and a single-molecule experiment typically
measures the waiting times for the completion of the enzymatic
reaction. The probability density of these waiting tim&s),
can be obtained by recording the histogram of many turnovers

K k o S over a long period of time. Therefore, single-molecule kinetics

E+S<="ES—E+P E—~E (1) cannot be formulated in terms of enzyme concentrations, but

must be formulated instead in terms of the probabilities for the

The rate of product formation has a hyperbolic dependence enzyme to be in one of the possible states in the reaction
on the substrate concentration [S], i.e.= k[E]{[S)/([S] + pathway*’

The catalytic activity of enzymes has long been understood
in terms of the MichaelisMenten mechanisrha substrate S
binds reversibly with an enzyme E to form an enzyrsabstrate
complex ES that undergoes unimolecular decomposition to form
a product P, regenerating the original enzyme E Wa E

Kwm), whereKy = (k-1 + kp)/k; and [EJ is the total enzyme We will show that single-molecule and steady-state ensemble
concentration. This rate expression, the Micha€litenten kinetics are consistent, in that the reciprocal of the first moment
equation, provides a highly satisfactory description of ensemble- of f(t), 1/fL] has the same hyperbolic dependence on the substrate
averaged enzyme kinetics. concentration as the enzymatic velocity described by the

Recent advances in single-molecule spectroscopy andconventional MichaelisMenten equation. Howevef(t) pro-
manipulatiod~16 have now made it possible to study enzymatic vides much more kinetic information, such as the existence of
reactions at the level osingle molecules, thus raising the reaction intermediates and dynamic disorder, which are often
question of whether the Michaelidlenten equation remains  obscured by ensemble-averaged measurements. In particular,
an adequate description of single-molecule kinetics. It is multiexponentiality inf(t) is a manifestation of dynamic
therefore of both conceptual and practical importance to disordert!118-34which refers to fluctuations in the rate constants
understand how single molecule and ensemble kinetics areof the reaction caused by transitions among different enzyme
conformers. These fluctuations can occur on a time scale
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In this article, we present models based on the Michaelis
Menten mechanism to account for these experimental observa-
tions.

Section 2 discusses the single-molecule Michagienten
equation in the absence of dynamic disorder starting from the

differential equations that define both the ensemble-averaged

and single-molecule Michaelidvienten kinetics. The conven-
tional Michaelis-Menten equation is obtained from these
equations by assuming a steady-state cond#iofhe corre-
sponding single molecule differential equations, on the other
hand, can be solved exactly fd(t) without making this
assumption f(t) itself exhibits a rise and decay due to the
formation of an enzymesubstrate complex. The steady state
condition actually corresponds to a very fast initial rise(0f

The substrate concentration dependence of the enzymatic rate
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'equation.

Section 3 discusses the single-molecule Michagienten
equation in the presence of dynamic disorder. We first consider
the simplest case, in which each of the enzyme species in the
reaction (E, ES, and9%Eexists in two interconverting conformers
with different catalytic rate constants. Expressionsfgrand
1/@0are derived. Under the condition of slow interconversion
between the conformers, the dependenced@fidv [S] is again
found to be identical to the ensemble Michaelidenten
equation, except that the appardatand Ky of the single-
molecule Michaelis-Menten equation have meanings different
from their conventional interpretations. Consistent with experi-
mental findings'® f(t) changes from a highly stretched multi-
exponential decay to a monoexponential decay as substrate
binding becomes rate limiting. As a generalization of this model,
we also consider the physically more realistic case of an arbitrary
number of interconverting conformers, which leads to substan-
tially the same conclusions as the two-state model. The slow
interconversion among conformers results in the memory effect
associated with the correlations between successive enzymatic
turnover times.

Section 4 introduces a semi-Markovian (or memoryless)
approximation to the kinetic scheme of the previous section in

His research interests are single-molecule enzymology, imaging geneWhich the catalytic step is assumed to be non-Poissonian with

expression, and coherent anti-Stokes Raman scattering microscopy.

A theory of the waiting time distributiof(t) should account
for two sets of single-molecule experimental results. The first
is the initial rise and subsequent decay f(fj observed in
experiments carried out by Lu et 4lAsbury et al3>and Yasuda
et al’ Such rise and decay &ft) is generally attributed to the
formation of one or more intermediates and is often character-
ized by the randomness parameaténtroduced by Block and
co-workerg837 as a measure of the relative magnitudes of the
variance and the mean of the waiting tinnes [{t — [ED27HE.

In the absence of dynamic disorder, it has been sBd#Withat
if the reaction has only one rate-limiting stap—= 1, whereas
if the reaction has more than one rate-limiting step; 1.

The second result is the observation made by English'ét al.

that f(t) is a highly stretched multiexponential decay at high

substrate concentrations and a monoexponential decay at low

substrate concentrations. The nonexponential decdyt)ois
generally attributed to dynamic disorder.18-34 Furthermore,

Lu et al.# Velonia et al14 and English et al® have observed
dynamical correlations between successive enzymatic turnove

events. Such memory effects are generally associated with slow

conformational fluctuations of the enzyme during the course
of the experiment.

r

a general multiexponential waiting time distribution. Again,
we arrive at the important conclusion thatfllobeys the
Michaelis—Menten equation. We also find, as before, that the
kinetic parameters of the single-molecule Michaeligenten
equation (corresponding tke and Ky, in ensemble measure-
ments) have meanings different from their conventional inter-
pretations.

Section 5 discusses the substrate concentration dependence
of the randomness parametefwhich is related to the second
moment of f(t)), with and without dynamic disorder, the
treatment of dynamic disorder following the approach discussed
in section 3. While it is known that can be less than unity
because of the existence of more than one rate-limiting3t€p,
we show that can also be larger than unity because of dynamic
disorder. Thus; can potentially serve as an indicator of dynamic
disorder.

A summary of the main results is presented in the final section
of the paper. Relevant mathematical details of the calculations
are provided in the Appendices.

2. Single-Molecule Michaelis-Menten Kinetics in the
Absence of Dynamic Disorder

The Michaelis-Menten mechanism for the enzymatic con-
version of substrate S to product P by enzyme E is described
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in eq 1. The rate equations for the concentrations of the chemical 40 . T T T

species in the first reaction are therefore given by 30 k,=0 i
S 2 |
dE] _ 10 .
& = KIENS] + k [ES] ) o , , | |

d[ES] A . . , : )

—q = KlEIS] — (ky + k)[ES] (3) 30 k,=50s"
= 20 y
dE”] _ d[P] = 10 1

0
6
wheret is the elapsed time from the onset of an ensemble- 4 [\W
averaged experiment. The initial conditions are [ESD and =
[E] = 0 att = 0. At early times, when very little substrate has =~ 2f -
0
0

been converted to product, the second reaction in eq 1 can be | L L !
neglected. Because both [E] and [S] are time dependent, egs .00 0.05 0.10 0.15 0.20 0.25
2—4 are nonlinear differential equations and cannot be solved

exactly. However, an approximate solution to+ d[P]/dt can t(s)

be obtained if the concentration of the complex, [ES], is assumed Figure 1. Probability density of the waiting timét), in the absence

to reach a steady state shortly after the onset of the reaction.of dynamic disorder, as calculated from eq 10, for three different values
This steady-state approximation corresponds to the condition of k-1 (0, 50, and 2000°S) with ky = 10" M~*s™*, k, = 250 s, and

d[ES])/d = 0, and its application to eqs is easily shown to 5] = 0.005 mM.
lead to the classic Michaelidvlenten equatiof?

Consequently, eqs-8 become a system ohear first-order
differential equations, and they can be solved exactlyPgt),
Y= Vmax[S] ) Peg(t), andPeo(t). Knowing Peo(t), the waiting time distribution
[S] + Ky f(t), which is normalized such thgf dt f(t) = 1, is obtained as
follows: The probability that a turnover occurs betweemd
Where vmay defined awmax = ko[E]t, with [E]r = [E] + [ES] t+ Atis f()At; f()At is the same as the probability that the
the total enzyme concentration, is the reaction velocity at €nzyme is in the state%in the interval betweenandt + At,
saturating substrate concentration, akg, the Michaelis ~ Which iSAPe(t) = koPeg(t)At. Thus, in the limit of infinitesimal
constant, defined a&y = (k-1 + ko)/ki, is the substrate Al
concentration at which the enzymatic velocity is halfugfx
In a turnover experiment, a single enzyme molecule is
monitored continuously as it cycles repetitively through the
states E, ES, and®Gn eq 1. The time for the first reaction to
complete is now a stochastic variable that can be completely
characterized by a waiting time distributiéft). To derive the K,k [S]
rate equations that describe the corresponding single-molecule f(t) = ——1[exp(A+ B)t —expB — A)t]  (10)
Michaelis—Menten kinetics, the concentrations in egs4are 2A
replaced by the probabilitieB of finding the single enzyme

molecule in the states E, ES, anf, Eading to the equations ~ WhereA = V([S] + Ky + k)74 — ky[S] andB = —(ki[S]
+ k-1 + kp)/2, and the substrate concentration dependence [S]

dP(t) has been shown explicitly through the relatiaf = k;[S].
= _klopE(t) + k_,P=4(t) (6) A plot of f(t) vst at fixed values of [S] (0.005 mM; (10
dt M~1 s, andk, (250 s?1) is shown in Figure 1 for three
dPcg(t) o different values ok-; (0, 50, and 20008.) These values of
Tat ki Pe(t) — (kg + K)Ped(t) ) k—; are illustrative of reactions in which (i) the dissociation of
ES to E and S does not occur (top panel), (ii) the catalytic and
dPe(t) = kPed(t) ®) dissociation rates are roughly comparable (middle panel), and
dt 2 E (iii) the rate of dissociation of ES to E and S is significantly
larger than the catalytic rate, leading to steady-state formation
which must satisfy the initial conditionBg(0) = 1, Peg(0) = of ES (bottom panel).
0, andPgo(0) = 0 att = O (the time of onset of the reaction), The limit k-; — 0 of the top panel describes the sequential
along with the constrairfg(t) + Peg(t) + Peo(t) = 1. Also, the
rate constant for the forward steg?, is treated as a pseudo-
first-order rate constant that can be writterkgs= k;[S], with
[S] assumed to be time-independent. This is reasonable, as ther
is essentially no depletion of substrate by a single enzyme
molecule, and [S] can be considered as a constahtisE
converted back to E through the second half reaction in eq 1.
Depending on the enzyme system, this can occur either
instantaneously (E and®’Rhereby becoming effectively identi- k,k,[S]
cal®), or through another chemical reaction via the ping-pong fit) = ————
mechanisnd. ko = ky[S]

f(t) = dPg(t)/dt = kPeq(t) 9)

From the solutions of eqs-8, and using the above relation
for f(t), it is easily shown that

0
reaction S+ E s ESE E° + P. The waiting time distribution
f(t) of such a reaction is the convolution of the waiting time
distributionsfi(t) andf,(t) of the two separate steps, i.&t) =
E(‘fl ® f)(1), or f(t) = /i dt' fu(t — t)fa(t). If fo(t) andfa(t) are
ki[S] exp(kq[S]t) andk, exp(—kat), respectively, (implying that
the steps E- S— ES and ES—~ E° + P are Poisson processes),
thenf(t) is given exactly by

(exp(k[S]t) — exp(-k;t)  (11)
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Figure 2. Probability density of the waiting timé(t), in the absence
of dynamic disorder, as calculated from eq 10, for three different values

of [S] (0.020 mM, 0.010 mM, and 0.005 mM) witq = 107 M1 s,
k. = 250 s, andk-; = 50 s%, respectively.
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Figure 3. Average reaction rate ®lor its equivalent/[E]+, as calc-
ulated from eq 14b, the single-molecule Michaeldenten equation,
as a function of substrate concentration [S]Har = 30 uM (the value
corresponding td-; = 50 s7%, k, = 250 s%, andk; = 10° M~ s7%).

and exhibits an exponential rise followed by an exponential
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confirming the single-exponential decay gf). Furthermore,
in the limit of high concentrationi(t) reduces td, exp(—kat),
as expected.

The middle panel describes an intermediate case between the
two limits described above. At such an intermediate value of
k-, the dependence d&ft) on [S] is illustrated in Figure 2 for
fixed valuesky, k-1, andk, (10" M~1s7%, 50 s'1, and 250 s1,
respectively.)

The first moment off(t), @0= /3 dt tf(t), gives the mean
waiting time [@Ofor the reaction, from which the connection
with the ensemble measurements under steady-state conditions
can be made. The reciprocal @fican be interpreted as an
average reaction ra#?° Generally, this arises from the
equivalence between time averaging and ensemble averaging.
From eq 10, we deduce that

1 _ (A2 _ BZ)Z

B0 2Bkk[S] (142)
_ KJS]
NOET® (14b)

A comparison of eqs 5 and 14b indicates that,ax = 1/(ko[I0)
or thatv/[E]r = L/

This is a gratifying result, indicating that the first moment of
f(t) does indeed recover the classic Michaelgenten equation,
regardless of whether the steady-state approximation is used in
the single-molecule probability calculation. We regard eq 14b
as the single-molecule Michaeti#lenten equation.

A plot of 1/d0against [S] for the parameters used in the
middle panel of Figure 1 is shown in Figure 3, exhibiting the
characteristic hyperbolic profile of the classic Michaelis
Menten saturation curve. The fact thatilicalculated from
eq 14b exactly coincides with eq 5 highlights the consistency
between the single-molecule and ensemble-averaged kinetics.
However, it is important to stress thi{t) does provide more
information than only the first moment, such as higher mo-
ments and the existence of intermediates. This is particularly
true in the presence of dynamic disorder, as will be discussed
next.

decay, corresponding to the generation of the intermediate ES,3. Single-Molecule Michaelis-Menten Kinetics in the

with the faster ok; andk; being the rate constant of the rise,
and the slower dk; andk; being the rate constant of the decay.
Another limit of f(t), shown in the bottom panel, exhibits only

Presence of Dynamic Disorder

The expressions fd(t) derived in section 2 are not consistent

a single-exponential decay and corresponds to the steady-stat&ith measurements on some enzyme system8which show

limit in which ES is generated essentially immediately. In

significant multiexponentiality in the waiting time distribution

analogy with the ensemble steady-state approximation, this limit at high substrate concentrations. This behavior can be attributed

can be expressed analytically aBgg(t)/dt = 0, and typically
holds whenk, < k_1. Combined with the constraiRg(t) +
Peg(t) + Peo(t) = 1 and the initial conditiorPeo(0) = 0, the
steady-state limit Ees(t)/dt = O applied to eqs 68 can be
shown to lead to

Pe(t) = 1 kit (12)
= — GB)( e —
= k+ Kk, +k
which, using eq 9, leads in turn to
k,k[S k,k[S]t
f(t) — 1 2[ ] exd — 1 2[ ] (13)
K [S]+ k_; + k K [S]+ k_; + k

to dynamic disorder. One way to model dynamic disorder is to
assume, as in the approach used by Zw&Azgd by Yang

and Cac?® that the rate constaks, or the parameters on which

it depends, are stochastic variables that fluctuate according to
some prescribed statistics. However, the main goal of the rest
of the paper is not to provide specific models for the fluctuations
of these stochastic variables, but to explain the multiexponen-
tiality of f(t) and its concentration dependence, and to establish
the general applicability of the Michaetidvlenten equation to
single-molecule kinetics even in the presence of dynamic
disorder.

(i) Two-State Model. To this end, we first consider the
simplest extension of the Michaetidlenten mechanism that
incorporates the notion of dynamic disorder. This is the kinetic
scheme in which the three states of the enzyme, E, ES, @nd E
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can each exist in two interconverting conformations, as shown

below:

[s]
‘L—E81—>P+ E° 2 E,

S+Ek

odta pUB ity (15)
I(12

0 %
<—ESZ—>P+ EX —E,

S+ E, .

Kou et al.

Equations 16-21 provide the complete solution in Laplace
space to the waiting time distribution of the two-state model of
dynamic disorder. The first moment f§f), ([} is easily obtained
from the formulafC= —df(s)/ds|s=o. After lengthy but straight-
forward algebra, one can show that

Even this simple generalization presents theoretical challengeswhere the constants, G, H, andK are given by

in the calculation off(t) and its first moment. An immediate
complication is that over the course of a long time trajectory,

each new reaction cycle begins from either d E, with a

probability that reflects the steady-state populations of the

various intermediates. This means tf@t must be calculated
from the weighted average

f(t) = w, fTEl(t) + W, fTEz(t) (16)

where fTE (t) and fTE (t) are the distributions of the waiting
. 1 2 B
times Tg, and Tg, for the enzyme to complete the reaction

starting from & and B, respectively, andv; andw;, are the

corresponding steady-state probabilities for the enzyme to exist

in one or other of these conformations. We find that while

andw, can be calculated from the master equation formalism

used to derive eqs-83, the calculation of(t) requires a different

approach and can only be found in closed form in the Laplace
domain. Details of the complete calculation are provided in
Appendix A; here we state only the final result, which can be

written as

f(9) = Wy, w, 0, 0¥(9) (17)
wheref(s) is the Laplace transform dft), andf(s) = (f (s)
f (s) fT (s) fT (s))T is defined by

fg=@6 -

wherel is the identity matrixy = (0, 0, ko1, k22)T, fTESl(t) and
fTE%(t) are the distributions of the waiting tim8gs, and Tgs,
for the enzyme to complete the reaction starting from &1
ES, respectively, and

(18)

Q=
— (o + kyy[S]) a kya[S] 0
a —(a+ky[S]) 0 ki S]
K1 0 —(Bt+k Tk B
0 K1 B —(B Kt ky)

(19)

In the limit of the fast reset of £ and E° to E; and B,
corresponding to the conditiods, d, > 1, the steady-state
weightsw; andw,, which satisfy

w, +w,=1 (20)
can be found from

Wy _ Koq[au(Ky Ko + Ky 1K 15) + aB(Kyy + Kyp) + BKiqK; S]]
Wy Rop[o(Ky Koy Ky K g7) + aB(kyy + Kypp) + Bk K [S]]
(21)

1 Fs]
0 o4 OISI+H (22)
[S] FJ[S] + FK
2
P (23a)

12(k21 + k 11) kll(k22 + k 12)
k21 + k22
ﬁ[klZ(kZl + k—ll) + kll(k22 + k—lZ)] (23b)

G=a(k; —

H = 20u(ky, + K1) (Kyy + k_yp) +
208(Ky; + kyp + k.4 + k1) (23c)

J = BKyKio(Kyy 1 Ky

K = oKy Kpq(Kop + K_15) + ki Kop(kpy + kg9)] +
aB(kyy + ki) (kg + ks (23€)

Interpreting 1fiClas the ensemble rate (by the assumption of
ergodicity), one sees from eq 22 that this rate does not always
obey the MichaelisMenten equation, which is characteristically
hyperbolic in the substrate concentration [S]. However, there
are a number of limiting conditions that do produce this
hyperbolic relationship. In particular, a Michaetidenten-like
equation is recovered if one of the following conditions-{p
holds: (a)ko1>> 3, ko> (3, corresponding to the limit in which
the catalytic rateskp; and ky, are much larger than the
interconversion rate3 between Eg and ES; (b) f — O,
corresponding to the limit of slow interconversion between
ES and ES; (c) o — 0, corresponding to the limit of slow
interconversion betweeniEand B; (d) oo — o, correspon-
ding to the limit of fast interconversion between &nd E;

(e) (ko1 + k—11)/ki1 = (ko2 + k—22)/k12, corresponding to the
case where the two channels € S< ES, — E;° + P and
E; + S< ES — EX + P have identical Michaelis constants;
and (f) 5 — o andk;; = kj, corresponding to the limit of fast
interconversion between E&nd ES, and an identical rate
constant of interconversion for the stepstB ES and E to
ES.

Condition (a) is not very stringent, especially in light of recent
observations of slow conformational fluctuatios? If after
imposing this condition, one also takesthe interconversion
rate constant betweem Bnd E, to be small, the disorder is
effectively quasi-static. In this quasi-static disorder limit, there
is a time scale separation between the fast catalytic reaction
and the sluggish interconversions between the conformers of
the enzyme and the enzymsubstrate complex. In this limit,
it can be shown (see Appendix B) that the steady-state waiting
time distribution is well approximated by

(23d)

2 kli k2i [S]

f(t) =

[exp® + B)t — exp® — (24)

A
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whereA; = \/(kli[s] + Koy + k)74 — kyky[S], B = —(ka[S]
+ k-gi + kz)/2, and the weightsv; andw;, are
W, = k11k21(k22 + k—l?)
b kgKoa(Kop + KCg0) kg Ko(Koy + K1)
Ky Koo(Koq + K_
W 1K0a(Koy 17) (25)

2 k11k21(k22 + k*lZ) + k12k22(k21 + k*ll)

If 1/[fs calculated from eq 24, we arrive at the single-molecule
Michaelis—Menten equation for the two conformer case,

IS
1 _ x2[S] (26)
B0 [S]+Cy
where the apparent catalytic rate constgnand the apparent
Michaelis constan€,,, unlike k; andKy in eq 5, are found to
be

iy = wylky, + wWolky, (27a)

Ch = 25w Ky /Koy + WoKyo/Kyo) (27b)
with Kvi = (K-1i + ka)/kyi. x5 is nothing but the weighted
harmonic mean of the catalytic rate constants in the two
channels, whileCy, is a more complex function of the catalytic
and Michaelis constants of the two conformers.

The significance of eq 26 and eq 27 is that single molecule
Michaelis—Menten equation holds even under the condition of
dynamic disorder, thougjg, and Cy, have different meanings
from k; andKy, in the conventional MichaelisMenten equation.
We note that at thensembldevel, kinetic schemes involving
multiple states similar to eq 15 have been sh#wa lead to
the Michaelis-Menten equation with redefinekh and Ky.
However, we will show below that this is true for an arbitrary
number of conformers.

(i) Multistate Model. The two-state model of the foregoing

section illustrates the effects on single molecule enzymatic

trajectories of fluctuations betweeairs of conformers, but real

enzyme systems are likely to interconvert among a much larger

number of conformational substat@s?:33.39n this section we
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ES. The calculation of the waiting time distribution for this
scheme follows exactly the approach used earlier, except that
many of the steps must be reformulated in terms of matrices.
We first calculate the waiting time distributions through different
channels; we then determine their steady-state average to obtain
the overall waiting time distributiori(t), the experimentally
observed quantity. The details of the calculation are lengthy,
and are provided in Appendix B. Here we point out only that
when the reset of £, E, ... to B, B, ... is much faster than
any of the other interconversion steps, it can be shown that under
physically meaningful conditions the average enzymatic rate,
1/ again follows a MichaelisMenten-like equation in which

the apparent catalytic rate constant and the apparent Michaelis
constant are complicated functions of the various interconversion
rates (see Appendix B).

The conditions leading to the Michaetidenten form
include: (a) the limit in which the catalytic rates are much
greater than the interconversion rates of the enzysubstrate
complex E§ (b) the limit of extremely slow interconversion
between the enzymesubstrate complexes E%c) the limit of
extremely slow interconversion between the enzymegqd}
the limit in which interconversion rates between thés Ere
much greater than all the other rates, (e) the limit in which the
Michaelis constants for a given reaction channel are nearly the
same, KZl + k*ll)/kll = (kzz + k722)/k12 = .= (k2n + kfln)/
kin, and the interconversion rates between the different conform-
ers are symmetricoy; = oi, Bij = Biji, and (f) the limit in which
the interconversion rate8; and §; are equal, and are much
faster than the other rates.

As in the two-state model, condition (a) is of direct relevance
to real enzyme systems. If, after imposing this condition, the
interconversion rates between the conformers of the enzyme
are also made small, the disorder is effectively quasi-static, and
as shown in Appendix B, the waiting time distributié) is
then well approximated by

1 0 Kkyky[S]

f(t) = w,

[exp(A + B)t — exp®; — A)t]

(29)

therefore consider a generalization of the two-state model in \yhere thew; are the steady-state weights with which each

which each of the enzyme species in eq 1, E, ES, ahd E
is allowed to exist in any numben of mutually inter-
converting conformers. This-state model of the Michaelis

Menten mechanism leads to the kinetic scheme shown

below:

K, ,[S] k 5
S+ E =— ES§ —P+ E’° —F

—11
ooy, B Boy 712 Va1

k,,[S] K o

st E =— ES —P+ E —E
(28)
W W W

kln[S] k2n 0 6n

S+ n k-1, ESn —P+ En - E”

In this scheme, it should be understood thatnt only
interconverts with B, or -1, but does so with all the other
conformers as well. And the same is true for the conformer

reaction channel contributes to the overall waiting time
distribution, and the parametess and B; have the same
definitions as the corresponding parameters in eq 24.

The use of eq 29 to calculate the mean enzymatic rate leads
once again to the single-molecule MichaelMenten equation,
in the form

1 xS

@0 [S]+C,, (30)

where the apparent catalytic rate constgnand the apparent
Michaelis constan€Cy can be written as

n

Uy =) Wilky

(30a)

n n

WKyl Ko = 22 ) Wi(K_ g + k)l (KyiKy)

Cu =12 (30b)

Thus,y2 andCy have the same structure as the corresponding
kinetic constants for the two-state model; i.ga is the
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Figure 4. Probability density of the waiting timé(t), in the presence  Figure 5. Substrate concentration dependence of the mean enzymatic
of dynamic disorder for three different concentrations (10, 20, and 100 velocity 1/ or its equivalent/[E]r, according to the single-molecule

#M), as calculated from eq 31, with = 10’ M~ s7%, k-3 = 50 s, Michaelis-Menten equation (eq 30), under the condition of the slow
and using the parameter values: 6, b = 35 in the gamma distribution  interconversion among conformers of a broad distributiot,ofThe
w(ko) = [1/b['(a)]k*"* exp(—ka/b). parameters are the same as described in the caption of Figure 4.

weighted harmonic mean of the catalytic rate constants along (k_; + y2)/k;. Figure 5, showing the variation of @/ with [S]
the individual reaction channels, af@,; is a more complex  for the same set of parameters used in Figure 4, is char-

function of the interconversion rates. acteristically hyperbolic, as is the ensemble enzymatic velocity.
It is also interesting to note that the weightscan them- Since the mean of the gamma distributiég,is ab, and the
selves be expressed in terms of the catalytic efficiency of variance A, is al?, the apparent catalytic rate constant can be
individual conformers. The catalytic efficienci(g of an written y2 = k, — Alkz. Assuminga = 6, b = 35, if k; is kept
individual conformer is defined as the ratio of its catalytic constant at 210$ and A is increased by a factor of 4,
rate constanky to its Michaelis constanKy;, i.e., Kg = decreases from 1755to 70 s'1. This result has interesting
Ka/Kmi = kaiku/(k-1i + k2)); wi can be shown to bev = implications for the interpretation of different apparent catalytic
Ke/Y L Kei. constantsy. A decrease g2 need not be associated with an
For the purpose of comparison with experiment, it is overall decrease in the mean catalytic constintbut could
convenient to simplify eq 29 further by assuming tkat= k;» arise from a larger variance.
= ... = kin = ky, and thatk-17 = k12 = ... = kegn = kg, The single-molecule Michaeligvienten equation for the

Additionally, if nis large (as is generally the case), a continuum multiple conformer case, eq 30, explains why the conventional
approximation can be invoked. These simplifications then lead Michaelis-Menten equation, eq 5, is so widely applicable, since

to even in the presence of dynamic disorder for each single
Kk fS] molecule, the hyperbolic concentration dependence Gfl1/
_ e 1Ko _ B almost invariably holds. In the presence of dynamic disorder,
)= ./(; dk, wky) 2A [exp(A+ B)t — exp® — A)t] however, the constanks andKy in the ensemble Michaelis
(31) Menten equation must be reinterpreted. In the slow intercon-

whereA andB are identical to the corresponding expressions vgrsipn limit, they are now seen to be.V\_/eighted averages of the

that appear in eq 10. It is reasonable to further assume that theklnenc payameters charac.tenzmg '”d""d“*’%' conformers. Thus,

weight functionw(k) is a gamma distribution, such thatks) the experlmen_tal observation of a hyperbolic _dependence _of the

= [L/bT(a)] kL exp(—ki/b), a andb being adjustable param- enzyme velocity on the sub_strate concentration c_ioe_s not imply

eters. With this choice of weight function, the integral in eq 31 that eql accurately describes the underlying kinetic scheme,

can be evaluated exactly. The resultiify is shown in Figure since a more cc_)mpllcated scheme, such as eq 28 can produce

4 as a function of at different [S] for the following arbitrary seemingly identical results. Pre-steady-state ensemble-averaged

parameter valuesa = 6,b = 35,k = 10/ M-t s-%, andk_; = measurements can, in prl_nC|pIe, distinguish the dlspefsed

50 si. The curves clearly illustrate how, as the substrate Kinetics. Howeyer, in practice, they often QO not have h!gh

concentration increaseft) increasingly departs from single- enough dyr_1am_|c range for accurate deter_m|nat|on of multiex-

exponential decay behavior. ponential kinetics. We_ demonstra?g that single-molecule mea-
These trends are in complete qualitative agreement with surements off(t) provide a sensitive measure of dynamic

experimental result¥ and they may be explained as follows. disorder.

At low substrate concentrations, the binding of the enzyme to

the substrate is the rate-limiting step in the reactionf(g§o 4. Semi-Markovian (Memoryless) Approximation to

reflects the statistics of this Poissonian step, which is therefore pyltistate Model

governed by an exponential distribution. At high substrate

concentrations, the dissociation of the enzyraabstrate com- The model of single molecule kinetics based on conforma-
plex to product is the rate-limiting step in the reaction f@&p tional fluctuations introduced in the previous section provides
now reflects the statistics of this step, which is no longer detailed microscopic interpretations of ensemble rate expres-
Poissonian (because of dynamic disorder). sions. However, these expressions [cf. Appendix B] are quite

The calculation of Ifl from eq 31 using the given expression complex, so it is worthwhile to consider alternatives that capture
for w(kp) readily establishes that, = (a — 1)b andCy = key experimental observations without being algebraically
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complex. This section introduces a semi-Markovian approxima-
tion to the multistate model that leads to simpler expressions
for both the ensemble reaction rate and the waiting time
distribution; but the approximation, by its Markovian nature,
does not account for the memory effect. In this approximation,
the distinct conformational states, ES, and E° in the multi-
state model are collapsed into a set of effective stRieSS,
andE?, and the corresponding reaction mechanism can then be
written asE + S<> ES— E° + P. In this reduced description,
the binding stefe + S — ES and the dissociation stepS —
E + S are assumed to be governed by monoexponential
distributions with rate constantg[S] and k—; respectively.
However, the catalytic step of the reactid#s — E° + P, is
assumed to be governed not by a single well-defined rate
constantk; but by a waiting time distributioffir,(t), which can
be specified arbitrarily. We shall refer to this scheme as a semi-
Markovian approximatiod! (In the context of the kinetic
scheme described by eq 28, this semi-Markovian approximation
becomes exact if the interconversion rate constgnt®r the
complexes ESare much larger than the catalytic rate constants
ko, and the interconversion rate constamjgor the enzyme E
approach infinity.)

The overall waiting time distributiof{(t) in this picture is now
a function offr.(t) and is shown in Appendix C to be given by

fl9 ="F(s+ k)

kiSl+s Kk,
k[S] k,+ts

1-f(s+kl| (32)

The semi-Markov approximation thus provides a quick way to
obtain the waiting time distributiof{(t).

The Laplace inverse of eq 32 is not known in closed form
for generalfr.(t), but given an expression fdr(t), f(t) can be
readily calculated from eq 32 numerically. As an example, if
the distribution fr.(t) were described by a sum of three
exponentials:

3

fr(®) =Y a expl it) (33)

with the g satisfying zf’:la- = 1 to ensure normalization of
fr.(t), the calculated(t) as a function of [S], for some suitable
set of parametels, k-1, a;, andx;, is easily shown to reproduce
the general trends depicted in Figure 4. In other wofdsjs
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Figure 6. Randomness parametervs [S] under the following
conditions: (i) no dynamic disorder (full line), calculated using eq 38
with k; = 10° M1 571, k, = 250 s1, andk-, = 50 s°%; (ii) dynamic
disorder present in the catalytic step (dotted line), calculated using eq
31, withk; = 10/ M~1s™%, k_; = 50 s, anda = 6, b = 35 in w(ky),
with the mean ok; assigned the value 175% (iii) dynamic disorder
present in the dissociation step (dashed line), calculated using eq 31
according to the method described in the text, vt 10" M~ s7%,
k; =175 s, anda= 6,b = 10 inw(ky), with the mean ok-; assigned
the value 50 s

As in the microscopic model of dynamic disorder given in
section 3, the semi-Markovian approximation also leads, in this
case directly, without the imposition of additional constraints,
to the Michaelis-Menten equation, with the ensemble param-
etersk, andKy, replaced by quantities§ andAw, respectively)
related to the waiting time distribution of the catalytic step. The
classic Michaelis-Menten parameters are recovered wheft)
is described by a single exponentill,exp(—kat).

It is worth noting again that since the above treatment invokes
the semi-Markov approximation, successive enzyme turnover
times are uncorrelated; i.e., they exhibit no memory effects.

5. Randomness Parameter

The probability density(t) characterizes the kinetics of single-
molecule enzymatic reactions completely, with tile moment
in general given byf"[l= /f; dt f()t". While the first moment
of f(t) can be described by the single-molecule Michaelis
Menten equation, higher momentsf() contain more informa-

a stretched multiexponential decay at high substrate concentrasjgn, 23 Often it is convenient to evaluate the second moment of

tion and a single-exponential decay at low concentrations, again
in qualitative agreement with experiméfit.
The average reaction ratelflicalculated from eq 32 is

1 VS
T [S] + Ay (34)
where
B k—lfTC(k—l) A = k., 35
Pk Mk

Herefr.(k_1) meandr.(s + k_1)|s=o. Parallel with the definition
of Ky = (k-1 + ko)/kq, it is readily shown that

_ kit

M kl (36)

f(t), which is related to a randomness parametdefined a%3"

o ik
il

For a one-step Poisson proceih, = k exp(—kt), = 1/,
[fPO— 3 = 1/K2 thereforer = 1. For multistep processes,
assuming an identical rate constaiin n sequential rate-limiting
steps, the variance ofin the numerator of eq 37 ig'k?, while
in the denominator variance md/k?. Hencer = 1/n. The greater
the number of rate-limiting steps, the smaller is the value of

In eq 1, if the reaction steps are all characterized by
exponentially distributed waiting time distributions (implying
no dynamic disorder), has been shown to be given®y

37)

r_%m+@+hf—%mm

([S] + ky + k_y)? 9
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which is drawn as the full line in Figure 6. This curve may be temporal behavior dit) at any specified substrate concentration
interpreted as follows. At low substrate concentrations [S], is easily derived. Tht) in eq 10 is exact and does not invoke
r is unity because substrate binding is the rate-limiting step. As the steady-state assumption, but it can be reduced to the steady-
[S] increasesr decreases, reflecting the formation of the en- state case, i.e., to a fast rise followed by an exponential decay,
zyme-substrate complex as an intermediate. At still higlgr[  when k, < k_3. Irrespective of the use of the steady-state
r returns to unity when the catalytic step becomes rate-limiting. condition, the reciprocal of the first moment fgf) is always

The [S] dependence ofcan be quite different when dynamic  consistent with the ensemble Michaeligenten equation (eq
disorder is present. Assuming that dynamic disorder is mani- 5), which is an important insight.
fested in the catalytic step of the reaction through the distribution  In the presence of dynamic disorder, the treatment of single-
w(ko) governing the range of possible valuekgfthe evaluation ~ molecule MichaelisMenten kinetics becomes considerably
of r is carried out by using eq 31 to calculate the first and second more complex. The existence of distinct conformational states

moments off(t). These moments are found to be of the enzyme that interconvert on time scales comparable to
or longer than the time scales of the reaction results in disperse
2 2 2k_, kinetics. The MichaelisMenten mechanism of eq 1 is easily
e + generalized to include these conformational states (egs 15 and
kS)?  (a— 1)bk[S] kq[S]

28). The calculation of the waiting time distributi(t) and the
2 i koi)? (39a) mean enzymatic rate [@/for these multistate models of dynamic
(a—1)(a— 2)b2 ky[S] disorder can be carried out analytically. It has been found that
1/d0does not always exhibit the same substrate concentration
1 N 2 (1 n k_, ) N dependence as the Michaelidlenten equation. However, under
= — many conditions, Tidoes follow the single-molecule Michae-
klz[s]2 (@=1)bk,[S] [S] lis—Menten equation. In these limits, the parameke@ndKy
1 kop\? that appear in the ensemble Michaelddenten equation are
(a— 1)2b2 + k,[S] (39b) replaced by the weighted averages of distributions of the
corresponding kinetic constants of the conformers. Although
the first moment of(t) contains the same information as in the
ensemble measurement§) itself provides new informantion
about dynamic disorder, and it also exhibits multiexponential

The variation ofr with [S] as determined by the above
expressions is shown in Figure 6 (dotted line) for the following
parameter valuesa = 6,b=35,k; = 10/ M1 s71, andk_; = : ; :
50 51, with the mean ok, [which is given by & — 1)b] being long tails under saturating substrate concentrations.
175 s’rl. As is evident,r can exceed 1 at high substrate A semi-Markovian approximation to this description of single-
concentration. This is in agreement with recent experimental molecule kinetics views the ongin of er!am_lc disorder In terms
findings 16 We should note that another reasonrfteing larger of the occurrence of a non-Poisson distribution of reaction times
than unity is the existence of a reversible reaction in the catalytic " the catalytic step of eq 1. In this approximation, the calculated
step, which was previously reportétlbut can only occur for mean rate, 1) directly recovers the hypert_)ollc ;ubstrate
enzymatic reactions close to equilibrium. concentration dependence of the ensemble MichaMisnten

It is conceivable that dynamic disorder could be manifested equatloln. '35 before, the pararrlwqetkfand K,M arer:eplaqu by'
in the dissociation step of the reaction, in which case the rate 9€N€ralized counterparts. At the same time, the waiting time
constantk_y, rather tharks, would have a range of different  distributionf(t) is now found to show highly nonexponential
values, governed by a distribution functiwik_1). The evalu- decay at high substrate concentrations, as seen in experiments.
ation of r under these circumstances can be carried out, as ' n€ first and second moments if) (when calculated with
before, by using eq 31 witv(k_1) replacingw(k,), and the the model described by eq 31) can be usgd to find expressions
integration being performed ovér 1. If w(k_1) is given by a for the rar_1do_mness _parameterwmch provides a con\_/ement
gamma distribution, witta = 6, b = 10, (such that the mean characterization of single-molecule turnover trajectories. In the

of k_1 is 50 s'1) and the other parameters are assigned the valuesabsence pf Qynamic disorder, if the .reaction is. dominated by
kk = 100 M1 s1 andk, = 175 s1, the result of such a  One rate-llmltm_g ;t_epr, = 1, whereas if the reaction has more
calculation is shown as the dashed line in Figure 6. Thus, whenthan one rate-limiting step, < 1. In the presence of dynamic
dynamic disorder is present in the dissociation step of the disorder, howeven, could be greater than 1.

reaction onlyy cannot exceed unity at high substrate concentra- ~ We hope the results in this paper provide a theoretical
tions. This discussion highlights the fact that ifs observed ~ framework for understanding the ever-expanding activities in
experimentally to be greater than 1 for an irreversible enzymatic Single-molecule enzymology, and perhaps enzymology in
reaction, then (i) dynamic disorder must be present, and (ii) it 9eneral.

must be present in the catalytic step, because a cokstzamnnot
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results through a different observalig), the probability density
of the waiting time. Note Added in Proof. We give in Section 3(i) six limiting

In the absence of dynamic disorder, a single-molecule conditions (a-f) under which the single-molecule Michaetis
Michaelis-Menten equation, eq 10, that explicitly describes the Menten equation holds for the two-state model (eq 15). To
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be more precise, in condition (a) we megrk,; — 0 and
Blko2 — 0, butavky; andavks, do not approach 0; in condition
(b) we mean3 — 0, buta does not approach 0; in condition
(c) we mearo. — 0, buts does not approach 0. Correspondingly,
the six limiting conditions (af) in Section 3(ii) for the single-
molecule Michaelis Menten equation to hold for the multistate
model (eq 28)

Appendix A. Calculation of the Waiting Time
Distribution for the Two-State Model

The total time to form the product P in the two-state kinetic
scheme of eq 15 is a random variabléhat is governed by the
waiting time distributionf(t). To calculatef(t), the quantity of
interest, we first seek expressions for the waiting time distribu-
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P(t, < To) = kylS] [, dt, exp(ky,[S]t,) =
exp(—ky[S]t;) (A.6)

P(t, < T) = o f; dt, exp(-aty) = exp(at;) (A7)

should be more precisely stated in a similar way. Therefore, by taking the Laplace transform of eq A.5, and

making use of eqs A.2 and A.3 and A.6 and A.7, we obtain

afr (9 k(S ., (9
st+o+ kll[S] s+ o+ k;4[S]

ngl(S) = (A.8)

where f; (9, f (9. and fr. (9 are Laplace transforms of
fr (0, f; (t) andf (t) respectlvely Equation A.8 is one

=
tions that govern the times needed to complete the reaCt'Onequatlon connectlng Three of the unknown waiting time distribu-

starting from g, E,, ES,, or ES. These times, which are random
variables, are denotélt,, Te,, Tes,, andTes,, respectively, and
their corresponding waiting time distributions are denoted
fTEl(t), fTE ), fTESl(t), and fTESZ(t). Once these distributions are

determinedf(t) can be expressed as a weighted steady-state

average offTE (t) and fTE (t). To obtain the expressions for
1 2
fTE (1), fTE 1), fTEsl(t)’ andfTESZ(t), we set up and solve a set of
1 2

four linear simultaneous equations as follows.
Imagine that the system is initially in the statg Bo that the

total time to complete the reaction and form the product is the

random variabldg,. From g the system can proceed either to
E; or to ES, from where the reaction is then completed in the
time Tg, or Tes. The system reaches i the step & — E;
occurs before the stepE~ ES; (or equivalently, if the time
T, to complete the former is less than the tifg to complete
the latter), and it reaches EBthe step E — ES; occurs before
the step E — E; (or equivalently, ifT11 < T,.) Hence, the
probability thatTg, is realized within some time intervglwhich

we denoteP(Tg, < t), can be written as

P(Tg, < ) = P(Te, + T, < OP(T, < Tpp) +

P(TEsl + T, <OP(T,; <T) (A1)
The steps E— E; and B — ES; occur at random through a
Poisson process with average rateandk;[S], respectively.

Hence, the timesl, and T;; are drawn from the following
waiting time distributions:

fr () = ocexp(-at) (A.2)

fTu(t) = ky4[S] exp(=ky4[S]t) (A.3)

In general, for any random variab} fx(x) = dP(X < x)/dXx,
so eq A.1 can be differentiated with respect to produce
fr O = fr_i7 OP(Ty = Top) + 7 ir (OP(Tyy < To)

(A.4)

Since the distribution of the sum of two random variables is
the convolution of the distributions of the individual random
variables, eq A.4 can be further written as

fr 0= [ dtyfr (t= ) (P < Ty +
fodt, fr = W (WP < T (A5)

From egs A.2 and A.3, we can show that

tions, f; T, ®, f; T, ) andfTEsl(t) An equation for the waiting time
1 2

distribution of the random variabl&g,, the time to complete
the reaction starting from the state, Ecan be obtained
immediately from eq A.8 by an interchange of labels. That is,

afr (9 kiolS]r,, (9)
sta+ klZ[S] s+ o+ k5[S]

fr (9= (A.9)

We can also derive two more expressions involvfﬁl (9

and ?TE () in a similar way. In outline, the procedure is as
follows. Imagine the system to start in the state, E® that
Tes, is the time needed to complete the reaction and form the
product. At ES, the system can either dissociate and return to
E; at a rate constarit_14, or it can isomerize to the conformer
ES at a rate constarfl, or it can catalyze the substrate to the
product at a rate constakd;. The probability that the reaction
time Tgs, occurs within a time interval (following the earlier
reasoning) is therefore given by

p(TEs1 <H=

P(T 1+ Tg, < HOP(T_yy < THP(T_py < Tpy) +
P(T,; + Tes, < DP(Ty < T_1)P(T; < Ty +
P(T,y < P(Tyy < T_1)P(T,, < Tp) (A.10)
whereT-11, Tz, and T, are the random times required to execute
the steps ES— Ej, ES — ES, and ES — E:°, respectively.

As before, these steps are Poisson processeB, 50T, and
T,1 are drawn from the waiting time distributions

fr (0 =K y exp(=k_t) (A.11)
fr, () = B exp4Y) (A.12)
fr, (1) = Koy €Xp(—kyt) (A.13)

After differentiating eq A.10 with respect tip making use of
egs A.1+A.13 and taking Laplace transforms, it is readily
shown that

Ko1g fTE (© pi TESZ(S)
T T ST BTk Tk, (ST ATk tky
k
21 (A.14)

s+ +k.;+ky

This is a third equation connecting the unknown waiting time
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distributions. A fourth and final equation is obtained from eq
A.14 by symmetry:

K1 fTE (s) pi TESL(S)
D T ST BTk Tk, STAT ko, tk,
k22

s+ +k .+ Ky (A.15)

Kou et al.
A 61P(I)EO 62P20 A
f(s) = — ——, 0, 0| f(s)
01PRo T 0,PEy 0,PR,+ O,PE,
(A.20)

The calculation of the equilibrium probab|I|t|€F$EO and Pgo
is discussed next.

In the kinetic scheme shown in eq 15, the probabiliBgd)
that the enzyme is in one or other of the states Ej, E,, ES,

Equations A.8, A.9, A.14, and A.15 are conveniently represented ES, Ei°, or E° satisfy a master equation, i.e., a system of

in matrix form as

Qf(s) +r
wheref(s) = (f (s) f (s) fT () f

(s = (A.16)

(S))Tv r = (0, 0, kay,

k22)T, and
Q =
—(oc + ky4[S]) a ki1[S] 0
a —(a+ ky[S]) 0 kio[S]
K 11 0 —(B+k Tk B
0 K.1p B —(B+ K 1o+ ky)

(A.17)

Equation A.16 can be inverted to yield the following expression
for f(s) [cf. eq 18]:

fo=@6-Q*

The relation betweef(s) andf(t), the waiting time distribution

(A.18)

that is actually measured in experiments, is now established as
follows. At the end of each catalytic cycle, the enzyme exists

either as the conformer Eor as the conformer £ E° is
assumed to return to.Eat a rate constand;, while EQ is
assumed to return to;Et a rate constarib. In single-molecule

coupled linear first order differential equations analogous to eqs
6—8 that express the balance of probability into and out.of

At long times,t — o, when the system reaches equilibrium,
the rates B,(t)/dt vanish, and the above system of equations
reduces to

SP=0 (A.21)

whereP is the vector P2, P2, P2s, P2s, P2o PR, the

superscript 0 denoting the equmbrlum value, and

Si=

—(a+ky4[S]) o Koy 0 &y 0
o — (o + ky5[S]) 0 Koio 0 8,
ky4[S] 0 —(B+k oyt k) B 0 0
0 k;,[S] B ~B+k,tky) O 0
0 0 Koy 0 —(r+o) vy
0 0 0 koo y  —(rtd)
(A.22)

From the solution to eq A.21 under the constraint

0 0 0 0
PR, + PE + PR + Pl

Bs, + PR+ Pgo=1 (A23)

and in the limitdy, 0, > 1 (corresponding to fast reset of’E
andEx° to E; and B), it can be shown that

enzymatic turnover experiments, the successive reaction times

are obtained over a long time interval so that many turnovers

lEO

occur. But over the course of many such turnover cycles, the ¢, p0

fraction of time that the enzyme resides in & E; attains a

steady-state value. Therefore, during a long time trajectory, the

waiting time distributionf(t) observed in enzymatic turnover

experiments corresponds to the steady-state weighted average

of the two waiting time distributionfsrE ) andfTE (t), when the
1 2
reaction starts from £or E,, respectively. This steady-state
weight for fTE (t), which accounts for how often the system
1

starts from & immediately after restarting the cycle, is propor-
tional to the steady-state probabllllt?yé that the system is in
Ei° multiplied by the rate constan; 'of E1%s return to the
E; state. Similarly, the steady-state weight fpr(t) is propor-
tional to the steady-state probablllra@ that the system is in

E-° multiplied by the rate constamt of E.%s return to the &
state. In other words

0,P2o
0.Pgo+ 0P,

6P°

f)=———
0= 6P°o+c§2P°o

O+ 7,

(A.19)

Kpalou(ky 1Kap + Ky 1K 15) - aB(kyy + Kyp) + BKy K [S]]
Kool au(Ky Koy + Ky K q7) + aB(Kyy + Kyp) + Bk 4K [S]]
(A.24)

from which the steady-state fractions in eq A.20 can be
calculated. Once we obtain the Laplace transfé(sy the mean
waiting time [{l1= [ dt tf(t) is readily given byf(= —d/ds
f(s)|s=0. Using eqs A.18 and A.20, we have
0
61PE10

0,PRo+ 0P,

(Sng 0

0, 0|Q7?
(A.25)

=N

0.PEo+ 0P,

which, after lengthy but straightforward algebra, can be re-
arranged to the form in eq 24.

Appendix B. Calculation of the Waiting Time
Distribution for the Multistate Case

where the denominator in this expression is introduced to ensure The approach introduced in Appendix A can also be applied

thatf(t) is properly normalized to unity.

to the analysis of the multistate model of dynamic disorder. In

Equation A.19 can be rewritten in Laplace space in terms of deriving an expression for the waiting time distributigt) and

the vectorf(s) obtained earlier:

its first moment, it is convenient to introduce some simplified
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notation. Let A, B;, and G stand for the states;FES, and B, where

respectively. As diagrammed in eq 28, @an convert to Bor

to any of the 4 B; can convert to A G, or to any of the B L =[Qas — Qas — Qua(Qgs — (Qga + Qo)) 'Qpal *
and G can convert to Aor to any of the ¢ If we introduce the (B.6)
matrix Qaa to denote the transition rates between ths And

the matrixQag to denote the transition rates between this A = ~[Qas — Qag ~ Qua(Qee —~

and the Bs, and likewise introduc®ega, Qgs, Qcc, andQca (Qga t+ QBC))_lQBA]_lQAB(QBB —(Qpat QBC))_l (B.7)
to denote the transition rates between the corresponding states,

then, following the diagram of eq 28, the transition matrices N = —(Qggz — (Qga + Qgc)) "QpalQas — Qg —

areQaa = [aj], Qs = [Bi], Qcc = [yil, Qas = diagki1[S], -1 -1
klz[SQ], ey |£1n[]]s])? QBA [IZBJ]dianQ(,ll,[‘}I/(J,]lz,Q_", kiln)'gch[ i QAB(QBB - (QBA + QBC)) QBA] (B.8)
diagko, ko, ..., kon), andQca = diag(1, 2, ..., 0n). The entire — _ _ _
network of interconversions can be described by a magrix R=[Qes ~ Qaa = Qoc ~ QoalQar = Que) QAB](B 9)
given by
It then follows that
Qar — Qag Que 0 5
Q=1|Qga Qs — (Qea T Qsc) Qs ETA(O) _ (L +M)1 (B.10)
Qca 0 Qcc — Qca f1.(0) (N+R)1 '

(B.1)
As before, since each new reaction cycle can start from gany A
Following the method of Appendix A, one can derive the the overall waiting time distributiorf(t) is the steady-state
fO”OW|ng rela“on in Laplace space, between the distributions We|ghted average of the d|Str|bUt|Of‘—S(t) The calculation of
associated with the times needed to complete the reactlonthese steady-state probabilities is con3|dered nextPhePs,
starting from different states of the network: andP¢, denote the steady-state probabilities of B, and G,

¢ © B ¢ © respectively. To calculate them, we proceed as earlier from the
Ta _[Raa = Que Que Ta + stationary solution of the master equation, which is defined by
(Qga * Q&0

fT (9] \Qsa Qgs — fT 6]
B B T T T
(Pa Pg P)Q=0 (B.11)
Qpcl (B.2)
WherepA = (PAl, F_’I_Az, vy PAn)T, Ps = (PBl, PBZ. vy PBn)T, Pc=
_ T (Pc,, Pcy ..y Pc)'. To solve eq B.11pa and pg are first
Where fTA(S) (fT ©. fr MU fro(9) = (fy o9 rewritten in terms ofpc, so that an equation solely inc is
(5) (S)) andl = (1 1 . 1]. Heref; (S) and obtained. This equation is then solved by standard matrix
f (s) are the Laplace transforms of the waiting tlme distribu- techniques. To implement the first step in this process, the
tiohs where the system starts from And B, respectively. definition of Q is substituted into eq B.11, producing
Equation B.2 can be solved by matrix inversion:
A Qan ~ Qas Qas 0
fr (9 (Pa Pg Pc)|Qsa Qes — Qga — Qe Qac =0
A —
f 9]~ Qca 0 Qcc — Qca
(B.12)
Qaa — Qug Que ) - 0 . N
sl — B.3 Equation B.12 implies that
(QBA QBB - (QBA + QBC) QBC]' ( ) . P
( ) Qar ~ Qs Que +
To calculate the mean waiting tinté) eq B.2 is differentiated Pa Ps Qga Qgs — Qga — Qge
with respect tos, and the result evaluated at= 0. Together T _
with eq B.3, this leads to Pc(Qea 0)=0 (B.13)
frA(O) and
fr.0)) PeQsc + PL(Qcc — Qca) =0 (B.14)
—1/%
_[Qaa = Que Que fTA(O) Equation B.13 leads to
Qga Qgs — (QBA + QBC) fTB(O) . T
(Pa PB) =
_ _(QAA —Qns Qns )1(1) ) O)(QAA Qe Qas )_1
Qga Qgs — (QBA + QBC) 1 cheea Qgs — Qa — Qe
(B.4)

= —pL(Qea 0)(L v )
where the last equality makes use of the resfqltéo) =1, _(0) c N R
= 1. The inverse in eq B.4 is calculated by block matrix inver- = —(PeQcal PLQcaM) (B.15)
sion, producing

(QAA - QAB QAB L M

. Hence,
Qga Qgs — (Qpa T QBC)) - (N R ) (B:5) p; = _ngCAL p; = _p(T:QcAM (B.16)
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Substituting eq B.16 into eq B.14, the sought for equation in  Next we note that the mean enzymatic reaction ratil]1/
pc is obtained as calculated from eq B.24 will be of the Michaetidenten form
(cf. eq 29)

_p-(I;QCAMQ gc T pE(Qcc —Qca) =0 (B.17)
1 xS

which can be solved fgoc up to a normalizing constant. This ED_ [S] + Cy
then provides expressions fpg andpg via eq B.16.

Having obtained the steady-state probabilities, the overall if the equilibrium weightv does not depend on the substrate
waiting time distributionf(t) (in Laplace space) is calculated concentration. This can be demonstrated by first noting that only

(B.26)

from the transition rates associated with A B; involve [S]. The
. matrix, Qag can therefore be writte@ag = [S]Qas, WhereQags
R PcQcafr, (9) = diagki, K12, ..., kin). The use of this definition in eq B.24
f(s) = T (B.18) followed by rearrangement leads to eq B.26, with bpttand
PcQcal Cwm independent of [S]. It is now straightforward to show that
o each of the conditions (&) in section 3 (ii) does indeed
Hence, the mean waiting time is calculated as guarantee that the weightslo not depend on the concentration
_— [S], and that each condition therefore leads to a Michaelis
_chCAf'TA(O) Menten equation, as seen in eq 29.
T—l To calculate the waiting time distributiofft) in the slow
PcQca interconversion limit, we start from eq B.2, which can be written
_ —pcQcall + M)1 (B.19) as
PeQcal sfr,(8) = (Qaa — Qup)fr, () + Quafr (9
Introducing a vector” defined asv™ = p{Qca, egs B.18 and sfr_(8) = Qgafr,(9) + (Qas — Qea — Qefr,(8) + Qgcl
B.19 can be written in more compact notation as (B.27)
A VT]?TA(S) V(L + M)1 In the given limit,Qaa andQ;B are small, so eqB.27 effectively
f(s) = - 0= ————" (B.20) reduces to a set of equations for the individual components,
vl vl ie.,
Hence, the steady-state waiting time distributif§t) is the sty () = —ky[S]f; () + ky[S]F; (9)
weighted average of the waiting time distributions associated g g i
with starting the reaction from;Ewith the weights given by SAfT (9 = —k_y; fT (9 — (k_y + kZi)fT (9 +k; (B.28)
Bj Aj Bj

the steady-state probability to be in E
Now from eqgs B.6-B.9, it follows that Solving for - (s), we obtain
T\
L =-M(Qgg — Qpa — QBC)QABil (B.21) kyi K[ S]

S 2 SIS Ky 1 ) + K lolS]

(B.29)

which leads to

L+M=—-M[(Qgs — Qga — QBC)QAB_l —1] (B.22) which can be inverted to

Ky Kai[S]
20

This equation, together with eq B.17, yields f (1) = [exp(A + B)t — exp(B — A)t] (B.30)
Ai

—Vv'(L +M)1

=
vl

where A and B have been defined after eq 26. This expression,
when weighted by, and summed over the reaction channels

= VTllvTQCA*(Qcc ~ Qen)Qsc 1(Qes — Qun yields eq 30.

1 Appendix C. Calculation of the Waiting Time
Qec)Que ~ — 111 (B.23) Distribution for the semi-Markovian Approximation

In the limit when thed; are much larger than the other rates (so ~ The general method of calculatirif) remains the same as

that at the end of the reaction, the system returns rapidly to thethe method described in Appendix A. The reaction is imagined
state B), eq B.23 reduces to to start fromE. The total time to complete the reaction starting

from E is a random variabld governed by a waiting time

I S SR} B B = distributionf(t). After a timeT, which is drawn from the waiting
= VT]_V Qec 1(Qee ~ Qe ~ Qec)Qne 11 time distributionfr,(t), the system moves to ES, from where
(B.24) the reaction is completed in a total tinfe, which is drawn

) o from the waiting time distributiorir,(t). Thus, the probability
with v satisfying (cf. eq B.17)vIMQgc + VI = 0, or that, starting from E, the reaction tinkeis realized within a
equivalently time intervalt is given by

VIl + Qg 'MH=0 (B.25) PT<t)=P(T,+T,<t) (C.1)
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The distributionfr,(t) is assumed to be exponential, with a time
constant oki[S]; hencefr,(t) = ki[S] exp(—ki[S]t). Differentiat-
ing eq C.1 with respect t we obtain

t
f(t) = ky[S] f; dt; expl—k,[S](t — t]f(t)  (C.2)
The Laplace transform of eq C.2 yields

k([S] .

SO

=5 ks

(C.3)

Once the enzyme has reachE®, a total time of T, will
elapse before the product is formed. In forming the product,
ES can either move to the staE directly in a timeT¢ drawn
from the unknown waiting time distributidi.(t), or it can return
to E in a time T, drawn from the exponential waiting time
distributionfr_,(t) = k—1 exp(—k-1t). The first option is selected
if Tc < T4, the second i1 < Tc. The probability that, starting
from ES, the reaction timeT, is realized within a timet is
therefore given by

P(T, <t) =P(Tc < )P(Tc < T_y) +
P(T_, + T<tP(T_, < Ty (C.4)

After differentiating with respect td, eq C.4 becomes

fr (0 = fr (OP(E < T_) + 7 dty f(t — ) (L)P(L < To)
(C5)

From the expression fofr_,(t), P(t < T-1) is given by
exp(—k-it), while P(ty < T¢) is given by 1— /g dt, fr.(t2).
Hence the Laplace transform of eq C.5 is

L_f(91 —

9 =Fr(st k) + 5

fTC(s+ k)] (C.6)

Substituting eq C.6 into eq C.3 and rearranging, we find
f(s) = fTC(s+ k_))/

kl[S]+S I(_l : )
S] k,+at Tkl (ED)

which is the expression shown in eq 32.

Note Added after ASAP Publication. The Note Added in

Proof was included with this paper on September 22, 2005. The

J. Phys. Chem. B, Vol. 109, No. 41, 20089081

article was published ASAP on 8/2/05. The appended version
was reposted on 9/23/05.
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