
Original Paper

Reproducible Machine Learning Methods for Lung Cancer
Detection Using Computed Tomography Images: Algorithm
Development and Validation

Kun-Hsing Yu1,2,3, MD, PhD; Tsung-Lu Michael Lee4, PhD; Ming-Hsuan Yen5,6, BSc; S C Kou2, PhD; Bruce Rosen7,8,

MD, PhD; Jung-Hsien Chiang6, PhD; Isaac S Kohane1,8, MD, PhD
1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
2Department of Statistics, Harvard University, Cambridge, MA, United States
3Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
4Department of Information Engineering, Kun Shan University, Tainan, Taiwan
5Graduate Program of Multimedia Systems and Intelligent Computing, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
6Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
7Department of Radiology, Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
8Division of Health Sciences and Technology, Harvard–Massachusetts Institute of Technology, Boston, MA, United States

Corresponding Author:
Jung-Hsien Chiang, PhD
Department of Computer Science and Information Engineering
National Cheng Kung University
No 1 University Road
Tainan
Taiwan
Phone: 886 6 2757575 ext 62534
Email: jchiang@mail.ncku.edu.tw

Abstract

Background: Chest computed tomography (CT) is crucial for the detection of lung cancer, and many automated CT evaluation
methods have been proposed. Due to the divergent software dependencies of the reported approaches, the developed methods
are rarely compared or reproduced.

Objective: The goal of the research was to generate reproducible machine learning modules for lung cancer detection and
compare the approaches and performances of the award-winning algorithms developed in the Kaggle Data Science Bowl.

Methods: We obtained the source codes of all award-winning solutions of the Kaggle Data Science Bowl Challenge, where
participants developed automated CT evaluation methods to detect lung cancer (training set n=1397, public test set n=198, final
test set n=506). The performance of the algorithms was evaluated by the log-loss function, and the Spearman correlation coefficient
of the performance in the public and final test sets was computed.

Results: Most solutions implemented distinct image preprocessing, segmentation, and classification modules. Variants of U-Net,
VGGNet, and residual net were commonly used in nodule segmentation, and transfer learning was used in most of the classification
algorithms. Substantial performance variations in the public and final test sets were observed (Spearman correlation coefficient
= .39 among the top 10 teams). To ensure the reproducibility of results, we generated a Docker container for each of the top
solutions.

Conclusions: We compared the award-winning algorithms for lung cancer detection and generated reproducible Docker images
for the top solutions. Although convolutional neural networks achieved decent accuracy, there is plenty of room for improvement
regarding model generalizability.
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Introduction

Lung cancer is one of the most prevalent cancers worldwide,
causing 1.76 million deaths per year [1,2]. Chest computed
tomography (CT) scans play an essential role in the screening
for [3] and diagnosis of lung cancer [4]. A randomized
controlled trial demonstrated that low-dose CT screening
reduced mortality from lung cancer among high-risk patients
[3], and recent studies showed the benefit of CT screening in
community settings [5]. The wide adoption of lung cancer
screening is expected to benefit millions of people [6]. However,
millions of CT scan images obtained from patients constitute a
heavy workload for radiologists [7]. In addition, interrater
disagreement has been documented [8]. Previous studies
suggested that computer-aided diagnostic systems could improve
the detection of pulmonary nodules in CT examination [9-12].
To stimulate the development of machine learning models for
automated CT diagnosis, the Kaggle Data Science Bowl
provided labeled chest CT images from 1397 patients and
awarded $1 million in prizes to the best algorithms for
automated lung cancer diagnosis, which is the largest machine
learning challenge on medical imaging to date. In response,
1972 teams worldwide have participated and 394 teams have
completed all phases of the competition [13], making it the
largest health care–related Kaggle contest [14]. This provides
a unique opportunity to study the robustness of medical machine
learning models and compare the performance of various
strategies for processing and classifying chest CT images at
scale.

Due to the improved performance of machine learning
algorithms for radiology diagnosis, some developers have sought
commercialization of their models. However, given the divergent
software platforms, packages, and patches employed by different
teams, their results were not easily reproducible. The difficulty
in reusing the state-of-the-art models and reproducing the
diagnostic performance markedly hindered further validation
and applications.

To address this gap, we reimplemented, examined, and
systematically compared the algorithms and software codes
developed by the best-performing teams of the Kaggle Data
Science Bowl. Specifically, we investigated all modules
developed by the 10 award-winning teams, including their image
preprocessing, segmentation, and classification algorithms. To
ensure the reproducibility of results and the reusability of the
developed modules, we generated a Docker image for each
solution using the Docker Community Edition, a popular
open-source software development platform that allows users
to create self-contained systems with the desired version of
software packages, patches, and environmental settings.
According to Docker, there are over 6 million Dockerized
applications, with 130 billion total downloads [15]. The Docker
images are easily transferrable from one server to another, which
ensures the reproducibility of scientific computing [16]. Our
Dockerized modules will facilitate further development of
computer-aided diagnostic algorithms for chest CT images and
contribute to precision oncology.

Methods

Data and Classification Models
We obtained the low-dose chest CT datasets in Digital Imaging
and Communications in Medicine format from the Kaggle Data
Science Bowl website [13]. The dataset was acquired from
patients with high risks for developing lung cancers. In this
Kaggle challenge, a training set (n=1397) with ground truth
labels (362 with lung cancer; 1035 without) and a public test
set (n=198) without labels were provided to the participants.
The ground truth label is 1 if the patient developed lung cancer
within 1 year of the date the CT scan was performed and 0
otherwise. The diagnosis was confirmed by pathology evaluation
as a part of the National Lung Screening Trial [3,17]. Once
participants submitted the prediction results for the public test
set, the Kaggle competition platform reported their models’
performance on the public leaderboard instantaneously. The
final test set (n=506, ground truth labels were not disclosed to
participants) was only available to participants after the model
submission deadline, thus serving as an independent validation
set that decided the final winners. The chest CT images in the
training set, public test set, and final test set all came from
multiple hospitals and had different qualities. In particular, the
final test set contained more recent and higher quality data with
thinner slice thickness than those in the two other sets [18].

To systematically compare the solutions developed by the
award-winning teams, we acquired the source codes of the
winning solutions and their documentation from the Kaggle
news release after the conclusion of the competition. Per the
rules of this Kaggle challenge, the source codes of these
award-winning solutions were required to be released under
open-source licenses approved by the Open Source Initiative
[19] in order to facilitate free distribution and derivation of the
solution codes [20]. The default license is the MIT license [20].
Under the open-source licenses approved by Open Source
Initiative, the software can be freely used, modified, and shared
[19].

Comparison of the Approaches and Their Performance
We compared the workflows of the top 10 solutions by
examining and rerunning their source codes. For each solution,
we inspected all steps taken from inputting the CT images to
outputting the prediction. We documented the versions of the
software package and platform dependencies of each solution.

The Kaggle Data Science Bowl used the log-loss function to
evaluate the performance of the models [13]. The log-loss
function

where n is the number of patients in the test set, yi is 1 if patient
i has lung cancer, 0 otherwise, and ŷi is the predicted probability
that patient i has lung cancer [13]. If the predicted outcome is
set as 0.5 for all patients, the log-loss value would be ln (2) ≈
0.69.
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To investigate whether models with high performance in the
public test set generalize to the images in the final test set, we
computed the Spearman correlation coefficient of the log-loss
in the two test sets. All analyses were conducted using R version
3.6 (R Foundation for Statistical Computing).

Docker Image Generation for the Top Ten Solutions
We reproduced the results by recompiling the source codes and
dependencies of each of the top ten solutions. Since the solutions
used various platforms and different versions of custom software
packages, many of which were not compatible with the most
updated packages or mainstream release, we generated Docker
images [16] to manage the software dependencies and patches
required by each solution to enhance the reusability and
reproducibility of the developed algorithms.

Results

Performance Comparison
Figure 1 summarizes the public and private test set scores of
the top 250 teams that participated in the Kaggle Data Science
Bowl. Results showed that the top 20 teams achieved a log-loss
less than 0.5 in the final test set, and more than 80 submissions
reached a log-loss less than 0.6 in the same set. However, these
models had varying performances in the public test set.
Surprisingly, 11 out of the top 50 teams had a public test set
log-loss greater than 0.69, which was worse than blindly
submitting “0.5” as the cancer probability for every patient. The
correlation between the public test set scores and the final test
set scores was weak among all teams that completed the contest
(Spearman correlation coefficient = .23; Figure 2A). In the top
10 teams, the correlation is moderate (Spearman correlation
coefficient = .39; Figure 2B).

Figure 1. The log-loss score distribution of the top 250 teams in the Kaggle Data Science Bowl Competition. The log-loss scores of the public test set
and the final test set of each team were plotted. The red horizontal line indicates the log-loss of outputting the cancer probability as 0.5 for each patient.
The blue horizontal line shows the log-loss of outputting cancer probability of each patient as the prevalence of cancer (0.26) in the training set.
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Figure 2. A weak to moderate correlation between the log-loss scores of the public test set and the scores of the final test set. The red regression line
shows the relation between the log-loss scores of the public test set and those of the final test set using a linear regression model. (A) The log-transformed
scores of all participants who finished both stages of the Kaggle Data Science Bowl Competition were plotted. The Spearman correlation coefficient
of the performance in the two test sets is .23. (B) The log-transformed scores of the top 10 teams defined by the final test set performance. The Spearman
correlation coefficient among the top 10 teams is .39.

Data Workflow Comparison
Figure 3 summarizes the most frequently used strategy by the
winning teams. Most solutions used additional publicly available
datasets, generated lung segmentation, rescaled the voxels, and
performed nodule segmentations before fitting the classification
models. Table 1 compares the additional datasets, data
preprocessing, segmentation, classification, implementation,
and final test set scores of the top 10 solutions.

In addition to the training dataset provided by the Kaggle
challenge, most teams used CT images and nodule annotations
from other publicly available resources. Table 2 summarizes
the sample size, availability of nodule locations, nodule
segmentation, diagnoses, other characteristics of the Kaggle
dataset, and additional datasets employed by the participants.
Most of the top solutions used images and nodule segmentations
from the Lung Nodule Analysis 2016 (LUNA16) challenge to
develop their segmentation algorithms. LUNA16 is a closely
related competition organized in 2016 with an aim to detect
lung nodules in chest CT images [21,22]. Two teams also
reported using the lung CT images, diagnostic annotations, and

nodule location data from the International Society for Optics
and Photonics (SPIE)–American Association of Physicists in
Medicine (AAPM) Lung CT Challenge [23], but one of them
did not incorporate this relatively small dataset (n=70) when
building the final models. Only one of the top 10 teams did not
use any additional datasets outside of the competition.

Frequently used image preprocessing steps include lung
segmentation and voxel scaling. Voxel scaling ensures that the
voxels of images from various CT scan protocols correspond
to similar sizes of physical space. Variants of U-Net [24],
VGGNet [25], and residual net (ResNet) [26] were commonly
used as the nodule segmentation algorithms, and the nodule
segmentation models trained on the LUNA16 dataset were often
applied to the Data Science Bowl dataset.

After lung nodule segmentation, classification algorithms were
employed to generate final cancer versus noncancer predictions.
Most of the solutions leveraged existing ImageNet-based
architecture and transfer learning [12,27]. All teams employed
2D or 3D convolutional neural networks (CNN). A few teams
employed CNNs as feature extractors and used tree-based
classifiers for this classification task.
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Figure 3. A model of the informatics workflow used by most teams. In addition to the Kaggle training set, most teams obtained additional publicly
available datasets with annotations. Lung segmentation, image rescaling, and nodule segmentation modules were commonly used before classification.
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Table 1. Comparisons of the top-performing solutions of the Kaggle Data Science Bowl.

Final test set
score

Implemen-
tation

Classification algorithmsNodule segmenta-
tion

Data preprocessingAdditional
datasets used

Team nameRank

0.39975PytorchNeural network with a
max-pooling layer and
two fully connected lay-
ers

Variant of U-NetLung segmentation, intensi-
ty normalization

LUNA16aGrt1231

0.40117Keras, Ten-
sorflow,
Theano

C3D, ResNet-like CNNC3Dc, ResNet-

like CNNd

Rescale to 1×1×1LUNA16,

LIDCb
Julian de Wit
and Daniel
Hammack

2

0.40127Tensorflow3D DenseNetf multitask
model (different loss
functions depending on
the input source)

ResNeteRescale to 2.5×0.512×0.512
(for nodule detection) and
1.25×0.5×0.5 (for classifica-
tion)

LUNA16Aidence3

0.40183Keras, Ten-
sorflow,
Caffe

3D CNN inspired by
VGGNet

Faster R-CNNh,
with 3D CNN for
false positive re-
duction

Lung segmentationLUNA16,

SPIE-AAPMg
qfpxfd4

0.40409Tensorflow3D CNN inspired by
VGGNet

3D CNN inspired
by VGGNet

Rescale to
0.625×0.625×0.625, lung
segmentation

LUNA16Pierre Fillard
(Therapixel)

5

0.41629Keras, Ten-
sorflow,
Xgboost

3D ResNet + a Xgboost
classifier incorporating
CNN output, patient sex,
# nodules, and other nod-
ule features

2D and 3D
ResNet

Rescale to 1×1×1, normalize

HUi
NoneMDai6

0.42751Tensorflow2D and 3D residual neu-
ral network

U-NetRescale to 1×1×1, lung seg-
mentation

LUNA16DL Munich7

0.43019Keras,
Theano,
xgboost,
extraTree

CNN, tree-based classi-
fiers (with better perfor-
mance)

Variant of U-NetRescale to 2×2×2LUNA16Alex, Andre,
Gilberto, and
Shize

8

0.43872Theano
and
Lasagne

Inception-ResNet v2Variant of Seg-
Net

Lung maskLUNA16,

SPIE-AAPMj
Deep Breath9

0.44068Keras, Ten-
sorflow,
xgboost

Gradient boostingU-Net, 3D VG-
GNet

Lung segmentationLUNA16Owkin Team10

aLUNA16: Lung Nodule Analysis 2016.
bLIDC: Lung Image Database Consortium.
cC3D: convolutional 3D.
dResNet-like CNN: residual net–like convolutional neural network.
eResNet: residual net.
fDenseNet: dense convolutional network.
gSPIE-AAPM: International Society for Optics and Photonics–American Association of Physicists in Medicine Lung CT Challenge.
hR-CNN: region-based convolutional neural networks.
iHU: Hounsfield unit.
jDataset has been evaluated but not used in building the final model.
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Table 2. A summary of the chest computed tomography datasets employed by the participants.

Availability of patients’
diagnoses (benign ver-
sus malignant)

Availability of
nodule segmen-
tations

Availability of
nodule loca-
tions

Data originated
from multiple sites

Number of CTa scan
series

Datasets

YesNoNoYesTraining: 1397; public
test set: 198; final test
set: 506

Kaggle Data Science Bowl (this competi-
tion)

YesYesYesYes888Lung nodule analysis

YesNoYesNo70SPIE-AAPMb Lung CT Challenge

YesYesYesYes1398Lung Image Database Consortium

aCT: computed tomography.
bSPIE-AAPM: International Society for Optics and Photonics–American Association of Physicists in Medicine.

Comparison of the Implementation Platforms and
Software Dependencies
Most of the winning teams developed their modules with Keras
and Tensorflow. Only one team used Pytorch (the
top-performing team), Caffe, or Lasagne. All of the top 10 teams

employed a number of python packages for scientific computing
and image processing, including NumPy, SciPy, and
Scikit-image (skimage). A summary of package dependencies
is shown in Figure 4. This reflected the popularity of the tools
for processing chest CT images, building neural networks, and
scientific computing among the top contestants of this contest.

Figure 4. The most widely used dependencies by the top 10 teams. The packages are ordered by their prevalence among the top teams. For simplicity,
dependencies used by only one team are omitted from the figure.
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Docker Images of the Top Solutions
To facilitate reusing the code developed by the top teams, we
generated a Docker image for each of the available solutions.
Our developed Docker images are redistributed under the
open-source licenses chosen by the original developers [28].
Detailed instructions on accessing the Docker images can be
found on GitHub [29].

Discussion

Principal Findings
This is the first study that systematically compared the
algorithms and implementations of award-winning pulmonary
nodule classifiers. Results showed that the majority of the
best-performing solutions used additional datasets to train the
pulmonary nodule segmentation models. The top solutions used
different data preprocessing, segmentation, and classification
algorithms. Nonetheless, they only differ slightly in their final
test set scores.

The most commonly used data preprocessing steps were lung
segmentation and voxel scaling [30]. For nodule classification,
many solutions used CNNs. However, 2 of the top 10 teams
employed tree-based methods for cancer versus noncancer
classification. Tree-based approaches require a predefined set
of image features, whereas CNNs allow data to refine the
definition of features [31]. Given sufficient sample size, CNNs
outperformed tree-based methods in many image-related tasks
[12,32], whereas tree-based methods could reach satisfactory
performance when the sample size was small, and they provided
better model interpretability [33-35]. Since the conclusion of
the contest, additional works on machine learning for CT
evaluation have been published [36-40]. Nonetheless, these
works reported similar strategies for data processing and
classification overall.

To enhance the reproducibility of the developed modules, we
generated a Docker image for each of the award-winning
solutions. The Docker images contain all software dependencies
and patches required by the source codes and are portable to
various computing environments [16], which will expedite the

application and improvement of the state-of-the-art CT analytical
modules implemented by the contest winners.

Limitations
Since it was difficult to compile and release a large deidentified
chest CT dataset to the public, the public test set only contains
images from 198 patients. Leveraging the 5-digit precision of
the log-loss value shown on the leaderboard, one participant
implemented and shared a method for identifying all ground
truth labels in the public test set during the competition [41].
Several participants successfully replicated this approach and
got perfect scores on the public leaderboard. Thus, solutions
with very low log-loss in the public test set may result from
information leakage. Interestingly, among the top-10 models
defined by the final test set, 2 performed worse than random
guessing in the public test set, which raised concerns on their
generalizability [42].

There are several approaches future contest organizers can take
to ensure the generalizability of the developed models. First, a
multistage competition can filter out the overfitted models using
the first private test set and only allow reasonable models to
advance to the final evaluation. In addition, organizers can
discourage leaderboard probing by only showing the
performance of a random subset of the public test data or
limiting the number of submissions allowed per day. Finally,
curating a larger test set can better evaluate the true model
performance and reduce random variability [43]. If data
deidentification is difficult, requiring contestants to submit their
models to a secure computing environment rather than
distributing the test data to the participants can minimize the
risk of leaking identifiable medical information.

Conclusion
In summary, we compared, reproduced, and Dockerized
state-of-the-art pulmonary nodule segmentation and
classification modules. Results showed that many transfer
learning approaches achieved reasonable accuracy in diagnosing
chest CT images. Future works on additional data collections
and validation will further enhance the generalizability of the
current methods.
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