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Abstract. This article provides a Bayesian analysis of the single-molecule fluorescence lifetime
experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The
DNA hairpin’s conformational change is initially modeled as a two-state Markov chain, which is
not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule,
in addition to the hidden Markov structure, further complicates the matter. We show that the
analytical form of the likelihood function can be obtained in the simplest case and a Metropolis-
Hastings algorithm can be designed to sample from the posterior distribution of the parameters
of interest and to compute desired estiamtes. To cope with the molecular diffusion process and the
potentially oscillating energy barrier between the two states of the DNA hairpin, we introduce a data
augmentation technique to handle both the Brownian diffusion and the hidden Ornstein-Uhlenbeck
process associated with the fluctuating energy barrier, and design a more sophisticated Metropolis-
type algorithm. Our method not only increases the estimating resolution by several folds but also
proves to be successful for model discrimination.

INTRODUCTION

Recent technological advances have allowed scientists to make observations on single-
molecule dynamics, which was unthinkable just a few decades ago ([13],[25],[23],
[19],[12]). Complementary to the traditional experiments done on large ensembles of
molecules, single-molecule experiments offer a great potential and many advantages for
new scientific discoveries. First, one can directly measure the distributions of molecular
properties, rather than relying on the ensemble average. Second, single-molecule exper-
iments allow biochemical processes to be followed in real time and capture transient
intermediates, which previously could only be accomplished by synchronizing actions
of a large ensemble of molecules. Third, single-molecule trajectories provide detailed
dynamic information, which isunavailable from the traditional ensemble experiments.
The detailed dynamic information is particularly important for complex biomolecules
that have intricate internal structures ([24], [26]). In this article we analyze the single-
molecule experimental data on the DNA hairpin kinetics.

A DNA hairpin is a single stranded nucleic acid structure with bases at the two ends
complementary to each other so that the intramolecular pairing can form. A DNA hair-
pin has two states — in the close state, the two ends pair together, while in the open
states the pairings are broken [2] (see Figure 1). In a living cell, with the breaking of
intermolecular pairing between the two (double helix) DNA strands, the loose strands
often form a DNA hairpin structure. DNA hairpin structure participates in many biolog-
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ical functions including, for example, gene regulations [27], DNA recombinations [5],
and the facilitation of mutagenic events [22], etc. The hairpin structure can also be a po-
tential antisense drug [20]. Studying the conformation properties of DNA hairpin, such
as the conformational fluctuation and energybarrier between the open and close states,
hence serves an important model system to understand more complicated biochemical
processes.
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FIGURE 1. The two states of a DNA hairpin. To infer the open and close states, a fluorescence donor
and a quencher are attached to the two ends of the DNA hairpin.

In a fluorescence lifetime experiment, theDNA hairpin in a solvent spontaneously
switches between the open and close states. A fluorescence donor and a quencher are
attached to the two ends of the molecule (see Figure 1). The donor emits photons when
it is excited by a laser pulse, and the quencher annihilates the excitation. In the hairpin’s
close state the quenching is strong, and thus very few photons from the donors are
detected; in the open state the quenching is weak, and many photons from the donor
are detected. The open/close of the DNA hairpin can hence be inferred indirectly from
the detected photon arrivals ([10], [7], [4]).

Let A
�

close, andB
�

open. The simplest model is acontinuous-time two-state
Markov chain ([15], [16], [17]), which can be depicted as

A
k12�
k21

B � (1)

wherek12 andk21 represent the transition rates between the two states. Letγ � t � denote
the decay rate of the hidden fluorescence state, which takes valuesa andb, respectively,
at statesA andB. The Fokker-Planck equation gives the transition matrix of this two-
state model:

P � t � � eQt � �
π1 � π2e 	 kt π2 � 1 
 e 	 kt �
π1 � 1 
 e 	 kt � π2 � π1e 	 kt � �

wherek � k12 � k21, � π1 � π2 � � � k21
k12 � k21

� k12
k12 � k21

� , andQ � � 
 k12 k12
k21 
 k21

� .

However, theγ process cannot be observed directly; instead, one can observe the
photon arrival timet and a corresponding fluorescence decay timeτ (with respect to its
excitation pulse in the pulse train). The photon arrival timet follows a doubly stochastic
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Poisson process with the arrival rate inversely proportional toγ � t � . If a photon arrives at
time t, its fluorescence decay timeτ has an exponential distribution with rateγ � t � . The
thick line in Figure 2 depicts the unobservable two-state Markov chain corresponding to
the open-close of the DNA hairpin. Each vertical bar represents the arrival of a photon.
The height of each bar represents the corresponding decay timeτ of that recorded
photon.

FIGURE 2. The data structure in the single-molecule lifetime experiments. The photon arrival timest
are represented by the vertical bars, whose heights represent the decay timeτ.

In addition to the hidden Markov structure ofγ � t � , theunobservable trajectories of
Brownian diffusion of the hairpin molecule further complicates the inference (see Sec-
tion 3). Furthermore, it has also been argued that the two-state model is too simplistic
to reflect the nature because the energy barrier between the two states may fluctuate dy-
namically or there may be sub-states within each of the two states and these substates
may communicate at different rates. With the current data resolution and existing in-
ference methods, discerning different modelsand assessing their fit to the experimental
data have remained difficult [18].

In order to successfully cope with both the experimental and the modeling complexity,
we use a Bayesian data augmentation approach (Tanner and Wong, 1987, [21]), which
has advantages over the conventional method-of-moment type approaches widely used
in the field in many aspects including: a) a better time resolution; b) a broader range
of accessible time scales; c) a much better accuracy in extracting model dependent pa-
rameters. We expect that the general strategies developed here can be widely applied to
other single-molecule experiments. Our analysis here shows a significant improvement
in estimation accuracy for several physical parameters of interest and provides a strong
statistical evidence to favor the more complex model that allows for the fluctuation of
the energy barrier between the two states over the simple two-state model. Section 2
details the two-state statistical model and the Bayesian analysis via a Metropolis-type
algorithm. Section 3 introduces the data augmentation approach to handle the experi-
mental complications. Section 4 considers models beyond the two-state case and dis-
cusses model assessment. Section 5 analyzes experimental data. Section 6 concludes the
paper and provides some further discussion.
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BAYESIAN ANALYSIS OF THE TWO-STATE MODEL

Let Y � t � be the total number of photon arrivals up to timet. In an infinitesimal time
interval � t � t � dt � , the probability of observing a photon is proportional toγ � 1 � t � dt.
Denoting � Yt � Y � t � dt � � Y � t � , we have

P � � Yt � 1 � γt � � A0 � t � γ � 1 � t � dt (2)�
τ � � Yt � 1 � γt � � γ � t � exp� � γ � t � τ � (3)

whereA0 � t � is the photon arrival intensity at timet. We first treatA0 � t � as a constant over
time:A0 � t � 
 A0. In real experiments, the photon intensityA0 � t � may also be stochastic,
and this additional complexity will be addressed in Section 3.

Let 0 � t0 � t1 �    � tn be the observed photon arrival times, and letτi be the
corresponding fluorescence decay time. The pairs� � t i � τi � � n

i � 0 are collected through the
fluorescence lifetime experiments. We note that the likelihood consists of two parts: (i)
the contribution from the observed photons at timeti and the correspondingτi; and
(ii) the contribution from the time interval� ti � ti � 1 � , in which no photon arrives. By
employing an infinitesimal discretization technique and matrix computation, Kou, Xie
and Liu (2003, [8]) showed that the likelihood of observing� � ti � τi � � n

i � 0 is

L � t � τ � θ � � � π1 � π2 � D0E

�
n � 1

∏
i � 0

e � Q � E � � tiDi � 1E � 	
1
1 
 (4)

where � ti � ti � 1 � ti, and the matricesE � diag� A0 � a � A0 � b � , Di � diag� ae � aτi � be � bτi � .
We note that formula (4) is applicable to any finite-state hidden Markov process model,
such as the two-by-two model of [18].

The likelihood function (4) has five free parametersθ � � a � b � π1 � k � A0 � with the con-
straints that (i)a � b � 0, (ii) 0 � π1 � 1 � , (iii) k � 0 � and (iv) A0 � 0. Let η � θ �
denote the prior distribution on the parameters. The posterior distributionP � θ � t � τ � ∝
η � θ � L � t � τ � θ � . The inference on the parameters (e.g.,k) can be represented by summa-
rizing statistics from this distribution. For example, the posterior meank̂ of k can be used
as an estimate of the truek:

k̂ � � kP � θ � t � τ � dθ �
Since analytical computations of this typeare infeasible, we design a Metropolis-type
algorithm (Metropoliset al. 1953 [11], Hastings 1970 [6]) to simulate fromP � θ � t � τ � :

• Givena andb, (i) draw x from Γ � 1
c1

� ac1 � andy from Γ � 1
c2

� bc2 � , wherec1 andc2

are two tuning parameters; and (ii) leta � � max� x � y � , b � � min � x � y � .
• Givenπ1, drawπ �1 from the beta distributionB � c3π1 � c3 � 1 � π1 � � .
• Given k, draw k � from Γ � 1

c4
� kc4 � . The mean and variance ofk �

k are 1 andc4
respectively, thus lettingc4 finely tune the perturbation.

• GivenA0, drawA �0 from Γ � 1
c5

� A0c5 � , whose mean isA0, and variance is controlled
by c5
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To test the efficacy of the sampling scheme, we generated theγ process from the
two-state model, then� � ti � τi � � n

i � 0 according to (2) and (3 ). With a flat prior on the
parameters, we apply the MCMC algorithm on the simulated data to draw samples
from the posterior distribution. Figure 3 summarizes the posterior distributions for the
parameters of interest, where the vertical bars represent the true values. The algorithm
runs quite fast: A total number of 10,000 samples took less than two minutes to draw on
a Pentium 4 PC.
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FIGURE 3. Histograms of the posterior samples. Vertical bar in each panel is the true value.

DATA AUGMENTATION FOR BROWNIAN DIFFUSIONS

The DNA hairpin in the experiment is placedin a focal volume illuminated by a laser
beam. The laser excites the donor dye on the DNA hairpin molecule so that the dye re-
leases photons from time to time. At the sametime, the DNA hairpin molecule also dif-
fuses in the focal volume, which results in atime-varying nonconstant laser illuminating

intensityA0 � t � . We can writeA0 � t � � A0α � t � with α � t � � exp

� � B2
x � t � � B2

y � t �
2w2

xy
� B2

z � t �
2w2

z
� ,

where the known constantswxy andwz specify the x-y and z axes of the ellipsoidal focal
volume, and� Bx � t � � By � t � � Bz � t � � is the physical location of the molecule described by
a standard three-dimensional Brownian motion with known diffusion constant. In the
presence of diffusion, (2) and (3) are changed to

P � � Yt � 1 � γt � αt � � A0α � t � γ � 1 � t � dt (5)�
τ � � Yt � 1 � γt � αt 	 � γ � t � exp� � γ � t � τ � (6)

The conditioning onα � t � changes the likelihood toa conditional likelihood

L � t � τ � θ � αt � � � π1 � π2 � D0E0

�
n � 1

∏
i � 0

e � Q � Ei � � tiDi � 1Ei � 1 � �
1
1 � � (7)
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whereEi � diag� α � ti � A0 � a � α � ti � A0 � b � . With a prior distributionη � θ � on the parame-
ters, the posterior distribution ofθ given the observations� � ti � τi � � n

i � 0 is

P � θ � t � τ � ∝ � η � θ � L � t � τ � θ � αt � P � αt � d � αt � � (8)

whereP � at � denotes the transition density of the illuminating processα � t � .
Since it is infeasible to integrate out the Brownian diffusion� Bx � By � Bz � analytically,

we need to sample from the joint posterior distribution ofθ and � Bx � By � Bz � ,

P � θ � Bx � By � Bz � t � τ � ∝ η � θ � L � t � τ � θ � αt � P � Bx � P � By � P � Bz � � (9)

where P � Bx � denotes the transition density of Brownian motion. This way the hid-
den Brownian diffusion is effectively marginalized out. Starting from an initialθ
and � Bx � By � Bz � , we iteratively drawθ conditioning on the diffusion� Bx � By � Bz � and
draw � Bx � By � Bz � conditioning onθ . The sampling ofθ conditioning on � Bx � By � Bz � is
achieved by the algorithm outlined in Section 2. The sampling of� Bx � By � Bz � condi-
tioning on θ can be achieved by updating the diffusion chain component by compo-
nent. To efficiently compute the likelihood in the component-wise updating, we used a
forward-backward recursion: backward compute the partial sums in the likelihood, for-
ward sample the diffusion chain one component at a time. The computational cost of this
forward-backward recursion is only twicethe number of the observed photon arrivals.

BEYOND TWO-STATE: THE CONTINUOUS DIFFUSIVE MODEL

It has been observed that for certain molecules (other than the DNA hairpin) the two-
state model (1) is not accurate enough to describe the conformational details [18].
This phenomenon of “dynamic disorder” motivates modelsbeyond the two-state. The
2 � 2 model in [18] is such an attempt and can be analyzed by the same Bayesian data
augmentation approach outlined in the previous two sections. The 2� 2 model can be
further generalized to a continuous diffusive model, which needs additional effort. In
this model a continuous stochastic control process is introduced, which “controls” the
transition rates as follows:

A
k12e � x � t ��
k21e � x � t � B � (10)

wherex � t � satisfies the Ornstein-Uhlenbeck equationdxt � � λxtdt �
�

2ξ λdWt . Intu-
itively, this can be seen as a result of a stochastically fluctuating energy barrier between
the two states (see Figure 4), where the Ornstein-Uhlenbeck process captures the fluc-
tuation [1]. Although some debates have beenset forth, there is no clear evidence as to
whether the continuous diffusive model is definitively more appropriate than the simple
two-state model for the DNA hairpin.
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FIGURE 4. The fluctuating energy barrier between the two states of the DNA hairpin. The Ornstein-
Uhlenbeck process models this dynamic oscillation.

By employing the discretization and matrix techniques, we obtain the closed-form
conditional likelihood giving bothα � t � andx � t � :

L � t � τ � θ � αt � xt � � � π1 � π2 � D0E0

�
n � 1

∏
i � 0

e � Qi � Ei � � tiDi � 1Ei � 1 � �
1
1 � � (11)

whereQi

	 � 
 k12exp� 
 x � ti � � k12exp� 
 x � ti � �
k21exp� 
 x � ti � � 
 k21exp� 
 x � ti � � � . The posterior distribution of the

parameters� θ � λ � ξ � given the observations� � ti � τi � 	 is hence

P � θ � λ � ξ � t � τ � ∝ 
 
 η � θ � λ � ξ � L � t � τ � θ � αt � xt � P � αt � P � xt � λ � ξ � d � αt � d � xt � � (12)

whereη denotes the prior distribution on the parameters, andP � xt � λ � ξ � is the transition
density of the Ornstein-Uhlenbeckprocessx � t � .

We again use the data augmentation approach to imputex � t � and B � t � �� Bx � t � � By � t � � Bz � t � � and use the Metropolis-type algorithm to accomplish the path
integral in (12). To improve the Monte Carlo efficiency, we letφ � �

ξ λ and work on
the transformed parameters� λ � φ � , which are less correlated than the original� λ � ξ � .
The joint distribution of� θ � λ � φ � and � B � t � � x � t � � is

P � θ � λ � φ � Bx � By � Bz � xt � t � τ �
∝ η � � θ � λ � φ � L � t � τ � θ � αt � xt � P � Bx � P � By � P � Bz � P � xt � λ � φ2

λ
� � (13)

whereη � is the prior distribution on� θ � λ � φ � .
To further improve the computation efficiency, we introduce a scale transformation to

updateφ andxt jointly, i.e.,� λ � φ � θ � Bx � By � Bz � xt � � � λ � sφ � θ � Bx � By � Bz � sxt � �
wheres is a scalar. We first proposes from the gamma distributionΓ � s;1� c � c � , and

then accept the proposeds with probability:r � min � 1 � Γ � s � 1;1� c � c � p � s � s
Γ � s;1� c � c � p � 1� 	 . This move is
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important because of the high correlation between� λ � φ � andxt — once the processxt is
given, the distribution of� λ � φ � is very tightly concentrated on its mode and vice versa
for xt due to the huge chain length. Figure 5 compares the autocorrelation of the samples
with and without the scale move.
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FIGURE 5. Autocorrelations of the posterior samples with and without the scale-transformation update.
The left two panels do not have the scale update, while the right two have.

Since the stationary distribution of the control processxt is N � 0 � ξ � , we note that the
two-state model is actually a degenerate case of the diffusive model: it corresponds toξ
being 0, which suggests that after applyingthe algorithm to a given data set, we can look
at the estimated value of

�
ξ . If the value is very close to 0, it then provides a strong

indication that the two-state model is perhaps sufficient to explain the data.

EXAMPLES

Fitting a single trajectory with the two-state model

We analyzed a data set with 784� ti � τi � pairs obtained by the Xie lab. Due to technolog-
ical limitations, their experiments have some additional complications such as the arrival
of background photons, and the time-wrapping and negative reading of the machine-
recordedτ, which can be easily accommodated by modifying theEi andDi matrices
in (7) respectively. Applying the data augmentation method with the backward-forward
updating on the modified likelihood, we obtained 5000 posterior samples, which can
be used to derive the posterior distribution of any parameter of interest. Figure 6 shows
the posterior distribution of 1� k, which is termed thedecay-time constant and indicates
the energy barrier between the open andclose states. Thus, the point estimate of 1� k is
109µs and its 90% probability interval is

�
58� 220� µs.

In some of the previous approaches, arrivaltimes were first “binned” together and then
used to fit certain moment equations for estimating parameters of interest ([14], [3]).
Because of the binning, these approaches suffer a significant loss of time resolution. For
the same data set that we analyzed, themethods based on “binning” have a maximum
time resolution of 280 microseconds (µs). Furthermore, it is extremely difficult, if not
impossible, for these methods to provide a measure of uncertainty of the estimates.
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FIGURE 6. Distribution of decay time constant.

The diffusive model

We first applied the diffusive model to the data set (with 784 observation pairs)
analyzed in the previous subsection. From Figure 7, we observe that the estimated values
of

�
ξ is very close to 0, which implies that forthis data set the two-state model is quite

a reasonable approximation.
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FIGURE 7. Histograms of posterior samples of the parameters of interest based on one data set.

Next we applied the algorithm to analyze the 50 DNA hairpin data sets obtained by the
Xie lab. Comparing the estimates shown in Figure 8 with those obtained from a single
data set, one clearly sees that with more information available the estimates become
much sharper. Furthermore, the posterior samples of

�
ξ is significantly different from
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0, indicating that the two-state model does not fit the data.
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FIGURE 8. Histogram of 5000 posterior samples for parameters of interest based on 50 data sets.

The analysis here shows that for a short trajectory (such as the one with 784 obser-
vations) the two-state model is approximately fine; however, to describe the long run
behavior of the DNA hairpin, the two-statemodel is insufficient, which indicates that
the energy barrier between the close and open of the DNA hairpin has more complex
behavior than the simple static picture depicted in the two-state model. The fluctuation
of the energy barrier in this case may be due to conformational flexibility in other parts
of the DNA molecule.

DISCUSSION

Although MCMC approaches illustrated in this article have found wide acceptance in the
statistics community [9], their use for statistical estimation problems in other scientific
disciplines is relatively uncommon. In the past, many researchers in physical sciences do
not feel the necessity of delicate and efficient statistical inference methods in that the size
of their data on the ensemble is often overwhelmingly large and ad-hoc methods such
as moment-matching would be more than sufficient to provide needed information. The
single-molecule experiments enabled by the advance of modern technology, as well as
many large-scale genomics experiments, seem to have altered the landscape. As shown
in this article, the Bayesian analysis provides much sharper estimates of the parameters
associated with DNA hairpin dynamics compared with the existing moment-matching
and binning methods.
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We have discussed three important issues for efficiently analyzing single-molecule
data: (a) synthesizing various stochastic models for conformational dynamics, (b) deriv-
ing likelihoods associated with these stochastic processes; (c) solving the experimental
complications such as molecular diffusion and time-wrapping. Data augmentation tech-
niques, aided with Markov chain Monte Carlomethods prove to be a very powerful tool.
It not only is conceptually simple — the idea of augmenting the hidden processes is very
intuitive — but also provides a viable means to circumvent the analytical intractability.
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