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Parameter estimation for nonlinear dynamic system models,
represented by ordinary differential equations (ODEs), using
noisy and sparse data, is a vital task in many fields. We pro-
pose a fast and accurate method, manifold-constrained Gaussian
process inference (MAGI), for this task. MAGI uses a Gaus-
sian process model over time series data, explicitly conditioned
on the manifold constraint that derivatives of the Gaussian
process must satisfy the ODE system. By doing so, we com-
pletely bypass the need for numerical integration and achieve
substantial savings in computational time. MAGI is also suit-
able for inference with unobserved system components, which
often occur in real experiments. MAGI is distinct from existing
approaches as we provide a principled statistical construction
under a Bayesian framework, which incorporates the ODE system
through the manifold constraint. We demonstrate the accuracy
and speed of MAGI using realistic examples based on physical
experiments.

parameter estimation | ordinary differential equations |
posterior sampling | inverse problem

Dynamic systems, represented as a set of ordinary differential
equations (ODEs), are commonly used to model behav-

iors in scientific domains, such as gene regulation (1), biological
rhythms (2), spread of disease (3), ecology (4), etc. We focus on
models specified by a set of ODEs

ẋ(t) =
dx(t)

dt
= f(x(t),θ, t), t ∈ [0,T ], [1]

where the vector x(t) contains the system outputs that evolve
over time t and θ is the vector of model parameters to
be estimated from experimental/observational data. When f
is nonlinear, solving x(t) given initial conditions x(0) and θ
generally requires a numerical integration method, such as
Runge–Kutta.

Historically, ODEs have mainly been used for conceptual or
theoretical understanding rather than data fitting as experimen-
tal data were limited. Advances in experimental and data collec-
tion techniques have increased the capacity to follow dynamic
systems closer to real time. Such data will generally be recorded
at discrete times and subject to measurement error. Thus, we
assume that we observe y(τ ) = x(τ ) + ε(τ ) at a set of observa-
tion time points τ with error ε governed by noise level σ. Our
focus here is inference of θ given y(τ ), with emphasis on non-
linear f where specialized methods that exploit a linear structure
(e.g., refs. 5 and 6), are not generally applicable. We shall present
a coherent, statistically principled framework for dynamic system
inference with the help of Gaussian processes (GPs). The key
to our method is to restrict the GPs on a manifold that satisfies
the ODE system: Thus, we name our method MAGI (manifold-
constrained Gaussian process inference). Placing a GP on x(t)
facilitates inference of θ without numerical integration, and our
explicit manifold constraint is the key idea that addresses the
conceptual incompatibility between the GP and the specification
of the ODE model, as we shall discuss shortly when overview-
ing our method. We show that the resulting parameter inference

is computationally efficient, statistically principled, and effective
in a variety of practical scenarios. MAGI particularly works in
the cases when some system component(s) is/are unobserved. To
the best of our knowledge, none of the current available soft-
ware packages that do not use numerical integration can analyze
systems with unobserved component(s).

Overview of Our Method
Following the Bayesian paradigm, we view the D-dimensional
system x(t) to be a realization of the stochastic process X(t) =
(X1(t), . . . ,XD(t)) and the model parameters θ a realization
of the random variable Θ. In Bayesian statistics, the basis of
inference is the posterior distribution, obtained by combining
the likelihood function with a chosen prior distribution on the
unknown parameters and stochastic processes. Specifically, we
impose a general prior distribution π(·) on θ and independent
GP prior distributions on each component Xd(t) so that Xd(t)∼
GP(µd ,Kd), t ∈ [0,T ], where Kd :R×R→R is a positive def-
inite covariance kernel for the GP and µd :R→R is the mean
function. Then, for any finite set of time points τ d , Xd(τ d) has
a multivariate Gaussian distribution with mean vector µd(τ d)
and covariance matrix Kd(τ d , τ d). Denote the observations by
y(τ ) = (y1(τ 1), . . . , yD(τD)), where τ = (τ 1, τ 2, . . . , τD) is the
collection of all observation time points, and each component Xd

can have its own set of observation times τ d = (τd,1, . . . , τd,Nd ).
If the d th component is not observed, then Nd = 0, and τ d = ∅.
N =N1 + · · ·+ND is the total number of observations. We note

Significance

Ordinary differential equations are a ubiquitous tool for mod-
eling behaviors in science, such as gene regulation, biological
rhythms, epidemics, and ecology. An important problem is
to infer and characterize the uncertainty of parameters that
govern equations. We present an accurate and fast infer-
ence method using manifold-constrained Gaussian processes,
such that derivatives of the Gaussian process must satisfy
the dynamics of the differential equations. Our method com-
pletely avoids the use of numerical integration and is thus
fast to compute. Our construction is embedded in a prin-
cipled statistical framework and is demonstrated to yield
fast and reliable inference in a variety of practical problems.
Our method works even when some system components
are unobserved, which is a significant challenge for previous
methods.

Author contributions: S.Y., S.W.K.W., and S.C.K. designed research; S.Y., S.W.K.W., and
S.C.K. performed research; S.Y. and S.W.K.W. contributed new reagents/analytic tools;
S.Y. and S.W.K.W. analyzed data; and S.Y., S.W.K.W., and S.C.K. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 To whom correspondence may be addressed. Email: kou@stat.harvard.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2020397118/-/DCSupplemental.y

Published April 9, 2021.

PNAS 2021 Vol. 118 No. 15 e2020397118 https://doi.org/10.1073/pnas.2020397118 | 1 of 8

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
pr

il 
9,

 2
02

1 

http://orcid.org/0000-0003-3910-4969
http://orcid.org/0000-0002-7325-7267
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kou@stat.harvard.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020397118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020397118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020397118
https://doi.org/10.1073/pnas.2020397118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2020397118&domain=pdf


that for the remainder of the paper, the notation t shall refer to
time generically, while τ shall refer specifically to the observation
time points.

As an illustrative example, consider the dynamic system in
ref. 1 that governs the oscillation of Hes1 mRNA (messenger
ribonucleic acid) (M ) and Hes1 protein (P) levels in cultured
cells, where it is postulated that an Hes1-interacting (H ) factor
contributes to a stable oscillation, a manifestation of biologi-
cal rhythm (2). The ODEs of the three-component system X =
(P ,M ,H ) are

f(X ,θ, t) =

 −aPH + bM − cP
−dM + e

1+P2

−aPH + f
1+P2 − gH

,

where θ = (a, b, c, d , e, f , g) are the associated parameters. In
Fig. 1, left-most panel, we show noise-contaminated data gen-
erated from the system, which closely mimics the experimental
setup described in ref. 1: P and M are observed at 15-min inter-
vals for 4 h, but H is never observed. In addition, P and M
observations are asynchronous: Starting at time 0, every 15 min
we observe P ; starting at 7.5 min, every 15 min we observe M ; P
and M are never observed at the same time. It can be seen that
the mRNA and protein levels exhibit the behavior of regulation
via negative feedback.

The goal here is to infer the seven parameters of the system:
a, b govern the rate of protein synthesis in the presence of the
interacting factor; c, d , g are the rates of decomposition; and
e, f are inhibition rates. The unobserved H component poses a
challenge for most existing methods that do not use numerical
integration but is capably handled by MAGI: The P and M pan-
els of Fig. 1 show that our inferred trajectories provide good fits
to the observed data, and the H panel shows that the dynamics
of the entirely unobserved H component are largely recovered
as well. We emphasize that these trajectories are inferred with-
out any use of numerical solvers. We shall return to the Hes1
example in detail in Results.

Intuitively, the GP prior on X(t) facilitates computation as
GP provides closed analytical forms for Ẋ(t) and X(t), which
could bypass the need for numerical integration. In particular,
with a GP prior on X(t), the conditional distribution of Ẋ(t)
given X(t) is also a GP with its mean function and covariance
kernel completely specified. This GP specification for the deriva-
tives ẋ(t), however, is inherently incompatible with the ODE
model because Eq. 1 also completely specifies ẋ(t) given x(t)
(via the function f). As a key contribution of our method, MAGI
addresses this conceptual incompatibility by constraining the GP
to satisfy the ODE model in Eq. 1. To do so, we first define a
random variable W quantifying the difference between stochas-

tic process X(t) and the ODE structure with a given value of the
parameter θ:

W = sup
t∈[0,T ],d∈{1,...,D}

|Ẋd(t)− f(X(t),θ, t)d |. [2]

W ≡ 0 if and only if ODEs with parameter θ are satisfied by
X(t). Therefore, ideally the posterior distribution for X(t) and
θ given the observations y(τ ) and the ODE constraint, W ≡ 0, is
(informally)

pΘ,X(t)|W ,Y(τ)(θ, x(t)|W = 0, Y(τ ) = y(τ )). [3]

While Eq. 3 is the ideal posterior, in reality W is not generally
computable. In practice, we approximate W by finite discretiza-
tion on the set I = (t1, t2, . . . , tn) such that τ ⊂ I⊂ [0,T ] and
similarly define WI as

WI = max
t∈I,d∈{1,...,D}

|Ẋd(t)− f(X(t),θ, t)d |. [4]

Note that WI is the maximum of a finite set, and WI→W mono-
tonically as I becomes dense in [0,T ]. Therefore, the practically
computable posterior distribution is

pΘ,X(I)|WI ,Y(τ)(θ, x(I)|WI = 0, Y(τ ) = y(τ )),

which is the joint conditional distribution of θ and X(I)
together. Thus, effectively, we simultaneously infer both the
parameters and the unobserved trajectory X(I) from the noisy
observations y(τ ).

Under Bayes’ rule, we have

pΘ,X(I)|WI ,Y(τ)(θ, x(I)|WI = 0, Y(τ ) = y(τ ))

∝P(Θ=θ, X(I) = x(I),WI = 0, Y(τ ) = y(τ )),

where the right-hand side can be decomposed as

P(Θ=θ, X(I) = x(I),WI = 0, Y(τ ) = y(τ ))

=πΘ(θ)×P(X(I) = x(I)|Θ=θ)︸ ︷︷ ︸
(1)

×P(Y(τ ) = y(τ )|X(I) = x(I),Θ=θ)︸ ︷︷ ︸
(2)

×P(WI = 0|Y(τ ) = y(τ ), X(I) = x(I),Θ=θ)︸ ︷︷ ︸
(3)

.

The first term (1) can be simplified as P(X(I) = x(I)|Θ=θ) =
P(X(I) = x(I)) due to the prior independence of X(I) and Θ;
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Fig. 1. Inference by MAGI for Hes1 partially observed asynchronous system on 2,000 simulated datasets. The red curve is the truth. MAGI recovers the
system well, without the usage of any numerical solver: The green curve shows the median of the inferred trajectories among the 2,000 simulated datasets,
and a 95% interval from the 2.5 and 97.5% of all inferred trajectories is shown via the blue area.
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it corresponds to the GP prior on X . The second term (2) cor-
responds to the noisy observations. The third term (3) can be
simplified as

P(WI = 0|Y(τ ) = y(τ ), X(I) = x(I),Θ=θ)

=P(Ẋ(I)− f(x(I),θ, tI) = 0|Y(τ ) = y(τ ), X(I) = x(I),Θ=θ)

=P(Ẋ(I)− f(x(I),θ, tI) = 0|X(I) = x(I))

=P(Ẋ(I) = f(x(I),θ, tI)|X(I) = x(I)),

which is the conditional density of Ẋ(I) given X(I) evaluated
at f(x(I),θ, tI). All three terms are multivariate Gaussian: The
third term is Gaussian because Ẋ(I) given X(I) has a multi-
variate Gaussian distribution as long as the kernel K is twice
differentiable.

Therefore, the practically computable posterior distribution
simplifies to

pΘ,X(I)|WI ,Y(τ)(θ, x(I)|WI = 0, Y(τ ) = y(τ )) [5]

∝πΘ(θ) exp

{
−1

2

D∑
d=1

[
+ |I| log(2π) + log |Cd |+ ‖xd(I)−µd(I)‖2

C−1
d︸ ︷︷ ︸

(1)

+ |I| log(2π) + log|Kd |+
∥∥∥f x,θ

d,I −µ̇d(I)−md{xd(I)−µd(I)}
∥∥∥2

K−1
d︸ ︷︷ ︸

(3)

+Nd log(2πσ2
d) + ‖xd(τ d)− yd(τ d)‖2

σ−2
d︸ ︷︷ ︸

(2)


,

where ‖v‖2A = vᵀAv, |I| is the cardinality of I, f x,θ
d,I is short for

the d th component of f(x(I),θ, tI), and the multivariate Gaus-
sian covariance matrix Cd and the matrix Kd can be derived as
follows for each component d :

C =K(I, I)

m =′K(I, I)K(I, I)−1

K =K′′(I, I)− ′K(I, I)K(I, I)−1K′(I, I)

, [6]

where ′K= ∂
∂s
K(s, t), K′= ∂

∂t
K(s, t), and K

′′
= ∂2

∂s∂t
K(s, t).

In practice, we choose the Matern kernel
K(s, t) =φ1

21−ν

Γ(ν)

(√
2ν l

φ2

)ν
Bν
(√

2ν l
φ2

)
, where l = |s − t |,

Γ is the Gamma function, Bν is the modified Bessel function
of the second kind, and the degree of freedom ν is set to be
2.01 to ensure that the kernel is twice differentiable. K has two
hyperparameters φ1 and φ2. Their meaning and specification
are discussed in Materials and Methods.

With the posterior distribution specified in Eq. 5, we use
Hamiltonian Monte Carlo (HMC) (7) to obtain samples of
X I and the parameters together. At the completion of HMC
sampling, we take the posterior mean of X I as the inferred tra-
jectory and the posterior means of the sampled parameters as
the parameter estimates. Throughout the MAGI computation,
no numerical integration is ever needed.

Review of Related Work
The problem of dynamic system inference has been stud-
ied in the literature, which we now briefly review. We first
note that a simple approach to constructing the “ideal” like-
lihood function is according to p(y(t)|x̂(t,θ, x(0)),σ), where

x̂(t,θ, x(0)) is the numerical solution of the ODE obtained by
numerical integration given θ and the initial conditions. This
approach suffers from a high computational burden: Numer-
ical integration is required for every θ sampled in an opti-
mization or Markov chain Monte Carlo (MCMC) routine
(8). Smoothing methods have been useful for eliminating the
dependence on numerical ODE solutions, and an innovative
penalized likelihood approach (9) uses a B-spline basis for
constructing estimated functions to simultaneously satisfy the
ODE system and fit the observed data. While in principle,
the method in ref. 9 can handle an unobserved system com-
ponent, substantive manual input is required as we show in
Results, which contrasts with the ready-made solution that MAGI
provides.

As an alternative to the penalized likelihood approach, GPs
are a natural candidate for fulfilling the smoothing role in a
Bayesian paradigm due to their flexibility and analytic tractabil-
ity (10). The use of GPs to approximate the dynamic system
and facilitate computation has been previously studied by a
number of authors (8, 11–15). The basic idea is to specify a
joint GP over y, x, ẋ with hyperparameters φ and then, pro-
vide a factorization of the joint density p(y, x, ẋ,θ,φ,σ) that is
suitable for inference. The main challenge is to find a coher-
ent way to combine information from two distinct sources: the
approximation to the system by the GP governed by hyperpa-
rameters φ and the actual dynamic system equations governed
by parameters θ. In refs. 8 and 11, the factorization proposed
is p(y, x, ẋ,θ,φ,σ) = p(y|x,σ)p(ẋ|x,θ,φ)p(x|φ)p(φ)p(θ), where
p(y|x,σ) comes from the observation model and p(x|φ) comes
from the GP prior as in our approach. However, there are sig-
nificant conceptual difficulties in specifying p(ẋ|x,θ,φ): On one
hand, the distribution of ẋ is completely determined by the GP
given x, while on the other hand, ẋ is completely specified by
the ODE system ẋ = f(x,θ, t); these two are incompatible. Pre-
vious authors have attempted to circumvent this incompatibility
of the GP and ODE system: Refs. 8 and 11 use a product
of experts heuristic by letting p(ẋ|x,θ,φ)∝ p(ẋ|x,φ)p(ẋ|x,θ),
where the two distributions in the product come from the GP
and a noisy version of the ODE, respectively. In ref. 15, the
authors arrive at the same posterior as refs. 8 and 11 by assum-
ing an alternative graphical model that bypasses the product
of experts heuristic; nonetheless, the method requires work-
ing with an artificial noisy version of the ODE. In ref. 12, the
authors start with a different factorization: p(y, x, ẋ,θ,φ,σ) =
p(y|ẋ,φ,σ)p(ẋ|x,θ)p(x|φ)p(φ)p(θ), where p(y|ẋ,φ) and p(x|φ)
are given by the GP and p(ẋ|x,θ) is a Dirac delta distribu-
tion given by the ODE. However, this factorization is incom-
patible with the observation model p(y|x,σ) as discussed in
detail in ref. 16. There is other related work that uses GPs
in an ad hoc partial fashion to aid inference. In ref. 13,
GP regression is used to obtain the means of x and ẋ for
embedding within an Approximate Bayesian Computation esti-
mation procedure. In ref. 14, GP smoothing is used during
an initial burn-in phase as a proxy for the likelihood, before
switching to the ideal likelihood to obtain final MCMC sam-
ples. While empirical results from the aforementioned studies
are promising, a principled statistical framework for inference
that addresses the previously noted conceptual incompatibility
between the GP and ODE specifications is lacking. Our work
presents one such principled statistical framework through the
explicit manifold constraint. MAGI is therefore distinct from
recent GP-based approaches (11, 15) or any other Bayesian
analogs of ref. 9.

In addition to the conceptual incompatibility, none of the
existing methods that do not use numerical integration offer a
practical solution for a system with unobserved component(s),
which highlights another unique and important contribution of
our approach.
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Results
We apply MAGI to three systems. We begin with an illustra-
tion that demonstrates the effectiveness of MAGI in practical
problems with unobserved system component(s). Then, we make
comparisons with other current methods on two benchmark sys-
tems, which show that our proposed method provides more
accurate inference while having much faster run time.

Illustration: Hes1 Model. The Hes1 model described in the Intro-
duction demonstrates inference on a system with an unobserved
component and asynchronous observation times. This section
continues the inference of this model. Ref. 1 studied the theoret-
ical oscillation behavior using parameter values a = 0.022, b =
0.3, c = 0.031, d = 0.028; e = 0.5, f = 20, g = 0.3, which leads to
one oscillation cycle approximately every 2 h. Ref. 1 also set the
initial condition at the lowest value of P when the system is in
oscillation equilibrium (1): P = 1.439, M = 2.037, H = 17.904.
The noise level in our simulation is derived from ref. 1 where
the SE based on repeated measures is reported to be around
15% of the P (protein) level and M (mRNA) level, so we set
the simulation noise to be multiplicative following a log-normal
distribution with SD 0.15; throughout this example, we assume
the noise level σ is known to be 0.15 from repeated measures
reported in ref. 1. The H component is never observed. Owing to
the multiplicative error on the strictly positive system, we apply
our method to the log-transformed ODEs, so that the resulting
error distributions are Gaussian. To the best of our knowledge,
MAGI is the only one that provides a practical and complete
solution for handling unobserved component cases like this
example.

We generate 2,000 simulated datasets based on the above
setup for the Hes1 system. The left-most panel in Fig. 1 shows
one example dataset. For each dataset, we use MAGI to infer
the trajectories and estimate the parameters. We use the pos-
terior mean of Xt = (P ,M ,H )t as the inferred trajectories for
the system components, which are generated by MAGI with-
out using any numerical solver. Fig. 1 summarizes the inferred
trajectories across the 2,000 simulated datasets, showing the
median of the inferred trajectories of Xt together with the 95%
interval of the inferred trajectories represented by the 2.5 and
97.5% percentiles. The posterior mean of θ = (a, b, c, d , f , e, g)
is our estimate of the parameters. Table 1 summarizes the
parameter estimates across the 2,000 simulated datasets, by
showing their means and SDs. Fig. 1 shows that MAGI recov-
ers the system well, including the completely unobserved H
component. Table 1 shows that MAGI also recovers the sys-
tem parameters well, except for the parameters that only appear
in the equation for the unobserved H component, which we
will discuss shortly. Together, Fig. 1 and Table 1 demonstrate
that MAGI can recover the entire system without any usage

Table 1. Parameter inference in the Hes1 partially observed
asynchronous system based on 2,000 simulation datasets

θ Truth MAGI Ref. 9

Estimate RMSE Estimate RMSE
a 0.022 0.021 ± 0.003 0.003 0.027 ± 0.026 0.026
b 0.3 0.329 ± 0.051 0.059 0.302 ± 0.086 0.086
c 0.031 0.035 ± 0.006 0.007 0.031 ± 0.010 0.010
d 0.028 0.029 ± 0.002 0.003 0.028 ± 0.003 0.003
e 0.5 0.552 ± 0.074 0.090 0.498 ± 0.088 0.088
f 20 13.759 ± 3.026 6.936 604.9 ± 5084.8 5,117.0
g 0.3 0.141 ± 0.026 0.162 1.442 ± 9.452 9.519

Average parameter estimates based on MAGI and ref. 9 across the 2,000
simulated datasets are reported together with the SD. Parameter RMSEs are
reported in the following column. Bold highlights the best method in terms
of parameter RMSE for each parameter.

of a numerical solver, even in the presence of unobserved
component(s).
Metrics for assessing the quality of system recovery. To further
assess the quality of the parameter estimates and the system
recovery, we consider two metrics. First, as shown in Table 1,
we examine the accuracy of the parameter estimates by directly
calculating the root mean squared error (RMSE) of the param-
eter estimates to the true parameter value. We call this measure
the parameter RMSE metric. Second, it is possible that a system
might be insensitive to some of the parameters; in the extreme
case, some parameters may not be fully identifiable given only
the observed data and components. In these situations, it is
possible that the system trajectories implied by quite distinct
parameter values are similar to each other (or even close to
the true trajectory). We thus consider an additional trajectory
RMSE metric to account for possible parameter insensitivity
and measure how well the system components are recovered
given the parameter and initial condition estimates. The trajec-
tory RMSE is obtained by treating the numerical ODE solution
based on the true parameter value as the ground truth: First,
the numerical solver is used to reconstruct the trajectory based
on the estimates of the parameter and initial condition (from
a given method); then, we calculate the RMSE of this recon-
structed trajectory to the true trajectory at the observation time
points. We emphasize that the trajectory RMSE metric is only
for evaluation purpose to assess (and compare across methods)
how well a method recovers the trajectories of the system com-
ponents and that throughout MAGI, no numerical solver is ever
needed.

We summarize the trajectory RMSEs of MAGI in Table 2 for
the Hes1 system.

We compare MAGI with the benchmark provided by the B
spline-based penalization approach of ref. 9. To the best of our
knowledge, among all of the existing methods that do not use
numerical integration, ref. 9 is the only one with a software
package that can be manually adapted to handle an unobserved
component. We note, however, that this package itself is not
ready made for this problem: It requires substantial manual
input as it does not have default or built-in setup of its hyper-
parameters for the unobserved component. None of the other
benchmark methods, including refs. 11 and 15, provide software
that is equipped to handle an unobserved component. Table 1
compares our estimates against those given by ref. 9 based on
the parameter RMSE, which shows that the parameter RMSEs
for MAGI are substantially smaller than ref. 9. Fig. 1 shows that
the inferred trajectories from MAGI are very close to the truth.
On the contrary, the method in ref. 9 is not able to recover the
unobserved component H nor the associated parameters f and
g ; SI Appendix, Fig. S1 has the plots. Table 2 compares the tra-
jectory RMSE of the two methods. It is seen that the trajectory
RMSE of MAGI is substantially smaller than that of ref. 9. Fur-
ther implementation details and comparison are provided in SI
Appendix.

Finally, we note that MAGI recovers the unobserved com-
ponent H almost as well as the observed components of P
and M , as measured by the trajectory RMSEs. In compari-
son, for the result of ref. 9 in Table 2, the trajectory RMSE
of the unobserved H component is orders of magnitude worse
than those of P and M . The numerical results thus illus-
trate the effectiveness of MAGI in borrowing information from
the observed components to infer the unobserved component,
which is made possible by explicitly conditioning on the ODE
structure. The self-regulating parameter g and inhibition rate
parameter f for the unobserved component appear to have
high inference variation across the simulated datasets despite
the small trajectory RMSEs. This suggests that the system itself
could be insensitive to f and g when the H component is
unobserved.
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Table 2. Trajectory RMSEs of the individual components in the
Hes1 system, comparing the average trajectory RMSEs of MAGI
and ref. 9 over the 2,000 simulated datasets

Method P M H

MAGI 0.97 0.21 2.57
Ref. 9 1.30 0.40 59.47

The best trajectory RMSE for each system component is shown in bold.

Comparison with Previous Methods Based on GPs. To further assess
MAGI, we compare with two methods: adaptive gradient match-
ing (AGM) of ref. 11 and fast Gaussian process-based gradient
matching (FGPGM) of ref. 15, representing the state of the art
of inference methods based on GPs. For fair comparison, we use
the same benchmark systems, scripts, and software provided by
the authors for performance assessment and run the software
using the settings recommended by the authors. The benchmark
systems include the FitzHugh–Nagumo (FN) equations (17) and
a protein transduction model (18).
FN model. The FN equations are a classic ion channel model that
describes spike potentials. The system consists of X = (V ,R),
where V is the variable defining the voltage of the neuron mem-
brane potential and R is the recovery variable from neuron
currents, satisfying the ODE

f(X ,θ, t) =

 c(V − V 3

3
+R)

−1

c
(V − a + bR)

,

where θ = (a, b, c) are the associated parameters. As in refs. 11
and 15, the true parameters are set to a = 0.2, b = 0.2, c = 3, and
we generate the true trajectories for this model using a numerical
solver with initial conditions V =−1, R = 1.

To compare MAGI with FGPGM of ref. 15 and AGM of
ref. 11, we simulated 100 datasets under the noise setting of
σV =σR = 0.2 with 41 observations. The noise level is chosen
to be on similar magnitude with that of ref. 15, and the noise
level is set to be the same across the two components as the
implementation of ref. 11 can only handle equal-variance noise.
The number of repetitions (i.e., 100) is set to be the same as
ref. 15 due to the high computing time of these alternative
methods.

The parameter estimation results from the three methods are
summarized in Table 3, where MAGI has the lowest parameter
RMSEs among the three. Fig. 2 shows the inferred trajectories
obtained by our method: MAGI recovers the system well, and
the 95% interval band is so narrow around the truth that we
can only see the band clearly after magnification (as shown in
Fig. 2, Insets). SI Appendix provides visual comparison of the
inferred trajectories of different methods, where MAGI gives
the most consistent results across the simulations. Furthermore,
to assess how well the methods recover the system components,
we calculated the trajectory RMSEs, and the results are sum-
marized in Table 4, where MAGI significantly outperforms the
others, reducing the trajectory RMSE over the best alternative
method for 60% in V and 25% in R. We note that compared
with the true parameter value, all three methods show some
bias in the parameter estimates, which is partly due to the GP
prior as discussed in ref. 15, and MAGI appears to have the
smallest bias.

For computing cost, the average run time of MAGI for this
system over the repetitions is 3 min, which is 145 times faster than
FGPGM (15) and 90 times faster than AGM (11) on the same
processor (we follow the authors’ recommendation for running
their methods) (SI Appendix has details).
Protein transduction model. This protein transduction example
is based on systems biology where components S and Sd rep-

resent a signaling protein and its degraded form, respectively.
In the biochemical reaction, S binds to protein R to form the
complex SR, which enables the activation of R into Rpp . X =
(S ,Sd ,R,SR,Rpp) satisfies the ODE

f(X ,θ, t) =


−k1 ·S − k2 ·S ·R + k3 ·SR

k1 ·S
−k2 ·S ·R + k3 ·SR +

V ·Rpp

Km+Rpp

k2 ·S ·R− k3 ·SR − k4 ·SR

k4 ·SR − V ·Rpp

Km+Rpp

,

where θ = (k1, k2, k3, k4,V ,Km) are the associated rate param-
eters.

We follow the same simulation setup as refs. 11 and 15 by
taking t = {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}as the
observation times, X (0) = (1, 0, 1, 0, 0) as the initial values, and
θ = (0.07, 0.6, 0.05, 0.3, 0.017, 0.3) as the true parameter values.
Two scenarios for additive observation noise are considered:
σ= 0.001 (low noise) and σ= 0.01 (high noise). Note that the
observation times are unequally spaced, with only a sparse num-
ber of observations from t = 20 to t = 100. Further, inference
for this system has been noted to be challenging due to the
nonidentifiability of the parameters, in particular Km and V
(15). Therefore, the parameter RMSE is not meaningful for
this system, and we focus our comparison on the trajectory
RMSE.

We compare MAGI with FGPGM of ref. 15 and AGM of ref.
11 on 100 simulated datasets for each noise setting (SI Appendix
has method and implementation details). We plot the inferred
trajectories of MAGI in the high-noise setting in Fig. 3, which
closely recover the system. The 95% interval band from MAGI is
quite narrow that for most of the inferred components, we need
magnifications (as shown in Fig. 3, Insets) to clearly see the 95%
band. We then calculated the trajectory RMSEs, and the results
are summarized in Table 5 for each system component. In both
noise settings, MAGI produces trajectory RMSEs that are uni-
formly smaller than both FGPGM (15) and AGM (11) for all
system components. In the low-noise setting, the advantage of
MAGI is especially apparent for components S , R, SR, and Rpp ,
with trajectory RMSEs less than half of the closest comparison
method. For the high-noise setting, MAGI reduces trajectory
RMSE the most for Sd and Rpp (∼50%). AGM (11) struggles
with this example at both noise settings. To visually compare the
trajectory RMSEs in Table 5, plots of the corresponding recon-
structed trajectories by different methods at both noise settings
are given in SI Appendix.

The run time of MAGI for this system averaged over the rep-
etitions is 18 min, which is 12 times faster than FGPGM (15)
and 18 times faster than AGM (11) on the same processor (we
follow the authors’ recommendation for running their methods)
(SI Appendix has details).

Discussion
We have presented a methodology for the inference of dynamic
systems, using manifold-constrained GPs. A key feature that

Table 3. Parameter inference in the FN model based on 100
simulated datasets

θ MAGI FGPGM (15) AGM (11)

Estimate RMSE Estimate RMSE Estimate RMSE
a 0.19 ± 0.02 0.02 0.22 ± 0.04 0.05 0.30 ± 0.03 0.10
b 0.35 ± 0.09 0.17 0.32 ± 0.13 0.18 0.36 ± 0.06 0.17
c 2.89 ± 0.06 0.13 2.85 ± 0.15 0.21 2.04 ± 0.14 0.97

For each method, average parameter estimates are reported together
with SD; parameter RMSEs across simulations are also reported. Bold
highlights the best method in terms of parameter RMSE for each parameter.
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distinguishes our work from the previous approaches is that it
provides a principled statistical framework, firmly grounded on
the Bayesian paradigm. Our method also outperformed currently
available GP-based approaches in the accuracy of inference on
benchmark examples. Furthermore, the computation time for
our method is much faster. Our method is robust and able
to handle a variety of challenging systems, including unob-
served components, asynchronous observations, and parameter
nonidentifiability.

A robust software implementation is provided, with user inter-
faces available for R, MATLAB, and Python, as described in SI
Appendix. The user may specify custom ODE systems in any of
these languages for inference with our package by following the
syntax in the examples that accompany this article. In practice,
inference with MAGI using our software can be carried out with
relatively few user interventions. The setting of hyperparameters
and initial values is fully automatic, although may be overridden
by the user.

The main setting that requires some tuning is the num-
ber of discretization points in I. In our examples, this was
determined by gradually increasing the denseness of the points
with short sampler runs, until the results become indistinguish-
able. Note that further increasing the denseness of I has no
ill effect, apart from increasing the computational time. To
illustrate the effect of the denseness of I on MAGI inference
results, an empirical study is included in SI Appendix, Vary-
ing Number of Discretization, where we examined the results
of the FN model with the discretization set I taken to be
41, 81, 161, and 321 equally spaced points. The results con-
firm that our proposal of gradually increasing the denseness of
I works well. The inference results improve as we increase I
from 41 to 161 points, and at 161 points, the results are sta-
bilized. If we further increase the discretization to 321 points,
that doubles the compute time with only a slight gain in accuracy
compared with 161 points in terms of trajectory RMSEs. This
empirical study also indicates that as WI becomes an increas-
ingly dense approximation of W , an inference limit would be
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truth
median of all inferred trajectories

95% interval from the 2.5 and 97.5 percentile of all inferred trajectories

Fig. 2. Inferred trajectories by MAGI for each component of the FN system
over 100 simulated datasets. The Top is the V component and the Bottom is
the R component. The blue shaded area represents the 95% interval. Insets
magnify the corresponding segments.

Table 4. Trajectory RMSEs of each component in the FN system,
comparing the average trajectory RMSE of the three methods
over 100 simulated datasets

Method V R

MAGI 0.103 0.070
FGPGM (15) 0.257 0.094
AGM (11) 1.177 0.662

The best trajectory RMSE for each system component is shown in bold.
MAGI reduces the RMSE for 60% in component V and 25% in component R
over the best alternative method.

expected. A theoretical study is a natural future direction of
investigation.

We also investigated the stability of MAGI when the obser-
vation time points are farther apart. This empirical study,
based on the FN model with 21 observations, is included in SI
Appendix, FN Model with Fewer Observations. The inferred tra-
jectories from the 21 observations are still close to the truth,
while the interval bands become wider, which is expected as
we have less information in this case. We also found that the
denseness of the discretization needs to be increased (to 321
time points in this case) to compensate for the sparser 21
observations.∗

An inherent feature of the GP approximation is the tendency
to favor smoother curves. This limitation has been previously
acknowledged (11, 15). As a consequence, two potential forms of
bias can exist. First, estimates derived from the posterior distri-
butions of the parameters may have some statistical bias. Second,
the trajectories reconstructed by a numerical solver based on the
estimated parameters may differ slightly from the inferred tra-
jectories. MAGI, which is built on a GP framework, does not
entirely eliminate these forms of bias. However, as seen in the
benchmark systems, the magnitude of our bias in both respects
is significantly smaller than the current state of the art in refs. 11
and 15.

We considered the inference of dynamic systems specified by
ODEs in this article. Such deterministic ODE models are often
adequate to describe dynamics at the aggregate or population
level (19). However, when the goal is to describe the behav-
ior of individuals [e.g., individual molecules (20, 21)], models
such as stochastic differential equations (SDEs) and continuous-
time Markov processes, which explicitly incorporate intrinsic
(stochastic) noise, often become the model of choice. Extend-
ing our method to the inference of SDEs and continuous-time
Markov models is a future direction we plan to investigate.
Finally, recent developments in deep learning have shown con-
nections between deep neural networks and GPs (22, 23). It
could thus also be interesting to explore the application of neural
networks to model the ODE system outputs x(t) in conjunction
with GPs.

Materials and Methods
For notational simplicity, we drop the dimension index d in this section when
the meaning is clear.

Algorithm Overview. We begin by summarizing the computational scheme
of MAGI. Overall, we use HMC (7) to obtain samples of X I and the param-
eters from their joint posterior distribution. Details of the HMC sampling
are included in SI Appendix, Hamiltonian Monte Carlo. At each iteration
of HMC, X I and the parameters† are updated together with a joint gradi-
ent, with leapfrog step sizes automatically tuned during the burn-in period
to achieve an acceptance rate between 60 and 90%. At the completion of

*This finding echoes the classical understanding that stiff systems require denser
discretization (observations farther apart make the system appear relatively more stiff).

†The parameters here refer to θ and σ. If the noise level σ is known a priori, the
parameters then refer to θ only.
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Fig. 3. Inferred trajectories by MAGI for each component of the protein transduction system in the high-noise setting. The red line is the truth, and the
green line is the median inferred trajectory over 100 simulated datasets. The blue shaded area represents the 95% interval. Insets magnify the corresponding
segment.

HMC sampling (and after discarding an appropriate burn-in period for con-
vergence), we take the posterior means of X I as the inferred trajectories and
the posterior means of the sampled parameters as the parameter estimates.
The techniques we use to temper the posterior and speed up the compu-
tations are discussed in Prior Tempering and SI Appendix, Techniques for
Computational Efficiency.

Several steps are taken to initialize the HMC sampler. First, we apply a
GP fitting procedure to obtain values of φ and σ for the observed com-
ponents; the computed values of the hyperparameters φ are subsequently
held fixed during the HMC sampling, while the computed value of σ is
used as the starting value in the HMC sampler (if σ is known, the GP fit-
ting procedure is used to obtain values of φ only). Second, starting values
of X I for the observed components are obtained by linearly interpolat-
ing between the observation time points. Third, starting values for the
remaining quantities—θ and (X I , φ) for any unobserved component(s)—are
obtained by optimization of the posterior as described below.

Setting Hyperparameters φ for Observed Components. The GP prior Xd(t)∼
GP(µd ,Kd), t∈ [0, T], is on each component Xd(t) separately. The GP

Matern kernel K(l) =φ1
21−ν
Γ(ν)

(√
2ν l

φ2

)
νBν

(√
2ν l

φ2

)
has two hyperpa-

rameters that are held fixed during sampling: φ1 controls overall variance
level of the GP, while φ2 controls the bandwidth for how much neighboring
points of the GP affect each other.

When the observation noise level σ is unknown, values of (φ1,φ2,σ) are
obtained jointly by maximizing GP fitting without conditioning on any ODE
information, namely

(φ̃, σ̃) = arg maxφ,σp(φ,σ2|yI0
)

= arg maxφ,σπΦ1 (φ1)πΦ2 (φ2)πσ(σ2)p(yI0
|φ,σ2), [7]

where yI0
|φ,σ∼N (0,Kφ +σ2). The index set I0 is the smallest evenly

spaced set such that all observation time points in this component are in
I0 (i.e., τ ⊆ I0). The priors πΦ1 (φ1) and πσ(σ2) for the variance parameter
φ1 and σ are set to be flat. The prior πΦ2 (φ2) for the bandwidth parameter
φ2 is set to be a Gaussian distribution. 1) The mean µΦ2 is set to be half
of the period corresponding to the frequency that is the weighted aver-
age of all of the frequencies in the Fourier transform of y on I0 (the values
of y on I0 are linearly interpolated from the observations at τ ), where the
weight on a given frequency is the squared modulus of the Fourier trans-
form with that frequency, and 2) the SD is set such that T is three SDs
away from µΦ2 . This Gaussian prior on φ2 serves to prevent it from being

too extreme. In the subsequent sampling of (θ, Xτ ,σ2), the hyperparam-
eters φ are fixed at φ̃, while σ̃ gives the starting value of σ in the HMC
sampler.

If σ is known, then values of (φ1,φ2) are obtained by maximizing

φ̃= arg maxφp(φ|yI0
,σ2) = arg maxφπΦ1 (φ1)πΦ2 (φ2)p(yI0

|φ,σ2) [8]

and held fixed at φ̃ in the subsequent HMC sampling of (θ, Xτ ). The priors
for φ1 and φ2 are the same as previously defined.

Initialization of X I for the Observed Components. To provide starting values
of X I for the HMC sampler, we use the values of Yτ at the observation time
points and linearly interpolate the remaining points in I.

Initialization of the Parameter Vector θ When All System Components Are
Observed. To provide starting values of θ for the HMC sampler, we optimize
the posterior Eq. 5 as a function of θ alone, holding X I and σ unchanged
at their starting values, when there is no unobserved component(s). The
optimized θ is then used as the starting value for the HMC sampler in this
case.

Settings in the Presence of Unobserved System Components: Setting φ, Initial-
izing X I for Unobserved Components, and Initializing θ. Separate treatment is
needed for the setting of φ and initialization of (θ, X I) for the unobserved
component(s). We use an optimization procedure that seeks to maximize
the full posterior in Eq. 5 as a function of θ together with φ and the
whole curve of X I for unobserved components while holding the σ, φ, and
X I for the observed components unchanged at their initial value discussed
above. We thereby set φ for the unobserved component and the starting
values of θ and X I for unobserved components at the optimized value. In
the subsequent sampling, the hyperparameters are fixed at the optimized
φ, while the HMC sampling starts at the θ and the X I obtained by this
optimization.

Prior Tempering. After φ is set, we use a tempering scheme to control the
influence of the GP prior relative to the likelihood during HMC sampling.
Note that Eq. 5 can be written as

pΘ,X(I)|Y(τ ),WI
(θ, x(I)|y(τ ), WI = 0)

∝pΘ,X(I)|WI
(θ, x(I)|WI = 0)pY(τ )|X(τ )(y(τ )|x(τ )).

[9]

As the cardinality of |I| increases with more discretization points,
the prior part pΘ,X(I)|WI

(θ, x(I)|WI = 0) grows, while the likelihood part
pY(τ )|X(τ )(y(τ )|x(τ )) stays unchanged. Thus, to balance the influence of the
prior, we introduce a tempering hyperparameter β with the corresponding
posterior

Table 5. Trajectory RMSEs of the individual components in the
protein transduction system, by comparing the average RMSEs of
the three methods over 100 simulated datasets

Method S Sd R SR Rpp

Low-noise case, σ= 0.001
MAGI 0.0020 0.0013 0.0040 0.0017 0.0036
FGPGM (15) 0.0049 0.0016 0.0156 0.0036 0.0149
AGM (11) 0.0476 0.2881 0.3992 0.0826 0.2807
High-noise case, σ= 0.01
MAGI 0.0122 0.0043 0.0167 0.0135 0.0136
FGPGM (15) 0.0128 0.0089 0.0210 0.0136 0.0309
AGM (11) 0.0671 0.3125 0.4138 0.0980 0.2973

The method achieving the best RMSE for each system component is
shown in bold.
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p(β)
Θ,XI|WI ,Yτ

(θ, xI|0, yτ )

∝pΘ,X(I)|WI
(θ, x(I)|WI = 0)1/βpY(τ )|X(I)(y(τ )|x(I))

∝πΘ(θ) exp

{
−

1

2

D∑
d=1

[
Nd log(2πσ2

d) + ‖xd(τ d)− yd(τ d)‖2

σ
−2
d

+
1

β

(
‖xd(I)−µd(I)‖2

C−1
d

+
∥∥∥fX,θ

d,I − µ̇d(I)−md(xd(I)−µd(I))
∥∥∥2

K−1
d

)]}
.

[10]

A useful setting that we recommend is β= D|I|/N, where D is the num-
ber of system components, |I| is the number of discretization time points,
and N =

∑D
d=1 Nd is the total number of observations. This setting aims to

balance the likelihood contribution from the observations with the total
number of discretization points.

Data Availability. All of the data used in the article are simula-
tion data. The details, including the models to generate the sim-
ulation data, are described in Results and SI Appendix. Our soft-
ware package, available at GitHub, https://github.com/wongswk/magi,
also includes complete replication scripts for all of the data and
examples.
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Supporting Information Text12

This supporting information file presents techniques for efficient computation, a description of Hamiltonian Monte Carlo,13

further details and discussion for each of the dynamic system examples in the main manuscript, and additional empirical14

studies on varying the number of discretization points and reducing the number of observations.15

Techniques for computational efficiency16

After setting φ, the matrix inverses C−1
d , K−1

d can be pre-computed and held fixed in the sampling of X, θ, σ from the target17

posterior, Eq. (5) in the main text. Thus, the computation of Eq. (5) in the main text at sampled values of (X, θ, σ) only18

involves matrix multiplication, which has typical computation complexity of O(n2), where n is the matrix dimension (i.e.,19

number of discretization points). Due to the short-term memory and local structure of Gaussian processes (GPs), the partial20

correlation of two distant points diminishes quickly to zero, resulting in the off-diagonal part of precision matrices C−1
d and K−1

d21

being close to zero. Similarly, md is the projection matrix of the Gaussian process to its derivative process, and since derivative22

is a local property, the effect from a far away point is small given one’s neighboring points, resulting in the off-diagonal part of23

projection matrix md being close to zero as well. Therefore, an efficient band matrix approximation may be used on C−1
d , K−1

d ,24

and md to reduce computation into O(n), when calculating Eq. (5) in the main text at each sampled (X, θ, σ) with a fixed25

band size. In our experience, a band size of 20 to 40 is sufficient, and we recommend using an evenly spaced I for best results26

with the band matrix approximation and thus faster computation. In our implementation, a failure in the band approximation27

is automatically detected by checking for divergence in the quadratic form, and a warning is outputted to the user to increase28

the band size.29

Hamiltonian Monte Carlo30

Sampling procedure with HMC. We outline the HMC procedure for sampling from a target probability distribution. The31

interested reader may refer to Ref (7) for more thorough introduction to HMC.32

First, suppose the target distribution has density πtarget(q) = (1/Z) exp(−U(q)), where Z is the normalizing constant, and33

U(q) is the negation of the log target density. U(q) has the physical interpretation of the “potential energy” at “position” q.34

In MAGI, q is the collection of XI and the parameters. When the noise level σ is known a priori, the parameters refer to θ35

only; when σ is unknown, the parameters refer to θ and σ. In MAGI the function U(·) is the negation of the log posterior36

density in Eq. (5) of the main text.37

Second, momentum variables, p, of the same dimension as q, are introduced. A “kinetic energy” is defined to beK(p) = pᵀp/2.38

Third, define the “Hamiltonian” to be H(q,p) = U(q)+K(p), and consider the joint density of q and p, which is proportional39

to exp(−H(q,p)). Under this construction, q and p are independent, where the marginal probability density of q is the target40

πtarget, and the marginal probability density of p is Gaussian. We will then sample from this augmented distribution for (q,p).41

We repeat the following three steps, that together compose one HMC iteration: (1) Sample p from the normal distribution42

N (0, I) since K(p) = pᵀp/2 corresponds to a Gaussian kernel; (2) construct a proposal (q∗,p∗) for (q,p) by simulating the43

Hamiltonian dynamics using the leapfrog method (detailed in the next subsection), and (3) accept or reject (q∗,p∗) as the next44

state of (q,p) according to the usual Metropolis acceptance probability, min[1, exp(−H(q∗,p∗) +H(q,p))].45

After repeating the HMC iteration for the desired number of iterations, the sampled q are taken to be the samples from46

πtarget. Recall q is the collection of XI and the parameters in MAGI, so at the completion of HMC sampling, we have samples47

of XI and the parameters. We finally take the posterior mean of XI as the inferred trajectory, and the posterior means of the48

sampled parameters as the parameter estimates.49

Leapfrog method for Hamiltonian dynamics. The generating of proposals in HMC is inspired by Hamiltonian dynamics. The50

leapfrog method is used to approximate the Hamiltonian dynamics.51

One step of the leapfrog method with step size ε from an initial point (q0,p0) consists of three parts. First, we make a half52

step for the momentum, p̃ = p0 − (ε/2)∇U(q)|q=q0 . Second, we make a full step for the position, q∗ = q0 + εp̃. Third, we53

make a full step for the momentum using the gradient evaluated at the new position, p∗ = p̃− (ε/2)∇U(q)|q=q∗ .54

The step size ε and the number of leapfrog steps can be tuned. In our MAGI implementation, we recommend fixing the55

number of leapfrog steps, and tuning the leapfrog step size automatically during the burn-in period to achieve an acceptance56

rate between 60% and 90%.57

More details of the examples58

Hes1 model. As stated in the main text, this system has three components, X = (P,M,H), following the ODE59

f(X, θ, t) =

 −aPH + bM − cP
−dM + e

1+P 2

−aPH + f
1+P 2 − gH

60

where θ = (a, b, c, d, e, f, g) are the associated parameters.61

The true parameter values in the simulation are set as a = 0.022, b = 0.3, c = 0.031, d = 0.028; e = 0.5, f = 20,62

g = 0.3, which leads to one oscillation cycle approximately every 2 hours. The initial condition is set to be P (0) = 1.438575,63
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M(0) = 2.037488, H(0) = 17.90385. Recall that these settings, along with the simulated noise level, are derived from Ref (1),64

where the standard error based on repeated measures are reported to be around 15% of the P (protein) level and M (mRNA)65

level. Thus the simulation noise is set to be multiplicative following a log-normal distribution with standard deviation 0.15,66

since all components in the system are strictly positive. The number of observations is also set based on Ref (1), where P and67

M are observed at 15-minute intervals for 4 hours but the H component is entirely unobserved. In addition, the observations68

for P and M are asynchronous: starting at time 0, every 15 minutes we observe P ; starting at the 7.5 minutes, every 1569

minutes we observe M . Following our notation in the main text, τ1 = {0, 15, 30, . . . , 240}, τ2 = {7.5, 22.5, 37.5, . . . , 232.5}, and70

τ3 = ∅. In total we have N1 = 17 observations for P , N2 = 16 observations for M , and N3 = 0 observations for H; P and M71

are never observed at the same time. See Fig 1 (leftmost panel) of the main text for a visual illustration.72

We provide additional details on how to set up MAGI, as applied to this system. Since the components are strictly positive,73

we first apply a log-transformation to the system so that the resulting noise is additive Gaussian. Define74

P̃ = logP, M̃ = logM, H̃ = logH,75

so that the transformed system is:76

dX̃(t)
dt

=

 −a exp(H̃) + b exp(M̃ − P̃ )− c
−d+ e exp(−M̃)(1 + exp(2P̃ ))−1

−a exp(P̃ ) + f exp(−H̃)(1 + exp(2P̃ ))−1 − g

 .77

We conduct all the inference on the log-transformed system, and transform back to the original scale only at the final step to78

obtain inferred trajectories on the original scale.79

As described in “Setting hyper-parameters φ for observed components” in the Materials and Methods, we consider the80

observed P component and the observed M component separately when setting their respective hyper-parameters φ. For81

P , since the observation time points are already equally spaced, we have I0 = τ1 = {0, 15, 30, . . . , 240}; φ̃ is obtained by82

optimization of Eq (8) in the main text given y1,I0 = y1,τ1 , and fixing the noise level σ at the true value of 0.15. For M , since83

the observation time points are also equally spaced, we have I0 = τ2 = {7.5, 22.5, 37.5, . . . , 232.5}; φ̃ for M is obtained by84

optimization of Eq (8) in the main text, given y2,I0 = y2,τ2 , and fixing the noise level σ at the true value of 0.15 as well.85

Next, we consider the discretization set I. In this example we use all observation time points as the discretization set, i.e.,86

I = τ1 ∪ τ2 = {0, 7.5, 15, 22.5, . . . , 232.5, 240}. To initialize XI for the observed component P and M , we follow the approach87

as described in Materials and Methods, using the values of yτ at the observation time points and linear interpolation for the88

remaining points in I.89

We set the hyper-parameter φ and the initial values for the unobserved component H by maximizing the full likelihood90

function, Eq. (5) of the main text, as described in the Materials and Methods Section (“Settings in the presence of unobserved91

system components: setting φ, initializing XI for unobserved components, and initializing θ”).92

To balance the contribution from the GP prior and that from the observed data, we use prior tempering (as described in93

the “Prior tempering” subsection of Materials of Methods of the main text). We set β = D|I|/
∑D

d=1 Nd = 3, since we have a94

total of 33 observations (17 observations for P , 16 observations for M , and 0 observations for H) and total of 33 discretization95

points (at times 0, 7.5, 15, ..., 240) for each of the 3 dimensions. Finally, priors for each parameter in θ are set to be flat on the96

interval (0,∞).97

Having initialized the sampler for this system, we next provide details on HMC sampling to obtain our estimates of the98

trajectory and parameters. A total of 20000 HMC iterations were run, with the first 10000 discarded as burn-in. Each HMC99

iteration uses 500 leapfrog steps, where the leapfrog step size is drawn randomly from a uniform distribution on [L, 2L] for each100

iteration. During the burn-in period, L is adaptively tuned: at each HMC iteration L is multiplied by 1.005 if the acceptance101

rate in the previous 100 iterations is above 90%, and L is multiplied by 0.995 if the acceptance rate in the previous 100102

iterations is below 60%. To speed up computations, we use a band matrix approximation (see ‘Techniques for computational103

efficiency’ in this SI document) with band size 20. Using the draws from the 10000 HMC iterations after burn-in, the posterior104

mean of X = (P,M,H) is our inferred trajectory for the system components at time points in I, which are generated by MAGI105

without using any numerical solver; the posterior mean of θ = (a, b, c, d, e, f, g) provides our parameter estimates.106

We make comparisons with the B-spline-based penalization method of Ref (9), which provides the estimated parameters107

for a given dataset and ODE, but does not provide estimates for the system components (i.e., the trajectories) of the ODE.108

Thus, to infer the trajectories of system components implied by the method of Ref (9), we run the numerical solver for each109

parameter estimate (and initial values) produced by the method of Ref (9) to obtain the inferred trajectories for the system110

components. The method of Ref (9) also has hyper-parameters, in particular, the spline basis functions. The authors’ R111

package CollocInfer does not provide the capability to fit spline basis functions if there are unobserved system components.112

Thus, to obtain results with unobserved components, we fit these spline basis functions using the true value of all system113

components at the observation time points in this study, which in fact gives the method of Ref (9) an additional advantage114

than in practice: in the analysis of real data, the true value of the system components is certainly unavailable. Specifically, we115

used the routines in the R package CollocInfer by Ref (9) twice: the first time, we supply the package with the fully-observed116

noiseless true values of all system components at the observation time points, and thus obtain the estimated B-spline basis117

functions as part of the package output; the second time, we supply the package with noisy data, together with the B-spline118

basis functions we obtained in the first run for the unobserved component, to get the final inference results. All other settings119

are kept at the default values in the package.120
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Even under this setting, the method of Ref (9) had difficulty recovering the system trajectories and parameters θ (Figure121

S1, Table 1 of the main text). Figure S1 plots the inferred trajectories across the 2000 datasets, comparing the two methods122

side by side, where the method of Ref (9) is seen to have difficulty to recover the unobserved component H. Table 1 of the123

main text shows the parameter RMSE, where the method of Ref (9) has difficulty to recover the parameters f and g, which are124

associated with the unobserved component H. Even for the observed components P and M , the inferred trajectory of Ref (9)125

has much larger RMSE compared to MAGI (see Figure S1 and Table 2 of the main text).126

Finally, we want to highlight that none of the other benchmark methods, for example, (11, 15), provides software that is127

equipped to handle an unobserved component.128

Fig. S1. Inference for Hes1 partially observed asynchronized system on 2000 simulated datasets, comparing MAGI to the method of Ref (9). The green line is the median of
the inferred trajectories across the 2000 simulated datasets. The blue shaded area represents the 95% interval represented by the 2.5 and 97.5 percentiles of the inferred
trajectories. The upper panel is the result from MAGI, and the lower panel is result from the method of Ref (9).
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FitzHugh-Nagumo (FN) Model. As stated in the main text, the FitzHugh-Nagumo (FN) model has two components, X = (V,R),129

following the ODE130

f(X, θ, t) =

 c(V − V 3

3 +R)

−1
c

(V − a+ bR)

131

where θ = (a, b, c) are the associated parameters.132

Following the same simulation setup as Refs (11, 15), the initial conditions of the system are set at X(0) = (V (0), R(0)) =133

(−1, 1), the true parameter values are set at θ = (a, b, c) = (0.2, 0.2, 3), and the system is observed at the equally spaced time134

points from 0 to 20 with 0.5 interval, i.e, τ = {0, 0.5, 1, 1.5, . . . , 20}. Simulated observations have Gaussian additive noise with135

σ = 0.2 on both components.136

We provide additional details on how to set up MAGI, as applied to this system. As described in “Setting hyper-parameters137

φ for observed components” in the Materials and Methods, the smallest index set that includes the observation time points is138

I0 = τ = {0, 0.5, 1, 1.5, . . . , 20}; then given yτ , values of (φ̃, σ̃) are obtained by optimizing Eq (7) in the main text. Next, we139

consider the discretization set I. In this example we insert 3 additional equally spaced discretization time points between two140

adjacent observation time points, i.e., I = {0, 0.125, 0.25 . . . , 19.875, 20}, |I| = 161 time points. As noted in the Discussion141

section of the main text, we successively increased the denseness of points in I and found that a further increase in the number142

of discretization points yielded only slightly better results as I = {0, 0.125, 0.25 . . . , 19.875, 20}. Next, to initialize XI for the143

sampler, we follow the approach as described in Materials and Methods, using the values of yτ at the observation time points144

and linear interpolation for the remaining points in I. Then, we obtain a starting value of θ for the HMC sampler according to145

the “Initialization of the parameter vector θ when all system components are observed” subsection in the main text. We apply146

tempering to the posterior distribution following our guideline in the “Prior tempering” subsection in the main text, where147

β = D|I|/
∑D

d=1 Nd = (161× 2)/(41× 2). Finally, the prior distributions for each parameter in θ are set to be flat on (0,∞).148

Having initialized the sampler for this system, we run HMC sampling to obtain our estimates of the trajectory and parameters.149

A total of 20000 HMC iterations were run, with the first 10000 discarded as burn-in. Each HMC iteration uses 100 leapfrog150
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steps, where the leapfrog step size is drawn randomly from a uniform distribution on [L, 2L] for each iteration. During the151

burn-in period, L is adaptively tuned: at each HMC iteration L is multiplied by 1.005 if the acceptance rate in the previous152

100 iterations is above 90%, and L is multiplied by 0.995 if the acceptance rate in the previous 100 iterations is below 60%. To153

speed up computations, we use a band matrix approximation (see ‘Techniques for computational efficiency’ in this SI document)154

with band size 20. Using the draws from the 10000 HMC iterations after burn-in, the posterior mean of X = (V,R) is our155

inferred trajectory for the system components at time points in I, which are generated by MAGI without using any numerical156

solver; the posterior mean of θ = (a, b, c) provides our parameter estimates.157

For the two benchmark methods, we strictly follow the authors’ recommendation. Specifically, for FGPGM of Ref (15), we158

run their provided software with all settings as recommended by the authors: the standard deviation parameter γ there for159

handling potential mismatch between GP derivatives and the system is set to 3× 10−4, a Matern52 kernel is used, and 300000160

MCMC iterations are run. We treat the first half of the iterations as burn-in, and use the posterior mean as the estimate of the161

parameters and initial conditions. For AGM of Ref (11), the observation noise level is assumed to be known and fixed at their162

true values (as this method cannot handle unknown noise level), and 300000 MCMC iterations are run. We treat the first half163

of the iterations as burn-in, and use the posterior mean of the sampled values of the parameters and initial conditions as their164

respective estimates.165

As described in “Metrics for assessing the quality of system recovery” in the main text, the parameter RMSE is the root166

mean squared error (RMSE) of the parameter estimates to the true parameter value. To visualize the parameter estimates of167

different methods, we plot the histogram of estimated parameters for each of the methods in Figure S2. The red line indicates168

the true value of each parameter (a, b, c), and the histograms show the distributions of the corresponding parameter estimates169

over the 100 simulated datasets. For MAGI (upper panel), the red lines lie close to the histogram values for each parameter,170

indicating that statistical bias is small; the spreads of the histogram values illustrate the variances of the estimates. For171

FGPGM (15) (middle panel), the red lines lie close to the histogram values for each parameter, indicating that statistical bias172

is small; the spreads of the histogram values are visibly wider compared to the upper panel, showing larger variances of the173

estimates. For AGM (11) (lower panel), the relatively narrow spreads of the histogram values indicate that the variances of the174

parameter estimates are small; however, for parameters a and c the histogram values are much further from the true values,175

indicating a larger statistical bias than the other two methods.176

As described in “Metrics for assessing the quality of system recovery” in the main text, the trajectory RMSE is computed177

for each method based on its estimate of the parameters and initial conditions. Recall that the trajectory RMSE treats the178

numerical ODE solution based on the true parameter values as the ground truth, and is obtained as follows: first, the numerical179

solver is used to reconstruct the trajectory based on the estimates of the parameter and initial condition from a given method;180

then, the RMSE of this reconstructed trajectory to the true trajectory at the observation time points is calculated. To visualize181

the trajectory RMSEs shown in Table 4 of the main text for each method, Figure S3 plots the true trajectory (red lines) and182

the 95% interval of the reconstructed trajectories (gray bands) over the 100 simulated datasets for MAGI, FGPGM of Ref183

(15), and AGM of Ref (11). For MAGI (upper panel), the gray bands closely follow the true trajectories for both components,184

showing that the statistical bias of the reconstructed trajectories is small; the bands are also quite narrow, showing that the185

variance in the reconstructed trajectories is low. For FGPGM (15) (middle panel), the gray bands largely follow the true186

trajectories for both components, showing that the statistical bias of the reconstructed trajectories is small; however, the187

bands are visibly wider compared to the upper panel for both components, indicating larger variances in the reconstructed188

trajectories. For AGM (11) (lower panel), the gray bands do not capture the true trajectory for either component, which189

indicates there is clear statistical bias in the reconstructed trajectories, and the bands are also much wider than the other two190

methods indicating a higher variance; this is probably due to the underlying statistical bias in the parameter estimates as seen191

in the lower panel of Figure S2.192
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Fig. S2. Histograms of the estimated θ of the FN system over 100 simulated datasets. Three methods are compared. Upper panel: MAGI. Middle panel: FGPGM of Ref (15).
Lower panel: AGM of Ref (11). The red line is the true parameter value.
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Fig. S3. Reconstructed trajectories by the numerical solver for each component of the FN system from three methods. Upper panel: MAGI. Middle panel: FGPGM of Ref (15).
Lower panel: AGM of Ref (11). The red line is the true trajectory. The grey area is a 95% interval represented by the 2.5 and 97.5 percentiles.
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Protein transduction model. As stated in the main text, the protein transduction model has five components,X = (S, Sd, R, SR, Rpp),193

following the ODE194

f(X, θ, t) =


−k1 · S − k2 · S ·R+ k3 · SR

k1 · S
−k2 · S ·R+ k3 · SR + V ·Rpp

Km+Rpp

k2 · S ·R− k3 · SR − k4 · SR

k4 · SR − V ·Rpp

Km+Rpp

 ,195

where θ = (k1, k2, k3, k4, V,Km) are the associated rate parameters.196

Following the same simulation setup as in (11, 15), the initial conditions of the system are X(0) = (1, 0, 1, 0, 0), the true
parameter values are θ = (0.07, 0.6, 0.05, 0.3, 0.017, 0.3), and the system is observed at the time points

t = {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100} .

In the low noise scenario, simulated observations have Gaussian additive noise with σ = 0.001, while in the high noise scenario197

σ = 0.01. As noted in the main text, inference for this system is challenging due to the non-identifiability of the parameters, so198

the comparison of different method focuses on the trajectory recovery rather than the parameter RMSE.199

We provide additional details on how to set up MAGI, as applied to this system. Recall that the observation times are200

unequally spaced. Thus, as described in “Setting hyper-parameters φ for observed components” in the Materials and Methods,201

we take I0 = {0, 1, 2, . . . , 99, 100}, which is the smallest index set with equally spaced time points that includes the observation202

times, and use linear interpolation between the observations yτ to obtain yI0
; given yI0

, values of (φ̃, σ̃) are obtained by203

optimization. Next, we consider the discretization set I. In this example we insert 1 additional equally spaced discretization204

time point between two adjacent time points in I0, i.e., I = {0, 0.5, 1 . . . , 99.5, 100}, |I| = 201 time points. As noted in205

the Discussion, we successively increased the denseness of points in I and found that a further increase in the number of206

discretization points did not continue to offer improved results compared to this setting of I. Next, to initialize XI for207

the sampler, we follow the approach as described in Materials and Methods, using the values of yτ at the observation time208

points and linear interpolation for the remaining points in I. Then, we obtain a starting value of θ for the HMC sampler209

according to “Initialization of the parameter vector θ when all system components are observed”. We apply tempering to the210

posterior following our guideline in “Prior tempering”, so that β = D|I|/
∑D

d=1 Nd = (201× 5)/(15× 5). Finally, priors for211

each parameter in θ are set to be uniform on the interval [0, 4] as in Ref (15).212

Having initialized the sampler for this system, we run HMC sampling to obtain samples of the trajectory and parameters. A213

total of 20000 HMC iterations were run, with the first 10000 discarded as burn-in. Each HMC iteration uses 100 leapfrog214

steps, where the leapfrog step size is drawn randomly from a uniform distribution on [L, 2L] for each iteration. During the215

burn-in period, L is adaptively tuned: at each HMC iteration L is multiplied by 1.005 if the acceptance rate in the previous216

100 iterations is above 90%, and L is multiplied by 0.995 if the acceptance rate in the previous 100 iterations is below 60%. To217

speed up computations, we use a band matrix approximation (see ‘Techniques for computational efficiency’ in this SI document)218

with band size 40. Using the draws from the 10000 HMC iterations after burn-in, the posterior mean of X = (S, Sd, R, SR, Rpp)219

is our inferred trajectory for the system components, which are generated by MAGI without using any numerical solver; the220

posterior mean of θ = (k1, k2, k3, k4, V,Km) provides our parameter estimates.221

We compare MAGI with FGPGM of Ref (15) and AGM of Ref (11) on 100 simulated datasets for each of the two noise222

settings. All methods use the same priors for θ, namely uniform on [0, 4] as used previously in Ref (15). We strictly follow the223

authors’ recommendation for running their methods. Specifically, for FGPGM of Ref (15), we run their provided software224

with all settings as recommended by the authors: the standard deviation parameter γ there for handling potential mismatch225

between GP derivatives and the system is set to 10−4, a sigmoid kernel is used, and 300000 MCMC iterations are run. We treat226

the first half of the iterations as burn-in, and use the posterior mean as the estimate of the parameters and initial conditions.227

For AGM of Ref (11), the observation noise level is assumed to be known and fixed at their true values (as this method cannot228

handle unknown noise level), and 300000 MCMC iterations are run. We treat the first half of the iterations as burn-in, and use229

the posterior mean as the estimate of the parameters and initial conditions.230

As described in “Metrics for assessing the quality of system recovery” in the main text, the trajectory RMSE is computed231

for each method based on its estimate of the parameters and initial conditions. Recall that the trajectory RMSE treats the232

numerical ODE solution based on the true parameter values as the ground truth, and is obtained as follows: first, the numerical233

solver is used to reconstruct the trajectory based on the estimates of the parameter and initial condition from a given method;234

then, the RMSE of this reconstructed trajectory to the true trajectory at the observation time points is calculated. To visualize235

the trajectory RMSEs shown in Table 4 of the main text for each method, Figures S4 and S5 (for the low and high noise cases,236

respectively) plot the true trajectory (red lines) and the 95% interval of the reconstructed trajectories (gray bands) over the237

100 simulated datasets for MAGI, FGPGM of Ref (15), and AGM of Ref (11).238

In the low noise case (Figure S4), the gray bands for MAGI (top panel) closely follow the true trajectories for all five239

system components, showing that the statistical bias of the reconstructed trajectories is small overall. The interval bands240

are also very narrow, indicating that the variance in the reconstructed trajectories is low. For FGPGM (15) (middle panel),241

the gray bands largely follow the true trajectories for most of the system components, indicating that the statistical bias of242

the reconstructed trajectories is small for most of the time range; however, there is clearly visible bias for the second half of243

the time period (t = 50 to t = 100) for R and Rpp. The interval bands are also narrow, indicating that the variance in the244
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reconstructed trajectories is low. For AGM (11) (lower panel), the gray bands are unable to capture the true trajectories,245

indicating there is significant statistical bias in the reconstructed trajectories. The wide interval bands indicate a high variance246

in the reconstructed trajectories as well; note that the 97.5 percentile of AGM also exceeds the visible upper limit of the plots247

for Sd and R.248

Inference is more challenging in the high noise case (Figure S5). For MAGI (upper panel), the gray bands still closely follow249

the true trajectories for all five system components, showing that the statistical bias of the reconstructed trajectories is small250

overall, with some slight bias for Rpp. The interval bands are wider than the corresponding low noise case but still relatively251

narrow for all the components, indicating that the variance in the reconstructed trajectories is low. For FGPGM (15) (middle252

panel), the gray bands largely follow the true trajectories for all the system components, showing that the statistical bias of253

the reconstructed trajectories is small overall. The interval bands are, however, significantly wider than the upper panel; the254

variance in the reconstructed trajectories of FGPGM is thus much increased compared to that of MAGI. For AGM (11) (lower255

panel), the gray bands are again unable to capture the true trajectories, which indicates there is significant statistical bias in256

the reconstructed trajectories. The wide interval bands indicate a high variance in the reconstructed trajectories; note that the257

97.5 percentile of AGM also exceeds the visible upper limit of the plots for Sd and R.258

Fig. S4. Reconstructed trajectories by the numerical solver for each component of the protein transduction system from three methods, in the low noise case. Upper panel:
MAGI. Middle panel: FGPGM of Ref (15). Lower panel: AGM of Ref (11). The red line is the true trajectory. The grey area is the 95% interval represented by the 2.5 and 97.5
percentiles.
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Fig. S5. Reconstructed trajectories by the numerical solver for each component of the protein transduction system from three methods, in the high noise case. Upper panel:
MAGI. Middle panel: FGPGM of Ref (15). Lower panel: AGM of Ref (11). The red line is the true trajectory. The grey area is the 95% interval represented by the 2.5 and 97.5
percentiles.
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Varying number of discretization259

In this section we empirically study the effect of replacing W by WI . Specifically, we examine the results from varying the260

number of discretization points in I in the context of the FN model example.261

As discussed in the main text, the number of discretization points in I is the main setting that requires some tuning. In our262

examples, this was determined by gradually increasing the denseness of the points with short sampler runs, until the results263

become stabilized. Note that further increasing the denseness of I has no ill effect, apart from increasing the computational264

time.265

Here we illustrate the effect of I by varying the number of discretization points, using the same dataset of the FN system266

presented in the main text. The result is summarized in Table S1. The results in the main text Tables 3 and 4 are based on267

161 discretization points. As can be seen, the inference results improve as we increase I from 41 to 161 points, and at 161268

points the results are stabilized. If we further increase the discretization to 321 points, that doubles the compute time with269

only a slight gain in accuracy compared to 161 points in terms of the RMSEs.270

Table S1. Results of FN model inference based on the same 100 simulated datasets as in the main text, with varying number of discretization
points (41, 81, 161, 321) equally spaced in time. The results presented in the main text use 161 discretization points.

number of parameter a parameter b parameter c trajectory RMSE run time
discretizations Estimate RMSE Estimate RMSE Estimate RMSE V R (minutes)

41 0.20 ± 0.03 0.026 0.24 ± 0.08 0.091 2.83 ± 0.12 0.211 0.358 0.146 0.84
81 0.19 ± 0.02 0.020 0.34 ± 0.09 0.165 2.82 ± 0.07 0.199 0.270 0.142 1.67
161 0.19 ± 0.02 0.020 0.35 ± 0.09 0.172 2.89 ± 0.06 0.128 0.103 0.070 3.13
321 0.19 ± 0.02 0.020 0.33 ± 0.09 0.162 2.92 ± 0.06 0.097 0.072 0.051 5.94

FN model with fewer observations271

In this section we study the FN system with 21 observations, which is fewer than the 41 observations presented in the main272

text. This investigation aims to answer two questions: (1) how does MAGI perform when the number of observations is more273

sparse, and (2) how does MAGI perform if the observation time points are spaced farther apart?274

Following the same setup as the FN system in the main text, we now consider the scenario where 21 observations are made at275

equally spaced time points from 0 to 20, i.e, τ = {0, 1, . . . , 20}. When applying MAGI, the discretization set I was determined276

by successively increasing its denseness (with short sampler runs), until the results become stabilized. The numerical results277

show that in this scenario with sparser observations that are also farther apart, a higher number of discretization points is278

needed for the results to be stabilized. Specifically for this example with 21 observations, 321 points in the discretization set I,279

i.e., I = {0, 0.0625, 0.125, . . . , 20} are needed to obtain stable inference results. The required increase in discretization seen280

here echos the classical understanding that stiff systems require denser discretization (observations farther apart make the281

system appear relatively more stiff).282

The inference results are presented in Table S2. The trajectory RMSE is 0.128 for V component and 0.107 for R component,283

which is roughly
√

2 times the trajectory RMSE for that of 41 observations as reported in the main text. The
√

2 factor is284

expected, as we halved the number of observations. Further visualization in Figure S6 suggests that the inferred trajectory is285

quite close to the true system, while the interval bands become wider, which is expected as we have less information in this case.286

Table S2. Results of FN model inference based on 100 simulated datasets, each with 21 observations. Average parameter estimates are re-
ported together with standard deviations; parameter RMSEs across simulations are also reported; trajectory RMSEs for the two components
are reported as well. The true parameters are set to a = 0.2, b = 0.2, c = 3, as in the main text.

number of number of parameter a parameter b parameter c trajectory RMSE run time
observations discretizations Estimate RMSE Estimate RMSE Estimate RMSE V R (minutes)

21 321 0.19 ± 0.03 0.029 0.44 ± 0.15 0.280 2.79 ± 0.16 0.261 0.128 0.107 5.81

Software implementation287

User interfaces for MAGI are available for R, MATLAB, and Python at the Github repository https://github.com/wongswk/magi.288

Detailed instructions are provided therein for using our package with custom ODE systems specified in any of these languages.289

Detailed instructions are also provided for replicating all of our results and figures provided in the paper.290
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Fig. S6. Inferred trajectories by MAGI for each component of the FN system over 100 simulated datasets, each with 21 observations. The red line is the truth, and the green
line is the median inferred trajectory over 100 simulated datasets. The blue shaded area represents the 95% interval. The black dots indicate the observations across 100
simulated datasets.
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