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Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool
for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein
(1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic normal model, it
is well known that shrinkage estimators, especially the James-Stein estimator, have good risk properties. The heteroscedastic model, though
more appropriate for practical applications, is less well studied, and it is unclear what types of shrinkage estimators are superior in terms of
the risk. We propose in this article a class of shrinkage estimators based on Stein’s unbiased estimate of risk (SURE). We study asymptotic
properties of various common estimators as the number of means to be estimated grows (p → ∞). We establish the asymptotic optimality
property for the SURE estimators. We then extend our construction to create a class of semiparametric shrinkage estimators and establish
corresponding asymptotic optimality results. We emphasize that though the form of our SURE estimators is partially obtained through a
normal model at the sampling level, their optimality properties do not heavily depend on such distributional assumptions. We apply the
methods to two real datasets and obtain encouraging results.
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1. INTRODUCTION

Hierarchical modeling has become an increasingly important
statistical method in many scientific and engineering applica-
tions. It provides an effective tool to combine information and
achieve partial pooling of inference. The application of hierar-
chical models usually involves simultaneous inference of some
quantities of interest for different yet similar groups of popula-
tions. The earliest study of such problems in statistics is perhaps
the simultaneous estimation of several normal means. Since the
seminal work by James and Stein (1961), shrinkage estimation
has been influential in the development of hierarchical normal
models. Stein (1962) described a hierarchical, empirical Bayes
interpretation for this estimator (see also Lindley 1962). Efron
and Morris (1973) further developed this empirical Bayes inter-
pretation and proposed several competing parametric empirical
Bayes estimators. A full Bayesian treatment of this problem
can be found in the article by Berger and Strawderman (1996).
Recently, Brown and Greenshtein (2009) proposed a nonpara-
metric empirical Bayes method.

There has been substantial research toward understanding the
risk properties of shrinkage estimators for the homoscedastic
hierarchical normal models (i.e., all the variances in the sub-
populations are equal). Baranchik (1970) gave a general form
of admissible minimax estimators. Strawderman (1971) studied
a class of proper Bayes minimax estimators. Brown (1971) gave
a sufficient condition for admissibility of generalized Bayes esti-
mators. The use of loss other than the usual quadratic one is dis-
cussed by Brown (1975) and Berger (1976). The heteroscedas-
tic case (i.e., the unequal variance case), on the other hand, is

Xianchao Xie is at Harvard University, Cambridge, MA 02138
(E-mail: xie1981@gmail.com). S. C. Kou is Professor of Statistics, De-
partment of Statistics, Harvard University, Cambridge, MA 02138 (E-mail:
kou@stat.harvard.edu). Lawrence D. Brown is Professor of Statistics at
the University of Pennsylvania, Philadelphia, PA 19104 (E-mail: lbrown@
wharton.upenn.edu). S. C. Kous’ research is supported in part by NIH/NIGMS
grant R01GM090202 and NSF grant DMS-0449204. L. Brown’s research is
supported in part by NSF grant DMS-1007657. The authors thank Professor
Philippe Rigollet at Princeton University for helpful discussion.

less well addressed, though it is more practical for real applica-
tions. Typical minimax estimators, like the one given by Hudson
(1974) and Berger (1976), usually shrink the coordinates with
lower variances more than those with higher ones, as opposed
to the common intuition that more shrinkage should be applied
to components with higher variance. The estimators considered
in this article do not exhibit this counter-intuitive behavior.

For real-world applications, parametric empirical Bayes es-
timators (Efron and Morris 1975; Morris 1983) are widely
adopted. The application of parametric empirical Bayes models
usually involves the specification of a second-level model and
the estimation of the corresponding hyper-parameters. For ex-
ample, for the normal case, the common practice is to choose
the normal-normal hierarchical structure and estimate the hy-
perparameters through empirical Bayes maximum likelihood
estimator (EBMLE) or empirical Bayes method of moments
(EBMOM). There has also been substantial study on the appli-
cation of hierarchical Bayes models and nonparametric empiri-
cal Bayes methods. Brown (2008) evaluated the performance of
various shrinkage estimators using the data on batting average
for Major League Baseball players over a single season. It was
noted that the parametric empirical Bayes maximum likelihood
and the hierarchical Bayes method tend to have a poor perfor-
mance due to their heavy reliance on the parametric assumptions
of the second-level model. Other methods like the EBMOM and
nonparametric empirical Bayes method were shown to achieve
a better performance. Motivated from such an empirical study,
it is hence interesting to know whether it is possible to formally
compare those different shrinkage estimators and identify the
“optimal” shrinkage estimator.

For this purpose, we propose a class of shrinkage estima-
tors that can be readily applied in the heteroscedastic hierarchi-
cal normal models. We name our shrinkage estimators SURE
shrinkage estimators, since the method is inspired by Stein’s un-
biased risk estimate (SURE; Stein 1973, 1981). We first focus
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on shrinkage estimators whose forms are derived from the clas-
sic normal–normal hierarchical model and show that our SURE
shrinkage estimators possess asymptotic optimality properties
within this (sub)class. The results are then generalized to a
class of semiparametric shrinkage estimators that only require
the shrinkage factors to satisfy the intuitive condition that the
amount of shrinkage is monotone in the component variance,
that is, more shrinkage is applied to a component with higher
variance. It is emphasized that this asymptotic optimality prop-
erty neither depends on the specific distributional assumptions
nor requires that the sequence of group means be indepen-
dent of the group variance, an assumption that is implicit in
many of the classical empirical Bayes methods like EBMLE
and EBMOM. Therefore, there are scenarios where the SURE
estimators strictly dominate the classical methods. Simulation
studies are presented to compare the performance of the pro-
posed estimators with several other shrinkage estimators. We
apply our method to the baseball data analyzed by Brown (2008)
and report encouraging results. We also use our method to an-
alyze a housing dataset and note some interesting phenomena
when applying these methods.

The remainder of the article is organized as follows: In Sec-
tion 2, we introduce the basic setup and define the parametric
SURE estimators along with a brief discussion of some other
competing shrinkage estimators. The case of shrinking toward
the origin and toward the grand mean is discussed in detail in
Sections 3 and 4. Section 5 considers general parametric SURE
estimators, where, in addition to the shrinkage factor, the shrink-
age location is also determined by the data. Section 6 introduces
a class of semiparametric shrinkage estimators and discusses
their optimality properties. We conduct a comprehensive simu-
lation study in Section 7 and apply our method to analyzing two
real datasets in Section 8. A brief summary is given in Section
9. The technical proofs are relegated to the Appendix.

2. BASIC SETUP

Consider the estimation problem

Xi |θi ∼ N (θi, Ai), i = 1, 2, . . . , p, (2.1)

where the Xi are independently distributed with known (poten-
tially) distinct variances Ai . The classical conjugate hierarchical
model puts a prior on θi

θi ∼ N (μ, λ), independently for i = 1, 2, . . . , p,

where λ is an unknown hyperparameter.
In this section and Section 3, we first assume the value of the

prior mean as μ = 0. The case of unknown prior mean will be
the focus of later sections.

Application of Bayes formula (when μ = 0) gives us

θi |Xi ∼ N

(
λ

λ + Ai

Xi,
λAi

λ + Ai

)
, Xi ∼ N (0, λ + Ai),

which leads to the Bayes shrinkage estimator

θ̂ λ
i = λ

λ + Ai

Xi.

The empirical Bayes method tries to estimate the unknown
hyperparameter λ using the marginal distribution of X

f (X|λ, A) ∝
∏

i

(λ + Ai)
−1/2 exp

{−X2
i /(2(λ + Ai))

}
. (2.2)

The EBMLE λ̂ML, which uniquely maximizes the above
marginal MLE, can be obtained as the solution of

∑
i

[
X2

i

(λ + Ai)2
− 1

λ + Ai

]
= 0, (2.3)

whenever this equation has a solution. If Equation (2.3) does
not have a solution, that is, it is negative when λ = 0, λ̂ML is
then zero. The corresponding EBMLE for θ is

θ̂ML
i := θ̂

λ̂ML
i = λ̂ML

λ̂ML + Ai

Xi.

Another estimate based on the marginal distribution (Equation
(2.2)) is the moment estimate

λ̂MM = 1

p

p∑
i=1

(
X2

i − Ai

)
,

or its positive part

λ̂+
MM =

(
1

p

p∑
i=1

(
X2

i − Ai

))+
.

In the homoscedastic case, where Ai = A for i = 1, . . . , p,
we have λ̂ML = λ̂+

MM and

θ̂
ML = θ̂

MM+ =
(

1 − pA∑p

i=1 X2
i

)+
X .

Hence, in this case these two estimators are closely related to
the positive-part James-Stein estimator

θ̂ JS+
i =

(
1 − (p − 2)A∑p

i=1 X2
i

)+
Xi.

In this article, instead of relying on the marginal distribution
of X to estimate λ, we consider an alternative perspective. The
motivation of our methods comes from Stein’s unbiased risk
estimate (SURE): under the sum of squared-error loss lp(θ , θ̂ ) =
1
p

∑
i(θ̂i − θi)2, if one uses the shrinkage estimator θ̂ λ

i = λ
λ+Ai

Xi

to estimate θ with a fixed λ, then an unbiased estimate for its
risk

Rp(θ, θ̂λ) = E[lp(θ , θ̂λ)] = 1

p

∑
i

Ai

(Ai + λ)2

(
Aiθ

2
i + λ2

)
(2.4)

is

SURE(λ) = 1

p

∑
i

[(
Ai

Ai + λ

)2

X2
i + Ai(λ − Ai)

Ai + λ

]
. (2.5)

Note that Equation (2.4) is just the usual bias-squared plus vari-
ance description of the risk; Equation (2.5) can be derived from
Stein’s unbiased estimate of the risk or directly from Equation
(2.4) since θ2

i = E(X2
i ) − Ai . This relationship suggests that we
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can estimate λ from the data as the minimizer of SURE(λ):

λ̂SURE = arg min
λ≥0

SURE(λ)

= arg min
λ≥0

∑
i

[(
Ai

Ai +λ

)2

X2
i + Ai(λ−Ai)

Ai +λ

]
. (2.6)

Setting SURE′(λ) = 0 yields an easily solved expression for
λ̂SURE as the solution to∑

i

[
A2

i

(Ai + λ)3
X2

i − A2
i

(Ai + λ)2

]
= 0. (2.7)

If Equation (2.7) does not have a solution, λ̂SURE is then zero.
The corresponding SURE estimate for θ is

θ̂SURE
i := θ̂

λ̂SURE
i = λ̂SURE

λ̂SURE + Ai

Xi.

Again, it is worth pointing out that in the homoscedastic
case, the three estimators λ̂ML, λ̂+

MM, and λ̂SURE are identical
and are closely related to the famous positive-part James-Stein
estimator. But once the Ai are not all equal, λ̂ML, λ̂+

MM, and λ̂SURE

give distinct results.
The idea of minimizing the unbiased estimate of risk to obtain

the estimate of tuning parameters has a considerable history in
statistics. Li (1985, 1986, 1987) discussed the asymptotic prop-
erties of the SURE method and its connection to generalized
cross-validation in various scenarios. From a slightly different
perspective, Johnstone (1987) discussed the admissibility
properties of SURE and some alternative estimates of the risk.
Kneip (1994) studied the property of SURE in a class of ordered
linear smoothers. Donoho and Johnstone (1995) applied SURE
to choose the threshold in their SureShrink method. Cavalier
et al. (2002) established a nonasymptotic oracle inequality
and used it to study the minimax adaptive results of SURE in
some inverse problems. We emphasize that our results differ
from the previous ones in that the model under consideration is
heteroscedastic and our asymptotic results allow us to directly
compare our SURE estimators with other shrinkage estimators.
Numerical comparisons in Sections 7 and 8 indicate that our
estimators have desirable risk properties relative to a number
of other shrinkage estimators.

3. RISK PROPERTIES OF THE SURE ESTIMATOR

In this section, we consider the risk properties of the SURE
estimator. We show that in the heteroscedastic case the SURE
estimator θ̂SURE is optimal in an asymptotic sense, whereas
it is not necessarily so for the other estimators, including the
empirical Bayes ML and MOM estimators.

Our first result concerns how well SURE(λ) approximates
lp(θ , θ̂λ).

Theorem 3.1. Assuming two conditions

(A) lim sup
p→∞

1
p

∑p

i=1 A2
i < ∞,

(B) lim sup
p→∞

1
p

∑p

i=1 Aiθ
2
i < ∞,

we have

sup
0≤λ≤∞

|SURE(λ) − lp(θ, θ̂λ)| → 0 in L2 and in probability,

as p → ∞.

Conditions (A) and (B) are required mainly to facilitate a
short proof of the above result. Though it is likely that condi-
tions (A) and (B) can be further relaxed, they do not seem to be
particularly restrictive and we thus do not seek the full gener-
ality here. Theorem 3.1 shows that the risk estimate SURE(λ)
is not only unbiased for Rp(θ , θ̂λ), but, more importantly, is
also uniformly close to the actual loss lp(θ , θ̂λ). We thus ex-
pect that minimizing SURE(λ) would lead to an estimate with
competitive performance. To facilitate our discussion of the risk
properties of our SURE shrinkage estimator, we next introduce
the oracle loss (OL) hyperparameter:

λ̃OL = λ̃OL(θ ; X1, . . . , Xp) = arg min
λ≥0

lp(θ, θ̂λ)

= arg min
λ≥0

1

p

p∑
i=1

(
λ

λ + Ai

Xi − θi

)2

.

Correspondingly, we define the OL “estimator” θ̃OL as

θ̃OL = λ̃OL

λ̃OL + A
X .

Of course, θ̃OL is not really an estimator since it depends on the
unknown θ (hence, we use the notation θ̃OL rather than θ̂OL).
Although not obtainable in practice, θ̃OL lays down the theoret-
ical limit that one can ever hope to reach: no estimator within
the class of estimators of the form θ̂ λ̂ = λ̂

λ̂+A
X can have smaller

achieved loss or risk. The performance of the SURE estima-
tor, interestingly, comes close to the oracle one. The following
theorem shows under very mild assumptions that our SURE es-
timator is asymptotically nearly as good as the oracle loss (OL)
estimator.

Theorem 3.2. Assume conditions (A) and (B). Then

lim
p→∞ P (lp(θ, θ̂SURE)≥ lp(θ, θ̃OL)+ε)=0 for any fixed ε>0.

The results in the above theorem and all subsequent ones are
for given Ai’s and θi’s; that is, the probabilities and expecta-
tions are evaluated given the sequence of (θi, Ai). We require in
Theorem 3.2 that ε is fixed. As one referee kindly pointed out,
the result can be enhanced by letting ε approach zero at some
rate that depends on the sequence of Ai’s and θi’s. A direct con-
sequence of the preceding theorem is that the SURE estimator
has a loss that is asymptotically no larger than that of any other
estimator in the general class.

Corollary 3.1. Assume conditions (A) and (B). Then for any

estimator λ̂p ≥ 0 and the corresponding θ̂ λ̂p = λ̂p

λ̂p+A
X, we al-

ways have

lim
p→∞ P (lp(θ, θ̂SURE)≥ lp(θ, θ̂ λ̂p )+ε)=0 for any fixed ε>0.

Theorem 3.2 shows that the loss of θ̂SURE converges in prob-
ability to the optimum oracle value lp(θ , θ̃OL). We can actually
show that under the same conditions θ̂SURE is asymptotically as
good as θ̃OL in terms of expected loss.

Theorem 3.3. Assume conditions (A) and (B). Then

lim
p→∞[Rp(θ, θ̂SURE) − E(lp(θ , θ̃OL))] = 0.
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It follows from this theorem that θ̂SURE has an asymptotically
oracle risk: its risk is asymptotically smaller than (at least no
larger than) any other estimator in the class.

Corollary 3.2. Assume conditions (A) and (B). Then for any

estimator λ̂p ≥ 0 and the corresponding θ̂ λ̂p = λ̂p

λ̂p+A
X, we al-

ways have

lim sup
p→∞

[Rp(θ, θ̂SURE) − Rp(θ, θ̂ λ̂p )] ≤ 0.

Corollaries 3.1 and 3.2 suggest why θ̂SURE is generally better
than either θ̂ML or θ̂MM+ for heteroscedastic problems. Note that
θ̂SURE is asymptotically as good as the OL estimator. Any other
asymptotically optimal estimator must have this same property.
Theorem 3.1 indicates that this requires such an oracle estima-
tor to asymptotically agree with θ̂SURE. But in the heteroscedas-
tic case θ̂ML and θ̂MM+ satisfy different estimating equations
from that of θ̂SURE, as described in Section 2. Hence, for het-
eroscedastic problems, neither θ̂ML nor θ̂MM+ can generally be
asymptotically optimal in the class of estimators of the form
θ̂ λ̂ = λ̂

λ̂+A
X. Sections 7 and 8 will illustrate this point through

numerical examples.

4. SHRINKAGE TOWARD THE GRAND MEAN

The results in the previous section focus on the shrinkage esti-
mators that shrink toward a preset value (taken to be zero above).
In practice, it is often the case that, instead of a preset value, we
want to shrink toward the grand mean X̄. To use the previous
result in this case, one might first center the data by subtracting
the grand mean from each sample Xi , and then pretend that the
resulting Xi − X̄ are “independent” with “variance” Ai , and,
following Equation (2.6), one could minimize

∑
i

[(
Ai

Ai + λ

)2

(Xi − X̄)2 + Ai(λ − Ai)

Ai + λ

]

to obtain the estimate λ̂′. The estimate of θi then becomes

θ̂ ′
i = λ̂′

Ai + λ̂′ Xi + Ai

Ai + λ̂′ X̄, (4.1)

which can be used in practice. However, our previous theoret-
ical results are no longer directly applicable. In particular, the
optimality property of the resulting estimator is no longer estab-
lished, since neither Xi − X̄ are independent nor the variances
are exactly Ai .

Fortunately, similar ideas of using the unbiased risk estimate
can still be applied. Consider the shrinkage estimator in the
following form

θ̂
λ,X̄
i = λ

Ai + λ
Xi + Ai

Ai + λ
X̄.

Its risk is given by

R(θ , θ̂λ,X̄) = E[lp(θ, θ̂λ,X̄)] = 1

p

p∑
i=1

A2
i

(Ai + λ)2
(θi − θ̄p)2

+ 1

p

p∑
i=1

1

(Ai + λ)2

(
λ2Ai + 1

p
A2

i (Āp + 2λ)

)
,

where

Āp = 1

p

p∑
i=1

Ai, θ̄p = 1

p

p∑
i=1

θi .

An unbiased risk estimate is

SUREG(λ) = 1

p

p∑
i=1

A2
i

(Ai + λ)2
(Xi − X̄)2

+ 1

p

p∑
i=1

Ai

Ai + λ

(
λ − Ai + 2

p
Ai

)
,

that is,

E[SUREG(λ)] = R(θ , θ̂λ,X̄).

Minimizing SUREG(λ) then leads to the grand-mean shrinkage
estimator

θ̂G
i = λ̂G

Ai + λ̂G

Xi + Ai

Ai + λ̂G

X̄, (4.2)

where

λ̂G = arg min
λ≥0

SUREG(λ).

Since this estimate is inspired by the Stein’s risk identity, we
still call it the SURE estimate. Parallel to the results in the pre-
vious section, the grand-mean SURE estimator also possesses
asymptotic optimality properties. First, we have the following
theorem, which tells us that SUREG(λ) is uniformly close to
the achieved loss lp(θ , θ̂λ,X̄). Thus, one expects that minimizing
SUREG(λ) would lead to a competitive estimate.

Theorem 4.1. Assume conditions (A), (B), and
(C) lim sup

p→∞
1
p

∑p

i=1 θi < ∞.

Then

sup
0≤λ≤∞

|SUREG(λ) − lp(θ, θ̂λ,X̄)| → 0

in L1 and in probability, as p → ∞.

To establish the asymptotic optimality of our SURE estimator,
similar to Section 3, we define the grand-mean OL “estimator”
θ̃GOL as

θ̃GOL = λ̃GOL

λ̃GOL + A
X + A

λ̃GOL + A
X̄,

where

λ̃GOL = arg min
λ≥0

lp(θ, θ̂λ,X̄)

= arg min
λ≥0

1

p

p∑
i=1

(
λ

λ + Ai

Xi + Ai

λ + Ai

X̄ − θi

)2

.

No estimator within the class of estimators of the form θ̂ λ̂,X̄,
λ̂ = λ̂(X1, . . . , Xp), can have smaller achieved loss or risk than
θ̃GOL. However, the performance of the SURE estimator comes
close: under very mild assumptions our SURE estimator θ̂G is
asymptotically nearly as good as the grand-mean OL estimator,
as shown in the next theorem.

Theorem 4.2. Assume conditions (A)–(C). Then

lim
p→∞ P (lp(θ, θ̂G)≥ lp(θ, θ̃GOL) + ε)=0 for any fixed ε > 0.
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Theorem 4.2 implies that the SURE estimator is asymptoti-
cally optimal:

Corollary 4.1. Assume conditions (A)–(C). Then for any esti-

mator λ̂p ≥ 0 and the corresponding θ̂ λ̂p,X̄ = λ̂p

λ̂p+A
X + A

λ̂p+A
X̄,

we always have

lim
p→∞ P (lp(θ , θ̂G)≥ lp(θ, θ̂ λ̂p,X̄) + ε)=0 for any fixed ε > 0.

Theorem 4.2 and Corollary 4.1 compare the estimators in
term of the loss. Under the same mild assumptions we can show
that the comparison can be extended to the expected loss.

Theorem 4.3. Assume conditions (A)–(C). Then

lim
p→∞

[
Rp(θ, θ̂G) − E

(
lp(θ , θ̃GOL)

) ] = 0.

Corollary 4.2. Assume conditions (A)–(C). Then for any esti-

mator λ̂p ≥ 0 and the corresponding θ̂ λ̂p,X̄ = λ̂p

λ̂p+A
X + A

λ̂p+A
X̄,

we always have

lim sup
p→∞

[
Rp(θ, θ̂G) − Rp(θ , θ̂ λ̂p,X̄)

] ≤ 0.

Therefore, in general, the SURE estimator is asymptotically
better than (or at least as good as) any estimator, including the
empirical Bayes ones, for heteroscedastic problems.

5. SHRINKAGE TOWARD A GENERAL DATA DRIVEN
LOCATION

Instead of shrinking toward the origin or the grand mean, one
might let the data determine where to shrink to. Specifically, we
can consider the estimator in the form of

θ̂
λ,μ

i = λ

Ai + λ
Xi + Ai

Ai + λ
μ.

Its risk is

R(θ , θ̂λ,μ) = 1

p

∑
i

Ai

(Ai + λ)2

(
Ai(θi − μ)2 + λ2

)
,

for which an unbiased estimate is

SUREM (λ,μ) = 1

p

∑
i

Ai

(Ai + λ)2

(
Ai(Xi − μ)2 + λ2 − A2

i

)
.

We can then estimate both μ and λ by minimizing SUREM (λ,μ)
to obtain

θ̂M
i = λ̂M

Ai + λ̂M

Xi + Ai

Ai + λ̂M

μ̂M, (5.1)

where

(λ̂M, μ̂M ) = arg min
λ≥0, μ

SUREM (λ,μ).

As before, we expect the SURE estimator θ̂M to possess asymp-
totic optimality properties. The following theorem, parallel to
Theorems 3.1 and 4.1, tells us that SUREM (λ,μ) closely ap-
proximates lp(θ, θ̂λ,μ) in a uniform fashion. Thus, one expects
that minimizing SUREM (λ,μ) would again lead to a competi-
tive estimate.

Theorem 5.1. Assume conditions (A), (B), and
(C′) lim sup

p→∞
1
p

∑p

i=1 |θi |2+δ < ∞ for some δ > 0.

Then we have

sup
0≤λ≤∞, |μ|≤maxi |Xi |

∣∣SUREM (λ,μ) − lp(θ , θ̂λ,μ)
∣∣→ 0

in L1 and in probability, as p → ∞.

Note that condition (C′) assumes that the (2 + δ)th moment
of θ is bounded; it is slightly stronger than condition (C). Note
also that Theorem 5.1 restricts the shrinkage location μ to be
within [− maxi |Xi |, maxi |Xi |]. This assumption is included for
technical reasons to ease the proof in the Appendix. In practice, it
is harmless since no sensible shrinkage estimator would attempt
to shrink toward a location that lies outside the range of the data.

Next, parallel to the development of Sections 3 and 4, we
define the general-mean OL “estimator” θ̃MOL as

θ̃MOL = λ̃MOL

λ̃MOL + A
X + A

λ̃MOL + A
μ̃MOL

where[
λ̃MOL, μ̃MOL

] = arg min
λ≥0, |μ|≤maxi |Xi |

lp(θ, θ̂λ,μ)

= arg min
λ≥0,|μ|≤maxi |Xi |

∥∥∥∥ λ

λ+ A
X+ A

λ+ A
μ−θ

∥∥∥∥
2

.

The next theorem and corollary show that the SURE estimator
θ̂M is asymptotically nearly as good as the general-mean OL
estimator, and, consequently, it is asymptotically better than (or
at least as good as) any other shrinkage estimator in terms of the
achieved loss.

Theorem 5.2. Assume conditions (A), (B), and (C′). Then

lim
p→∞ P

(
lp(θ, θ̂M )≥ lp(θ, θ̃MOL)+ε

)=0 for any fixed ε>0.

Corollary 5.1. Assume conditions (A), (B), and (C′). Then

for any estimator θ̂ λ̂p,μ̂p = λ̂p

λ̂p+A
X + A

λ̂p+A
μ̂p with λ̂p ≥ 0 and

|μ̂p| ≤ maxi |Xi |, we have

lim
p→∞ P

(
lp(θ, θ̂M )≥ lp(θ, θ̂ λ̂p,μ̂p )+ε

)=0 for any fixed ε>0.

Under the same mild assumptions, the comparison of the
estimators can be extended to the expected loss as well.

Theorem 5.3. Assume conditions (A), (B), and (C′). Then

lim
p→∞

[
R(θ , θ̂M ) − E(lp(θ , θ̃MOL))

] = 0.

Corollary 5.2. Assume conditions (A), (B), and (C′). Then

for any estimator θ̂ λ̂p,μ̂p = λ̂p

λ̂p+A
X + A

λ̂p+A
μ̂p with λ̂p ≥ 0 and

|μ̂p| ≤ maxi |Xi |, we have

lim sup
p→∞

[
R(θ, θ̂M ) − R(θ , θ̂ λ̂p,μ̂p )

] ≤ 0.

Theorems 5.2 and 5.3 tell us that the SURE estimator is
asymptotically optimal: it has the smallest loss and risk among
all shrinkage estimators of the form θ̂ λ̂,μ̂ = λ̂

λ̂+A
X + A

λ̂+A
μ̂. A
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special case is the comparison between the general-mean SURE
estimator θ̂M and the grand-mean shrinkage estimator θ̂G.

Corollary 5.3. Assume conditions (A), (B), and (C′). Then

lim sup
p→∞

[
R(θ , θ̂M ) − R(θ , θ̂G)

]
≤ 0.

In other words, θ̂M asymptotically outperforms θ̂G. This re-
sult provides a theoretical underpinning of the empirical result
of Section 7, where we shall see that θ̂M encountered a smaller
loss than θ̂G.

Another possible variation of the SURE estimate is to con-
sider the weighted loss function lw(θ, θ̂ ) =∑i wi(θ̂i − θi)2. An
unbiased risk estimate for θ̂λ,μ in this case is

SUREW (μ, λ) = 1

p

∑
i

wiAi

(Ai + λ)2

(
Ai(Xi − μ)2 + λ2 − A2

i

)
.

The theoretical properties (such as the optimality) of the result-
ing estimator would be an interesting question worth further
investigation.

Note that when we take wi ∝ 1/Ai , the SUREW (μ, λ) can be
rewritten as

SUREW (μ, λ)= 1

p

p∑
i=1

((
θ̂

μ,λ

i −Xi

)2
Ai

+2 · dfi −1

)

= 1

p

p∑
i=1

[(
θ̂

μ,λ

i −Xi

)2
/Ai + 2

Ai

ˆcov
(
θ

μ,λ

i , Xi

)−1

]
,

where

ˆcov
(
θ̂

μ,λ

i , Xi

) = λAi

Ai + λ

is the unbiased estimate of the covariance penalty (Efron 1986,
2004). The SURE criterion in this case coincides with Mallows’
Cp (Mallows 1973), or equivalently the AIC (Akaike 1973),
where the number of parameters is taken to be the generalized
degree of freedom (Ye 1998). The above results thus serve as a
rigorous confirmation of the belief that AIC-type criteria usually
lead to models that enjoy good risk properties.

Remark. In the discussion above we have assumed that at
the sampling level, the model is normal: Xi |θi ∼ N (θi, Ai). It
is noted here that such a distributional assumption is actually
not necessary. With some minimum regularity conditions (such
as the tail of the distribution does not decay too slowly), all the
theorems and corollaries will remain valid. One assumption that
we do make is that the variances are known or can be estimated
independently.

6. SEMIPARAMETRIC SURE SHRINKAGE
ESTIMATION

As we noted in the previous sections, the optimality proper-
ties of the SURE estimators do not depend on the hypothetical
normal prior. However, the general form θ̂i = λ

Ai+λ
Xi + Ai

Ai+λ
μ

of the shrinkage estimators studied in the preceding section is
indeed motivated from the normal prior. In this section, we con-
sider a larger class of shrinkage estimators, generalize the SURE
estimator in this larger setting, and study its asymptotic optimal-
ity properties. This new class of shrinkage estimators enjoys a

more flexible form. We shall see that the generalized SURE
estimator is optimal among this larger class of shrinkage esti-
mators. Because it is optimal within a larger class of estimators,
it automatically performs asymptotically at least as well as the
SURE estimators in previous sections. There are circumstances
in which it can strictly outperform those estimators, as explored
in Sections 7 and 8.

To motivate this larger class of shrinkage estimators, let us
consider the hierarchical setting of

λ ∼ π (λ)

θi |λ; μ
iid∼ N (μ, λ)

Xi |θi ; Ai

ind∼ N (θi, Ai),

where π is an unspecified hyperprior on λ. The posterior mean
of θi (assuming existence) is

E(θi |X) = E

(
λ

Ai + λ
|X
)

Xi + E

(
Ai

Ai + λ
|X
)

μ. (6.1)

We can interpret E( λ
Ai+λ

|X), which is monotonically decreas-
ing in Ai , as the shrinkage factor for the ith component. This
suggests us to consider general shrinkage estimators of the form

θ̂
bi ,μ

i = (1 − bi) · Xi + bi · μ,

where bi ∈ [0, 1], and in this general form we no longer require
bi to assume any parametric form: there is no hyperparameter λ.
Clearly, without putting any constraint on the bi’s, one expects
that the resulting SURE shrinkage estimator may suffer from
problems such as overfitting. One natural way to prevent this
from happening is to require the following condition on the
shrinkage factors

Requirement (MON) : bi ≤ bj for any i and j such that

Ai ≤ Aj ,

or equivalently bi is nondecreasing in Ai . In other words, the
larger the variance is, the stronger is the shrinkage. This require-
ment is quite intuitive, especially in light of Equation (6.1). Note
that this requirement is satisfied by all the previous parametric
SURE estimators.

To derive our semiparametric shrinkage estimator, we first
observe that an unbiased risk estimate of θ̂

b,μ
is

SUREM (b, μ) = 1

p

p∑
i=1

[
b2

i (Xi − μ)2 + (1 − 2bi)Ai

]
.

Minimizing the SURE with respect to (b, μ) then leads to our
semiparametric SURE shrinkage estimator

θ̂SM
i = (1 − b̂SM

i

) · Xi + b̂SM
i · μ̂SM, (6.2)

where

(b̂SM, μ̂SM) = minimizer of SUREM (b, μ)

subject to bi ∈ [0, 1] and Requirement (MON).
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Parallel to the parametric case, we can also consider the esti-
mator that shrinks toward the grand mean, that is,

θ̂
bi ,X̄
i = (1 − bi) · Xi + bi · X̄.

An unbiased estimate of its risk is

SUREG(b) = 1

p

p∑
i=1

[
b2

i (Xi −X̄)2 +
(

1−2

(
1− 1

p

)
bi

)
Ai

]
.

Minimizing the SUREG with respect to b then leads to our
semiparametric SURE grand-mean shrinkage estimator

θ̂SG
i = (1 − b̂SG

i

) · Xi + b̂SG
i · X̄, (6.3)

where

b̂SG = minimizer of SUREG(b)

subject to bi ∈ [0, 1] and Requirement (MON).

It is emphasized that even though we used Equation (6.1) to
motivate our methods, we do not actually impose any particular
parametric form on our estimates of the shrinkage factor bi other
than the range and the monotonicity requirement. This is the
reason we term our methods “semiparametric.” The theoretical
properties of the semiparametric SURE shrinkage estimators
are summarized as follows. To save space, we only discuss the
asymptotic optimality of the general-mean SURE estimator θ̂SM

i

below; the asymptotic property of θ̂SG
i can be similarly studied.

Theorem 6.1. Assuming conditions (A), (B), and (C′), we
have

sup
∣∣SUREM (b, μ) − lp(θ , θ̂ b,μ)

∣∣→ 0

in L1 and in probability, as p → ∞, where the supremum
is taken over bi ∈ [0, 1], |μ| ≤ maxi |Xi | and Requirement
(MON).

Theorem 6.2. Assume conditions (A), (B), and (C′). Then for
any shrinkage estimator θ̂ b̂p,μ̂p = (1 − b̂p) · X + b̂p · μ̂p, where
b̂p ∈ [0, 1] satisfies Requirement (MON) and |μ̂p| ≤ maxi |Xi |,
we have

lim
p→∞ P

(
lp(θ, θ̂SM)≥ lp(θ, θ̂ b̂p,μ̂p )+ε

)=0 for any fixed ε>0,

and

lim sup
p→∞

[
R(θ , θ̂SM) − R(θ , θ̂ b̂p,μ̂p )

] ≤ 0.

Theorem 6.2 shows that our semiparametric SURE shrinkage
estimator is optimal among the class of shrinkage estimators
whose shrinkage factor is a nondecreasing function of the vari-
ance. In particular, the semiparametric SURE shrinkage estima-
tor is asymptotically superior than (at least no worse than) any
hierarchical empirical Bayes estimator.

7. SIMULATION STUDY

In this section, we conduct a number of simulations to study
the performance of the SURE estimators. We consider θ̂G, θ̂M

(see Equations (4.2) and (5.1)) and the two semiparametric
shrinkage estimators θ̂SG, θ̂SM (Equations (6.3) and (6.2)) and
compare their performance with that of the EBMLE estimator
θ̂ML, the EBMOM estimator θ̂MM, and an extension of the
James-Stein estimator θ̂ JS+

i . The EBMLE estimator used here
is given by

θ̂ML
i := θ̂

λ̂ML
i = λ̂ML

λ̂ML + Ai

Xi + Ai

λ̂ML + Ai

μ̂ML, (7.1)

where λ̂ML and μ̂ML are obtained by maximizing the marginal
density

f (X|λ, A) ∝
∏

i

(λ + Ai)
−1/2 exp{−(Xi − μ)2/(2(λ + Ai))},

and the EBMOM estimator is given by

θ̂MM
i := θ̂

λ̂MM
i = λ̂MM

λ̂MM + Ai

Xi + Ai

λ̂MM + Ai

μ̂MM, (7.2)

where λ̂MM and μ̂MM are obtained as the root of the following
equations

μ =
∑

i Xi/(Ai + λ)∑
i 1/(Ai + λ)

,

λ = 1

p − 1

(∑
i

(Xi − μ)2 − (p − 1)/p
∑

i

Ai

)+
.

The extended James-Stein estimator is

θ̂ JS+
i : = μ̂JS+ +

(
1 − p − 3∑

i(Xi − μ̂JS)2/Ai

)+
(Xi − μ̂JS+),

μ̂JS+ =
∑

i Xi/Ai∑
i 1/Ai

, (7.3)

which has been discussed by Brown (2008).
For each simulation, we first draw (Ai, θi) (i = 1, . . . , p) in-

dependently from a distribution π (A, θ ) and then draw Xi given
(Ai, θi). The shrinkage estimators are then found via the formu-
las described above. This process is repeated a large number
of times (N = 100,000) to obtain an accurate estimate of the
average risk for each estimator. The sample size p is chosen to
vary from 20 to 500 at an interval of length 20.

In each example, we also calculate the oracle risk “estimator”
θ̃OR, defined as

θ̃OR = λ̃OR

λ̃OR + A
X + A

λ̃OR + A
μ̃OR,

where

(λ̃OR, μ̃OR)= arg min
λ≥0, μ

Rp(θ, θ̂λ,μ)

= arg min
λ≥0, μ

p∑
i=1

1

p
E

[(
λ

λ+Ai

Xi + Ai

λ+Ai

μ−θi

)2
]
.

Similar to the OL estimators, the oracle risk estimator θ̃OR can-
not be used without the knowledge of θ , but it does provide a
sensible lower bound of the risk achievable by any shrinkage
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Table 1. The limiting risk limp→∞ R(θ , θ̂ ) of different shrinkage
estimators. The six columns (1)–(6) correspond to the six simulation

examples

(1) (2) (3) (4) (5) (6)

EBMLE 0.3357 0.0697 0.0775 0.0057 0.2470 0.0775
EBMOM 0.3357 0.0697 0.0755 0.0058 0.2434 0.0755
J-S 0.3632 0.0737 0.0797 0.0056 0.2594 0.0797
Oracle 0.3357 0.0697 0.0540 0.0051 0.1947 0.0540
SURE θ̂G 0.3357 0.0697 0.0553 0.0051 0.2337 0.0553
SURE θ̂M 0.3357 0.0697 0.0540 0.0051 0.1947 0.0540
SURE θ̂SG 0.3357 0.0697 0.0523 0.0050 0.2335 0.0523
SURE θ̂SM 0.3357 0.0697 0.0491 0.0050 0.1739 0.0491

estimator with the given parametric form. An alternative ora-
cle estimator, which we do not pursue here, is the hierarchical
Bayes estimator where the correct hyper-prior is used.

Note that since we have a large number (N = 100,000) of
repetitions in our simulation, the averaged risk of the oracle risk
estimator plotted against p will be essentially a flat line. For
each shrinkage estimator considered here, the risk R(θ , θ̂ ) will
converge to a limit as p → ∞. This limit can be calculated nu-
merically. Table 1 shows these limiting risks for each simulation
example.

Example 7.1. We draw (A, θ,X) such that A ∼ Unif(0.1, 1)
and θ ∼ N (0, 1) independently, and X ∼ N (θ,A). Note that
we draw A from Unif(0.1, 1) instead of from Unif(0, 1) to make
sure that the variances Ai are bounded away from 0. The oracle
risk estimator θ̃OR is found to have λ0 = 1 and μ0 = 0. The
corresponding risk for θ̃OR is R(θ, θ̃OR) = 1 − ln(2/1.1)/0.9 ≈
0.3357. The plot in Figure 1(a) shows the risks of the seven
shrinkage estimators as the sample size p varies. Clearly, the
performance of all shrinkage estimators except the extended
James-Stein estimator eventually approaches that of the oracle
risk estimator. Table 1 confirms the picture. Note that when the
sample size is relatively small, the four SURE estimators incur
slightly larger risks compared with the two empirical Bayes es-
timators. This is because the hierarchical distribution on A and
θ is exactly the one assumed by the empirical Bayes estimators;
in particular, the EBMLE relies on the parametric normal form
of the prior, and the EBMOM estimator assumes independence
between A and θ , both of which are satisfied here. The SURE
estimators require neither of these conditions but still achieve
rather competitive performance. When the sample size is mod-
erately large, all six estimators well approach the limit given by
the oracle risk estimator. The extended James-Stein estimator
behaves far worse than the others.

Example 7.2. We draw (A, θ,X) such that A ∼ Unif(0.1, 1)
and θ ∼ Unif(0, 1) independently, and X ∼ N (θ,A). In this
example, θ no longer comes from a normal distribution, but θ

and A are still independent. The oracle risk estimator is found
to have λ0 ≈ 0.0834 and μ0 = 0.5. The corresponding risk for
θ̃OR is R(θ , θ̃OR) ≈ 0.0697. The plot in Figure 1(b) shows the
risks of the seven shrinkage estimators as the sample size p
varies. Again, as p gets large, the performance of all shrinkage
estimators except the extended James-Stein estimator eventually
approaches that of the oracle risk estimator, as confirmed by

Table 1. This observation indicates that the parametric form of
the prior on θ is not crucial as long as A and θ are independent.

Example 7.3. (A, θ,X) are drawn such that A ∼
Unif(0.1, 1), θ = A, and X ∼ N (θ,A). In this example, A and θ

are no longer independent of each other. The oracle risk estima-
tor is found to have λ0 ≈ 0.0781 and μ0 ≈ 0.5949 numerically.
The corresponding risk for θ̃OR is R(θ , θ̃OR) ≈ 0.0540. The plot
in Figure 1(c) shows the risks of the seven shrinkage estimators
as functions of p, the sample size. As our theoretical result in
Section 5 indicates, the performance of the SURE estimator θ̂M

approaches that of the oracle risk estimator, which is seen in
Figure 1(c). The limiting risks of the SURE grand-mean shrink-
age estimator θ̂G, the two empirical Bayes estimators, and the
extended James-Stein estimator, on the other hand, are strictly
greater than the risk of the oracle estimator, as shown in Table 1.
The main reason for the difference is that A and θ are no longer
independent. It is quite interesting to note from Table 1 that the
limiting risks of the two semiparametric shrinkage estimators
θ̂SG and θ̂SM are actually strictly smaller than the oracle risk
(although due to the scale of the plot, it is not easy to spot).
The reason for this “better-than-oracle” performance is that the
semiparametric estimators are not restricted to the specific para-
metric family that the oracle estimator assumes.

Example 7.4. In this example, (A, θ,X) are drawn as A ∼
Inv-χ2

10, θ = A and X ∼ N (θ,A). The inverse chi-square dis-
tribution is used here as it is the conjugate distribution for
normal variance. The oracle risk estimator is found to have
λ0 ≈ 0.0032 and μ0 ≈ 0.1266 numerically. The corresponding
risk for the oracle risk estimator is R(θ , θ̃OR) ≈ 0.0051. The
plot in Figure 1(d) shows the risks of the seven shrinkage esti-
mators as functions of the sample size p. We see from this figure
and Table 1 that the risks of the SURE estimators θ̂M and θ̂G

approach that of the oracle risk estimator, whereas the limiting
risks of the James-Stein and empirical Bayes estimators θ̂ JS+,
θ̂ML, and θ̂MM are strictly greater than the oracle risk. Note that
the limiting risks of the two semiparametric shrinkage estima-
tors θ̂SG and θ̂SM are in fact strictly smaller than the oracle risk
(although due to the scale of the plot, it is not easy to spot).

Example 7.5. The setting in this example is chosen in
such a way that it reflects grouping in the data. We draw
(A, θ,X) as A ∼ 1

2 · 1{A=0.1} + 1
2 · 1{A=0.5}, (i.e., A is 0.1 or

0.5 with 50% probability each), θ |A = 0.1 ∼ N (2, 0.1), θ |A =
0.5 ∼ N (0, 0.5), and X|θ,A ∼ N (θ,A) so that there exist two
groups in the data. The oracle risk estimator is found to have
λ0 ≈ 0.8347 and μ0 ≈ 0.1506. The corresponding risk for the
oracle risk estimator is R(θ , θ̃OR) ≈ 0.1947. Figure 1(e) plots
the risks of the seven shrinkage estimators versus the sample
size p. We see clearly that the risk of the SURE estimator
θ̂M approaches that of the oracle risk estimator, whereas the
risks of the other four parametric shrinkage estimators (θ̂G,
θ̂ML, θ̂MM, and θ̂ JS+) are notably greater than the oracle risk.
The semiparametric shrinkage estimator θ̂SM is seen to achieve
an even significant improvement over the oracle one, confirming
the results of Section 6.

Example 7.6. In this example, we allow X to depart
from the normal model, that is, X � N (θ,A), to assess the
sensitivity in performance of the estimators to the normality
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(a) A ∼ Unif(0.1, 1), θ ∼ N(0, 1)
independently; X ∼ N(θ, A).
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(b)A ∼ Unif(0.1, 1), θ ∼ Unif(0, 1)
independently; X ∼ N(θ, A).
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(c) A ∼ Unif(0.1, 1), θ = A; X ∼ N(θ, A).
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(d)A ∼ Inv-χ2
10, θ = A; X ∼ N(θ, A).
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(e) A ∼ 1
2 · 1{A=0.1} + 1

2 · 1{A=0.5},
θ|A = 0.1 ∼ N(2, 0.1), θ|A = 0.5 ∼ N(0, 0.5);

X ∼ N(θ, A).
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(f) A ∼ Unif(0.1, 1), θ = A;
X ∼ Unif[θ −√

3A, θ +
√

3A].

Figure 1. Comparing the risks of different shrinkage estimators. (a)–(f) correspond to the six simulation examples.

assumption. (A, θ,X) are drawn as A ∼ Unif(0.1, 1), θ = A,
and X ∼ Unif[θ − √

3A, θ + √
3A]. The oracle risk estimator

is found to have λ0 ≈ 0.0781 and μ0 ≈ 0.5949 numerically.
The corresponding risk for the oracle risk estimator θ̃OR is
R(θ, θ̃OR) ≈ 0.0540. Figure 1(f) plots the risks of the seven
shrinkage estimators versus the sample size p. We see that the
performance of SURE estimator θ̂M approaches that of the
oracle risk estimator, whereas the empirical Bayes estimators
θ̂MLand θ̂MM and the extended James-Stein estimator θ̂ JS+ do
notably worse. Table 1 shows that the limiting risks of the two

semiparametric shrinkage estimators θ̂SG and θ̂SM are strictly
smaller than the oracle risk (though the gap is not big enough
to be easily seen on the plot).

8. APPLICATION TO REAL DATA

8.1 Prediction of Batting Average

In this section, we apply the SURE estimators to the baseball
data by Brown (2008) to assess their effectiveness. The data
analyzed here are the batting records for all the Major League
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Baseball players in the season of 2005. Like in the article by
Brown (2008), we divide the dataset into two half seasons and
try to predict the batting average of each player for the second
half using the data from the first half. We also carried out the
necessary preprocessing steps proposed there. For example, we
removed from the analysis the players whose number of at-bats
is less than 11. For each player, let the number of at-bats be N
and the successful number of batting be H; we have,

Hij ∼ Binomial(Nij , pj ),

where i = 1, 2 is the season indicator and j = 1, . . . , p is the
player indicator. As in the article by Brown (2008), the following
variance-stablizing transformation is used before applying the
shrinkage estimators

Xij = arcsin

√
Hij + 1/4

Nij + 1/2
,

resulting in

Xij ∼̇N

(
θj ,

1

4Nij

)
, θj = arcsin(pj ).

One error measurement, denoted as TSE, introduced by Brown
(2008), is adopted here as the basis of comparison. TSE mea-
sures the sum of squared errors in terms of θ and X, the trans-
formed values:

TSE(θ̂) =
∑

j

(X2j − θ̂j )2 −
∑

j

1

4N2j

.

Table 2 summarizes the result, where the shrinkage estimators
are applied three times—to all the baseball players, the pitchers
only, and the nonpitchers only. The values reported are the ra-
tios of the error of a given estimator to that of the benchmark
naive estimator, which simply uses the first half season X1j to
predict the second half X2j . In the table, EB-MM is the em-
pirical Bayes method-of-moment estimator (7.2). EB-ML is the
empirical Bayes maximum likelihood estimator (7.1). James-
Stein corresponds to the extended James-Stein estimator (7.3).
Since this particular dataset has been widely studied, we also

Table 2. Prediction errors of batting averages

ALL Pitchers Nonpitchers

Naive 1 1 1
Grand mean 0.852 0.127 0.378
Parametric EB-MM 0.593 0.129 0.387
Parametric EB-ML 0.902 0.117 0.398
James-Stein 0.525 0.164 0.359

Nonparametric EB 0.508 0.212 0.372
Binomial mixture 0.588 0.156 0.314
Weighted least square (Null) 1.074 0.127 0.468
Weighted generalized MLE (Null) 0.306 0.173 0.326
Weighted least square (AB) 0.537 0.087 0.290
Weighted generalized MLE (AB) 0.301 0.141 0.261

SURE θ̂G 0.505 0.123 0.278
SURE θ̂M 0.422 0.123 0.282
SPSURE θ̂SG 0.409 0.081 0.261
SPSURE θ̂SM 0.419 0.077 0.278

compare our methods with a number of more recently devel-
oped methods, including the nonparametric shrinkage methods
by Brown and Greenshtein (2009), the binomial mixture model
by Muralidharan (2010), and the weighted least squares and
general maximum likelihood estimators (with/without the co-
variate at bats effect) by Jiang and Zhang (2009, 2010). Results
for those methods are from Brown (2008), Muralidharan (2010),
and Jiang and Zhang (2009, 2010). The last group shows the
results for our SURE estimators. SURE θ̂G is the SURE grand-
mean shrinkage estimator (Equation (4.2)). SURE θ̂M is the
SURE estimator (Equation (5.1)), where the shrinkage location
μ̂ is also determined from the data. The last two estimators are
the semiparametric SURE shrinkage estimators. SPSURE θ̂SG is
the semiparametric grand-mean shrinkage estimator (Equation
(6.3)); SPSURE θ̂SM is the semiparametric SURE general-mean
estimator (Equation (6.2)).

The numerical results demonstrate that the SURE estima-
tors have quite appealing performance. The total squared errors
of the SURE estimators are significantly smaller than almost
all of their competitors, with the only exception being that the
weighted general maximum likelihood methods achieve a bet-
ter performance in the all players’ case. The main reason, we
believe, is that the baseball data contain features that may de-
grade the performance of classical empirical Bayes methods, as
discussed by Brown (2008). For example, substantial evidence
against the normal prior assumption is observed, and, further-
more, ignoring the correlation between the mean θ and the vari-
ance A is not justifiable here (a player with large p tends to play
more games, resulting in large N). Both of these features can in-
validate the use of empirical Bayes methods. On the other hand,
our SURE shrinkage estimators, especially the semiparametric
ones, are shown to be robust and optimal in much more general
circumstances, resulting in the superior numerical outcome.

Figure 2 plots the shrinkage factor for four of the estimators
we have considered for the “all batters” data—the EBMOM,
EBMLE, the parametric SURE estimator θ̂M , and the semi-
parametric SURE estimator θ̂SM. In the parametric case, the
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Figure 2. Plot of the shrinkage factors λ̂/(λ̂ + A) or 1 − b̂ for all-
batters. Four estimators are compared: EB-MM, EB-MLE, the para-
metric SURE θ̂M , and the semiparametric SURE estimator θ̂SM.
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shrinkage factor is λ̂/(λ̂ + A); in the semiparametric case, it is
1 − b̂SM as in Equation (6.2). Note that in each case the shrinkage
factor (λ̂/(λ̂ + A) or 1 − b̂SM) increases with N, the number of
at-bats, as they should. This corresponds to a decrease in terms
of A = 1/4N . Note that the shrinkage factor for the EB-ML esti-
mator is much smaller than those for the other estimators, which
corresponds to greater shrinkage to the central location, and this
is intimately related to the relatively poor performance of this es-
timator for the current dataset. Note also that 1 − b̂SM increases
with N in a stepwise fashion. The fact that it is nondecreasing is a
direct consequence of its definition. The stepwise property is an
indirect consequence of its definition—monotone solutions to
the minimization problem in Equation (6.2) or (6.3) will always
be stepwise monotone. Finally, note that for large values of N
(approximately N ≥ 130), 1 − b̂SM has the largest value among
the four shrinkage factors. Thus, for this dataset, the SURE esti-
mator θ̂SM shrinks somewhat less than the EB-MM estimator or
the parametric SURE estimator θ̂M when N is large, but shrinks
comparably to these estimators for smaller N. It is also true that
the estimates of central tendency differ for these estimators, but
the differences are small to moderate. The corresponding values
of μ̂ are μ̂ = 0.528, 0.538, 0.456, 0.529, respectively.

8.2 Estimation of Housing Price

In this subsection, we apply the SURE estimators to a housing
dataset. The goal is to estimate the average housing price in each
town of Scheffield, England, from a small fraction of the data, as
would be the case of a survey sampling. The data was produced
by the Land Registry of the United Kingdom. It contains the
information about all houses sold in Scheffield, England, from
2000 to mid-2008. The sale price, the sale time, the postcode that
identifies the location of the house, and other relevant statistics
about the sales are available for each house that has been sold
during this time period. Nagaraja et al. (2011) discussed various
analysis of similar, larger datasets from the United States. We
here confine our interest mainly to the estimation of average
housing prices for each town in Scheffield, which has a dis-
tinct postcode. As conventional, the logarithm of the housing
prices are used throughout the study to better approximate the
normality assumption. Our analysis starts by removing the in-
flation from year to year by subtracting from each sample the
overall year effect. (A more sophisticated method might build a
two-way model with the year effect treated as a fixed effect and
the area effect as a random effect.) We then randomly draw a
small fraction of the data. This small fraction serves as a survey
sample, from which we want to estimate the average housing
price of each town of the entire dataset. One particularly inter-
esting feature of the dataset is that the number of towns is small
(around 20), while the number of house sales in most towns is
large (above 500). To have a clear picture, we let the survey
sample size range from 10% to 20% of the entire data. We ex-
clude the towns with less than 20 house sales so that we would
at least have three data points in the sample for each town.

To compare the performance of different shrinkage estima-
tors, we run the simulation N = 10,000 times and report the
average results in Table 3. The variances Ai are estimated from
the sample variance of each town. As in the previous example,
we use the naive estimator, the sample mean of each town, as

Table 3. Estimation errors for housing prices under different sample
sizes

Sampling 10% Sampling 15% Sampling 20%

TSE TSEP TSE TSEP TSE TSEP

Naive 1.000 1.000 1.000 1.000 1.000 1.000
EB(MM) 0.735 0.748 0.779 0.788 0.816 0.824
EB(ML) 0.734 0.747 0.776 0.785 0.813 0.821
J-S 0.991 0.992 0.994 0.994 0.996 0.996
SURE θ̂G 0.746 0.793 0.772 0.820 0.819 0.872
SURE θ̂M 0.997 1.074 1.050 1.131 1.100 1.184
SPSURE θ̂SG 0.556 0.574 0.518 0.534 0.522 0.536
SPSURE θ̂SM 0.879 0.881 0.863 0.863 0.865 0.865

the benchmark. Each number in the table refers to the ratio of
the squared error of a particular estimator to that of the naive es-
timator. TSE stands for the total squared estimation error on the
logarithm scale, while TSEP corresponds to that on the original
scale. Note that unlike the baseball data, the parameter of inter-
est θj (the average housing prices) can be directly obtained here.
We can therefore evaluate the actual TSE and TSEP instead of
estimating them through adjusting the prediction errors. There
has also been discussion on alternatives other than squared error
loss in the study of housing price (see Varian 1975, for one such
example).

There are several interesting observations. First, the improve-
ment of shrinkage estimators over the naive estimator as a group
is not as impressive as in the baseball data case, though sig-
nificant error reduction is still achieved. This is because the
number of groups here is significantly smaller (20 here com-
pared to around 500 in the baseball data). Second, as the sample
size increases, the relative performance of shrinkage estima-
tors decreases. This is because the variance of each sample
mean decreases, resulting in smaller shrinkage. Third, overall
speaking, the SURE shrinkage estimators achieve better per-
formance compared with the other shrinkage estimators. The
good performance of the semiparametric SURE estimator θ̂SG

is particularly noteworthy. Fourth, when the number of groups
p is small (around 20 here), it is not necessarily always bene-
ficial to simultaneously estimate μ, the shrinkage location, and
the shrinkage factors, since the asymptotic result is yet to take
effect. Shrinking the estimates toward a predetermined location
such as the grand mean could give better results.

9. SUMMARY

Inspired by Stein’s unbiased risk estimate (SURE), we pro-
pose in this article a class of shrinkage estimators for the
heteroscedastic hierarchical model, which is arguably more real-
istic in practical applications. We show that each SURE shrink-
age estimator is asymptotically optimal in its own class. This
includes the parametric SURE estimators, whose forms are de-
rived from the classical parametric hierarchical model, as well
as semiparametric SURE estimators, which only assume that
the individual shrinkage factor is monotone in the variance. We
note that the asymptotic optimality of the SURE shrinkage esti-
mators do not depend on the specific distributional assumptions,
such as the normal assumption. We test the SURE estimators in
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comprehensive simulation studies and two real datasets, observ-
ing encouraging results: the SURE estimators offer numerically
superior performance compared to the classical empirical Bayes
and James-Stein estimators. The semiparametric SURE esti-
mators appear to be particularly competitive. We recommend
the use of the semiparametric SURE estimator θ̂SM (where the
shrinkage location is simultaneously estimated), when the num-
ber of groups are large. For data with small number of groups,
we recommend the semiparametric SURE estimator θ̂SG, which
shrinks toward the grand mean.

There are several relevant research questions not fully ad-
dressed in this article. For example, the sparse normal means
problem (Johnstone and Silverman 2004) has become increas-
ingly important in statistics. It therefore would be of interest
to study the performance of the proposed methods under this
setting. It could also be of interest to study the extent to which
the proposed estimators are minimax by using the techniques
discussed by Maruyama and Strawderman (2005). It would also
be of interest to study whether these estimators are ensemble
minimax in the sense of Efron and Morris (1973) and Brown,
Nie, and Xie (submitted). The peculiar features in the baseball
data suggest that models that explicitly consider the dependence
between θi’s and Ai’s might be more appropriate. For example,
we can consider a hierarchical Bayes model where θi explicitly
depends on Ai . It is interesting to see how the performance of
such estimators is compared with the SURE estimators proposed
in this article.

APPENDIX: PROOFS

Proof of Theorem 3.1. We only need to show the L2 convergence.
Since

SURE(λ) − lp(θ, θ̂λ)

= 1

p

∑
i

(
X2

i − Ai − θ2
i − 2λ

Ai + λ

(
X2

i − Xiθi − Ai

))
,

we know

sup
0≤λ≤∞

∣∣∣SURE(λ) − lp(θ , θ̂λ)
∣∣∣

≤ sup
0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2λ

Ai +λ

(
X2

i −Xiθi −Ai

)∣∣∣∣∣+
∣∣∣∣∣ 1

p

∑
i

(
X2

i −Ai −θ 2
i

)∣∣∣∣∣.
We consider the two terms separately. For the first term, without loss
of generality, let us assume A1 ≤ A2 ≤ · · · ≤ Ap . Then we know

sup
0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2λ

Ai + λ

(
X2

i − Xiθi − Ai

)∣∣∣∣∣
≤ sup

1≥c1≥···≥cp≥0

∣∣∣∣∣ 2

p

p∑
i=1

ci

(
X2

i − Xiθi − Ai

)∣∣∣∣∣ .
As in Lemma 2.1 by Li (1986), observe that

sup
1≥c1≥···≥cp≥0

∣∣∣∣∣ 2

p

p∑
i=1

ci

(
X2

i − Xiθi − Ai

)∣∣∣∣∣
= max

1≤j≤p

∣∣∣∣∣ 2

p

j∑
i=1

(
X2

i − Xiθi − Ai

)∣∣∣∣∣ .

Let Mj =∑j

i=1(X2
i − Xiθi − Ai). Then {Mj ; j = 1, 2, . . .} forms a

martingale. The Lp maximum inequality implies

E

(
max

1≤j≤p
M2

j

)
≤ 4E

(
M2

p

) = 4
p∑

i=1

(
2A2

i + Aiθ
2
i

)
.

Regularity conditions (A) and (B) thus guarantee that E(maxj

( 2
p
Mj )2) → 0, which yields

sup
0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2λ

Ai + λ

(
X2

i − Xiθi − Ai

)∣∣∣∣∣→ 0 in L2, as p → ∞.

For the second term 1
p

∑
i

(X2
i − Ai − θ2

i ), a direct calculation gives

E

⎡
⎣
(

1

p

∑
i

(
X2

i − Ai − θ2
i

))2
⎤
⎦ = 2

p2

p∑
i=1

(
A2

i + 2Aiθ
2
i

)→ 0,

by conditions (A) and (B). This completes the proof. �
Proof of Theorem 3.2. Since SURE(λ̂SURE) ≤ SURE(λ̃OL) by defi-

nition, and we know from the preceding theorem that supλ |SURE(λ) −
lp(θ , θ̂λ)| → 0 in probability, it follows that for any ε > 0

P (lp(θ, θ̂SURE) ≥ lp(θ , θ̃OL) + ε)

≤ P
(
lp(θ , θ̂SURE) − SURE(λ̂SURE) ≥ lp(θ , θ̃OL) − SURE(λ̃OL) + ε

)
→ 0,

which completes the proof. �
Proof of Corollary 3.1. This is a direct consequence of the definition

of θ̃OL and Theorem 3.2. �
Proof of Theorem 3.3. Since

lp(θ , θ̂SURE) − lp(θ, θ̃OL)

= (lp(θ , θ̂SURE)−SURE(λ̂SURE)) + (SURE(λ̂SURE)−SURE(λ̃OL))

+ (SURE(λ̃OL) − lp(θ , θ̃OL))

≤ 2 sup
0≤λ≤∞

|SURE(λ) − lp(θ , θ̂λ)|,

we know from Theorem 3.1 that

lp(θ , θ̂SURE) − lp(θ , θ̃OL) → 0 in L2 and in L1.

Therefore,

lim
p→∞

[
Rp(θ , θ̂SURE) − Rp(θ , θ̃OL)

]
= 0. �

Proof of Corollary 3.2. This is a direct consequence of the definition
of θ̃OL and Theorem 3.3. �

Proof of Theorem 4.1. Since

SUREG(λ) − lp(θ , θ̂λ,X̄)

= 1

p

∑
i

((
X2

i − Ai − θ2
i

)− 2λ

Ai + λ

(
X2

i − Xiθi − Ai

)

− 2Ai

Ai + λ

(
X̄(Xi − θi) − Ai

p

))
,
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we have

sup
0≤λ≤∞

∣∣∣SUREG(λ) − lp(θ , θ̂λ,X̄)
∣∣∣

≤
∣∣∣∣∣ 1

p

∑
i

(
X2

i −Ai −θ 2
i

)∣∣∣∣∣+ sup
0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2λ

Ai +λ

(
X2

i −Xiθi −Ai

)∣∣∣∣∣
+ sup

0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2Ai

Ai + λ

(
X̄(Xi − θi) − Ai

p

)∣∣∣∣∣ . �
The convergence of the first two terms in L2 has already been estab-

lished in the proof of Theorem 3.1. We only need to show that the last
term converges to 0 in L1. But

sup
0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2Ai

(
X̄(Xi − θi) − Ai/p

)
Ai + λ

∣∣∣∣∣
≤ sup

0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2Ai(Xi − θi)

Ai + λ

∣∣∣∣∣ · ∣∣X̄∣∣+ 2

p2

∑
i

Ai .

Following the technique in the proof of Theorems 3.1, it can be shown
that

sup
0≤λ≤∞

∣∣∣∣∣ 1

p

p∑
i=1

2Ai(Xi − θi)

Ai + λ

∣∣∣∣∣→ 0 in L2.

We also know that EX̄2 = 1
p2

∑
i Ai + ( 1

p

∑
i θi)2, which is

bounded by Conditions (A) and (C). Therefore, we have

sup
0≤λ≤∞

∣∣∣∣∣ 1

p

∑
i

2Ai(Xi − θi)

Ai + λ

∣∣∣∣∣ · ∣∣X̄∣∣→ 0 in L1,

by Cauchy-Schwartz inequality, and this completes the proof.

Proof of Theorem 4.2. With Theorem 4.1 established, the proof is
almost identical to that of Theorem 3.2. �

Proof of Corollary 4.1. This is a direct consequence of the definition
of θ̃GOL and Theorem 4.2. �

Proof of Theorem 4.3. Since

lp(θ, θ̂G) − lp(θ , θ̃GOL)

= (lp(θ , θ̂G) − SUREG(λ̂G)) + (SUREG(λ̂G) − SUREG(λ̃GOL))

+ (SUREG(λ̃GOL) − lp(θ , θ̃GOL))

≤ 2 sup
0≤λ≤∞

|SUREG(λ) − lp(θ , θ̂λ,X̄)|,

we know from Theorem 4.1 that

lp(θ, θ̂SURE) − lp(θ , θ̃OL) → 0 in L1.

Therefore,

lim
p→∞

[Rp(θ, θ̂SURE) − Rp(θ , θ̃OL)] = 0. �
Proof of Corollary 4.2. This is a direct consequence of the definition

of θ̃GOL and Theorem 4.3. �
To prove Theorem 5.1, we need the following lemma.

Lemma A.1. Assume conditions (A), (B), and (C′). Then we have

E

(
max
1≤i≤p

X2
i

)
= O(p2/(2+δ∗)),

where δ∗ = min(1, δ).

Proof. We can write Xi = √
AiZi + θi , where Zi are iid stan-

dard normal random variables. It follows from X2
i = AiZ

2
i + θ2

i +

2
√

AiθiZi that

max
1≤i≤p

X2
i ≤ max

i
Ai · max

i
Z2

i + max
i

θ 2
i + 2 max

i

√
Ai |θi | · max

i
|Zi | .

(A.1)

Condition (A) implies that max
i

A2
i ≤∑i A

2
i = O(p). Thus,

max
i

Ai = O(p1/2). Similarly, Condition (B) implies that max
i

√
Ai |θi |

= O(p1/2). Condition (C′) implies that
∑

i |θi |2+α = O(p) for all
0 ≤ α ≤ δ; in particular,

∑
i |θi |2+δ∗ = O(p). Since maxi |θi |2+δ∗ ≤∑

i |θi |2+δ∗ = O(p), we know that maxi θ
2
i = O(p2/(2+δ∗)). It is well

known (see, e.g., Embrechts et al. 1997, chap. 3) that

E

(
max
1≤i≤p

|Zi |
)

= O(
√

log p), E

(
max
1≤i≤p

Z2
i

)
= O(log p).

Taking them into Equation (A.1), we obtain

E

(
max
1≤i≤p

X2
i

)
= O(p1/2 log p) + O(p2/(2+δ∗)) + O(p1/2

√
log p)

= O(p2/(2+δ∗)). �
Proof of Theorem 5.1: Since

SUREM (λ, μ) − lp(θ , θ̂λ,μ) = SURE(λ) − lp(θ , θ̂λ)

− 2μ

p

∑
i

Ai

Ai + λ
(Xi − θi) ,

it follows that

sup
0≤λ≤∞, |μ|≤maxi |Xi |

|SUREM (λ,μ) − lp(θ , θ̂λ,μ)|

≤ sup
0≤λ≤∞

|SURE(λ) − lp(θ , θ̂λ)| + 2

p
max
1≤i≤p

|Xi |

× sup
0≤λ≤∞

∣∣∣∣∣
∑

i

Ai(Xi − θi)

Ai + λ

∣∣∣∣∣ . (A.2)

We know from Theorem 3.1 that

sup
0≤λ≤∞

|SURE(λ) − lp(θ , θ̂λ)| → 0 in L2.

It remains to show that the second term in Equation (A.2) converges to
zero in L1.

Following the same steps as in the proof of Theorem 3.1, we can
show that

sup
0≤λ≤∞

∣∣∣∣∣
∑

i

Ai(Xi − θi)

Ai + λ

∣∣∣∣∣ ≤ max
1≤j≤p

∣∣∣∣∣∣
p∑

i=j

(Xi − θi)

∣∣∣∣∣∣ .
Therefore, by the Lp maximum inequality on martingales, we have

E

⎧⎨
⎩ sup

0≤λ≤∞

[∑
i

Ai(Xi − θi)

Ai + λ

]2
⎫⎬
⎭ ≤ E

⎧⎨
⎩max

1≤j≤p

⎡
⎣ p∑

i=j

(Xi − θi)

⎤
⎦

2⎫⎬
⎭

≤ 4E

(
p∑

i=1

(Xi − θi)

)2

= 4
∑

i

Ai = O(p).

Combining this with Lemma A.1, we obtain by Cauchy-Schwartz in-
equality

1

p
E

(
max
1≤i≤p

|Xi | · sup
0≤λ≤∞

∣∣∣∣∣
∑

i

Ai(Xi − θi)

Ai + λ

∣∣∣∣∣
)

≤ 1

p

⎛
⎝E( max

1≤i≤p
X2

i ) · E

⎧⎨
⎩ sup

0≤λ≤∞

[∑
i

Ai(Xi − θi)

Ai + λ

]2
⎫⎬
⎭
⎞
⎠

1/2

= O(p− δ∗
2(2+δ∗ ) ) = o(1),
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which completes the proof. �
Proof of Theorem 5.2. With Theorem 5.1 established, the proof of

lim
p→∞

P (lp(θ , θ̂M ) ≥ lp(θ , θ̃MOL) + ε) = 0 for any ε > 0

is essentially identical to the proof of Theorem 3.2. �
Proof of Theorem 5.1. This is a direct consequence of the definition

of θ̃MOL and Theorem 5.2. �
Proof of Theorem 5.3. Since

lp(θ , θ̂M ) − lp(θ , θ̃MOL)

≤ 2 sup
0≤λ≤∞, |μ|≤maxi |Xi |

|SUREM (λ,μ) − lp(θ , θ̂λ,μ)|,

the result follows from Theorem 5.1. �
Proof of Corollary 5.2. This is a direct consequence of the definition

of θ̃MOL and Theorem 5.3. �
Proof of Corollary 5.3. This is a special case of Corollary 5.2. �
Proof of Theorem 6.1. First, we have

|SUREM (b, μ) − lp(θ , θ̂ b,μ)|

≤ 1

p

∣∣∣∣∣
p∑

i=1

(
X2

i − θ2
i − Ai

)∣∣∣∣∣+ 1

p

∣∣∣∣∣
p∑

i=1

2(1 − bi)
(
X2

i − Xiθi − Ai

)∣∣∣∣∣
+ 1

p

∣∣∣∣∣
p∑

i=1

2bi(Xi − θi) · μ

∣∣∣∣∣ . �

Note that the order of bi is determined by that of Ai , which is not
random. The rest of the proof follows essentially the same steps as in
that of Theorem 5.1 upon using Lemma A.1.

Proof of Theorem 6.2. With Theorem 6.1 established, the proof of

lim
p→∞

P (lp(θ , θ̂SM) ≥ lp(θ , θ̂ b̂p,μ̂p ) + ε) = 0 for any ε > 0

is the same as the proof of Theorem 3.2. Likewise, to show

lim sup
p→∞

[Rp(θ, θ̂SM) − Rp(θ, θ̂ b̂p,μ̂p )] ≤ 0,

we use the inequality

lp(θ , θ̂SM) − lp(θ, θ̂ b̂p,μ̂p ) ≤ 2 sup |SUREM (b, μ) − lp(θ , θ̂ b,μ)|,
and Theorem 6.1. �

[Received November 2011. Revised March 2012.]
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