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A study of density of states and ground states in hydrophobic-hydrophilic
protein folding models by equi-energy sampling
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We propose an equi-energy �EE� sampling approach to study protein folding in the two-dimensional
hydrophobic-hydrophilic �HP� lattice model. This approach enables efficient exploration of the
global energy landscape and provides accurate estimates of the density of states, which then allows
us to conduct a detailed study of the thermodynamics of HP protein folding, in particular, on the
temperature dependence of the transition from folding to unfolding and on how sequence
composition affects this phenomenon. With no extra cost, this approach also provides estimates on
global energy minima and ground states. Without using any prior structural information of the
protein the EE sampler is able to find the ground states that match the best known results in most
benchmark cases. The numerical results demonstrate it as a powerful method to study lattice protein
folding models. © 2006 American Institute of Physics. �DOI: 10.1063/1.2208607�
I. INTRODUCTION

The prediction of protein structure from its primary se-
quence is a long-standing problem in biology.1,2 The diffi-
culty of this problem is due to the roughness of the energy
landscape with a multitude of local energy minima separated
by high barriers. Conventional Monte Carlo and molecular
dynamics simulations tend to become trapped in local
minima and are hence incapable of exploring the global en-
ergy surface. Even in simplified lattice models, the problem
of finding the ground state of the protein is NP-complete.3–5

Many computation strategies have been proposed and
extensively tested to address this difficulty, including Monte
Carlo with minimization,6 simulated annealing,7 genetic
algorithms,8 multicanonical sampling,9,10 evolutionary
Monte Carlo,11 human-guided search algorithms,12 coredi-
rected chain growth method,13 pruned-enriched Rosenbluth
method,14 and sequential importance sampling with pilot-
exploration resampling.15

Traditionally, the computational focus of the protein
folding problem has been on finding the global minimal en-
ergy conformation. In this paper we take an alternative per-
spective where the aim is to sample the entire phase space.
Compared with the traditional optimization approach, which
neglects the conformations’ entropic contributions, this sam-
pling approach has the advantage of being able to estimate
the thermodynamic quantities of interest �in addition to find-
ing the ground state�. We use our new sampling method, the
equi-energy �EE� sampler,16 to study the two-dimensional
�2D� hydrophobic-hydrophilic �HP� model17,18 in this paper.
The key ingredient of the EE sampler is a new type of move
called the equi-energy jump that aims to explore the phase
space by moving directly between states with similar energy
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�see Fig. 1 for an illustration�. It is motivated from the ob-
servation that for a given Boltzmann distribution p�x�
�exp�−h�x� /kBT�, if a sampler can move freely between any
two states x and y with the same energy, i.e., h�x�=h�y�, then
the problem of local trapping will be effectively eliminated.

Using the EE sampler, we estimate the density of states
�of the phase space�, which then allows us to investigate the
thermodynamics of HP protein folding, in particular, �i� how
the thermodynamic properties of protein folding change as
the temperature varies, and �ii� what affects the temperature
dependence. We find numerically that there appears to be in
general a transition temperature associated with protein fold-
ing, where the HP protein experiences a sharp transition from
unfolded states to orderly folded states �see Sec. IV�. Fur-
thermore, the EE sampler’s ability to extensively explore the
energy surface also leads to efficient search for the ground
state. Without using any prior structural information of the
protein the EE sampler is able to find the ground states that
match the best known results in all but one benchmark case,
where the next lowest energy level is reached.

It has been shown recently19–21 that the pairwise additive
hydrophobic contact energy in the HP model is not sufficient
FIG. 1. Illustration of the equi-energy jump.
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to satisfy the cooperativity criterion, in particular, the calori-
metric two-state constraint on folding/unfolding transitions.
Despite this limitation of the HP model, the powerful sam-
pling ability displayed by the EE sampler demonstrates its
potential applicability to study the thermodynamics of gen-
eral protein folding models. By simply adopting different
energy functions, we expect the EE sampler to be a useful
tool to evaluate the successes and limitations of protein fold-
ing models in capturing the behavior of real proteins.

The paper is organized as follows. Section II reviews the
2D HP model and introduces the EE sampler. Section III
explains how to estimate the density of states using the EE
sampler. Section IV studies the thermodynamic properties of
HP protein folding. Section V focuses on finding the ground
state. Section VI concludes the paper with discussion.

II. THE 2D HP MODEL AND THE EE SAMPLER

Among protein folding models, the HP model17,18,22 is
perhaps the most popular. The interest in this model arises
from the realization that although simple, it does exhibit fea-
tures of real protein folding.23,24 A protein conformation in
the 2D HP model is modeled as a 2D self-avoiding walk on
a square lattice. The “amino acids” of the protein are simpli-
fied to only two types: a hydrophilic type �P-type� that favors
interaction with water molecules, and a hydrophobic type
�H-type� that does not interact well with water. Energies
�HH=−1, �HP=�PP=0 are assigned to interactions between
noncovalently bound neighbors on the lattice. The total en-
ergy of a given conformation is simply the sum of energy
contributions from the �noncovalently� interacting lattice
neighbors. This energy assignment leads to the desirable fea-
ture that upon folding the hydrophobic residues typically
form a compact core surrounded by a hydrophilic shell.17,18

The conformation of a length-k HP protein can thus be
described by a vector x= �x1 ,x2 , . . . ,xk�, where xi is the lat-
tice position of the ith residue of the protein. If we use h�x�
to denote the energy function, then the Boltzmann distribu-
tion is given by

��x� � exp�− h�x�/T� ,

where T is the temperature. Sampling the Boltzmann distri-
bution faces the major challenge of local energy traps. The
EE sampler overcomes this difficulty by performing equi-
energy jumps �Fig. 1� in the phase space. To do so, the EE
sampler exploits two facts. First, at high temperature, where
the Boltzmann distribution is relatively flat, it is easier to
escape the energy traps. Second, the microcanonical en-
sembles, defined as the collection of conformations having
the same energy �x :h�x�=u�, are independent of tempera-
ture, which implies that if the microcanonical ensembles are
constructed at a high temperature, they will remain valid at
low temperatures.

In the EE sampler, a sequence of energy levels is intro-

duced,
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H1 � H2 � ¯ � HK � 0,

such that H1 is below the minimum energy H1�minx h�x�.
Associated with the energy levels is a sequence of tempera-
tures,

T1 � T2 � ¯ � TK.

The EE sampler considers a population of K distributions,
each indexed by a temperature and an energy truncation. The
probability density function of the ith distribution
�i �1� i�K� is �i�x��exp�−hi�x��, where hi�x�
= �1/Ti� max�h�x� ,Hi�. The energy truncation is used here to
flatten the distribution for easier exploration. �The notation
max�a ,b� denotes the larger of a and b.�

The EE sampler begins from running a Markov chain
X�K� targeting the highest order distribution �K. The Markov
chain state is updated by a mutation operator �described be-
low shortly�. After updating X�K� for a while �the burn-in
period�, the EE sampler starts constructing the Kth order mi-
crocanonical ensemble Du

�K� by grouping the samples accord-
ing to their energy levels, i.e., Du

�K� consists of all the samples
Xn

�K� such that their energy h�Xn
�K��=u �u=H1 ,H1+1 , . . . ,

−1 ,0�. This step is necessary because the equi-energy jump
requires the knowledge of the microcanonical ensemble,
which is not known a priori. After a fixed number of N
iterations, the EE sampler starts the second highest order
sampling chain X�K−1� targeting �K−1, while keeps on running
X�K� and updating Du

�K�. The sampling chain X�K−1� is updated
through two operations: the mutation �described below� and
the equi-energy jump. At each update a coin is flipped; with
probability 1− pEE, say, 90%, the current configuration Xn

�K−1�

undergoes a mutation to give the next state Xn+1
�K−1�, and with

probability pEE, say, 10%, Xn
�K−1� goes through an equi-

energy jump to yield Xn+1
�K−1�. In the equi-energy jump suppose

v=h�Xn
�K−1�� is the energy of the current configuration; a state

y chosen uniformly from the highest order microcanonical
ensemble Dv

�K� �in which all the conformations have energy v
by construction� is then taken to be the next state Xn+1

�K−1�—the
sampler thus jumps from Xn

�k−1� to y.
After updating chain X�K−1� for a while, the EE sampler

starts the construction of the second highest order microca-
nonical ensemble Du

�K−1� in much the same way as the con-
struction of Du

�K�, i.e., grouping the samples according to
their energy levels �Du

�K−1� consists of all the samples Xn
�K−1�

such that their energy h�Xn
�K−1��=u�. Once the chain X�K−1�

has been running for N steps, the EE sampler starts X�K−2�

targeting �K−2 while keeps on running X�K−1� and X�K� and
updating Du

�K−1� and Du
�K�. Like X�K−1�, the sampling chain

X�K−2� is updated by the mutation operator and the equi-
energy jump with probabilities 1− pEE and pEE, respectively.
In the equi-energy jump, a state y uniformly chosen from

D
h�Xn

�K−2��

�K−1�
, where Xn

�K−2� is the current state, is taken to be the

next state Xn+1
�K−2�. The EE sampler in this way successively

steps down the energy and temperature ladder until the dis-
tribution �1 is reached. Each chain X�i�, 1� i�K, is updated
by the equi-energy jump and the mutation. The microcanoni-

�i� �i�
cal ensembles Du in each chain X are constructed after a
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burn-in period, and are used by chain X�i−1� in the equi-
energy jump. Figure 2 diagrams the sampling scheme.

The mutation operator �referred to above� governs how
to go from one state to another to explore the phase space. In
our implementation of the EE sampler we use the pull moves
suggested by Ref. 12 as the mutation move set. The pull
moves are local, reversible, and complete,12 which makes
them efficient for the mutation operation. They work as fol-
lows.

Consider the lattice points xi and xi+1 occupied by the ith
and �i+1�th residue �of the protein�. Let L1 and L2 denote the
other two lattice points that are adjacent to xi+1 �Fig. 3�a��. If
one of L1 or L2 is unoccupied, call it L, label the fourth
lattice point in this minisquare as C �Fig. 3�b��. If C=xi−1

�i.e., occupied by the �i−1�th residue�, then the pull move
simply moves xi to occupy L, generating a new configuration
�Fig. 3�c��. If both C and L are unoccupied, the pull move
then operates by moving xi to L, xi−1 to C, and moving xi−2 to
where xi used to be, xi−3 to where xi−1 used to be, ¼, xi−j to
where xi−j+2 used to be, until a new legal conformation is
reached by the least number of lattice moves �Fig. 3�d��. In
the pull move described above the residues are pulled one by
one in descending order. By symmetry the residue positions
can also be pulled in ascending order in a pull move.

The pull moves also include end moves for the purpose
of reversibility. Let L and C be two adjacent unoccupied
lattice points such that L is adjacent to the first residue posi-
tion x1. The end move displaces x1 to C, x2 to L, and x3 to the
position used to be occupied by x1, xj to the position used to

FIG. 2. Diagram of the EE sampler.
FIG. 3. The pull moves as the mutation move set.
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be occupied by xj−2, etc., until a new legal configuration is
reached by the least number of lattice moves �Fig. 3�e��. The
end move on the last residue position is similarly defined by
symmetry.

During the sampling process, to mutate a given state,
say, Xn

�i�, the EE sampler counts the number of pull moves
�the three types shown in Figs. 3�c�–3�e�� of the current con-
figuration. One of these possible moves is then chosen uni-
formly and applied to obtain another configuration z. To
maintain �i as the invariant distribution after the mutation
operation, z is accepted to be the next state Xn+1

�i� with the
Metropolis-Hastings25,26 type probability

paccept = min�1,
�i�z�P�z → Xn

�i��
�i�Xn

�i��P�Xn
�i� → z�

� ,

where P�z→Xn
�i�� � �number of pull moves from z to

Xn
�i��/�total number of pull moves of z� is the probability of z

mutating to Xn
�i�, and P�Xn

�i�→z�, the probability of Xn
�i� mu-

tating to z, is similarly defined. Since the calculation of the
Metropolis-Hastings probability involves counting the total
number of pull moves of both Xn

�i� and z, the computational
complexity of a mutation move is roughly twice that of sim-
ply pull moving Xn

�i� to z.
The EE sampler has three user-choice parameter sets: the

equi-energy jump probability pEE, the energy levels H1,
H2 , . . ., and the temperature ladder T1 ,T2 , . . . ,TK. In our ex-
perience, the following choices appear to work well: take pEE

to be between 0.05 and 0.2, assign the energy levels through
a rough geometric progression, and set the temperatures to
be between 0.01 and 4 via a geometric progression. Ref. 16
provides more discussions about the parameter choice.

III. DENSITY OF STATES ESTIMATION

In the study of a statistical mechanical system the den-
sity of states ��u�, defined as

��u� = # �x:h�x� = u� ,

�whose logarithm is referred to as the microcanonical en-
tropy� plays an important role, because many thermody-
namic quantities can be directly calculated from the density
of states.27 �Throughout this paper, the notation #A denotes
the total number of elements in set A.� As the construction of
the microcanonical ensembles Du

�i� is an integral part of the
EE sampler, it leads to a simple way to estimate the density
of states. Under distribution �i the probability P�i

�h�X�=u�
of observing a state with energy u is given by

P�i
�h�X� = u� =

��u�e−max�u,Hi�/Ti

	v��v�e−max�v,Hi�/Ti
. �1�

Since the density of states ��u� is common for all �i, we can
use the maximum likelihood method to combine all the mi-
crocanonical ensembles obtained from the different chains to
estimate ��u�. To do so, denote mu

i = #Du
�i�, m•

i =	umu
i , mu

•

=	imu
i , and au

i =e−max�u,Hi�/Ti for notational convenience.
Equation �1� leads to a multinomial distribution for the

i
counts mu,
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�mH1

i , . . . ,mu
i , . . . ,m0

i � 
 multinomial�m·
i;

��H1�aH1

i

	v��v�av
i , . . . ,

��u�au
i

	v��v�av
i , . . . ,

��0�a0
i

	v��v�av
i �, i = 1, . . . ,K ,
meaning that the joint probability distribution function of
�mH1

i , . . . ,mu
i , . . . ,m0

i � is given by

�m·
i�!

�u�mu
i �!�u

� ��u�au
i

	v��v�av
i �mu

i

.

Correspondingly the likelihood function is

lik��� � �
i

�
u
� ��u�au

i

	v��v�av
i �mu

i

,

where the vector �= ���H1� ,��H1+1� , . . . ,��0��. The

maximum likelihood estimate �̂ of � is then defined as the
maximizer of the likelihood function,

�̂ = arg max
�

�lik����

= arg max
�

�log�lik�����

= arg max
� �	

u

mu
· log���u��

− 	
i

m·
i log�	

v
��v�av

i �
 .

Since �̂ maximizes the above expression, it must satisfy

�

����	
u

mu
· log���u�� − 	

i

m·
i log�	

v
��v�av

i ���
�=�̂

= 0,

which leads to a set of equations for �̂,

TABLE I. The normalized density of states estimated from the EE sampler
�plus and minus twice the standard error� compared with the actual value for
the length-20 protein HPHPPHHPHPPHPHHPPHPH.

Energy
Estimated density

of states Actual value

−9 �4.738±1.403��10−8 4.774�10−8

−8 �1.162±0.113��10−6 1.146�10−6

−7 �1.452±0.075��10−5 1.425�10−5

−6 �1.248±0.046��10−4 1.237�10−4

−5 �9.309±0.305��10−4 9.200�10−4

−4 �6.245±0.146��10−3 6.183�10−3

−3 �3.554±0.053��10−2 3.514�10−2

−2 �1.499±0.011��10−1 1.489�10−1

−1 �3.779±0.016��10−1 3.779�10−1

0 �4.294±0.018��10−1 4.309�10−1
Downloaded 30 Jun 2006 to 128.103.60.225. Redistribution subject to
mu
·

�̂�u�
− 	

i

m·
iau

i

	v�̂�v�av
i

= 0 for all u . �2�

Equation �2� can be used to compute �̂�u� through a simple
iteration

�̂�u� = mu
· ��	

i

m·
iau

i

	v�̂�v�av
i � . �3�

To use this expression, we note that since ��u� is specified
up to a scale change �see Eq. �1��, to estimate the relative
values we can set without loss of generality ��u0�=1 for
some u0.

To test our strategy to estimate the density of states we
apply the EE sampler on a length-20 protein HPHPPHHPH-
PPHPHHPPHPH, which is sequence 1 in Ref. 8. For this

FIG. 4. The normalized mean square error of �̂�u� for various combinations
of K, the number of distributions employed, and N, the number of Monte
Carlo steps per distribution. �a� The accuracy for estimating the density of
states ��u� at the lowest energy of −9. �b� The accuracy for estimating ��u�

at the second lowest energy of −8.
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protein there are 83 779 155 possible conformations with en-
ergies ranging from 0 to −9 �known through exhaustive enu-
meration�. Table I presents the estimated and exact �normal-
ized� density of states at various energy levels. The estimates
are based on the average of ten independent runs, each using
six �K=6� distributions and N=200 000 steps per distribu-
tion, where the energy truncation levels were set by a geo-
metric progression between −9.5 and −1.5, the temperatures
were assigned by a geometric progression between 0.15 and
2, and the equi-energy jump probability pEE was set to 10%.

It is clear that the method yielded very accurate esti-
mates of the density of states at each energy level even
though we have sampled only a small fraction of the popu-
lation of conformations. The equi-energy jump is important
for the success of the method: if we eliminate these jumps,
the results were very poor in estimating the density of states
at the low energy end; for example, the estimated density of
state at E=−9 becomes �3.623±1.329��10−10, which is two
orders of magnitude away from the exact value.

The EE sampler employs K distributions. Intuitively, the
estimation accuracy increases with K and N, the number of
Monte Carlo steps per distribution. Figure 4 shows this de-
pendence; it plots, for the two lowest energy levels −9 and

−8, the normalized mean square error of the estimate �̂�u�,
as K and N vary; here the normalized mean square error,
measuring the estimation accuracy, is defined as the expec-

tation of ���̂�u�−��u�� /��u��2, where �̂�u� was obtained
from the average of ten independent runs of the EE
sampler.28 Since estimating the density of states at the lowest

TABLE II. The normalized density of states estimate
error� for the length-64 protein HHHHHHHHHH
PPHPHPHHHHHHHHHHHH.

Energy
Estimated density

of states

−42 �1.021±0.726��10−25

−41 �3.816±7.035��10−25

−40 �1.008±0.474��10−23

−39 �2.041±0.980��10−22

−38 �3.105±1.524��10−21

−37 �2.988±1.215��10−20

−36 �2.832±1.090��10−19

−35 �2.488±0.902��10−18

−34 �2.025±0.684��10−17

−33 �1.529±0.482��10−16

−32 �1.078±0.310��10−15

−31 �7.178±1.823��10−15

−30 �4.514±1.004��10−14

−29 �2.683±0.504��10−13

−28 �1.519±0.239��10−12

−27 �8.216±1.085��10−12

−26 �4.239±0.470��10−11

−25 �2.091±0.198��10−10

−24 �9.879±0.795��10−10

−23 �4.474±0.309��10−9

−22 �1.937±0.116��10−8

−21 �8.048±0.423��10−8
energy levels is most challenging �as seen in Table I�, Fig. 4
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demonstrates the efficiency of the EE sampler in that for K as
small as 6, and N as small as 200 000, the EE sampler al-
ready produces very accurate estimates.

We next apply the EE sampler to estimate the density of
states of a length-64 protein, which is sequence 8 in Ref. 8
�see Table II for its composition�. For this protein, exhaustive
enumeration is no longer feasible even with a supercomputer.
Table II reports the EE sampler estimated density of states
based on the average of 15 independent runs. Each run em-
ploys K=35 distributions and N=2�106 steps per distribu-
tion. The energy truncation levels were set by a geometric
progression between −42.5 and −3, the temperatures were
assigned by a geometric progression between 0.02 and 3, and
the equi-energy jump probability pEE was set to 10%.

Table II reveals two interesting features of this energy
landscape. First, unlike the short protein in Table I, the en-
ergy landscape of this longer chain is no longer dominated
by states with zero energy. The mode of the density of states
is now at E=−4. This interesting fact is a consequence of the
length of the protein. With so many hydrophobic residues, a
few of them end up being topological neighbors in most
conformations. The second feature, which is more important,
is that at lower energies, the difference in the density of
states becomes larger. For example, the density of states for
E=−42 is about two orders of magnitude smaller than that
for E=−40. This finding suggests the potential limitation of
the traditional approach of focusing on finding the ground
state under the HP model. If there is such a large difference
in density of states as indicated by Table II, then for the
length-64 protein to prefer to be in a state of E=−42 over

the EE sampler �plus and minus twice the standard
HPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHH

Energy
Estimated density

of states

−20 �3.205±0.145��10−7

−19 �1.224±0.050��10−6

−18 �4.478±0.156��10−6

−17 �1.564±0.047��10−5

−16 �5.215±0.132��10−5

−15 �1.639±0.034��10−4

−14 �4.826±0.084��10−4

−13 �1.321±0.018��10−3

−12 �3.348±0.037��10−3

−11 �7.791±0.066��10−3

−10 �1.664±0.011��10−2

−9 �3.242±0.016��10−2

−8 �5.724±0.023��10−2

−7 �9.107±0.028��10−2

−6 �1.293±0.003��10−1

−5 �1.615±0.002��10−1

−4 �1.735±0.002��10−1

−3 �1.543±0.003��10−1

−2 �1.068±0.004��10−1

−1 �5.106±0.027��10−2

0 �1.305±0.015��10−2
d from
HHP
E=−40, the equilibrium temperature must be low, T
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�0.436 indeed. This means that only searching for the mini-
mal energy conformation is not necessarily adequate when
characterizing the protein’s behavior at modest temperature,
say, T=0.5, under the HP model. We will discuss these issues
further in the subsequent sections.

IV. THERMODYNAMIC PROPERTIES OF PROTEIN
FOLDING

In this section we study the thermodynamics of HP pro-
tein folding, in particular, its temperature dependence. The
density of states estimates from the EE sampler play a piv-
otal role here, because they provide a straightforward means
to calculate any Boltzmann average of interest. Suppose for a
state function g we want to estimate the Boltzmann average
�g�T at temperature T. We can write

�g�T =
	u��u�e−u/Tvg�u�

	u��u�e−u/T , �4�

where vg�u� is the microcanonical average of g on the mi-
crocanonical ensemble �x :h�x�=u�. Therefore, if we esti-
mate vg�u� by the combined sample average over Du

�i� �i
=1,2 , . . . ,K�,

vg�u� ←
	i	x�Du

�i�g�x�

	i	x�Du
�i� # Du

�i� ,

and substitute ��u� by its estimate �̂�u�, Eq. �4� then leads
to a simple estimate of the Boltzmann average at any tem-
perature T.

With this estimation method we study under the HP
model how the folding behavior changes from high tempera-
ture, where the conformational distribution is dominated by
the entropy term and the protein is likely to be in an unfolded
state with high energy, to low temperature, where the confor-
mation is likely to be compactly folded structures with low
energy. Although the HP model has been shown to be insuf-
ficient to capture the cooperativity of real protein folding
transitions,19–21 we find it still instructive to demonstrate the
EE sampler’s ability to explore temperature dependent ther-
modynamic quantities. The application of the equi-energy
sampler to a more physically realistic model can be accom-
plished by adopting a more physically realistic energy func-
tion.

We first use two statistics, the minimum box size �BOX-
SIZE� and the end-to-end distance, to measure the extent the
HP protein has folded. BOXSIZE is defined as the area of the
smallest possible rectangular region on the lattice containing
all the amino acid positions in the conformation, whereas the
end-to-end distance is the Euclidean distance between the
two ends of the conformation. Intuitively, the averages of
both statistics should increase with temperature. For the
length-20 protein of Table I, Figs. 5�a� and 5�b� plot the
estimated Boltzmann averages of BOXSIZE and the end-to-
end distance as a function of temperature, which are avail-
able from the ten independent runs described in the previous
section. The EE sampler is seen to very accurately estimate
the Boltzmann values, and as expected both statistics in-

crease with temperature.

Downloaded 30 Jun 2006 to 128.103.60.225. Redistribution subject to
Figures 5�a� and 5�b� also reveal that there is a rather
sharp transition from order �folded state� to disorder �un-
folded state� between T=0.25 and T=1, with an inversion
point around T=0.5. The apparent transition raises an inter-
esting question. Does the environment in which proteins live
more closely resemble the T=0.25 scenario, or that of T
=0.5 or even T=1? We therefore seek to correspond the
room temperature to the unitless temperature considered here
in the HP model. To find an overall measure of the strength
of the hydrophobic interaction, we used the Miyazawa and

FIG. 5. The Boltzmann averages of �a� BOXSIZE, �b� end-to-end distance,
�c� surface-H-number, and �d� surface-P-number at different temperatures of
the length-20 protein.
Jernigan energies in Ref. 29, where a list of all the pairwise
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interaction energies of the various amino acid residues �con-
structed statistically from databases of protein native
structure30� is provided. We divided the residues into hydro-
phobic and hydrophilic ones. Averaging all of the
hydrophobic-hydrophobic �HH� interaction energies, we
found a value of −5.01±0.34 �in RT units�. Averaging all of
the hydrophilic-hydrophilic �PP� and hydrophilic-
hydrophobic �HP� interaction energies gave a value of
−2.52±0.14 �in RT units�. Taking the difference, we thus
found that the energy gap between the HH and HP/PP con-
tact is −2.49±0.36 �in RT units�, which is
−1494±216 cal/mol under the conversion29 of RT
=600 cal/mol. Since in the HP model the energy gap be-
tween the HH contact and the HP/PP contact is −1 ��HP

=�PP=0, �HH=−1�, matching up

− 1

Troom
=

− 1494 ± 216 cal/mol

kB293 K
,

and using the Boltzmann factor, we found that room tem-
perature of 293 K corresponds to the unitless temperature of
Troom=0.390±0.056 in the HP model. It should be noted that,
rigorously speaking, the hydrophobic interaction is not tem-
perature independent.31 Nevertheless, the above correspon-
dence between the unitless temperature in the HP model and
the real room temperature serves as a rough guideline.

With this rough correspondence of Troom=0.390±0.056,
Fig. 5 suggests that a HP protein like the length-20 one does
not necessarily always assume the minimum energy confor-
mation at room temperature; it might have a nontrivial prob-
ability of being in high-energy, unfolded states. If this is the
case, then conventional wisdom of focusing on finding the
minimum energy conformation might only reflect part of the
picture of the HP protein folding model. Considering the
thermodynamics �such as the equilibrium statistics� offers a
more comprehensive understanding.

We use two more statistics to further study this apparent
transition behavior: the surface hydrophobic residue number
�surface-H-number� and the surface hydrophilic residue
number �surface-P-number�. The surface-H-number of a con-
formation is defined as the number of hydrophobic residues
that have direct contact with the outside �as opposed to being
imbedded inside�. The surface-P-number is defined similarly.
Figures 5�c� and 5�d� show the estimated Boltzmann average
of both statistics at various temperatures. Both plots confirm
the sharp transition around T=0.5. The monotonic increase
of average surface-H-number with temperature conforms
with the picture that as temperature gets lower the hydropho-
bic residues are forced to stay inside to minimize the energy.
The V-shaped curve of average surface-P-number, on the
other hand, suggests a more interesting picture. At very high
temperature, the HP proteins are essentially unfolded with a
large number of hydrophilic residues having contact with
outside; as the temperature drops the protein starts to be
partly folded, and consequently some hydrophilic residues
happen to be folded inside, resulting in a drop of average
surface-P-number; as the temperature drops even lower the
protein becomes fully folded, and in order to minimize the
energy the protein has to squeeze out the hydrophilic resi-

dues to the surface to make room inside for the hydrophobic

Downloaded 30 Jun 2006 to 128.103.60.225. Redistribution subject to
residues, which results in the increase of average surface-P-
number once the temperature is below certain threshold. As
the dip of its V curve corresponds nicely to the transition
point at around T=0.5, the surface-P-number appears to be a
good indicating statistic for the transition behavior under the
HP model.

Figure 6 shows the estimated Boltzmann averages of the
four statistics for the length-64 protein of Table II, obtained
from the 15 independent runs of Sec. III. Similar transition
behavior is observed with the transition temperature around

FIG. 6. The Boltzmann averages of �a� BOXSIZE, �b� end-to-end distance,
�c� surface-H-number, and �d� surface-P-number at different temperatures of
the length-64 protein.
T=0.68.
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The study of the length-20 and 64 proteins raises a ques-
tion. What affects the transition temperature if there is one?
One candidate could be the proportion of hydrophobic resi-
dues in the protein sequence versus that of hydrophilic ones.
We thus generated nine length-50 proteins with different pro-

TABLE III. The nine length-50 sequences together with their hydrophobic r

Sequence
code Sequence

Seq50a HPPPPPPPHHPPPPPPPPPPPPPPPPPPHHPPPP
Seq50b PHPPPPHPPPPPPPPHPPPPPPPPHPPPPHPPH
Seq50c PHPPHPPPPHPPHPHHHPPHHPHPHHPPPHH
Seq50d PPHPHPPPHPHHPPHPPHPPHPPHPPHPHHPH
Seq50e PPPPHHHHHHHPHPHPHHPHHHPHPPPHHP

PHHP
Seq50f HPHPHPHPHPHHHHHHPHPHHHPHPHPHH

PHHP
Seq50g HPHHHPHHHHHHPPHHPHPPHHHHHPHHH

HHPHP
Seq50h PHHHHPHHHHHHHHHHHHPHHHPHHPHH

HHHHPHHPHP
Seq50i HPHHPHHHHHHPHHPHHHHHHHHHHHHH

PPPHHHHHH
FIG. 7. The Boltzmann average �plus and minus two standard errors� of the su

Downloaded 30 Jun 2006 to 128.103.60.225. Redistribution subject to
portions of hydrophobic residues, where the hydrophobic
residues were placed randomly along the sequence. Table III
shows the nine sequences, and Fig. 7 for each of them plots
the surface-P-number �the indicating statistic� versus the
temperature. Each panel of Fig. 7 was obtained by 15 inde-

e percentages, minimum energies, and the apparent transition temperatures.

H%
Minimum

energy

Apparent
transition

temperature

PHHPPHPPPPPHP 20% −6 �0.15
PPPHPPPPPPHPH 20% −8 �0.20

HPPPHHHPPPPPPPPH 40% −16 �0.22
HPPPPHHPHPPPPPH 40% −18 �0.25

HHPHPHPPPPHHH 60% −23 0.43

PPHPHPPPHHHPP 60% −23 0.35

HHHHPPPPHPPP 60% −24 0.43

HHPHHPHHH 80% −33 0.77

HPPHHHHHHH 80% −34 0.90
esidu

PPH
HPPP
PHP
HPH

HHH

HPHH

PPPP

HHH

HHP
rface-P-number of the nine length-50 sequences at different temperatures.
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pendent runs of the EE sampler, each run employing 2
�106 steps per distribution. Table III also lists the minimum
energy and the apparent transition temperature of each se-
quence.

Three general features are observed from Table III and
Fig. 7 for the HP model.

�a� While the V-shaped curve of the surface-P-number is
more clearly seen for sequences with high proportions
of hydrophobic residues, the transition behavior ap-
pears to hold in general.

�b� For a HP protein of fixed length, increasing the number
of hydrophobic residues raises the transition tempera-
ture.

�c� It appears that in general for a HP protein with fixed
length and fixed number of hydrophobic residues the
lower the minimum energy the higher the transition
temperature.

The possible explanation for observation �b� is that as
the number of hydrophobic residues increase, the number of
HH bonds �formed by HH neighbor pairs� in general also
increases, which implies that the transition temperature from
order to disorder has to be higher to break the increased
number of HH bonds. Observation �c� could be explained
similarly. The lower the minimum energy, the greater the
number of HH bonds that can be formed, and consequently
the higher the temperature is needed to make the transition
from folded to unfolded.

Under the HP model, observations �a�–�c� could possibly
lead to a connection between the transition behavior ob-
served here, where the length-20, 64, and 50 proteins might
not always assume their minimum energy at room tempera-
ture �as the room temperature appears not much lower than
the transition temperature�, and the hypothesis that in live
cells a protein tends to fold quickly to its native state. Pro-
teins in live cells tend to be quite long having many hydro-

TABLE IV. The nine benchmark sequences. Seq20 to
taken from Ref. 32.

Sequence code Length

Seq20 20 HPHPP
Seq36 36 PPPHH
Seq48 48 PPHPP

PPHHH
Seq50 50 HHPHP

HPHPH
Seq60 60 PPHHH

HHHH
Seq64 64 HHHH

PHHPP
Seq85 85 HHHH

PPHHH
HHPPH

Seq100a 100 PPPPPP
HHHPH
HHPPH

Sq100b 100 PPPHH
HHPPH
HPHHP
Downloaded 30 Jun 2006 to 128.103.60.225. Redistribution subject to
phobic residues that could form many HH bonds, which in
turn makes the transition temperature high. If the transition
temperature is high enough �e.g., T=1.5 or 2 in the current
temperature scale�, then essentially at room temperature
Troom=0.390±0.056, a protein may nearly always assume the
minimum energy conformation. On top of this it is possible
that in the evolution process those proteins that have transi-
tion temperature close to room temperature had gone extinct
due to their instability, and only those having high enough
transition temperature survived. More research beyond the
HP model is needed to investigate this plausibility. But it is
worth emphasizing that it is the EE sampler’s extensive sam-
pling ability that enables us to explore this phenomenon nu-
merically.

V. GROUND STATES

The EE sampler is seen to be a powerful sampling algo-
rithm. Its strength of globally exploring the energy landscape
also makes it a capable optimization tool. In this section, we
apply the EE sampler to nine benchmark HP sequences that
are widely used in the literature to test search algorithms for
ground states. Table IV lists the nine sequences. Table V
summarizes the EE sampler’s performance together with that
of other methods reported in the literature, including genetic
algorithms �GA�,8 evolutionary Monte Carlo �EMC�,11

pruned-enriched Rosenbluth method �PERM�,14 sequential
importance sampling with pilot-exploration resampling
�SISPER�,15 and human-guided search �HuGS�.12 The EE
sampler achieves the best known result for all but one se-
quence. The parameter settings of the EE sampler for the
four longest sequences are reported in Table VI.

Four sequences are particularly worth commenting. �i�
Seq64 �the length-64 one� has been marked in Refs. 11, 14,
and 15 as a very difficult one, and without imposing second-
ary structure GA, EMC, PERM, and SISPER were not able

5 are taken from Ref. 11. Seq100a and seq100b are

Sequence

HPPHPHHPPHPH
PPPPPHHHHHHHPPHHPPPPHHPPHPP
HHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPH

PHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHP

HHHHHHPPPHHHHHHHHHHPHPPPHHHHHHH
PHHHHHHPHHPHP
HHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHP
PHPHPHHHHHHHHHHHH
HHHHHHHHHHHHPPPPPPHHHHHHHHHHHHP
HHHHHHPPPHHHHHHHHHHHHPPPHPPHHPP

HPPPPPHHHPHHHHHPHHPPPPHHPPHHPHH
HHHHHHPHHPHHHHHHHPPPPPPPPPHHHHH

HPPPPPPHPHH
HHPPHHHPHHPHHPHHHHPPPPPPPPHHHH
HHPPPPPPPPPHPHHPHHHHHHHHHHHPPHH

HPHHHPPPPPPHHH
seq8

HHP
PPHH
HHPP
HH
HPH
PHH
PHH

HPPP
HHH
HHP
PPPP
HHH
PH
HPH
HHH
PHH
PPHH
HHH
HPP
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length-100 sequence� found by the EE sampler.
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to reach the ground energy of −42. The EE sampler without
using any structural information is able to not only fold the
sequence to conformations with energy of −42, two of which
are shown in Fig. 8, but also estimate the density of states as
shown in Table II. �ii� Seq85 �the length-85 one� was intro-
duced in Ref. 33, where the authors appeared to construct the
sequence with ground energy of −52 in mind. But HuGS and
the EE sampler are able to find conformations with energy of
−53. Two such conformations found by the EE sampler are
shown in Fig. 9. �iii� The minimum energy of seq100a �the
first length-100 sequence� found by PERM is −47. The EE
sampler, SISPER, and HuGS found conformations with en-
ergy of −48. Two such conformations found by the EE sam-
pler are shown in Fig. 10. �iv� Seq100b �the second length-
100 sequence� is the only sequence for which the minimum
energy of −49 obtained by the EE sampler does not reach the
best known result of −50. Two energy −49 conformations
found by the EE sampler are shown in Fig. 11.

VI. DISCUSSION

With its extensive capability to explore the energy land-
scape, the EE sampler is seen as a powerful tool for not only
finding the ground states but also providing efficient esti-
mates of the density of states that allow subsequent compu-
tation of the statistical mechanical properties of protein fold-
ing. In particular, in addition to achieving the best known
results for ground-state search in most cases, the numerical
results from the EE sampler reveal the apparent transition
phenomenon from disordered unfolding to orderly folding
�associated with a transition temperature�. This broader per-
spective of HP protein folding is manifested by the nine se-
quences of length 50 studied in Table III, where only two out
of the nine have transition temperature significantly higher
than room temperature �roughly Troom=0.390±0.056�. For
the majority seven sequences one cannot ignore the entropy
term and must rely on sampling instead of optimization to
study their folding behavior. Such detailed information is
available in our study only because of the ability of the EE
sampler to estimate density of states efficiently.

In this paper we have focused on the 2D HP model. But
we expect that with appropriate generalization and enhance-
ment, the method can be applied to study general three-
dimensional �3D� lattice and off-lattice protein folding mod-
els, since previously the EE sampler has been successfully
applied to problems of statistical inference, statistical me-
chanical calculation, and sequence alignment in computa-

16

FIG. 11. Two conformations with energy −49 for seq100b �the second
length-100 sequence� found by the EE sampler.
TABLE V. The performance of the EE sampler in finding the ground states
compared with that of GA, EMC, PERM, SISPER, and HuGS. Columns
3–6 are adopted from Ref. 15. Column 7 is adopted from Ref. 12. Column
2 reports the lowest energy achieved by the EE sampler in 15 independent
runs. The parameter settings of the EE sampler for the four longest se-
quences are given in Table VI.

Sequence
code EE GA EMC PERM SISPER HuGS

Seq20 −9 −9 −9 −9 −9
Seq36 −14 −14 −14 −14 −14
Seq48 −23 −22 −23 −23 −23
Seq50 −21 −21 −21 −21 −21
Seq60 −36 −34 −35 −36 −36
Seq64 −42 −37 −39 −40 −39 −42
Seq85 −53 −52 −53

Seq100a −48 −47 −48 −48
Seq100b −49 −48 −49 −50
TABLE VI. The parameter settings of the EE sampler for the four longest
sequences. Both the temperatures and the energy truncation levels are set by
a geometric progressing within the range shown.

Sequence
code

Energy
truncation

range
Temperature

range

Number of
distributions

involved
Steps per

distribution
EE jump

probability

Seq64 �−42.5, −3� �0.02, 3� 35 2 000 000 10%

Seq85 �−53.5,−4.5� �0.02, 3� 45 2 000 000 5%

Seq100a �−48.5,−3.5� �0.02,3.5� 35 3 500 000 5%

Seq100b �−50.5, −3� �0.02,3.7� 35 3 500 000 5%
FIG. 8. Two conformations with energy of −42 for seq64 �the length-64
sequence� found by the EE sampler.
FIG. 9. Two conformations with energy of −53 for seq85 �the length-85
FIG. 10. Two conformations with energy of −48 for seq100a �the first

tional biology. As the equi-energy jump is a key step in the
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EE sampler, we conclude this paper by a remark on its
implementation. In Sec. II we showed that for the ith chain
the equi-energy jump step could be performed by jumping
from the current state of Xn

�i� to a state uniformly chosen from

the microcanonical ensemble D
h�Xn

�i��

�i+1�
constructed from the

�i+1�th chain X�i+1�. A possible generalization of this imple-
mentation is to allow Xn

�i� to jump to a state uniformly chosen
from the combined microcanonical ensemble of

� j=i+1
K D

h�Xn
�i��

�j�
, which uses information from not only X�i+1�

but also the other higher order chains X�i+2� , . . . ,X�K� as well.
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