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This paper discusses the simultaneous inference of mean parameters in
a family of distributions with quadratic variance function. We first introduce
a class of semiparametric/parametric shrinkage estimators and establish their
asymptotic optimality properties. Two specific cases, the location-scale fam-
ily and the natural exponential family with quadratic variance function, are
then studied in detail. We conduct a comprehensive simulation study to com-
pare the performance of the proposed methods with existing shrinkage esti-
mators. We also apply the method to real data and obtain encouraging results.

1. Introduction. The simultaneous inference of several mean parameters has
interested statisticians since the 1950s and has been widely applied in many sci-
entific and engineering problems ever since. Stein (1956) and James and Stein
(1961) discussed the homoscedastic (equal variance) normal model and proved
that shrinkage estimators can have uniformly smaller risk compared to the ordi-
nary maximum likelihood estimate. This seminal work inspired a broad interest in
the study of shrinkage estimators in hierarchical normal models. Efron and Morris
(1972, 1973) studied the James–Stein estimators in an empirical Bayes framework
and proposed several competing shrinkage estimators. Berger and Strawderman
(1996) discussed this problem from a hierarchical Bayesian perspective. For ap-
plications of shrinkage techniques in practice, see Efron and Morris (1975), Rubin
(1981), Morris (1983), Green and Strawderman (1985), Jones (1991) and Brown
(2008).

There has also been substantial discussion on simultaneous inference for non-
Gaussian cases. Brown (1966) studied the admissibility of invariance estimators
in general location families. Johnstone (1984) discussed inference in the con-
text of Poisson estimation. Clevenson and Zidek (1975) showed that Stein’s ef-
fect also exists in the Poisson case, while a more general treatment of discrete
exponential families is given in Hwang (1982). The application of non-Gaussian
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hierarchical models has also flourished. Mosteller and Wallace (1964) used a hi-
erarchical Bayesian model based on the negative-binomial distribution to study
the authorship of the Federalist Papers. Berry and Christensen (1979) analyzed
the binomial data using a mixture of dirichlet processes. Gelman and Hill (2007)
gave a comprehensive discussion of data analysis using hierarchical models. Re-
cently, nonparametric empirical Bayes methods have been proposed by Brown
and Greenshtein (2009), Jiang and Zhang (2009, 2010) and Koenker and Mizera
(2014).

In this article, we focus on the simultaneous inference of the mean parame-
ters for families of distributions with quadratic variance function. These distribu-
tions include many common ones, such as the normal, Poisson, binomial, negative-
binomial and gamma distributions; they also include location-scale families, such
as the t , logistic, uniform, Laplace, Pareto and extreme value distributions. We
ask the question: among all the estimators that estimate the mean parameters by
shrinking the within-group sample mean toward a central location, is there an op-
timal one, subject to the intuitive constraint that more shrinkage is applied to ob-
servations with larger variances (or smaller sample sizes)? We propose a class of
semiparametric/parametric shrinkage estimators and show that there is indeed an
asymptotically optimal shrinkage estimator; this estimator is explicitly obtained by
minimizing an unbiased estimate of the risk. We note that similar types of estima-
tors are found in Xie, Kou and Brown (2012) in the context of the heteroscedastic
(unequal variance) hierarchical normal model. The treatment in this article, how-
ever, is far more general, as it covers a much wider range of distributions. We
illustrate the performance of our shrinkage estimators by a comprehensive simula-
tion study on both exponential and location-scale families. We apply our shrinkage
estimators on the baseball data obtained by Brown (2008), observing quite encour-
aging results.

The remainder of the article is organized as follows: In Section 2, we introduce
the general class of semiparametric URE shrinkage estimators, identify the asymp-
totically optimal one and discuss its properties. We then study the special case of
location-scale families in Section 3 and the case of natural exponential families
with quadratic variance (NEF-QVF) in Section 4. A systematic simulation study
is conducted in Section 5, along with the application of the proposed methods to
the baseball data set in Section 6. We give a brief discussion in Section 7 and the
technical proofs are placed in the Appendix.

2. Semiparametric estimation of mean parameters of distributions with
quadratic variance function. Consider simultaneously estimating the mean pa-
rameters of p independent observations Yi , i = 1, . . . , p. Assume that the ob-
servation Yi comes from a distribution with quadratic variance function, that is,
E(Yi) = θi ∈ � and Var(Yi) = V (θi)/τi such that

V (θi) = ν0 + ν1θi + ν2θ
2
i
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with νk (k = 0,1,2) being known constants. The set � of allowable parameters is
a subset of {θ : V (θ) ≥ 0}. τi is assumed to be known here and can be interpreted
as the within-group sample size (i.e., when Yi is the sample average of the ith
group) or as the (square root) inverse-scale of Yi . It is worth emphasizing that
distributions with quadratic variance function include many common ones, such
as the normal, Poisson, binomial, negative-binomial and gamma distributions as
well as location-scale families. We introduce the general theory on distributions
with quadratic variance function in this section and will specifically treat the cases
of location-scale family and exponential family in the next two sections.

In a simultaneous inference problem, hierarchical models are often used to
achieve partial pooling of information among different groups. For example, in

the famous normal-normal hierarchical model Yi
ind.∼ N(θi,1/τi), one often puts a

conjugate prior distribution θi
i.i.d.∼ N(μ,λ) and uses the posterior mean

E(θi |Y;μ,λ) = τi

τi + 1/λ
· Yi + 1/λ

τi + 1/λ
· μ(2.1)

to estimate θi . Similarly, if Yi represents the within-group average of Poisson ob-

servations τiYi
ind.∼ Poisson(τiθi), then with a conjugate gamma prior distribution

θi
i.i.d.∼ �(α,λ), the posterior mean

E(θi |Y;α,λ) = τi

τi + 1/λ
· Yi + 1/λ

τi + 1/λ
· αλ(2.2)

is often used to estimate θi . The hyper-parameters, (μ,λ) or (α,λ) above, are
usually first estimated from the marginal distribution of Yi and then plugged into
the above formulae to form an empirical Bayes estimate.

One potential drawback of the formal parametric empirical Bayes approaches
lies in its explicit parametric assumption on the prior distribution. It can lead
to undesirable results if the explicit parametric assumption is violated in real
applications—we will see a real-data example in Section 6. Aiming to provide
more flexible and, at the same time, efficient simultaneous estimation procedures,
we consider in this section a class of semiparametric shrinkage estimators.

To motivate these estimators, let us go back to the normal and Poisson exam-
ples (2.1) and (2.2). It is seen that the Bayes estimate of each mean parameter θi

is the weighted average of Yi and the prior mean μ (or αλ). In other words, θi is
estimated by shrinking Yi toward a central location (μ or αλ). It is also noteworthy
that the amount of shrinkage is governed by τi , the sample size: the larger the sam-
ple size, the less is the shrinkage toward the central location. This feature makes
intuitive sense. We will see in Section 4.2 that in fact these observations hold not
only for normal and Poisson distributions, but also for general natural exponential
families.
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With these observations in mind, we consider in this section shrinkage estima-
tors of the following form:

θ̂
b,μ
i = (1 − bi) · Yi + bi · μ(2.3)

with bi ∈ [0,1] satisfying

Requirement (MON) : bi ≤ bj for any i and j such that τi ≥ τj .(2.4)

Requirement (MON) asks the estimator to shrink the group mean with a larger
sample size (or smaller variance) less toward the central location μ. Other than
this intuitive requirement, we do not put on any restriction on bi . Therefore, this
class of estimators is semiparametic in nature.

The question we want to investigate is, for such a general estimator θ̂b,μ,
whether there exists an optimal choice of b and μ. Note that the two paramet-
ric estimates (2.1) and (2.2) are special cases of the general class with bi = 1/λ

τi+1/λ
.

We will see shortly that such an optimal choice indeed exists asymptotically (i.e.,
as p → ∞) and this asymptotically optimal choice is specified by an unbiased risk
estimate (URE).

For a general estimator θ̂b,μ with fixed b and μ, under the sum of squared-error
loss

lp
(
θ , θ̂b,μ) = 1

p

p∑
i=1

(
θ̂

b,μ
i − θi

)2
,

an unbiased estimate of its risk Rp(θ , θ̂b,μ) = E[lp(θ , θ̂b,μ)] is given by

URE(b,μ) = 1

p

p∑
i=1

[
b2
i · (Yi − μ)2 + (1 − 2bi) · V (Yi)

τi + ν2

]
,

because

E
[
URE(b,μ)

] = 1

p

p∑
i=1

{
b2
i

[
Var(Yi) + (θi − μ)2] + (1 − 2bi)Var(Yi)

}

= 1

p

p∑
i=1

[
(1 − bi)

2 Var(Yi) + b2
i (θi − μ)2] = Rp

(
θ , θ̂b,μ)

.

Note that the idea and results below can be easily extended to the case of weighted
quadratic loss, with the only difference being that the regularity conditions will
then involve the corresponding weight sequence.

Ideally the “best” choice of b and μ is the one that minimizes Rp(θ , θ̂b,μ),
which is, however, unobtainable as the risk depends on the unknown θ . To bypass
this impracticability, we minimize URE, the unbiased estimate, with respect to
(b,μ) instead. This gives our semiparametric URE shrinkage estimator:

θ̂SM
i = (1 − b̂i) · Yi + b̂i · μ̂SM,(2.5)
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where (
b̂SM, μ̂SM) = minimizer of URE(b,μ)

subject to bi ∈ [0,1],μ ∈
[
−max

i
|Yi |,max

i
|Yi |

]
∩ �

and Requirement (MON).

We require |μ| ≤ maxi |Yi |, since no sensible estimators shrink the observations to
a location completely outside the range of the data. Intuitively, the URE shrinkage
estimator would behave well if URE(b,μ) is close to the risk Rp(θ , θ̂b,μ).

To investigate the properties of the semiparametric URE shrinkage estimator,
we now introduce the following regularity conditions:

(A) lim supp→∞ 1
p

∑p
i=1 Var(Yi) < ∞;

(B) lim supp→∞ 1
p

∑p
i=1 Var(Yi) · θ2

i < ∞;

(C) lim supp→∞ 1
p

∑p
i=1 Var(Y 2

i ) < ∞;

(D) supi(
τi

τi+ν2
)2 < ∞, supi (

ν1
τi+ν2

)2 < ∞;

(E) lim supp→∞ 1
p1−ε E(max1≤i≤p Y 2

i ) < ∞ for some ε > 0.

The theorem below shows that URE(b,μ) not only unbiasedly estimates the
risk, but also serves as a good approximation of the actual loss lp(θ , θ̂b,μ), which
is a much stronger property. In fact, URE(b,μ) is asymptotically uniformly close
to the actual loss. Therefore, we expect that minimizing URE(b,μ) would lead to
an estimate with competitive risk properties.

THEOREM 2.1. Assuming regularity conditions (A)–(E), we have

sup
∣∣URE(b,μ) − lp

(
θ, θ̂b,μ)∣∣ → 0 in L1 and in probability, as p → ∞,

where the supremum is taken over bi ∈ [0,1], |μ| ≤ maxi |Yi | and Requirement
(MON).

The following result compares the asymptotic behavior of our URE shrinkage
estimator (2.5) with other shrinkage estimators from the general class. It estab-
lishes the asymptotic optimality of our URE shrinkage estimator.

THEOREM 2.2. Assume regularity conditions (A)–(E). Then for any shrinkage

estimator θ̂ b̂,μ̂ = (1− b̂) ·Y+ b̂ · μ̂, where b̂ ∈ [0,1] satisfies Requirement (MON),
and |μ̂| ≤ maxi |Yi |, we always have

lim
p→∞P

(
lp

(
θ , θ̂SM) ≥ lp

(
θ , θ̂ b̂,μ̂) + ε

) = 0 for any ε > 0

and

lim sup
p→∞

[
R

(
θ , θ̂SM) − R

(
θ , θ̂ b̂,μ̂)] ≤ 0.
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As a special case of Theorem 2.2, the semiparametric URE shrinkage estimator
asymptotically dominates the parametric empirical Bayes estimators, like (2.1) or
(2.2). It is worth noting that the asymptotic optimality of our semiparametric URE
shrinkage estimators does not assume any prior distribution on the mean param-
eters θi , nor does it assume any parametric form on the distribution of Y (other
than the quadratic variance function). Therefore, the results enjoy a large extent
of robustness. In fact, the individual Yi ’s do not even have to be from the same
distribution family as long as the regularity conditions (A)–(E) are met. (However,
whether shrinkage estimation in that case is a good idea or not becomes debatable.)

2.1. Shrinking toward the grand mean. In the previous development, the cen-
tral shrinkage location μ is determined by minimizing URE. The joint minimiza-
tion of b and μ offers asymptotic optimality in the class of estimators. For small
or moderate p (the number of Yi’s), however, it is not necessarily true that the
semiparametric URE shrinkage estimator will always be the optimal one. In this
setting, it might be beneficial to set μ by a predetermined rule and only optimize b,
as it might reduce the variability of the resulting estimate. In this subsection, we
consider shrinking toward the grand mean:

μ̂ = Ȳ = 1

p

p∑
i=1

Yi.

The particular reason why the grand average is chosen instead of the weighted
average Ȳw = (

∑p
i=1 τiYi)/(

∑p
i=1 τi) is that the latter might be biased when θi and

τi are dependent. In the case where such dependence is not a concern, the idea and
results obtained below can be similarly derived.

The corresponding estimator becomes

θ̂
b,Ȳ
i = (1 − bi)Yi + biȲ ,(2.6)

where bi ∈ [0,1] satisfies Requirement (MON). To find the asymptotically optimal
choice of b, we start from an unbiased estimate of the risk of θ̂b,Ȳ .

It is straightforward to verify that for fixed b an unbiased estimate of the risk of
θ̂b,Ȳ is

UREG(b) = 1

p

p∑
i=1

[
b2
i (Yi − Ȳ )2 +

(
1 − 2

(
1 − 1

p

)
bi

)
V (Yi)

τi + ν2

]
.

Note that we use the superscript “G”, which stands for “grand mean”, to distin-
guish it from the previous URE(b,μ). Like what we did previously, minimizing
the UREG with respect to b then leads to our semiparametric URE grand-mean
shrinkage estimator

θ̂SG
i = (

1 − b̂SG
i

) · Yi + b̂SG
i · Ȳ ,(2.7)
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where

b̂SG = minimizer of UREG(b)

subject to bi ∈ [0,1] and Requirement (MON).

Again, we expect that the URE estimator θ̂SG would be competitive if UREG

is close to the risk function or the loss function. The next theorem confirms the
uniform closeness.

THEOREM 2.3. Under regularity conditions (A)–(E), we have

sup
∣∣UREG(b) − lp

(
θ , θ̂b,Ȳ )∣∣ → 0 in L1 and in probability, as p → ∞,

where the supremum is taken over bi ∈ [0,1] and Requirement (MON).

Consequently, θ̂SG is asymptotically optimal among all shrinkage estimators
θ̂b,Ȳ that shrink toward the grand mean Ȳ , as shown in the next theorem.

THEOREM 2.4. Assume regularity conditions (A)–(E). Then for any shrinkage

estimator θ̂ b̂,Ȳ = (1− b̂) ·Y+ b̂ · Ȳ , where b̂ ∈ [0,1] satisfies Requirement (MON),
we have

lim
p→∞P

(
lp

(
θ , θ̂SG) ≥ lp

(
θ , θ̂ b̂,Ȳ ) + ε

) = 0 for any ε > 0

and

lim sup
p→∞

[
R

(
θ , θ̂SG) − R

(
θ , θ̂ b̂,Ȳ )] ≤ 0.

3. Simultaneous estimation of mean parameters in location-scale families.
In this section, we focus on location-scale families, which are a special case of
distributions with quadratic variance functions. We show how the regularity con-
ditions can be simplified in this case.

For a location-scale family, we can write

Yi = θi + Zi/
√

τi,(3.1)

where the standard variates Zi are i.i.d. with mean zero and variance ν0. The con-
stants ν1 and ν2 in the quadratic variance function V (θi) = ν0 + ν1θi + ν2θ

2
i are

zero for the location-scale family. 1/
√

τi is the scale of Yi .
The next lemma simplifies the regularity conditions for a location-scale family.

LEMMA 3.1. For Yi , i = 1, . . . , p, independently from a location-scale fam-
ily (3.1), the following four conditions imply the regularity conditions (A)–(E) in
Section 2:
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(i) lim supp→∞ 1
p

∑p
i=1 1/τ 2

i < ∞;

(ii) lim supp→∞ 1
p

∑p
i=1 θ2

i /τi < ∞;

(iii) lim supp→∞ 1
p

∑p
i=1 |θi |2+ε < ∞ for some ε > 0;

(iv) the standard variate Z satisfies P(|Z| > t) ≤ Dt−α for constants D > 0,
α > 4.

Note that (i)–(iv) in Lemma 3.1 covers the common location-scale families,
including the t (degree of freedom > 4), normal, uniform, logistic, Laplace, Pareto
(α > 4) and extreme value distributions.

Lemma 3.1, together with Theorems 2.1 and 2.2, immediately yields the fol-
lowing corollaries: the semiparametric URE shrinkage estimator is asymptotically
optimal for location-scale families.

COROLLARY 3.2. For Yi , i = 1, . . . , p, independently from a location-scale
family (3.1), under conditions (i)–(iv) in Lemma 3.1, we have

sup
∣∣URE(b,μ) − lp

(
θ , θ̂b,μ)∣∣ → 0 in L1 and in probability, as p → ∞,

where the supremum is taken over bi ∈ [0,1], |μ| ≤ maxi |Yi | and Requirement
(MON).

COROLLARY 3.3. Let Yi , i = 1, . . . , p, be independent from a location-scale
family (3.1). Assume conditions (i)–(iv) in Lemma 3.1. Then for any shrinkage

estimator θ̂ b̂,μ̂ = (1− b̂) ·Y+ b̂ · μ̂, where b̂ ∈ [0,1] satisfies Requirement (MON),
and |μ̂| ≤ maxi |Yi |, we always have

lim
p→∞P

(
lp

(
θ , θ̂SM) ≥ lp

(
θ , θ̂ b̂,μ̂) + ε

) = 0 for any ε > 0

and

lim sup
p→∞

[
R

(
θ , θ̂SM) − R

(
θ, θ̂ b̂,μ̂)] ≤ 0.

In the case of shrinking toward the grand mean Ȳ , the corresponding semipara-
metric URE grand-mean shrinkage estimator is also asymptotically optimal.

COROLLARY 3.4. For Yi , i = 1, . . . , p, independently from a location-scale
family (3.1), under conditions (i)–(iv) in Lemma 3.1, we have

sup
∣∣UREG(b) − lp

(
θ, θ̂b,Ȳ )∣∣ → 0 in L1 and in probability, as p → ∞,

where the supremum is taken over bi ∈ [0,1] and Requirement (MON).

COROLLARY 3.5. Let Yi , i = 1, . . . , p, be independent from a location-scale
family (3.1). Assume conditions (i)–(iv) in Lemma 3.1. Then for any shrinkage
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estimator θ̂ b̂,Ȳ = (1− b̂) ·Y+ b̂ · Ȳ , where b̂ ∈ [0,1] satisfies Requirement (MON),
we have

lim
p→∞P

(
lp

(
θ , θ̂SG) ≥ lp

(
θ , θ̂ b̂,Ȳ ) + ε

) = 0 for any ε > 0

and

lim sup
p→∞

[
R

(
θ , θ̂SG) − R

(
θ , θ̂ b̂,Ȳ )] ≤ 0.

4. Simultaneous estimation of mean parameters in natural exponential
family with quadratic variance function.

4.1. Semiparametric URE shrinkage estimators. In this section, we focus on
natural exponential families with quadratic variance functions (NEF-QVF), as they
incorporate the most common distributions that one encounters in practice. We
show how the regularity conditions (A)–(E) can be significantly simplified and
offer concrete examples.

It is well known that there are in total six distinct distributions that belong
to NEF-QVF [Morris (1982)]: the normal, binomial, Poisson, negative-binomial,
Gamma and generalized hyperbolic secant (GHS) distributions. We represent in
general an NEF-QVF as

Yi ∼ NEF-QVF
[
θi,V (θi)/τi

]
,

where θi = E(Yi) ∈ � is the mean parameter and τi is the convolution pa-
rameter (or within-group sample size). For example, in the binomial case Yi ∼
Bin(ni,pi)/ni , θi = pi , V (θi) = θi(1 − θi) and τi = ni .

The next result provides easy-to-check conditions that considerably simplify
those in Section 2. As the case of heteroscedastic normal data has been studied in
Xie, Kou and Brown (2012), we concentrate on the other five NEF-QVF distribu-
tions.

LEMMA 4.1. For the five non-Gaussian NEF-QVF distributions, Table 1 lists
the respective conditions, under which regularity conditions (A)–(E) in Section 2
are satisfied. For example, for the binomial distribution, the condition is τi = ni ≥
2 for all i.

Lemma 4.1 and the general theory in Section 2 yield the following optimality
results for our semiparametric URE shrinkage estimator in the case of NEF-QVF.

COROLLARY 4.2. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Under the respective conditions listed in Table 1, we have

sup
∣∣URE(b,μ) − lp

(
θ, θ̂b,μ)∣∣ → 0 in L1 and in probability, as p → ∞,

where the supremum is taken over bi ∈ [0,1], |μ| ≤ maxi |Yi | and Requirement
(MON).
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TABLE 1
The conditions for the five nonnormal NEF-QVF distributions to guarantee the regularity

conditions (A)–(E) in Section 2

Distribution Data (ν0, ν1, ν2) Note Conditions

Binomial Yi ∼ Bin(ni ,pi)/ni (0,1,−1) τi = ni ni ≥ 2 for all i = 1, . . . , p

Poisson Yi ∼ Poi(τiθi )/τi (0,1,0) (i) infi τi > 0, infi (τiθi ) > 0
(ii)

∑
i θ3

i = O(p)

Neg-binomial Yi ∼ N Bin(ni ,pi)/ni (0,1,1) τi = ni (i) infi (nipi) > 0
θi = pi

1−pi
(ii)

∑
i (

pi
1−pi

)4 = O(p)

Gamma Yi ∼ �(τiα,λi)/τi (0,0,1/α) θi = αλi (i) infi τi > 0
(ii)

∑
i λ4

i = O(p)

GHS Yi ∼ GHS(τiα,λi)/τi (α,0,1/α) θi = αλi (i) infi τi > 0
(ii)

∑
i λ4

i = O(p)

COROLLARY 4.3. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Assume the respective conditions listed in Table 1. Then for any shrink-

age estimator θ̂ b̂,μ̂ = (1 − b̂) · Y + b̂ · μ̂, where b̂ ∈ [0,1] satisfies Requirement
(MON), and |μ̂| ≤ maxi |Yi |, we always have

lim
p→∞P

(
lp

(
θ , θ̂SM) ≥ lp

(
θ , θ̂ b̂,μ̂) + ε

) = 0 for any ε > 0

and

lim sup
p→∞

[
R

(
θ , θ̂SM) − R

(
θ, θ̂ b̂,μ̂)] ≤ 0.

For shrinking toward the grand mean Ȳ , the corresponding semiparametric URE
grand mean shrinkage estimator is also asymptotically optimal (within the smaller
class).

COROLLARY 4.4. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Under the respective conditions listed in Table 1, we have

sup
∣∣UREG(b) − lp

(
θ, θ̂b,Ȳ )∣∣ → 0 in L1 and in probability, as p → ∞,

where the supremum is taken over bi ∈ [0,1] and Requirement (MON).

COROLLARY 4.5. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Assume the respective conditions listed in Table 1. Then for any shrink-

age estimator θ̂ b̂,Ȳ = (1 − b̂) · Y + b̂ · Ȳ , where b̂ ∈ [0,1] satisfies Requirement
(MON), we have

lim
p→∞P

(
lp

(
θ , θ̂SG) ≥ lp

(
θ , θ̂ b̂,Ȳ ) + ε

) = 0 for any ε > 0
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TABLE 2
Conjugate priors for the five well-known NEF-QVF distributions

Distribution Data Conjugate prior γ and μ

Normal Yi ∼ N(θi,1/τi) θi
i.i.d.∼ N(μ,λ) γ = 1/λ

Binomial Yi ∼ Bin(τi , θi )/τi θi
i.i.d.∼ Beta(α,β) γ = α + β, μ = α

α+β

Poisson Yi ∼ Poi(τiθi )/τi θi
i.i.d.∼ �(α,λ) γ = 1/λ, μ = αλ

Neg-binomial Yi ∼ N Bin(τi ,pi)/τi pi
i.i.d.∼ Beta(α,β), θi = pi

1−pi
γ = β − 1, μ = α

β−1

Gamma Yi ∼ �(τiα,λi)/τi λi
i.i.d.∼ inv-�(α0, β0), θi = αλi γ = α0−1

α , μ = αβ0
α0−1

and

lim sup
p→∞

[
R

(
θ , θ̂

SG) − R
(
θ , θ̂ b̂,Ȳ )] ≤ 0.

4.2. Parametric URE shrinkage estimators and conjugate priors. For Yi from
an exponential family, hierarchical models based on the conjugate prior distribu-
tions are often used; the hyper-parameters in the prior distribution are often esti-
mated from the marginal distribution of Yi in an empirical Bayes way. Two ques-
tions arise naturally in this scenario. First, are there other choices to estimate the
hyper-parameters? Second, is there an optimal choice? We will show in this sub-
section that our URE shrinkage idea applies to the parametric conjugate prior case;
the resulting parametric URE shrinkage estimators are asymptotically optimal, and
thus asymptotically dominate the traditional empirical Bayes estimators.

Let Yi ∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be independent. If θi are i.i.d.
from the conjugate prior, the Bayesian estimate of θi is then

θ̂
γ,μ
i = τi

τi + γ
· Yi + γ

τi + γ
· μ,(4.1)

where γ and μ are functions of the hyper-parameters in the prior distribution. Ta-
ble 2 details the conjugate priors for the five well-known NEF-QVF distributions—
the normal, binomial, Poisson, negative-binomial and gamma distributions—and
the corresponding expressions of γ and μ in terms of the hyper-parameters. For

example, in the binomial case, Yi
ind.∼ Bin(τi, θi)/τi and the conjugate prior is

θi
i.i.d.∼ Beta(α,β); γ = α + β , μ = α/(α + β). Although it can be shown that for

the sixth NEF-QVF distribution—the GHS distribution—taking a conjugate prior
also gives (4.1), the conjugate prior distribution does not have a clean expression
and is rarely encountered in practice. We thus omit it from Table 2.

We now apply our URE idea to formula (4.1) to estimate (γ,μ), in contrast
to the conventional empirical Bayes method that determines the hyper-parameters
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through the marginal distribution. For fixed γ and μ, an unbiased estimate for the
risk of θ̂γ,μ is given by

UREP (γ,μ) = 1

p

p∑
i=1

[
γ 2

(τi + γ )2 · (Yi − μ)2 + τi − γ

τi + γ
· V (Yi)

τi + ν2

]
,

where we use the superscript “P ” to stand for “parametric”. Minimizing UREP (γ,

μ) leads to our parametric URE shrinkage estimator

θ̂PM
i = τi

τi + γ̂ PM · Yi + γ̂ PM

τi + γ̂ PM · μ̂PM,(4.2)

where (
γ̂ PM, μ̂PM) = arg min UREP (γ,μ)

over
{
0 ≤ γ ≤ ∞, |μ| ≤ max

i
|Yi |,μ ∈ �]

}
.

Parallel to Theorems 2.1 and 2.2, the next two results show that the parametric
URE shrinkage estimator gives the asymptotically optimal choice of (γ,μ), if one
wants to use estimators of the form (4.1).

THEOREM 4.6. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Under the respective conditions listed in Table 1, we have

sup
∣∣UREP (γ,μ) − lp

(
θ , θ̂γ,μ)∣∣ → in L1 and in probability, as p → ∞,

where the supremum is taken over {0 ≤ γ ≤ ∞, |μ| ≤ maxi |Yi |,μ ∈ �]}.

THEOREM 4.7. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Assume the respective conditions listed in Table 1. Then for any esti-
mator θ̂ γ̂ ,μ̂ = τ

τ+γ̂
Y + γ̂

τ+γ̂
μ̂, where γ̂ ≥ 0 and |μ̂| ≤ maxi |Yi |, we always have

lim
p→∞P

(
lp

(
θ , θ̂PM) ≥ lp

(
θ , θ̂ γ̂ ,μ̂) + ε

) = 0 for any ε > 0

and

lim sup
p→∞

[
Rp

(
θ , θ̂PM) − Rp

(
θ , θ̂ γ̂ ,μ̂)] ≤ 0.

In the case of shrinking toward the grand mean Ȳ (when p, the number of Yi ’s,
is small or moderate), we have the following parametric results parallel to the
semiparametric ones.

First, for the grand-mean shrinkage estimator

θ̂ γ,Ȳ = τi

τi + γ
· Yi + γ

τi + γ
· Ȳ ,(4.3)
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with a fixed γ , an unbiased estimate of its risk is

UREPG(γ ) = 1

p

p∑
i=1

[
γ 2

(τi + γ )2 (Yi − Ȳ )2 +
(

1 − 2
(

1 − 1

p

)
γ

τi + γ

)
V (Yi)

τi + ν2

]
.

Minimizing it yields our parametric URE grand-mean shrinkage estimator

θ̂PG
i = τi

τi + γ̂ PG · Yi + γ̂ PG

τi + γ̂ PG · Ȳ ,(4.4)

where

γ̂ PG = arg min
0≤γ≤∞ UREPG(γ ).

Similar to Theorems 4.6 and 4.7, the next two results show that in the case of
shrinking toward the grand mean under the formula (4.3), the parametric URE
grand-mean shrinkage estimator is asymptotically optimal.

THEOREM 4.8. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Under the respective conditions listed in Table 1, we have

sup
0≤γ<∞

∣∣UREPG(γ ) − lp
(
θ , θ̂γ,Ȳ )∣∣ → in L1 and in probability, as p → ∞.

THEOREM 4.9. Let Yi
ind.∼ NEF-QVF[θi,V (θi)/τi], i = 1, . . . , p, be non-

Gaussian. Assume the respective conditions listed in Table 1. Then for any esti-
mator θ̂ γ̂ ,Ȳ = τ

τ+γ̂
Y + γ̂

τ+γ̂
Ȳ , where γ̂ ≥ 0, we have

lim
p→∞P

(
lp

(
θ, θ̂PG) ≥ lp

(
θ , θ̂ γ̂ ,Ȳ ) + ε

) = 0 for any ε > 0

and

lim inf
p→∞

[
Rp

(
θ , θ̂PG) − Rp

(
θ , θ̂ γ̂ ,Ȳ )] ≤ 0.

5. Simulation study. In this section, we conduct a number of simulations to
investigate the performance of the URE estimators and compare their performance
to that of other existing shrinkage estimators. For each simulation, we first draw
(θi, τi), i = 1, . . . , p, independently from a distribution and then generate Yi given
(θi, τi). This process is repeated a large number of times (N = 100,000) to obtain
an accurate estimate of the risk for each estimator. The sample size p is chosen to
vary from 20 to 500 at an interval of length 20. For notational convenience, in this
section, we write Ai = 1/τi so that Ai is (essentially) the variance.
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5.1. Location-scale family. For the location-scale families, we consider three
non-Gaussian cases: the Laplace [where the standard variate Z has density f (z) =
1
2 exp(−|z|)], logistic [where the standard variate Z has density f (z) = e−z/(1 +
e−z)2] and Student-t distributions with 7 degrees of freedom. To evaluate the per-
formance of the semiparametric URE estimator θ̂SM, we compare it to the naive
estimator

θ̂Naive
i = Yi

and the extended James–Stein estimator

θ̂ JS+
i = μ̂JS+ +

(
1 − (p − 3)∑p

i=1(Yi − μ̂JS+)2/Ai

)+
· Yi,(5.1)

where Ai = 1/τi and μ̂JS+ = ∑p
i=1(Xi/Ai)/

∑p
i=1 1/Ai .

For each of the three distributions we study four different setups to generate
(θi,Ai = 1/τi) for i = 1, . . . , p. We then generate Yi via (3.1) except for scenario
(4) below.

Scenario (1). (θi,Ai) are drawn from Ai ∼ Unif(0.1,1) and θi ∼ N(0,1) inde-
pendently. In this scenario, the location and scale are independent of each other.
Panels (a) in Figures 1–3 plot the performance of the three estimators. The risk
function of the naive estimator θ̂Naive

i , being a constant for all p, is way above the
other two. The risk of the semiparametric URE estimator is significantly smaller
than that of both the extended James–Stein estimator and the naive estimator, par-
ticularly so when the sample size p > 40.

Scenario (2). (θi,Ai) are drawn from Ai ∼ Unif(0.1,1) and θi = Ai . This sce-
nario tests the case that the location and scale have a strong correlation. Panels (b)
in Figures 1–3 show the performance of the three estimators. The risk of the semi-
parametric URE estimator is significantly smaller than that of both the extended
James–Stein estimator and the native estimator. The naive estimator θ̂Naive

i , with
a constant risk, performs the worst. This example indicates that the semiparamet-
ric URE estimator behaves robustly well even when there is a strong correlation
between the location and the scale. This is because the semiparametric URE esti-
mator does not make any assumption on the relationship between θi and τi .

Scenario (3). (θi,Ai) are drawn such that Ai ∼ 1
2 ·1{Ai=0.1} + 1

2 ·1{Ai=0.5}—that
is, Ai is 0.1 or 0.5 with 50% probability each—and that conditioning on Ai being
0.1 or 0.5, θi |Ai = 0.1 ∼ N(2,0.1); θi |Ai = 0.5 ∼ N(0,0.5). This scenario tests
the case that there are two underlying groups in the data. Panels (c) in Figures 1–3
compare the performance of the semiparametric URE estimator to that of the na-
tive estimator and the extended James–Stein estimator. The semiparametric URE
estimator is seen to significantly outperform the other two estimators.

Scenario (4). (θi,Ai) are drawn from Ai ∼ Unif(0.1,1) and θi = Ai . Given θi

and Ai , Yi are generated from Yi ∼ Unif(θi − √
3Aiσ, θ + √

3Aiσ), where σ is
the standard deviation of the standard variate Z, that is, σ = √

2, π/
√

3 and
√

7/5
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FIG. 1. Comparison of the risks of different shrinkage estimators for the Laplace case.
(a) A ∼ Unif(0.1,1), θ ∼ N(0,1) independently; Y = θ + √

A · Z. (b) A ∼ Unif(0.1,1), θ = A;
Y = θ +√

A ·Z. (c) A ∼ 1
2 ·1{A=0.1} + 1

2 ·1{A=0.5}, θ |A = 0.1 ∼ N(2,0.1), θ |A = 0.5 ∼ N(0,0.5);

Y = θ + √
A · Z. (d) A ∼ Unif(0.1,1), θ = A; Y ∼ Unif[θ − √

6A,θ + √
6A].

for the Laplace, logistics and t-distribution (df = 7), respectively. This scenario
tests the case of model mis-specification and, hence, the robustness of the esti-
mators. Note that Yi is drawn from a uniform distribution, not from the Laplace,
logistic or t distribution. Panels (d) in Figures 1–3 show the performance of the
three estimators. It is seen that the naive estimator behaves the worst and that the
semiparametric URE estimator clearly outperforms the other two. This example
indicates the robust performance of the semiparametric URE estimator even when
the model is incorrectly specified. This is because URE estimator essentially only
involves the first two moments of Yi ; it does not rely on the specific density func-
tion of the distribution.

5.2. Exponential family. We consider exponential family in this subsection,
conducting simulation evaluations on the beta-binomial and Poisson-gamma mod-
els.

5.2.1. Beta-binomial hierarchical model. For binomial observations Yi
ind.∼

Bin(τi, θi)/τi , classical hierarchical inference typically assumes the conjugate
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FIG. 2. Comparison of the risks of different shrinkage estimators for the logistic case.
(a) A ∼ Unif(0.1,1), θ ∼ N(0,1) independently; Y = θ + √

A · Z. (b) A ∼ Unif(0.1,1), θ = A;
Y = θ +√

A ·Z. (c) A ∼ 1
2 ·1{A=0.1} + 1

2 ·1{A=0.5}, θ |A = 0.1 ∼ N(2,0.1), θ |A = 0.5 ∼ N(0,0.5);

Y = θ + √
A · Z. (d) A ∼ Unif(0.1,1), θ = A; Y ∼ Unif[θ − π

√
A,θ + π

√
A].

prior θi
i.i.d.∼ Beta(α,β). The marginal distribution of Yi is used by classical em-

pirical Bayes methods to estimate the hyper-parameters. Plugging the estimate of
these hyper-parameters into the posterior mean of θi given Yi yields the empiri-
cal Bayes estimate of θi . In this subsection, we consider both the semiparamet-
ric URE estimator θ̂SM [equation (2.5)] and the parametric URE estimator θ̂PM

[equation (4.2)], and compare them with the parametric empirical Bayes maximum
likelihood estimator θ̂ML and the parametric empirical Bayes method-of-moment
estimator θ̂MM. The empirical Bayes maximum likelihood estimator θ̂ML is given
by

θ̂ML
i = τi

τi + γ̂ ML · Yi + γ̂ ML

τi + γ̂ ML · μ̂ML,

where (γ̂ ML, μ̂ML) maximizes the marginal likelihood of Yi :

(
γ̂ ML, μ̂ML) = arg max

γ≥0,μ

∏
i

�(γμ + τiyi)�(γ (1 − μ) + (1 − yi)τi)�(γ )

�(γ + τi)�(γμ)�(γ (1 − μ))
,
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FIG. 3. Comparison of the risks of different shrinkage estimators for the t-distribution (df = 7).
(a) A ∼ Unif(0.1,1), θ ∼ N(0,1) independently; Y = θ + √

A · Z. (b) A ∼ Unif(0.1,1), θ = A;
Y = θ +√

A ·Z. (c) A ∼ 1
2 ·1{A=0.1} + 1

2 ·1{A=0.5}, θ |A = 0.1 ∼ N(2,0.1), θ |A = 0.5 ∼ N(0,0.5);

Y = θ + √
A · Z. (d) A ∼ Unif(0.1,1), θ = A; Y ∼ Unif[θ − √

21A/5, θ + √
21A/5].

where μ = α/(α + β) and γ = α + β as in Table 2. Likewise, the empirical Bayes
method-of-moment estimator θ̂MM is given by

θ̂MM
i = τi

τi + γ̂ MM · Yi + γ̂ MM

τi + γ̂ MM · μ̂MM,

where

μ̂MM = Ȳ = 1

p

p∑
i=1

Yi,

γ̂ MM = Ȳ (1 − Ȳ ) · ∑p
i=1(1 − 1/τi)

[∑p
i=1(Y

2
i − Ȳ /τi − Ȳ 2(1 − 1/τi))]+

.

There are in total four different simulation setups in which we study the four
different estimators. In addition, in each case, we also calculate the oracle risk
“estimator” θ̃OR, defined as

θ̃OR
i = τi

τi + γ̃ OR · Yi + γ̃ OR

τi + γ̃ OR · μ̃OR,(5.2)
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where (
γ̃ OR, μ̃OR) = arg min

γ≥0,μ
Rp

(
θ , θ̂γ,μ)

= arg min
γ≥0,μ

p∑
i=1

1

p
E

[(
τi

τi + γ
Yi + γ

τi + γ
μ − θi

)2]
.

Clearly, the oracle risk estimator θ̃OR cannot be used in practice, since it depends
on the unknown θ , but it does provide a sensible lower bound of the risk achievable
by any shrinkage estimator with the given parametric form.

EXAMPLE 1. We generate τi ∼ Poisson(3) + 2 and θi ∼ Beta(1,1) indepen-
dently, and draw Yi ∼ Bin(τi, θi)/τi . The oracle estimator θ̃OR is found to have
γ̃ OR = 2 and μ̃OR = 0.5. The corresponding risk for the oracle estimator is nu-
merically found to be Rp(θ , θ̃OR) ≈ 0.0253. The plot in Figure 4(a) shows the
risks of the five shrinkage estimators as the sample size p varies. It is seen that
the performance of all four shrinkage estimators approaches that of the paramet-
ric oracle estimator, the “best estimator” one can hope to get under the parametric
form. Note that the two empirical Bayes estimators converges to the oracle estima-
tor faster than the two URE shrinkage estimators. This is because the hierarchical
distribution on τi and θi are exactly the one assumed by the empirical Bayes es-
timators. In contrast, the URE estimators do not make any assumption on the hi-
erarchical distribution but still achieve rather competitive performance. When the
sample size is moderately large, all four estimators well approach the limit given
by the parametric oracle estimator.

EXAMPLE 2. We generate τi ∼ Poisson(3) + 2 and θi ∼ 1
2 Beta(1,3) +

1
2 Beta(3,1) independently, and draw Yi ∼ Bin(τi, θi)/τi . In this example, θi no
longer comes from a beta distribution, but θi and τi are still independent. The
oracle estimator is found to have γ̃ OR ≈ 1.5 and μ̃OR = 0.5. The corresponding
risk for the oracle estimator θ̂ τ0,θ is Rp(θ , θ̃OR) ≈ 0.0248. The plot in Figure 4(b)
shows the risks of the five shrinkage estimators as the sample size p varies. Again,
as p gets large, the performance of all shrinkage estimators eventually approaches
that of the oracle estimator. This observation indicates that the parametric form of
the prior on θi is not crucial as long as τi and θi are independent.

EXAMPLE 3. We generate τi ∼ Poisson(3) + 2 and let θi = 1/τi , and then
we draw Yi ∼ Bin(τi, θi)/τi . In this case, there is a (negative) correlation between
θi and τi . The parametric oracle estimator is found to have γ̃ OR ≈ 23.0898 and
μ̃OR ≈ 0.2377 numerically; the corresponding risk is Rp(μ, θ̃OR) ≈ 0.0069. The
plot in Figure 4(c) shows the risks of the five shrinkage estimators as functions of
the sample size p. Unlike the previous examples, the two empirical Bayes estima-
tors no longer converge to the parametric oracle estimator, that is, the limit of their
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risk (as p → ∞) is strictly above the risk of the parametric oracle estimator. On
the other hand, the risk of the parametric URE estimator θ̂PM still converges to the
risk of the parametric oracle estimator. It is interesting to note that the limiting risk
of the semiparametric URE estimators θ̂SM is actually strictly smaller than the risk
of the parametric oracle estimator (although the difference between the two is not
easy to spot due to the scale of the plot).

EXAMPLE 4. We generate (τi, θi, Yi) as follows. First, we draw Ii from
Bernoulli(1/2), and then generate τi ∼ Ii · Poisson(10) + (1 − Ii) · Poisson(1) + 2
and θi ∼ Ii · Beta(1,3) + (1 − Ii) · Beta(3,1). Given (τi, θi), we draw Yi ∼
Bin(τi, θi)/τi . In this example, there exist two groups in the data (indexed by Ii).
It thus serves to test the different estimators in the presence of grouping. The para-
metric oracle estimator is found to have γ̃ OR ≈ 0.3108 and μ̃OR ≈ 2.0426; the
corresponding risk is Rp(μ, θ̃OR) ≈ 0.0201. Figure 4(d) plots the risks of the five
shrinkage estimators versus the sample size p. The two empirical Bayes estima-
tors clearly encounter much greater risk than the URE estimators, and the limiting
risks of the two empirical Bayes estimators are significantly larger than the risk
of the parametric oracle estimator. The risk of the parametric URE estimator θ̂PM

converges to that of the parametric oracle estimator. It is quite noteworthy that the
semiparametric URE estimator θ̂SM achieves a significant improvement over the
parametric oracle one.

5.2.2. Poisson–Gamma hierarchical model. For Poisson observations Yi
ind.∼

Poisson(τiθi)/τi , the conjugate prior is θi
i.i.d.∼ �(α,λ). Like in the previous sub-

section, we compare five estimators: the empirical Bayes maximum likelihood
estimator, the empirical Bayes method-of-moment estimator, the parametric and
semiparametric URE estimators and the parametric oracle “estimator” (5.2). The
empirical Bayes maximum likelihood estimator θ̂ML is given by

θ̂ML
i = τi

τi + γ̂ ML · Yi + γ̂ ML

τi + γ̂ ML · μ̂ML,

where (γ̂ ML, μ̂ML) maximizes the marginal likelihood of Yi :

(
γ̂ ML, μ̂ML) = arg max

γ≥0,μ

∏
i

γ γμ�(γμ + τiyi)

(τi + γ )τiyi+γμ�(γμ)
,

where μ = αλ and γ = 1/λ as in Table 2. The empirical Bayes method-of-moment
estimator θ̂MM is given by

θ̂MM
i = τi

τi + γ̂ MM · Yi + γ̂ MM

τi + γ̂ MM · μ̂MM,
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FIG. 4. Comparison of the risks of shrinkage estimators in the Beta–Binomial hierarchical models.
(a) τ ∼ Poisson(3) + 2, θ ∼ Beta(1,1) independently; Y ∼ Bin(τ, θ)/τ . (b) τ ∼ Poisson(3) + 2,
θ ∼ 1

2 · Beta(1,3) + 1
2 · Beta(3,1) independently; Y ∼ Bin(τ, θ)/τ . (c) τ ∼ Poisson(3) + 2,

θ = 1/τ , Y ∼ Bin(τ, θ)/τ . (d) I ∼ Bern(1/2), τ ∼ I · Poisson(10) + (1 − I ) · Poisson(1) + 2,
θ ∼ I · Beta(1,3) + (1 − I ) · Beta(3,1); Y ∼ Bin(τ, θ)/τ .

where

μ̂MM = Ȳ = 1

p

p∑
i=1

Yi,

γ̂ MM = p · Ȳ
[∑p

i=1(Y
2
i − Ȳ /τi − Ȳ 2)]+ .

We consider four different simulation settings.

EXAMPLE 5. We generate τi ∼ Poisson(3) + 2 and θi ∼ �(1,1) indepen-
dently, and draw Yi ∼ Poisson(τiθi)/τi . The plot in Figure 5(a) shows the risks of
the five shrinkage estimators as the sample size p varies. Clearly, the performance
of all shrinkage estimators approaches that of the parametric oracle estimator. As



584 X. XIE, S. C. KOU AND L. BROWN

in the beta-binomial case, the two empirical Bayes estimators converge to the ora-
cle estimator faster than the two URE shrinkage estimators. Again, this is because
the hierarchical distribution on τi and θi are exactly the one assumed by the em-
pirical Bayes estimators. The URE estimators, without making any assumption on
the hierarchical distribution, still achieve rather competitive performance.

EXAMPLE 6. We generate τi ∼ Poisson(3)+2 and θi ∼ Unif(0.1,1) indepen-
dently, and draw Yi ∼ Poisson(τiθi)/τi . In this setting, θi no longer comes from
a gamma distribution, but θi and τi are still independent. The plot in Figure 5(b)
shows the risks of the five shrinkage estimators as the sample size p varies. As
p gets large, the performance of all shrinkage estimators eventually approaches
that of the oracle estimator. Like in the beta-binomial case, the picture indicates
that the parametric form of the prior on θi is not crucial as long as τi and θi are
independent.

EXAMPLE 7. We generate τi ∼ Poisson(3) + 2 and let θi = 1/τi , and then
we draw Yi ∼ Poisson(τiθi)/τi . In this setting, there is a (negative) correlation
between θi and τi . The plot in Figure 5(c) shows the risks of the five shrinkage
estimators as functions of the sample size p. Unlike the previous two examples,
the two empirical Bayes estimators no longer converge to the parametric oracle
estimator—the limit of their risk is strictly above the risk of the parametric oracle
estimator. The risk of the parametric URE estimator θ̂PM, on the other hand, still
converges to the risk of the parametric oracle estimator. The limiting risk of the
semiparametric URE estimators θ̂SM is actually strictly smaller than the risk of the
parametric oracle estimator (although it is not easy to spot it on the plot).

EXAMPLE 8. We generate (τi, θi) by first drawing Ii ∼ Bernoulli(1/2) and
then τi ∼ Ii · Poisson(10) + (1 − Ii) · Poisson(1) + 2 and θi ∼ Ii · �(1,1) + (1 −
Ii) · �(5,1). With (τi, θi) obtained, we draw Yi ∼ Poisson(τiθi)/τi . This setting
tests the case that there is grouping in the data. Figure 5(d) plots the risks of the
five shrinkage estimators versus the sample size p. It is seen that the two empirical
Bayes estimators have the largest risk, and that the parametric URE estimator θ̂PM

achieves the risk of the parametric oracle estimator in the limit. The semiparamet-
ric URE estimator θ̂SM notably outperforms the parametric oracle estimator, when
p > 100.

6. Application to the prediction of batting average. In this section, we ap-
ply the URE shrinkage estimators to a baseball data set, collected and discussed
in Brown (2008). This data set consists of the batting records for all the Major
League Baseball players in the season of 2005. Following Brown (2008), the data
are divided into two half seasons; the goal is to use the data from the first half
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FIG. 5. Comparison of the risks of shrinkage estimators in Poisson–Gamma hierarchical model.
(a) τ ∼ Poisson(3) + 2, θ ∼ �(1,1) independently; Y ∼ Poisson(τθ)/τ . (b) τ ∼ Poisson(3) + 2,
θ ∼ Unif(0.1,1) independently; Y ∼ Poisson(τθ)/τ . (c) τ ∼ Poisson(3) + 2, θ = 1/τ ,
Y ∼ Poisson(τθ)/τ . (d) I ∼ Bern(1/2), τ ∼ I · Poisson(10) + (1 − I ) · Poisson(1) + 2,
θ ∼ I · Gamma(1,1) + (1 − I ) · Gamma(5,1); Y ∼ Poisson(τθ)/τ .

season to predict the players’ batting average in the second half season. The pre-
diction can then be compared against the actual record of the second half season.
The performance of different estimators can thus be directly evaluated.

For each player, let the number of at-bats be N and the successful number of
batting be H ; we then have

Hij ∼ Binomial(Nij ,pj ),

where i = 1,2 is the season indicator, j = 1,2, . . . , is the player indicator, and pj

corresponds to the player’s hitting ability. Let Yij be the observed proportion:

Yij = Hij/Nij .

For this binomial setup, we apply our method to obtain the semiparametric URE
estimators p̂SM and p̂SG, defined in (2.5) and (2.7), respectively, and the paramet-
ric URE estimators p̂PM and p̂PG, defined in (4.2) and (4.4), respectively.
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To compare the prediction accuracy of different estimators, we note that most
shrinkage estimators in the literature assume normality of the underlying data.
Therefore, for sensible evaluation of different methods, we can apply the following
variance-stablizing transformation as discussed in Brown (2008):

Xij = arcsin

√
Hij + 1/4

Nij + 1/2
,

which gives

Xij ∼̇N

(
θj ,

1

4Nij

)
, θj = arcsin(

√
pj ).

To evaluate an estimator θ̂ based on the transformed Xij , we measure the total sum
of squared prediction errors (TSE) as

TSE(θ̂) = ∑
j

(X2j − θ̂j )
2 − ∑

j

1

4N2j

.

To conform to the above transformation (as used by most shrinkage estimators),

we calculate θ̂j = arcsin(
√

p̂j ), where p̂j is a URE estimator of the binomial prob-
ability, so that the TSE of the URE estimators can be calculated and compared with
other (normality based) shrinkage estimators.

Table 3 below summarizes the numerical results of our URE estimators with a
collection of competing shrinkage estimators. The values reported are the ratios
of the error of a given estimator to that of the benchmark naive estimator, which
simply uses the first half season X1j to predict the second half X2j . All shrinkage
estimators are applied three times—to all the baseball players, the pitchers only,
and the nonpitchers only. The first group of shrinkage estimators in Table 3 are the
classical ones based on normal theory: two empirical Bayes methods (applied to
X1j ), the grand mean and the extended James–Stein estimator (5.1). The second
group includes a number of more recently developed methods: the nonparamet-
ric shrinkage methods in Brown and Greenshtein (2009), the binomial mixture
model in Muralidharan (2010) and the weighted least squares and general maxi-
mum likelihood estimators (with or without the covariate of at-bats effect) in Jiang
and Zhang (2009, 2010). The numerical results for these methods are from Brown
(2008), Muralidharan (2010) and Jiang and Zhang (2009, 2010). The last group
corresponds to the results from our binomial URE methods: the first two are the
parametric methods and the last two are the semiparametric ones.

It is seen that our URE shrinkage estimators, especially the semiparametric
ones, achieve very competitive prediction result among all the estimators. We think
the primary reason is that the baseball data contain unique features that violate the
underlying assumptions of the classical empirical Bayes methods. Both the normal
prior assumption and the implicit assumption of the uncorrelatedness between the
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TABLE 3
Prediction errors of batting averages for the baseball data

ALL Pitchers Non-Pitchers

Naive 1 1 1

Grand mean X̄1· 0.852 0.127 0.378
Parametric EB-MM 0.593 0.129 0.387
Parametric EB-ML 0.902 0.117 0.398
Extended James–Stein 0.525 0.164 0.359

Nonparametric EB 0.508 0.212 0.372
Binomial mixture 0.588 0.156 0.314
Weighted least square (Null) 1.074 0.127 0.468
Weighted generalized MLE (Null) 0.306 0.173 0.326
Weighted least square (AB) 0.537 0.087 0.290
Weighted generalized MLE (AB) 0.301 0.141 0.261

Parametric URE θ̂PG 0.515 0.105 0.278
Parametric URE θ̂PM 0.421 0.105 0.276
Semiparametric URE θ̂SG 0.414 0.045 0.259
Semiparametric URE θ̂SM 0.422 0.041 0.273

binomial probability p and the sample size τ are not justified here. To illustrate the
last point, we present a scatter plot of log10 (number of at bats) versus the observed
batting average y for the nonpitcher group in Figure 6.

FIG. 6. Scatter plot of log10 (number of at bats) versus observed batting average
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7. Summary. In this paper, we develop a general theory of URE shrinkage
estimation in family of distributions with quadratic variance function. We first dis-
cuss a class of semiparametric URE estimator and establish their optimality prop-
erty. Two specific cases are then carefully studied: the location-scale family and the
natural exponential families with quadratic variance function. In the latter case, we
also study a class of parametric URE estimators, whose forms are derived from the
classical conjugate hierarchical model. We show that each URE shrinkage estima-
tor is asymptotically optimal in its own class and their asymptotic optimality do
not depend on the specific distribution assumptions, and more importantly, do not
depend on the implicit assumption that the group mean θ and the sample size τ are
uncorrelated, which underlies many classical shrinkage estimators. The URE esti-
mators are evaluated in comprehensive simulation studies and one real data set. It is
found that the URE estimators offer numerically superior performance compared
to the classical empirical Bayes and many other competing shrinkage estimators.
The semiparametric URE estimators appear to be particularly competitive.

It is worth emphasizing that the optimality properties of the URE estimators is
not in contradiction with well established results on the nonexistence of Stein’s
paradox in simultaneous inference problems with finite sample space [Gutmann
(1982)], since the results we obtained here are asymptotic ones when p approaches
infinity. A question that naturally arises here is then how large p needs to be for the
URE estimators to become superior compared with their competitors. Even though
we did not develop a formal finite-sample theory for such comparison, our com-
prehensive simulation indicates that p usually does not need to be large—p can be
as small as 100—for the URE estimators to achieve competitive performance.

The theory here extends the one on the normal hierarchical models in Xie, Kou
and Brown (2012). There are three critical features that make the generalization of
previous results possible here: (i) the use of quadratic risk; (ii) the linear form of
the shrinkage estimator and (iii) the quadratic variance function of the distribution.
The three features together guarantee the existence of an unbiased risk estimate.
For the hierarchical models where an unbiased risk estimate does not exist, similar
idea can still be applied to some estimate of risk, for example, the bootstrap esti-
mate [Efron (2004)]. However, a theory is in demand to justify the performance of
the resulting shrinkage estimators.

It would also be an important area of research to study confidence intervals for
the URE estimators obtained here. Understanding whether the optimality of the
URE estimators implies any optimality property of the estimators of the hyper-
parameters under certain conditions is an interesting related question. However,
such topics are out of scope for the current paper and we will need to address them
in future research.

APPENDIX: PROOFS

PROOF OF THEOREM 2.1. Throughout this proof, when a supremum is taken,
it is over bi ∈ [0,1], |μ| ≤ maxi |Yi | and Requirement (MON), unless explicitly
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stated otherwise. Since

URE(b,μ) − l
(
θ, θ̂b,μ)

= 1

p

p∑
i=1

(1 − 2bi)

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)

+ 2

p

p∑
i=1

bi(Yi − θi)(θi − μ),

it follows that

sup
∣∣URE(b,μ) − l

(
θ , θ̂b,μ)∣∣ ≤ 1

p

∣∣∣∣∣
p∑

i=1

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣∣

+ 2

p
sup

∣∣∣∣∣
p∑

i=1

bi

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣∣(A.1)

+ 2

p
sup

∣∣∣∣∣
p∑

i=1

bi(Yi − θi)(θi − μ)

∣∣∣∣∣.
For the first term on the right-hand side, we note that

V (Yi)

τi + ν2
− (Yi − θi)

2

= − τi

τi + ν2

(
Y 2

i − EY 2
i

) +
(

2θi − ν1

τi + ν2

)
(Yi − θi).

Thus,

E

((
V (Yi)

τi + ν2
− (Yi − θi)

2
)2)

≤ 2
((

τi

τi + ν2

)2

Var
(
Y 2

i

) +
(

2θi − ν1

τi + ν2

)2

Var(Yi)

)

≤ 2
(

τi

τi + ν2

)2

Var
(
Y 2

i

) + 16θ2
i Var(Yi) + 4

(
ν1

τi + ν2

)2

Var(Yi).

It follows that by conditions (A)–(D)

1

p

p∑
i=1

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)

→ 0 inL2 as p → ∞.(A.2)

For the term 2
p

sup |∑i bi(
V (Yi)
τi+ν2

− (Yi − θi)
2)| in (A.1), without loss of generality,

let us assume τ1 ≤ · · · ≤ τp; we then know from Requirement (MON) that b1 ≥
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· · · ≥ b2. As in Lemma 2.1 in Li (1986), we observe that

sup
2

p

∣∣∣∣∣
p∑

i=1

bi

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣∣

= sup
1≥b1≥···≥bp≥0

2

p

∣∣∣∣∣
p∑

i=1

bi

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣∣

= max
1≤j≤p

2

p

∣∣∣∣∣
j∑

i=1

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣∣.

Let Mj = ∑j
i=1(

V (Yi)
τi+ν2

− (Yi − θi)
2). Then {Mj ; j = 1,2, . . .} forms a martingale.

The Lp maximum inequality implies

E
(

max
1≤j≤p

M2
j

)
≤ 4E

(
M2

p

) = 4
p∑

i=1

E

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)2

,

which implies by (A.2) that

sup
2

p

∣∣∣∣∣
p∑

i=1

bi

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣∣ → 0 in L2 as p → ∞.(A.3)

For the last term 2
p

sup |∑i bi(Yi − θi)(θi − μ)| in (A.1), we note that

1

p

p∑
i=1

bi(Yi − θi)(θi − μ) = 1

p

p∑
i=1

biθi(Yi − θi) − μ

p

p∑
i=1

bi(Yi − θi).

Using the same argument as in the proof of (A.3), we can show that

sup
1

p

∣∣∣∣∑
i

biθi(Yi − θi)

∣∣∣∣ → 0 in L2,

E

(
sup

∣∣∣∣∑
i

bi(Yi − θi)

∣∣∣∣
2)

= O(p).

Applying condition (E) and the Cauchy–Schwarz inequality, we obtain

1

p
E

(
sup

∣∣∣∣∣μ
p∑

i=1

bi(Yi − θi)

∣∣∣∣∣
)

= 1

p
E

(
max

1≤i≤p
|Yi | · sup

∣∣∣∣∑
i

bi(Yi − θi)

∣∣∣∣
)

≤ 1

p

(
E

(
max

1≤i≤p
Y 2

i

)
· E

{
sup

∣∣∣∣∑
i

bi(Yi − θi)

∣∣∣∣
2})1/2

= O
(
p(1−ε+1)/2−1) = O

(
p−ε/2)

.
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Therefore,

1

p
sup

∣∣∣∣∣μ
p∑

i=1

bi(Yi − θi)

∣∣∣∣∣ → 0 in L1.

This completes the proof, since each term on the right-hand side of (A.1) converges
to zero in L1. �

PROOF OF THEOREM 2.2. Throughout this proof, when a supremum is taken,
it is over bi ∈ [0,1], |μ| ≤ maxi |Yi | and Requirement (MON). Note that

URE
(
b̂SM, μ̂SM) ≤ URE(b̂, μ̂)

and we know from Theorem 2.1 that

sup
∣∣URE(b,μ) − lp

(
θ , θ̂b,μ)∣∣ → 0 in probability.

It follows that for any ε > 0

P
(
lp

(
θ , θ̂SM) ≥ lp

(
θ, θ̂ b̂,μ̂) + ε

)
≤ P

(
lp

(
θ , θ̂SM) − URE

(
b̂SM, μ̂SM) ≥ lp

(
θ , θ̂ b̂,μ̂) − URE(b̂, μ̂) + ε

)
≤ P

(∣∣lp(
θ , θ̂SM) − URE

(
b̂SM, μ̂SM)∣∣ ≥ ε

2

)

+ P

(∣∣lp(
θ , θ̂ b̂,μ̂) − URE(b̂, μ̂)

∣∣ ≥ ε

2

)
→ 0.

Next, to show that

lim sup
p→∞

[
Rp

(
θ , θ̂SM) − Rp

(
θ , θ̂ b̂,μ̂)] ≤ 0,

we note that

lp
(
θ, θ̂SM) − lp

(
θ, θ̂ b̂,μ̂)

= (
lp

(
θ , θ̂SM) − URE

(
b̂SM, μ̂SM)) + (

URE
(
b̂SM, μ̂SM) − URE(b̂, μ̂)

)
+ (

URE(b̂, μ̂) − lp
(
θ , θ̂ b̂,μ̂))

≤ 2 sup
∣∣URE(b,μ) − lp

(
θ, θ̂b,μ)∣∣.

Theorem 2.1 then implies that

lim sup
p→∞

[
R

(
θ , θ̂SM) − R

(
θ, θ̂ b̂,μ̂)] ≤ 0. �



592 X. XIE, S. C. KOU AND L. BROWN

PROOF OF THEOREM 2.3. Throughout this proof, when a supremum is taken,
it is over bi ∈ [0,1] and Requirement (MON). Since

UREG(b) − lp
(
θ , θ̂b,Ȳ )

= 1

p

p∑
i=1

(
1 − 2

(
1 − 1

p

)
bi

)(
V (Yi)

τi + ν2
− (Yi − θi)

2
)

+ 2

p

p∑
i=1

bi

(
θi(Yi − θi) + 1

p
(Yi − θi)

2 − (Yi − θi)Ȳ

)
,

it follows that

sup
∣∣UREG(b) − lp

(
θ , θ̂b,Ȳ )∣∣

≤ 1

p

∣∣∣∣∑
i

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣

+ 2

p

(
1 − 1

p

)
sup

∣∣∣∣∑
i

bi

(
V (Yi)

τi + ν2
− (Yi − θi)

2
)∣∣∣∣(A.4)

+ 2

p
sup

∣∣∣∣∑
i

biθi(Yi − θi)

∣∣∣∣
+ 2

p2

∑
i

(Yi − θi)
2 + 2

p
|Ȳ | · sup

∣∣∣∣∑
i

bi(Yi − θi)

∣∣∣∣.
We have already shown in the proof of Theorem 2.1 that the first three terms on

the right-hand side converge to zero in L2. It only remains to manage the last two
terms:

E

(
2

p2

∑
i

(Yi − θi)
2
)

= 2

p2

∑
i

Var(Yi) → 0

by regularity condition (A),

1

p
E

(
|Ȳ | · sup

∣∣∣∣∑
i

bi(Yi − θi)

∣∣∣∣
)

≤ 1

p
E

(
max

1≤i≤p
|Yi | · sup

∣∣∣∣∑
i

bi(Yi − θi)

∣∣∣∣
)

→ 0,

as was shown in the proof of Theorem 2.1. Therefore, the last two terms of (A.4)
converge to zero in L1, and this completes the proof. �

PROOF OF THEOREM 2.4. With Theorem 2.3 established, the proof is almost
identical to that of Theorem 2.2. �

PROOF OF LEMMA 3.1. It is straightforward to check that (i)–(iii) imply
conditions (A)–(D) in Section 2, so we only need to verify condition (E). Since
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Y 2
i = Z2

i /τi + θ2
i + 2θiZi/

√
τi , we know that

max
1≤i≤p

Y 2
i ≤ max

i

1

τi

· max
i

Z2
i + max

i
θ2
i + 2 max

i
|θi/

√
τi | · max

i
|Zi |.(A.5)

(i) and (ii) imply maxi 1/τi = O(p1/2) and maxi |θi/
√

τi | = O(p1/2). (iii) gives
maxi θ

2
i = O(p2/(2+ε)). We next bound E(max1≤i≤p |Zi |k) for k = 1,2. (iv) im-

plies that for k = 1,2,

E
(
max

i
|Zi |k

)

=
∫ ∞

0
ktk−1P

(
max

i
|Zi | > t

)
dt

≤
∫ ∞

0
ktk−1(

1 − (
1 − Dt−α)p)

dt

=
∫ p1/α

0
ktk−1(

1 − (
1 − Dt−α)p)

dt +
∫ ∞
p1/α

ktk−1(
1 − (

1 − Dt−α)p)
dt

= O
(
pk/α) + pk/α

∫ ∞
1

kzk−1
(

1 −
(

1 − 1

p
Dz−α

)p)
dz,

where a change of variable z = t/p1/α is applied. We know by the monotone con-
vergence theorem that for k ≥ 1, as p → ∞,∫ ∞

1
zk−1

(
1 −

(
1 − 1

p
Dz−α

)p)
dz →

∫ ∞
1

zk−1(
1 − exp

(−Dz−α))
dz < ∞.

It then follows that

E
(

max
1≤i≤p

|Zi |k
)

= O
(
pk/α)

, for k = 1,2.

Taking it back to (A.5) gives

E
(

max
1≤i≤p

Y 2
i

)
= O

(
p1/2+2/α) + O

(
p2/(2+ε)) + O

(
p1/2+1/α)

,

which verifies condition (E). �

To prove Lemma 4.1, we need the following lemma.

LEMMA A.1. Let Yi be independent from one of the six NEF-QVFs. Then
condition (B) in Section 2 and

(F) lim supp→∞ 1
p

∑p
i=1 |θi |2+ε < ∞ for some ε > 0;

(G) lim supp→∞ 1
p

∑p
i=1 Var2(Yi) < ∞;

(H) supi skew(Yi) = supi
1√
τi

ν1+2ν2θi

(ν0+ν1θi+ν2θ
2
i )1/2 < ∞;
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imply condition (E).

PROOF OF LEMMA A.1. Let us denote σ 2
i = Var(Yi). We can write Yi =

σiZi + θi , where Zi are independent with mean zero and variance one. It follows
from Y 2

i = σ 2
i Z2

i + θ2
i + 2σiθiZi that

max
1≤i≤p

Y 2
i ≤ max

i
σ 2

i · max
i

Z2
i + max

i
θ2
i + 2 max

i
σi |θi | · max

i
|Zi |.(A.6)

Condition (B) implies maxi σ
2
i θ2

i ≤ ∑
i σ

2
i θ2

i = O(p). Thus, maxi σi |θi | =
O(p1/2). Similarly, condition (G) implies that maxi σ

2
i = O(p1/2). Condi-

tion (F) implies that maxi |θi |2+ε ≤ ∑
i |θi |2+ε = O(p), which gives maxi θ

2
i =

O(p2/(2+ε)). If we can show that

E
(

max
1≤i≤p

|Zi |
)

= O(logp), E
(

max
1≤i≤p

Z2
i

)
= O

(
log2 p

)
,(A.7)

then we establish (E), since

E
(

max
1≤i≤p

Y 2
i

)
= O

(
p1/2 log2 p + p2/(2+ε) + p1/2 logp

) = O
(
p2/(2+ε∗)),

where ε∗ = min(ε,1). To prove (A.7), we begin from

E
(
max

i
|Zi |k

)
= k

∫ ∞
0

tk−1P
(
max

i
|Zi | > t

)
dt for all k > 0.(A.8)

The large deviation results for NEF-QVF in Morris [(1982), Section 9] and con-
dition (H) (i.e., Yi have bounded skewness) imply that for all t > 1, the tail prob-
abilities P(|Zi | > t) are uniformly bounded exponentially: there exists a constant
c0 > 0 such that

P
(|Zi | > t

) ≤ e−c0t for all i.

Taking it into (A.8), we have

E
(
max

i
|Zi |k

)
≤

∫ ∞
0

ktk−1(
1 − (

1 − e−c0t
)p)

dt

=
∫ logp/c0

0
ktk−1(

1 − (
1 − e−c0t

)p)
dt

(A.9)
+

∫ ∞
logp/c0

ktk−1(
1 − (

1 − e−c0t
)p)

dt

= O
(
logk p

) +
∫ ∞

0
k

(
z + 1

c0
logp

)k−1(
1 −

(
1 − 1

p
e−c0z

)p)
dz,

where in the last line a change of variable z = t − logp/c0 is applied. We know by
the monotone convergence theorem that for k ≥ 1, as p → ∞,∫ ∞

0
zk−1

(
1 −

(
1 − 1

p
e−c0z

)p)
dz →

∫ ∞
0

zk−1(
1 − exp

(−e−c0z
))

dz < ∞.



OPTIMAL SHRINKAGE ESTIMATION 595

It then follows from (A.9) that

E
(

max
1≤i≤p

|Zi |k
)

= O
(
logk p

)
, for k = 1,2,

which completes our proof. �

PROOF OF LEMMA 4.1. We go over the five distributions one by one.
(1) Binomial. Since θi = pi , Var(Yi) = pi(1−pi)/ni , and Var(Y 2

i ) ≤ EY 4
i ≤ 1,

it is straightforward to verify that ni ≥ 2 for all i guarantees conditions (A)–(E) in
Section 2.

(2) Poisson. Var(Yi) = θi/τi , and Var(Y 2
i ) = (4τ 2

i θ3
i + 6τiθ

2
i + θi)/τ

3
i . It is

straightforward to verify that infi τi > 0, infi τiθi > 0 and
∑

i θ
3
i = O(p) imply

conditions (A)–(D) in Section 2 and conditions (F)–(H) in Lemma A.1.
(3) Negative-binomial. θi = pi

1−pi
, Var(Yi) = 1

ni

pi

(1−pi)
2 = 1

ni
(θi +θ2

i ), so v0 = 0,

ν1 = ν2 = 1. Var(Y 2
i ) = 1

n3
i (1−pi)

4 (pi + 4p2
i + 6nip

2
i + p3

i + 4nip
3
i + 4n2

i p
3
i ).

From these, we know that
∑p

i=1 Var2(Yi) = ∑
i

1
(nipi)

2 (
pi

1−pi
)4 = O(

∑
i (

pi

1−pi
)4) =

O(p), which verifies conditions (A) and (G).
∑p

i=1 Var(Yi)θ
2
i = ∑

i
1

nipi
(

pi

1−pi
)4 =

O(
∑

i(
pi

1−pi
)4) = O(p), which verifies condition (B). For condition (C), since

ni ≥ 1 and 0 ≤ pi ≤ 1, we only need to verify that
∑

i
1

n3
i (1−pi)

4 (pi + 6nip
2
i ) =

O(p). This is true, since
∑

i
1

n3
i (1−pi)

4 (pi + 6nip
2
i ) = ∑

i (
1

(nipi)
3 (

pi

1−pi
)4 +

6
(nipi)

2 (
pi

1−pi
)4) = O(

∑
i (

pi

1−pi
)4) = O(p). Condition (D) is automatically satis-

fied. For condition (F), consider
∑p

i=1 θ4
i . It is

∑
i (

pi

1−pi
)4 = O(p). For condi-

tion (H), note that skew(Yi) = 1√
ni

pi+1√
pi

≤ 1 + 1/
√

nipi . Thus, supi skew(Yi) < ∞
by (i).

(4) Gamma. θi = αλi , Var(Yi) = αλ2
i /τi , so v0 = ν1 = 0, ν2 = 1/α. skew(Yi) =

2/
√

τiα. Var(Y 2
i ) = α

τi
λ4

i (α + 1
τi

)(4α + 6
τi

). It is straightforward to verify that
(i) and (ii) imply conditions (A)–(D) in Section 2 and conditions (F)–(H) in
Lemma A.1.

(5) GHS. θi = αλi , Var(Yi) = α(1 + λ2
i )/τi , so v0 = α, ν1 = 0, ν2 = 1/α.

skew(Yi) = (2/
√

τiα)λi/(1 + λ2
i )

1/2 ≤ 2/
√

τiα. Var(Y 2
i ) = 2α

τi
(1 + λ2

i )(α +
1
τi

)( 1
τi

+ 3
τi

λ2
i + 2αλ2

i ). It is then straightforward to verify that (i) and (ii) imply
conditions (A)–(D) in Section 2 and conditions (F)–(H) in Lemma A.1. �

PROOF OF THEOREM 4.6. We note that the set over which the supremum is
taken is a subset of that of Theorem 2.1. The desired result thus automatically
holds. �

PROOF OF THEOREM 4.7. With Theorem 4.6 established, the proof is almost
identical to that of Theorem 2.2. �
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PROOF OF THEOREM 4.8. We note that the set over which the supremum is
taken is a subset of that of Theorem 2.3. The desired result thus holds. �

PROOF OF THEOREM 4.9. The proof essentially follows the same steps in that
of Theorem 2.2. �
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