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An efficient exploration of the configuration space of a biopolymer is essential for its structure
modeling and prediction. In this study, the authors propose a new Monte Carlo method, fragment
regrowth via energy-guided sequential sampling �FRESS�, which incorporates the idea of multigrid
Monte Carlo into the framework of configurational-bias Monte Carlo and is suitable for chain
polymer simulations. As a by-product, the authors also found a novel extension of the Metropolis
Monte Carlo framework applicable to all Monte Carlo computations. They tested FRESS on
hydrophobic-hydrophilic �HP� protein folding models in both two and three dimensions. For the
benchmark sequences, FRESS not only found all the minimum energies obtained by previous
studies with substantially less computation time but also found new lower energies for all the
three-dimensional HP models with sequence length longer than 80 residues. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2736681�

I. INTRODUCTION

Predicting a protein’s tertiary structure from its primary
amino acid sequence is a long standing problem in biology.
Two major difficulties have been challenging researchers: the
design of appropriate energy functions and the exploration of
the vast space of all possible structures; the latter has been
suggested as the current bottle neck.1 Main strategies for
exploring a complex configuration space include molecular
dynamics simulations, Markov chain Monte Carlo �MCMC�
methods,2 and other heuristics-based approaches. In a typical
MCMC simulation, a new conformation is proposed at each
step �known as a “proposal” or a “proposed move”�, and the
proposed move is either accepted or rejected according to a
probability rule pioneered by Metropolis and co-workers.3

Hastings4 later generalized the method so that a “biased”
move is allowed to be proposed. Since trapping at local en-
ergy minima is a general difficulty facing all sampling meth-
ods, designing a move set that can quickly traverse the con-
figuration space is crucial to the success of any Monte Carlo
strategy. Most existing MCMC moves for biopolymer simu-
lations tend to be too rigid or too local. For example, the
popular pivot move5 has a very low acceptance rate at com-
pact states. Other moves such as corner moves, end moves,
and crankshaft moves designed for lattice polymers6 only
emulate a subset of real protein motions and are of a very
local nature.

We introduce a new MCMC method, fragment regrowth
via energy-guided sequential Sampling �FRESS�, for protein
structure simulation. A key ingredient of FRESS is to regrow
from the current conformation a randomly selected fragment
of varying length in each iteration. This regrowth of the frag-
ment is carried out by energy-guided importance sampling so
that conformations with lower energies adjacent to the cur-

rent conformation have higher probabilities to be sampled.
An example of the fragment growth is given in Fig. 1�a�.
FRESS embodies strengths of both configurational-bias
Monte Carlo7 �CBMC� and multigrid Monte Carlo
�MGMC�.8 First, by employing sequential importance sam-
pling to account for its energy “environment” when regrow-
ing the selected fragment �as with a typical CBMC algo-
rithm�, FRESS shares the capability of sequentially probing
the local energy landscape with CBMC. Second, by regrow-
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FIG. 1. An example of fragment growth on the 2D square lattice. �a� One
step of FRESS move, with dashed border in �1� indicating the regrown
segment. �b� Under FRESS the global minimum energy conformation B can
be reached from a compact conformation A in just four steps when the
maximum allowed fragment length is set to six. Residues enclosed in the
dashed lines are the fragments to be regrown. The sequence and its ground
state were taken from Ref. 32.
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ing fragments of different lengths, FRESS benefits from MG-
MC’s insight of balancing local exploration and global
moves.

II. RESULTS

A. Folding HP sequences

We applied FRESS to both two-dimensional �2D� and
three-dimensional �3D� HP protein folding models, in which
the amino acid residues are simplified to two types: a hydro-
philic type �P type�, which likes water, and a hydrophobic
type �H type�, which dislikes water, and the structure is de-
scribed by a self-avoiding walk on a 2D square or 3D cubic
lattice. Energies eHH=−1 and eHP=ePP=0 are assigned to
interactions between noncovalently bound neighbors on the
lattice. The potential energy of a conformation is simply the
sum of energy contributions from the �noncovalently� inter-
acting lattice neighbors. This energy assignment leads to the
desirable feature that hydrophobic residues tend to form a
compact core surrounded by a hydrophilic shell.

The problem of finding the ground state of an HP se-
quence has been proven to be NP-complete9 and, thus, heu-
ristic methods such as those based on Monte Carlo are nec-
essary. Conformation spaces of proteins not only have many
local energy minima but are also very constrained around
compact conformations. All these difficulties are present in
the HP model. Searching minimum energy conformations of
HP sequences therefore presents a very challenging test for
protein structure prediction and optimization methods. In-
deed, although several HP model sequences have been pro-
posed and studied for many years, researchers can still find
new conformations with lower energies from time to time.

We first considered ten benchmark 48-residue sequences
designed for 3D cubic lattice �Table I�.10 We compared the

optimization performance of FRESS with those of an
MCMC algorithm using only standard local moves �includ-
ing the end, corner, and crankshaft moves�, nPERMis �Ref.
11� and nPERMh �Ref. 12� �two Rosenbluth type chain-
growth-based methods�, the core-guided �CG� search,13 and
ant colony optimization �ACO�.14 As shown in Table I,
FRESS found the minimum energies for all ten sequences in
less than 1 min on average. In contrast, the standard MCMC
algorithm �with all other conditions identical to those of
FRESS� found the minimum energies for only two of the ten
sequences even with a fourfold increase in the average run-
ning time. CG was not able to find the minimum energy for
sequence 9. ACO had to spend a substantially longer time
than other algorithms to reach the minimum energies. Both
nPERMh and nPERMis performed as consistently well as
FRESS for these short sequences.

We also tested FRESS on ten 64-residue benchmark se-
quences reported in Unger and Moult15 for 3D folding. For
each sequence FRESS found minimum energy conforma-
tions that match the best known result to date,16 but did not
find any new lower energies. We suspect that for these rela-
tively short sequences the globally lowest energies have al-
ready been reached. Representative conformations found by
FRESS �one for each sequence� can be found online.17

An intuitive reason why FRESS may have a better capa-
bility in exploring conformation spaces of proteins is that the
fragment regrowth moves with variable fragment length are
capable of escaping local energy traps. As shown in Fig.
1�b�, in just four FRESS moves one can reach the 2D global
minimum energy conformation from a very different com-
pact conformation for a 16-residue HP sequence. In contrast,
it may take many steps of standard local MCMC moves to do
so.

We next assess FRESS’s ability in finding minimum en-

TABLE I. Comparison of performances of different methods on ten benchmark 3D HP sequences �Ref. 10�.
The setting for FRESS: starting temperature Th=3.5, minimum temperature Tl=0.1, and temperature decreasing
by 0.98 geometrically; fragment lengths between 2 and 12; and 50 000 moves at each temperature. ST: standard
local moves with 2 000 000 moves at each temperature; other settings are the same as FRESS. Rows 2–11: the
minimum energy �time spent on each run in minutes� found by the corresponding method. Row 12: the number
of sequences for which the minimum energy conformations were found �the average time spent on the
searches�. The CPUs of the computers used to obtain the results are: FRESS and ST, 1.4 GHz PC; nPERMis,
167 MHz PC; nPERMh, 1.84 GHz PC; ACO, 2.4 GHz PC; CG, SPARC I workstation.

Seq. FRESS ST CGa nPERMisb nPERMhc ACOd

1 −32�0.72� −32�2.03� −32�9.4� −32�0.13� −32�1.22� −32�30�
2 −34�0.88� −32�4.02� −34�35� −34�0.23� −34�1.45� −34�420�
3 −34�0.77� −32�4.02� −34�62� −34�0.71� −34�0.37� −34�120�
4 −33�0.53� −31�3.95� −33�29� −33�6.57� −33�1.83� −33�300�
5 −32�0.72� −31�3.97� −32�12� −32�2.55� −32�1.78� −32�15�
6 −32�0.68� −31�3.93� −32�460� −32�1.44� −32�0.58� −32�720�
7 −32�1.12� −30�3.97� −32�64� −32�3.35� −32�0.50� −32�720�
8 −31�0.80� −30�3.73� −31�38� −31�0.46� −31�2.01� −31�120�
9 −34�0.73� −33�3.88� −33�26� −34�10.53� −34�32.7� −34�450�
10 −33�0.73� −33�1.90� −33�1.1� −33�0.08� −33�0.34� −33�60�

Summ. 10�0.77� 2�3.54� 9�73.6� 10�2.61� 10�4.28� 10�296�
aReference 13.
bReference 11.
cReference 12.
dReference 14.
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ergy conformations for long HP sequences. We collected
from the literature 13 sequences with more than 50 residues
�listed in Table II�. They have been actively studied on 2D
square lattice or 3D cubic lattice by many researchers. Meth-
ods we considered here include the evolutionary Monte
Carlo �EMC�,18 sequential importance sampling with pilot-
exploration resampling �SISPER�,19 equienergy sampler
�EES�,20 modified pruned-enriched Rosenbluth methods21

�nPERMis11 and nPERMh12�, guided simulated annealing
�GSA�,22 and contact interactions �CI� method.23

For all the 2D sequences �Table III�, FRESS was able to
find minimum energies that match the best known results
using very little computation time—less than 20 min for
each on a 1.4 GHz PC. For 3D sequences �Table IV�, in

addition to finding the lowest energies obtained previously,
FRESS found energies lower than the best known ones for
all sequences longer than 80 residues. Sequence 3D88 is an
88-residue long sequence designed to have the ground state
energy of −72.13 FRESS found this ground energy �Fig.
2�a��, whereas neither nPERMis nor nPERMh reached it. It
was argued12 that the failure of PERM-based algorithms to
reach the designed optimum for this sequence is likely due to
a very severe long-range interaction effect, similar to that in
sequence 2D64. Sequences 3D103, 3D124, and 3D136 were
modeled after real proteins cytochrome C, ribonuclease A,
and staphylococcal nuclease, respectively.24 Previously
known lowest energies for them are −56,25 −7111,12 �by both
nPERMis and nPERMh�, and −8011 �by nPERMis�, respec-

TABLE II. Benchmark HP sequences longer than 50 residues.

Seq. code Length Sequence

2D50 50 HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH
2D60 60 PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHPPPPH

HHHHHPHHPHP
2D64 64 HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPPHPH

PHHHHHHHHHHHH
2D85 85 HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPPPHHHHHHHH

HHHHPPPHHHHHHHHHHHHPPPHPPHHPPHHPPHPH
2D100a 100 PPPPPPHPHHPPPPPHHHPHHHHHPHHPPPPHHPPHHPHHHHHPHHHHHHH

HHHPHHPHHHHHHHPPPPPPPPPPPHHHHHHHPPHPHHHPPPPPPHPHH
2D100b 100 PPPHHPPHHHHPPHHHPHHPHHPHHHHPPPPPPPPHHHHHHPPHHHHHHPP

PPPPPPPHPHHPHHHHHHHHHHHPPHHHPHHPHPPHPHHHPPPPPPHHH
3D58 58 PHPHHHPHHHPPHHPHPHHPHHHPHPHPHHPPHHHPPHPHPPPPHPPHPPHH

PPHPPH
3D64 64 PHHPHHPHHHPPHPHPPHPHPPHHHPHHPHHPPHHPHHPHHHPPHPHPPHP

HPPHHHPHHPHHP
3D67 67 PHPHHPHHPHPPHHHPPPHPHHPHHPHPPHHHPPPHPHHPHHPHPPHHHPPP

HPHHPHHPHPPHHHP
3D88 88 PHPHHPHHPHPPHHPPHPPHPPHPPHPPHPPHHPPHHHPPHHHPPHHHPPHH

HPPHPHHPHHPHPPHPPHPPHHPPHPPHPPHHPPHP
3D103 103 PPHHPPPPPHHPPHHPHPPHPPPPPPPHPPPHHPHHPPPPPPHPPHPHPPHPPPP

PHHHPPPPHHPHHPPPPPHHPPPPHHHHPHPPPPPPPPHHHHHPPHPP
3D124 124 PPPHHHPHPPPPHPPPPPHHPPPPHHPPHHPPPPHPPPPHPPHPPHHPPPHHPH

PHHHPPPPHHHPPPPPPHHPPHPPHPHPPHPPPPPPPHPPHHHPPPPHPPPHHH
HHPPPPHHPHPHPHPH

3D136 136 HPPPPPHPPPPHPHHPHHPPPPHPHHHPPPPHPHPHHHHPPPPPPPPPPPHPPH
PPPHPHHPPPHHPPHPPHPHPHPPPPPPPPHPPPHHHHHHPPPHHPPHHHPPP
HHPHHHHHPPPPPPPPPHPPPPHPHPPPP

TABLE III. Comparison of performances of different methods on 2D HP sequences. NA means data not
available. The number in each cell is the minimum energy obtained by the corresponding method for the
respective HP sequence.

2D seq. EMCa SISPERb GSAc nPERMisd EESe FRESS

2D50 −21 −21 NA NA −21 −21
2D60 −35 −36 −36 −36 −36 −36
2D64 −39 −39 −42 −42 −42 −42
2D85 NA −52 −52 −53 −53 −53

2D100a NA −48 −48 −48 −48 −48
2D100b NA −49 −50 −50 −49 −50

aReference 18.
bReference 19.
cReference 22.
dReference 11.
eReference 20.
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tively. We found new lower energies for all of them as −57,
−75 and −83, respectively. Representative conformations
with these new lowest energies are shown in Fig. 2.

B. Generalized Metropolis-Hastings framework

We found a novel generalization of the Metropolis-
Hastings �MH� algorithm,3,4 of which FRESS is a special

case. The classic MH algorithm for sampling from the Bolt-
zmann distribution ��C��exp�−E�C� /T� starts from an ini-
tial configuration C�0� and then iterates as follows: at itera-
tion k+1, we �a� generate a new configuration C� from a
transition function K�C�k�→C�� chosen at will, and �b� let
the next configuration C�k+1�=C� with probability p and let
C�k+1�=C�k� with probability 1− p, where

p = min�1,
exp�− E�C��/T�K�C� → C�k��
exp�− E�C�k��/T�K�C�k� → C��� .

In some cases �such as FRESS�, we may need the fol-
lowing scheme to make a proposal: �i� draw an auxiliary
variable V from the current configuration C�k� according to
A�C�k�→V�; �ii� with the help of the auxiliary variable V,
draw C� from T��C�k� ,V�→C��. If we have to follow the MH
routine, we need to compute the probability of C�k�→C� by
integrating out V, which can be difficult or even impossible.
To overcome this difficulty, we consider the augmented dis-
tribution �1/Z�exp�−E�C� /T�A�C→V� in the expanded
space of �C ,V�. The detailed balance condition on the aug-
mented distribution suggests the following generalized MH
rule: accept the proposed move with probability

p = min�1,
exp�− E�C��/T�A�C� → V�

exp�− E�C�k��/T�A�C�k� → V�

�
T��C�,V� → C�k��
T��C�k�,V� → C��� . �1�

This generalization circumvents the need of integrating out
V.

Note that the classic MH algorithm can also be formu-
lated as above. For example, in the Ising model simulation, V
can indicate the randomly selected spin for updating. How-
ever, variable V is always integrated out in computing the
standard MH ratio. The usefulness of the generalized rule �1�
can be best illustrated by the FRESS algorithm, in which the
new configuration C� is obtained from the old configuration
C by having a randomly selected segment deleted and then
sequentially regrown �see Method for more details�. Since
the segment is selected at random and the regrowth process
is carried out by sequential importance sampling, there are in
general many possible ways to reach C� from C �unlike the
spin selection in the Ising model�. For example, multiple
overlapping fragments could be regrown from C to reach the
same C�. The standard MH recipe requires us to enumerate
and add up all these possibilities, which is extremely diffi-
cult. In contract, the generalized MH rule allows us to take
the segment selection as the auxiliary variable V �see
Method� so as to avoid the difficult computation.

An interesting variation to the above approach is to pro-
pose also a new auxiliary variable V� from A�C�→V��, and
then accept �C� ,V�� jointly with probability

p = min�1,
exp�− E�C��/T�
exp�− E�C�k��/T�

�
T��C�,V�� → C�k��
T��C�k�,V� → C�� � .

�2�

To see that this rule also maintains the detailed balance for
the augmented distribution, we note that the new proposal

TABLE IV. Comparison of performances of different methods on 3D se-
quences longer than 50 residues. The numbers are the minimum energies
found by a particular method; and the numbers in parentheses are times in
hours for the searches. “NA” means data not available. The parameter set-
ting of FRESS for 3D88 and 3D103 are starting temperature Th=3.5, lowest
temperature Tl=0.1, and temperature decreasing by 0.995 geometrically; 106

moves at each temperature; and fragment lengths from 2 to 16. The setting
for 3D124 and 3D136 is the same as above except the number of moves at
each temperature is 107 and 5�106, respectively. The CPUs of the comput-
ers used to obtain the results: FRESS, 1.4 GHz PC; nPERMh, 1.84 GHz PC;
nPERMis, 667 MHz PC. The reported lowest energies for sequences 3D124
and 3D136 were found in less than two weeks.

3D sequence CIa nPERMisb nPERMhc FRESS

3D58 −42 −44 �0.19� −44 �1.10� −44 �0.09�
3D64 NA −56 �0.45� −56 �0.47� −56 �0.53�
3D67 NA −56 �1.10� −56 �0.33� −56 �1.41�
3D88 NA −69 �NA� −69 �0.45� −72 �5.03�
3D103 −49 −55 �3.12� −55 �0.25� −57 �4.47�
3D124 −58 −71 �12.3� −71 �1.19� −75d

3D136 NA −80 �110� NA −83e

aReference 23.
bReference 11.
cReference 12.
dConformations with energy of −74 were found in 4.83 hours.
eConformations with energy of −82 were found in 6.42 hours.

FIG. 2. Sample conformations with the minimum energies newly discovered
by FRESS. �a� A conformation of sequence 3D88 with E=−72. �b� A con-
formation of sequence 3D103 with E=−57. �c� A conformation of sequence
3D124 with E=−75. �d� A conformation of sequence 3D136 with E=−83.
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attempts to move �C�k� ,V� in the expanded space to �C� ,V��
according to T��C�k� ,V�→C���A�C�→V��, which suggests
that �C� ,V�� should be jointly accepted with probability

p = min�1,
exp�− E�C��/T�A�C� → V��

exp�− E�C�k��/T�A�C�k� → V�

�
T��C�,V�� → C�k��A�C�k� → V�
T��C�k�,V� → C��A�C� → V�� � .

The cancellation of A�C�k�→V� and A�C�→V�� in the above
formula leads to Eq. �2�. As with Eq. �1�, auxiliary variables
V and V� are used here to avoid the difficulty of integrating
out all the possibilities of reaching C� from C. One therefore
only needs to record the configurations C�k�, but not the V’s
along the Monte Carlo iterations �the sole function of V and
V� is to make the move proposal and its acceptance more
efficient�.

Although some special forms of formulas �1� and �2�
have been observed �e.g., in orientational-bias Monte Carlo26

and the multiple-try Metropolis,27 where variable V corre-
sponds to the multiple proposed configurations�, we were not
able to find such a general extension of the MH framework
in the literature.

III. DISCUSSION

FRESS has a few tuning parameters. Using the ten
benchmark 48-residue sequences, we studied performances
of FRESS under various parameter settings. The best setting
we found for the fragment length range is Lmin=2 and Lmax

=12 �see also the legend of Table V�. The length sampling
distribution p�l��1/ l seems to strike a good balance between
computation efficiency and optimization performance. We
note that when the fragments selected in each iteration were
no longer than four residues, the method performed signifi-
cantly worse; whereas when long fragments �l=12� are al-
ways selected, the method performed well but took signifi-

cantly longer time. We also observed that without using
importance sampling for regrowth, the method performed
much poorly. But the method worked fine without using the
depth-first-search28 �DFS� �see Method� for fragment re-
growth.

It is not always desirable to regrow long fragments be-
cause large scale moves tend to be rejected more frequently
when the conformation is compact. To better understand how
FRESS explores the conformation space, we clustered all
distinct conformations visited by FRESS based on their con-
tact maps.29 Conformations with similar contact maps nor-
mally have similar overall topology. The number of clusters
thus approximates the number of conformation types. The
number of distinct conformations is another measure on how
the space is explored. We found that with longer fragment
lengths, the algorithm visited more clusters but fewer distinct
conformations, whereas with shorter fragment lengths the al-
gorithm visited more distinct conformations but fewer clus-
ters. This indicates that updating long fragments helps the
algorithm jump out of energy basins, whereas updating
shorter fragments helps the algorithm better explore the local
area. The combination of different fragment lengths allows
FRESS to locate an energy basin more efficiently, but not
being trapped there for long, which is quite analogous to
MGMC �Ref. 8� and is largely responsible for FRESS’ effec-
tiveness. In comparison, the original CBMC �Ref. 7� only
regrows a terminal portion of the conformation and the
modification of Vendruscolo30 allows the regrowth to take
place in an internal portion, but only of fixed length. Select-
ing the fragment length l with probability p�l��1/ l in
FRESS further accommodates the intuition that for real poly-
mers moves involving many residues are less frequent than
moves involving just a few.

In this study we proposed a new MCMC method that
combines the benefit of traditional CBMC and the insight of
MGMC, and obtained attractive results for HP sequence

TABLE V. Performances of FRESS on ten benchmark 3D sequences under five parameter settings. Last row:
the number of sequences for which the minimum energy conformations were found �the average time spent on
the searches� in the end. Each cell contains the minimum energy �and the time spent in minutes on each run�
reached under the respective condition for the respective sequence. For all the sequences, starting temperature
Th=3.5, minimum temperature Tl=0.1, and temperature decreasing by 0.98 geometrically. FRESS �best�: frag-
ment lengths are chosen between 2 and 12, with 5�104 moves at each temperature; Lmax=4: fragment lengths
are chosen from 2 to 4, 2�105 moves at each temperature; L=12: fragment length is fixed to 12, 2�104 moves
at each temperature; NIS: no importance sampling used, 8�104 moves at each temperature; NR: without DFS
for fragment regrowth, 6�104 moves at each temperature.

Seq. FRESS �the best setting� Lmax=4 L=12 NIS NR

1 −32�0.72� −32�1.05� −32�1.02� −32�0.93� −32�0.72�
2 −34�0.88� −32�2.60� −33�2.07� −33�1.45� −34�0.75�
3 −34�0.77� −33�2.58� −34�1.23� −34�0.87� −34�1.08�
4 −33�0.53� −33�1.35� −33�1.53� −32�1.65� −33�0.80�
5 −32�0.72� −32�1.33� −32�1.32� −32�1.00� −32�0.72�
6 −32�0.68� −32�1.38� −32�0.83� −31�1.58� −32�0.78�
7 −32�1.12� −31�2.62� −32�1.32� −31�1.58� −32�0.92�
8 −31�0.80� −30�2.57� −31�1.53� −30�1.57� −31�0.73�
9 −34�0.73� −33�2.63� −34�1.18� −32�1.57� −34�0.72�

10 −33�0.73� −33�1.33� −32�2.15� −32�1.52� −32�1.45�

Summ. 10�0.77� 5�1.94� 8�1.42� 3�1.37� 9�0.87�
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folding with notable computation efficiency. The flexibility
of stochastic fragment regrowth as a single Monte Carlo
move for chain polymer simulations and the theoretical
framework we employed here to justify the new move allow
the current method to be readily extendable to more realistic
protein/biopolymer models. We have focused here mainly on
structural optimization. We expect the method to be also use-
ful for general sampling purpose after incorporating the
weights of the old and new fragments into the generalized
MH criteria as shown in formulas �1� and �2�.

IV. METHOD

A. FRESS algorithm for chain polymer simulation

Suppose temperature T is fixed for now. At each itera-
tion, FRESS first selects the fragment length l� �Lmin,Lmax�
with probability proportional to 1/ l, where Lmin and Lmax

�e.g., 2 and 12� are minimum and maximum allowed lengths
of a fragment. An end position p of the fragment is then
uniformly sampled between the first and �n− l+1�th residue,
where n is the overall sequence length. The fragment con-
taining residues from p to p+ l−1 is then deleted from the
current configuration and will be regrown. If the fragment
does not contain a terminal residue, one of the two growth
directions �forward or backward� is chosen at random. Let
the starting residue be s and the end residue be e. Without
loss of generality, we assume s�e �forward growth� in the
following discussion.

Let a conformation of the target chain polymer be de-
noted by C= �x1 , . . . ,xi , . . . ,xn�, where xi is the coordinate of
residue i, and let its partial conformation, in which residues
from t to e are deleted temporarily, be denoted by Ct,e

= �x1 , . . . ,xt−1 ,xe+1 , . . . ,xn�. Starting from s �until reaching e�
the fragment is regrown in FRESS one residue at a time. To
regrow residue t, we place it at one of the available positions
adjacent to residue t−1 according to the probability pt

j

�exp�−�Et+1
j −Et� /T�, where Et is the energy of the partial

conformation Ct,e, and Et+1
j is the energy of the partial con-

formation Ct+1,e
j = �x1 , . . . ,xt−1 ,xt

j ,xe+1 , . . . ,xn�, where xt
j de-

notes the jth possible position for residue t. Occupied posi-
tions and positions that cannot make residue e connected to
e+1 no matter how one places residues from t+1 to e are
given zero probability. In our implementation, a condition
�necessary but not sufficient� for judging whether the chain
can connect is D�xt

j ,xe+1�� 	e− t+1	, where D�xt
j ,xe+1� is the

lattice distance between the position of residue e+1 and the
position of xt

j.
Finally, if the regrowth is unsuccessful in the end, we

just return to the old configuration, record it, and move on to
the next iteration; if, on the other hand, we successfully re-
grow the fragment, the new conformation C� is accepted
with probability

p = min�1,exp�− �EC� − EC�/T�w�C�/w�C��� , �3�

where EC� and EC are the energies of C� and the old confor-
mation C, respectively, and w�C�� and w�C� are the Rosen-
bluth weights of the regrown and the original fragments, re-
spectively. The Rosenbluth weight w�C�� is computed by
tracing the placement of each individual residue in the re-

growth process and multiplying their placement probabilities
together, as in CBMC.

B. Justification and modification

Because there are more than one way to reach a new
configuration C� from the old configuration C �for example,
overlapping fragments could be regrown to reach the same
C��, the classical MH recipe is difficult to use but the gener-
alized MH framework described in the Result section can be
easily applied. More precisely, in FRESS, the auxiliary vari-
able V for the proposal step consists of the fragment’s length
and starting position, which is independent of the actual con-
figuration C. Thus, A�C→V� cancels out with A�C�→V� in
formula �1�, and T��C ,V�→C�� is just the Rosenbluth
weight w�C��, which leads to formula �3�.

Since our primary goal here is not sampling but finding
the optimal structural configuration, we implemented a few
shortcuts to improve the computation efficiency. First, the
weights w�C� are ignored, and only energies of the new and
old configurations are used to determine the acceptance
probability of the proposed move. This saves 50% of the
computing time and does not appear to affect the algorithm’s
ability to explore the space. Second, in order to improve the
survival rate of the fragment growth, we adopted a DFS
strategy, which guarantees that a valid conformation for the
fragment can be found. During the placement of a residue of
the fragment, we store all its possible positions that have
nonzero sampling probabilities and are not currently selected
for growth. When the growth of the fragment goes to a dead
end at residue t, we come back to the residue that is closest
to t and has at least one stored, unvisited position. This pro-
cess is repeated until a valid conformation is found for the
selected fragment. The employment of DFS improves the
efficiency of ground state search, but makes it difficult to
maintain the detailed balance for the sampling algorithm.
Third, simulated annealing31 is adopted to finally locate the
optimal configuration.
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