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By introducing fractional Gaussian noise into the generalized Langevin equation, the subdiffusion of
a particle can be described as a stationary Gaussian process with analytical tractability. This model is
capable of explaining the equilibrium fluctuation of the distance between an electron transfer donor and
acceptor pair within a protein that spans a broad range of time scales, and is in excellent agreement with

a single-molecule experiment.
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The ubiquitous Brownian diffusion has been the cor-
nerstone for statistical mechanics and is well understood.
However, Brownian motion theory cannot account for the
so-called anomalous diffusion processes. A major class of
anomalous diffusion is subdiffusion, in which the mean-
squared displacement is (Ax(7)?) ~ 1% (0 < a < 1, instead
of @ =1 as in Brownian diffusion). This subdiffusion
phenomenon is widespread in condensed phased systems
[1]. For example, it was recently found that the distance
between a donor and an acceptor of electron transfer
within a single protein molecule undergoes subdiffusion
[2]. This fluctuation of protein conformation results in
dynamic disorder of enzymatic rates [3,4]. Despite much
effort [5], the underpinning of subdiffusion is not well
understood. Here we report a theoretical model for sub-
diffusion based on the generalized Langevin equation
(GLE) with fractional Gaussian noise (FGN). Under a
harmonic potential, this model describes a stationary
Gaussian process of equilibrium fluctuation at a broad
range of time scales. The model is tested in the context
of the single-molecule experiment.

Brownian motion is well described by the Langevin
equation: m dv/dt = —{v + F(t), where v is the veloc-
ity of a Brownian particle with a mass m, { is the fric-
tional constant, and the random fluctuation force F(¢) is
assumed to be white noise (F(r)) = 0, ({) denoting trajec-
tory averaging), with the autocorrelation function

(F(OF(t')) = 2{kpTé(t — 1), (1)

where kp is the Boltzman constant and T is absolute
temperature. Equation (1) is a consequence of the
fluctuation-dissipation theorem, which relates the ampli-
tude of F(z) to the frictional constant. It follows that the
velocity autocorrelation  function is (v(0)v(r)) =
(kgT/m)exp(—t{/m). For the displacement Ax(r) =
[ v(s)ds one obtains the mean-squared displacement of
a Brownian particle at large #: (Ax(¢)?) = 2kzT/O)t,
which is the Einstein formula for Brownian motion.

If F(¢) is not white noise, the motion of the particle is
described by GLE [6]:
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dv

m—- = —{[_t v(u)K(t — u)du + F(¢) 2)

where the fluctuation-dissipation theorem links the mem-
ory kernel K(¢) with the autocorrelation function of F(z):
(F(t)F(¢')) = kpT{K(t — /). If F(r) is a Gaussian process,
v(r) will also be Gaussian, which can be fully described if
its mean and autocorrelation function are known.

The key point of this Letter is to introduce a Gaussian
noise known as fractional Gaussian noise to the GLE. The
FGN is closely related to the fractional Brownian motion
(FBM) process [7], which is defined as a Gaussian process
B with an index H € (0, 1), mean (B®(r)) = 0, and
the autocorrelation function, (B (t)BH(s)) = (|7|2# +
[s|? — |t — s|*)/2 for any t,5s =0. When H = 1/2,
FBM reduces to normal Brownian motion. The FBM
process has two unique properties: self-similarity and
stationary increments [8]. Self-similarity means that if
a time segment is taken from the FBM trajectory, after
proper normalization, the segment has the same behavior
as any segments of other time scales. Stationary incre-
ment means that the distribution of B#) () — B (s) does
not depend on the starting time s, but only on the time lag

t —s. FGN is defined as % . We take F(7) to be

FH(f) = J2kgTL dB(:t)(’), which is Gaussian and station-
ary. The autocorrelation function of FGN [9] is the mem-

ory kernel K(7):

(H) (H)
K =2 <dBdt(0) dBdt (1)

= 2H(Q2H — D|e]*#72 + 2(1 + 2H)(1 — H)8(r)>~*H
3)

The physical constraint that K(0) has to be positive re-
quires 1/2 = H = 1. The spectral density of the FGN is

R(w) = ﬁ" ¢ K(dt = 2T(2H + 1) sin(H )| @] -2
4)

which corresponds to the well known 1/f¢ noise [10].
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Although GLE has been applied to many systems, most
studies to date have not been concentrating on situations
with long-tailed memory kernels. Introducing FGN into
the GLE provides an appropriate physical description for
equilibrium fluctuation with a long memory in a closed
system [11].

Taking the memory kernel in the GLE to be the FGN
autocorrelation, we can apply Fourier transform to solve
the equation. The velocity autocorrelation function

C(t)=(v(0)v(t)>=% f " oS wdw  (5)

is given through its Fourier transform C(w) =
kyT{K(w)/|K (@) — imw|?, where
K (w) = fw e K(t)dt
0
=TQH + )|w|'?A[sin(Hm)
—icos(Hm)sgn(w)] (6)

For large ¢, the mean-squared displacement is

(Ax(1?) = <[ [) ’ v(s)dsT>

_ kgT sinQH )
¢ wHQH - 1)(2H —-2)

t2—2H. (7)

Therefore, subdiffusion (H > 1/2) is a consequence of a
GLE with FGN. When H = 1/2, both Eg. (5) and (7)
recover the Brownian diffusion results.

So far we have only considered diffusion without ex-
ternal forces. In the presence of an external potential
U(x), the force —U’(x) is added to the right side of
Eq. (2), which is —m?x(¢) for a harmonic potential:

mi(t) = —¢ fj F)K(t — u)du — ma?x(5) + FO(r),

®)

GLE in Eq. (8) can be derived from the Hamiltonian of a
harmonically bounded particle interacting with a heat
bath via the projection operator approach [6].

Under the overdamped condition, the particle has neg-
ligible acceleration. The GLE thus reads

mwx(t) = —¢ [_ FK(t — w)du + FO@),  (9)

whose solution x(r) is a stationary Gaussian process.
Using the Fourier transform method we obtain the auto-
correlation function C,(¢) = (x(0)x(7)) of x(z),

kgT sin(H )
w1 ~ H) 1/(2—2H)
y f°° cos(f[{T(2H + 1)/n]” )

0o m*w* — 2mw? cos(Hm)n + n*

C,(1) =

n (10)

At time 0, C,(0) = kzT/(mw?), which is independent
of H. Equation (10) is reduced to the Brownian diffu-
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FIG. 1. Schematics of the structure of Fre protein [14]. The
Tyr donor and FAD acceptor for the photo-induced electron
transfer reaction are shown.

sion result, C.(t) = kzT/(mw?)exp[—(mw?/{)t], when
H=1)/2.

We now consider the conformational dynamics of a
protein, flavin:NADH oxidoreductase (Fre) containing a
flavin adenine dinucleotide (FAD) and a nearby tyrosine
(Tyr), as shown in Fig. 1. A recent experiment shows that
the distance between FAD and Tyr in a single Fre mole-
cule fluctuates at a broad range of time scales (10741 s)
[2]. This spontaneous distance fluctuation was observed

through the variation of the fluorescence lifetime of the
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FIG. 2. Autocorrelation function of fluorescence lifetime
fluctuation of a FAD within a single Fre protein molecule,
plotted in logarithmic scale in time (from Ref. [2]). The decay
spanning a broad range of time scales results from the fluctua-
tion of the distance between FAD and Tyr, and is fit well with
the result of GLE with FGN (solid line).
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excited state of FAD, which receives an electron from the
Tyr [2]. Determined by the photo-induced electron trans-
fer reaction, the fluorescence lifetime y~!' of FAD has an
exponential dependence on the distance, x.q + x, between
the electron transfer donor (Tyr) and acceptor (FAD) [12]:

vy~ (t) = [kge  Plreat20)] 1 (11)

where k is a constant, x.q, ~ 4.5 A is the mean distance
[13], B~ 1.4 A~ for proteins [14]. Therefore, the dis-
tance fluctuation x(z) is an experimentally accessible one-
dimensional variable.

We model x(¢) by the GLE with FGN and a harmonic
bound under the overdamped condition. It then follows
that autocorrelation function of the lifetime fluctuation,

8y 1) =y (1) = (y1), is given by
(5')/71(0)5')/71(1)) — kaQezﬁxcq+52Cx(0)(ergzc»*(t) _ 1) (12)

Figure 2 shows the autocorrelation from experimental
data [2], which spans a broad range of time scales. Also

shown is an excellent fit to our model with the parameters
of H=0.74, {/mw? = 0.20 s, B?kzT/(mw?) = 0.81.

We note that the experimentally measured
(8y~1(0)8y~1(z)) also fits well [2,15] with the fractional
Fokker-Planck equation (FFPE) describing subdiffusion
in a potential. However, the FFPE [16] builds on the
assumption that the trapping time at a particular position
has a power law distribution with an infinite mean, which
implies a nonstationary (nonequilibrium) process [17]. In
contrast, the process governed by the GLE with FGN
have finite moments of all orders for the first passage
time, since it is known that for stationary Gaussian pro-
cesses all moments of the first passage time are finite [18]
if the autocorrelation eventually vanishes [as in Eq. (10)].

Higher order correlation functions of the fluorescence
lifetime should be more sensitive in testing different
models. We computed the three-time and four-time cor-
relation functions (§y~'(0)8y '(¢t;)6y '(¢; + t,)) and
By 106y M t)by (ty + 1)8y (1 + 1, + 13)) from
the experimental data and compared them with the theo-
retical values from our model:

5y~ (0)8y~ 1 (1)8y ™1 (t, + 1)) = kg 3B 3B CLO 2 (BIC ) +Cult )] — B Ctn) — B Cult) — B Culti+0) 4. 9),

(13)
8y 08y 1 (1)8y 1y + )8y (1) + 1, + 13))
= ka4e4ﬁxeq+2BZCX(0){€B2[CX(11)+Cx(t1+t2)+C.x(t1+t2+ts)+Cx(tz)+Cx(tz+r3)+CX(t3)] — PLC (1) +C (1 +1)+Co(1y)]
— PLCNHCU+0+6)+Coltr+13)] . pBCUn+0)+Colti+1+1)+Co(13)] — pBIC1+13)+Colt3)+Cult)] 1 pB7Cultr)
+ elgzcx(fl+12) + eﬁzc)(ﬁ*fz‘”ﬂ + eBZCx(lz) + eBZCX(t2+t3) + eﬁzcx(ls) — 3} (14)
Figure 3 shows the three-time and four-time |
correlations  (8y~1(0)8y '(1)8y~'(21))/{y"')® and  excellent agreement provides additional proof that x(7) is

8y 1 0)8y 1 (t)dy ' (21)8y~1(31))/{y')*; the overlaid
theoretical curves are calculated using the same parame-
ters obtained from fitting the data to Eq. (12) (Fig. 2). The

well described by our model. The fact that the fluctuation
of x(z) appears to be stationary Gaussian is intriguing, and
could arise from the fact the bounded donor-acceptor pair
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FIG. 3. Three-time and four-time correlation functions of fluorescence lifetime fluctuation of the same Fre molecule as in Fig. 2,
which agree well with the predictions from the GLE with FGN (solid lines according to Eq. (13) and (14) respectively) using the

same parameters obtained from the data fitting in Fig. 2.
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FIG. 4. Three-time fluorescence lifetime correlations
By 106y ()8y @Y/ y™"Y and (8y N0)6y'(20)X
8y~ 1(31))/{(y~ 'y of the same Fre molecule plotted against
each other for various t. The diagonal experimental data
indicates time reversibility, which is consistent with the pre-
diction from the GLE with FGN [diagonal dotted line and
Eq. (15)]. In contrast, FFPE results in the nondiagonal dashed
line using the parameters obtained by fitting (6y~1(0)8y~!(¢))
with FFPE; see Ref. [2] for details of the FFPE parameters.

interacts with a large density of quasi-independent oscil-
lators in the protein bath.

Equation (13) predicts an interesting time-symmetry:
For any #; and 1,

8y 108y 1))y (1) + 1))
=8y 1(0)8y (1) 8y~ (1) + 1)) (15)

Taking t, =1t t,=2t, Fig. 4 plots the ex-
perimental {8y~ 1(0)dy ' (1)8y~'(31))/{y~')® versus
8y 10)8y~1(2t)8y 1 (31))/{y ")} for various t. The di-
agonal experimental data is consistent with the prediction
from our model [Eq. (15) and the diagonal dotted line]. In
contrast, for a process described by the FFPE, the time
symmetry does not hold. The third order correlation
functions of y~! based on FFPE have been derived
[17], which resulted in the nondiagonal dashed curve.
Therefore, the experimental data indicates the stationary
Gaussian nature of x fluctuation and the adequacy of our
model in describing equilibrium fluctuation within a pro-
tein over FFPE. We note that FFPE proved to be able to
describe non-Gaussian subdiffusion processes [16].

In summary, our model in the framework of GLE and
FGN is capable of explaining subdiffusion dynamics, in
particular, equilibrium fluctuation of protein conforma-
tion at a broad range of time scales. The microscopic
origin of FGN is currently under investigation.
Applications of this model to other chemical and biologi-
cal problems are underway.
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Note added in proof—An identical but simpler expres-
sion of Eq. (10) has been found to be

kBT ma)2
= E,_ - @@
C,(1) ol 2 2m( [TQH + 1)

t2—2H)

where E,(z) = Y2, z"/T'(ak + 1) is the Mittag-Leffler
function [19].
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