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Abstract: We provide a complete proof of the convergence of a recently developed

sampling algorithm called the equi-energy (EE) sampler (Kou, Zhou and Wong

(2006)) in the case that the state space is countable. In a countable state space, each

sampling chain in the EE sampler is strongly ergodic a.s. with the desired steady-

state distribution. Furthermore, all chains satisfy the individual ergodic property.

We apply the EE sampler to the Ising model to test its efficiency, comparing it

with the Metropolis algorithm and the parallel tempering algorithm. We observe

that the dynamic exponent of the EE sampler is significantly smaller than those of

parallel tempering and the Metropolis algorithm, demonstrating its high efficiency.

Key words and phrases: Dynamic exponent, ergodic property, Monte Carlo meth-

ods, phase transition, steady-state distribution, temperature, transition kernel.

1. Introduction

In Monte Carlo simulation and statistical inference problems it is often im-
portant to obtain samples from a given distribution. For instance, in statistical
physics problems, the distribution of interest is usually the Boltzmann distribu-
tion

p(x) =
1

Z(T )
exp

(
− h(x)

T

)
, (1.1)

where h(x) is the energy of a state x, T is the temperature of the system, and
Z(T ) is a normalizing constant called the partition function. One wants to study
how the system behaves as temperature varies. In pure statistical applications,
the starting point is usually one given distribution, for example, a distribution
on a high-dimensional parameter space. However, we can view it as a special
case of (1.1) by defining the energy to be the negative log-density function with
the implicit temperature T = 1. For simple sampling problems, traditional al-
gorithms such as the Metropolis-Hastings (MH) algorithm and Gibbs sampler
work. However, if the sampling distribution is multimodal and the modes are far
from each other, which is often the case for practical multidimensional problems,
it is well known that these simple algorithms can be easily trapped in local modes
without being able to escape the high energy barrier. More advanced algorithms,
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such as simulated tempering and parallel tempering (the latter is also known as
replica exchange) (Geyer (1991); Geyer and Thompson (1995); Marinari and
Parisi (1992)), employ multiple Markov chains running at different temperatures
and use high temperature chains swapping with the low temperature chains to
improve the mixing rate. They tend to work better, but the swapping opera-
tion is still not powerful enough when the distributions is highly rugged. The
equi-energy (EE) sampler (Kou, Zhou and Wong (2006)) was recently developed
to address local trapping by utilizing a new type of move called the equi-energy
jump, which aims to move directly between states with similar energy level. A
detailed comparison between the EE sampler and parallel tempering was given
in Kou, Zhou and Wong (2006). The proof of the ergodicity and convergence of
the EE sampler in the original paper, however, is not complete. The first goal of
this article is to provide a complete and rigorous proof of the ergodicity in the
case that the state space is countable.

To begin, we briefly review the EE sampler. Let X denote the state space
and π(x) be the target distribution on X . The corresponding energy function is
h(x) = − log(π(x)). The EE sampler employs a sequence of energy levels:

H0 < H1 < H2 < · · · < HK < HK+1 = ∞,

such that H0 is below the minimum energy. Associated with the energy levels is
a sequence of temperatures

1 = T0 < T1 < T2 < · · · < TK .

The EE sampler considers K + 1 distributions, each indexed by a temperature
and an energy truncation. The ith distribution πi (0 ≤ i ≤ K) is πi(x) ∝
exp(−hi(x)), where hi(x) = max(h(x), Hi)/Ti. For each i, a sampling chain
targeting πi is constructed; π0 = π is the initial distribution of interest. The
state space X is partitioned according to the energy levels: X =

∪K
j=0 Dj , where

Dj = {x : h(x) ∈ [Hj ,Hj+1)}. We call the Dj energy rings. For any x ∈ X , let
I(x) denote the partition index such that I(x) = j if x ∈ Dj .

The EE sampler begins from a Metropolis-Hastings (MH) chain XK tar-
geting πK . After an initial burn-in period, the EE sampler starts constructing
the Kth order empirical energy rings D̂K

j , 0 ≤ j ≤ K, where D̂K
j contains all

the samples XK
n such that I(XK

n ) = j. For each x ∈ D̂K
j , the empirical dis-

tribution FK,j
n (x) is defined to be the number of visits of XK to x up to time

n, divided by the number of visits of XK to Dj up to time n. After the chain
XK has been running for N steps (for example, N could be 5 times the burn-in
period), the EE sampler starts the second highest order chain XK−1 target-
ing πK−1, while it keeps on running XK and updating D̂K

j . The chain XK−1
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is updated by two operations: the MH move and the equi-energy jump. At
each update a coin is flipped: with probability 1 − pee the current state XK−1

n

undergoes a MH move (i.e., execute one MH step that targets πK−1) to give
the next state XK−1

n+1 , and with probability pee, XK−1
n goes through an equi-

energy jump to yield XK−1
n+1 . In the equi-energy jump, first a state y is chosen

randomly from D̂K
j with respect to the empirical distribution FK,j

nK (y), where
j = I(XK−1

n ) and nK denotes the number of steps that the Kth order chain XK

has been running; then the chosen y is accepted to be XK−1
n+1 with probability

min
(
1, (πK−1(y)πK(XK−1

n ))/(πK−1(XK−1
n )πK(y))

)
; otherwise XK−1

n+1 keeps the
old value XK−1

n . After a burn-in period on XK−1, the EE sampler starts the
construction of the second highest-order empirical energy rings D̂K−1

j in the same
way as that of D̂K

j : D̂K−1
j contains all the samples XK−1

n such that I(XK−1
n ) = j.

Similarly, the empirical distribution FK−1,j
n (x) on D̂K−1

j is defined to be the num-
ber of visits of XK−1 to x up to time n, divided by the number of visits of XK−1

to Dj up to time n. After updating the chain XK−1 for N steps, the EE sampler
starts XK−2 targeting πK−2 while it keeps on running XK−1 and XK . . .

The EE sampler successively moves down the energy and temperature ladder
until the last distribution π0. Other than XK , each chain Xi, 0 ≤ i < K, is
updated by the equi-energy jump and the MH move with probabilities pee and
1 − pee, respectively, at each iteration. The equi-energy jump move proposes
a state y randomly from the empirical energy ring D̂i+1

I(Xi
n)

with respect to the

empirical distribution F
i+1,I(Xi

n)
ni+1 (y), where ni+1 denotes the number of steps

that chain Xi+1 has been running at the time, and accepts y with probability
min

(
1, (πi(y)πi+1(Xi

n))/(πi(Xi
n)πi+1(y))

)
. For each chain Xi, the energy rings

D̂i
j together with the empirical distribution F i,j

ni are constructed after a burn-
in period, and are used for the chain Xi−1 in the equi-energy jump. Figure 1
diagrams the EE sampler.

In the EE sampler each chain X i utilizes the full memory of the previous
chain Xi+1. Consequently, the sampling algorithm is not Markov. It is this
non-Markovian feature of the EE sampler that makes a rigorous proof of its
convergence challenging. For example, the nice theoretical framework pioneered
by Diaconis and coworkers (Diaconis and Stroock (1991)) to study the geomet-
ric ergodicity of MCMC algorithms is not directly available here. Neither is
the drift-and-minorization approach of Rosenthal and others (Rosenthal (1995)).
We note that Andrieu et al. (2008) considered the convergence of the EE sam-
pler. However, they only considered two chains (K = 1), and, furthermore, the
algorithm they studied is not the original EE sampler.

Since its introduction, the EE sampler has been applied to a variety of prob-
lems, including motif sampling in computational biology, density of states esti-
mation in statistical physics (Kou, Zhou and Wong (2006)), protein folding in
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Figure 1. Diagram of the EE sampler.

biophysics (Kou, Oh and Wong (2006)), and characterizing energy landscapes
in computational physics (Zhou and Wong (2008, 2009)). Here, in addition to
providing a rigorous proof of the convergence and ergodicity of the EE sampler
in the case of X being countable (Sections 2 and 3), we apply it (in Section 4)
to the Ising model as a further test of its sampling efficiency. We compare the
EE sampler with the MH algorithm and parallel tempering. We calculate the
dynamic exponent, which is the benchmark measure of a given Monte Carlo al-
gorithm’s efficiency in studying phase transition systems (Newman and Barkema
(1999)). We observe that the dynamic exponent of the EE sampler is significantly
smaller than those of the MH algorithm and parallel tempering, indicating the
EE sampler’s high efficiency.

2. Notation and Assumptions

To prove the convergence and ergodicity of the EE sampler for countable X ,
we first introduce some notation and definitions.

The ith (i ≤ K − 1) chain Xi in the EE sampler is a discrete stochastic
process. If the ith chain has been running for ni steps, we write the transition
probability as

Ki,ni
xy = P (X i

ni+1 = y|Xi
ni

= x,Xi
ni−1, . . . , X

i
0, X

i+1
ni+1

, Xi+1
ni+1−1, . . . , X

i+1
0 , . . . ,

XK
nK

, . . . , XK
0 ),

where we have ni+k = ni + kN , 1 ≤ k ≤ K − i.
Let P i = {P i

xy}, 0 ≤ i ≤ K, denote the transition matrix of the local MH
moves on the ith chain such that πi is the invariant distribution. Suppose the
ith (i ≤ K − 1) chain has been running for ni steps and the (i + 1)th chain has
been running for ni+1 steps. According to the construction of the EE sampler,
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if Xi
ni

= x, then with probability 1 − pee, Xi
ni+1 will be drawn via the local MH

move. With probability pee (0 < pee < 1) the EE sampler attempts to make an
equi-energy jump by randomly choosing a state y from D̂i+1

I(x) with respect to the

empirical distribution F
i+1,I(x)
ni+1 and accepts it with acceptance rate given by

αi
xy = min

(
1,

πi(y)πi+1(x)
πi(x)πi+1(y)

)
.

Therefore the effective transition probability from state x to state y is:KK,nK
xy = PK

xy,

Ki,ni
xy = (1 − pee)P i

xy + pee1D̂i+1
I(x)

(y)F i+1,I(x)
ni+1 (y)αi

xy, 0 ≤ i ≤ K − 1.

(2.1)
Note that the ith chain is not Markovian by itself because the equi-energy
jumps depend on samples generated by higher order chains. However, since
1D̂i+1

I(x)
(y)F i+1,I(x)

ni+1 (y) only involves the (i+1)th chain, the transition probabilities

Ki,ni satisfy

Ki,ni
xy = P (Xi

ni+1 = y|Xi
ni

= x,Xi
ni−1, . . . , X

i
0, X

i+1, Xi+2, . . . , XK)

= P (Xi
ni+1 = y|Xi

ni
= x,Xi+1).

It follows that for any bounded function f on X ,

E[f(Xi
n+m)|Xi

1, . . . , X
i
n, Xi+1] = Ki,n+m−1 . . .Ki,nf(Xi

n).

This implies that for any A ∈ σ(Xi
1, . . . , X

i
n) (the σ-algebra generated by Xi

1, . . .,
Xi

n) and B∈σ(X i
m,m≥n), P (A∩B|Xi

n, Xi+1)=P (A|Xi
n, X i+1)P (B|X i

n, Xi+1).
We can interpret this as the Markov property of the ith chain X i conditioned on
Xi+1.

Let us also define pi
j =

∑
x∈Dj

πi(x) and assume that pi
j > 0,∀i, j. Then we

can define a transition probability matrix EEi as

EEi
xy = 1DI(x)

(y)
πi+1(y)

pi+1
I(x)

αi
xy, 0 ≤ i ≤ K − 1.

Think of 1DI(x)
(y)(πi+1(y)/pi+1

I(x)) as a proposal from πi+1 but restricted to DI(x),
and αi

xy as the corresponding acceptance rate. Finally, define transition proba-
bility matrices Si as{

SK
xy = PK

xy,

Si
xy = (1 − pee)P i

xy + peeEEi
xy, 0 ≤ i ≤ K − 1.

(2.2)
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Assumptions. We assume the following conditions for the EE sampler:

(A) πi(x) defines a genuine probability distribution, i.e.,
∑

x exp(−hi(x)) < ∞.
(B) The MH transition matrix PK targets πK and is irreducible, reversible,

and aperiodic. That is, for any x, y ∈ X , there is an integer m such that
(PK

xy)
n > 0 ∀n > m, and πK(x)PK

xy = πK(y)PK
yx.

(C) For i = 0, . . . ,K−1, the MH transition matrix P i targets πi and is reversible.
It connects adjacent energy rings in the sense that for any 0 ≤ j < K, there
exist x1, x2 ∈ Dj with πi(x1) > 0, πi(x2) > 0, and y ∈ Dj−1 if j ≥ 1,
z ∈ Dj+1 if j < K with πi(y) > 0, πi(z) > 0 such that P i

x1y > 0, P i
x2z > 0.

To study the convergence, we use the following matrix norm throughout this
paper.

Definition 1. For any real-valued matrix {Axy, x, y ∈ X}, the norm of A is

‖A‖ = sup
x∈X

∑
y∈X

|Axy|. (2.3)

It can be shown that the set of matrices with finite norm is complete (Stroock
(2005)). Furthermore, ‖A1 + A2‖ ≤ ‖A1‖ + ‖A2‖, ‖A1A2‖ ≤ ‖A1‖ ‖A2‖ (if the
product A1A2 exists) and ‖aA‖ = |a| ‖A‖, a ∈ R. Accordingly, we use the
variation norm for vectors.

Definition 2. For any real-valued vector {vx, x ∈ X}, the variation norm of v is

‖v‖ =
∑
x∈X

|vx|.

For every πi, let Πi be the constant row matrix with each row being πi. For
x ∈ X , we let

Li
n(x) =

1
n

n−1∑
m=0

1(Xi
m = x)

be the average amount of time the chain Xi spends at x before time n.
A Markov chain with transition matrix P is called strongly ergodic if it has

a unique stationary probability π and ‖Pn − Π‖ → 0, as n → ∞. In the setting
of the EE sampler, we call the ith chain strongly ergodic if∥∥∥ n∏

k=0

Ki,k − Πi

∥∥∥ → 0 a.s., n → ∞.

We say that the ith chain has the individual ergodic property if it has a unique
steady state πi and for all x ∈ X

Li
n(x) → πi(x) a.s., n → ∞.
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The ith chain will be said to have the mean ergodic property if for all x ∈ X

E[Li
n(x)] → πi(x), n → ∞.

3. Ergodicity of the EE Sampler

The main theoretical result of this article is the following.

Theorem 1. Under Assumptions (A)−(C), if the state space X is countable, then
Xi, 0 ≤ i ≤ K − 1, is strongly ergodic with πi as its steady-state distribution.
Moreover, all chains satisfy the individual ergodic property and, therefore, the
EE sampler produces samples with the desired distributions πi.

To establish it, we first show that the transition probabilities Si lead to the
target distribution πi. Then we use induction to show that the time-inhomogeneous
transition probabilities Ki converge to Si under the matrix norm (2.3), and thus
they also target πi.

3.1. Properties of the transition matrices Si

Comparing (2.1) and (2.2), we see that we need to prove the individual
ergodic property of each chain in order to show that the Ki,k converge to Si as k →
∞. Since the process we encounter is non-Markovian and time inhomogeneous,
the classical proof of Markov chains’ ergodicity, which uses the Strong Law of
Large Numbers for i.i.d. random variables, does not work in our case. It turns
out that Si satisfies a Doeblin-type condition, a strong stability condition. Using
it, we can establish uniform integrability, which leads to the individual ergodic
property of the EE sampler (in the next subsection).

Lemma 1. The transition matrix Si, 0 ≤ i ≤ K − 1 is irreducible, aperiodic,
and reversible, with πi as a stationary probability distribution. Furthermore, Si

satisfies the Doeblin-type condition: for any fixed x ∈ DK , there is an integer
M > 0 and ε > 0 such that (Si)m

yx ≥ ε for all y ∈ X and all m ≥ M . Therefore,
πi is the unique stationary probability distribution and

‖(Si)n − Πi‖ ≤ 2(1 − ε)[n/M ].

Consequently, Si has the individual ergodic property and all states are positive
recurrent.

Proof. By definition, for 0 ≤ i ≤ K − 1, Si
xy is a mixture of P i and EEi.

Assumption (C) together with the transition matrix EEi guarantees that each
state is accessible from any other state through a combination of transitions via
P i and EEi. Therefore Si is irreducible. Since there is a positive probability
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of retaining a state at each transition, Si is also aperiodic. Next, it is straight-
forward to verify that the transition matrix EEi

xy satisfies the detailed balance
condition: πi(x)EEi

xy = πi(y)EEi
yx. This together with the assumption that P i

is a reversible MH transition matrix implies that for 0 ≤ i ≤ K − 1, Si satisfies
the detailed balance.

To see that Si satisfies the Doeblin-type condition, first note that every x ∈
Dj , j ≤ K − 1, satisfies h(x) < Hj+1, so πi(x) = ci exp(−max(h(x), Hi)/Ti) ≥
ci exp(−max(Hj+1, Hi)/Ti), where ci is the normalizing constant that depends
only on i. Therefore, Dj is finite for all j ≤ K − 1.

For x, y ∈ DK , by definition, h(x) ≥ HK , h(y) ≥ HK . Since

πi+1(y) = ci+1 exp(−h(y)
Ti+1

), πi(y) = ci exp
(
− h(y)

Ti

)
,

where ci and ci+1 are normalizing constants, we have

πi+1(y)
πi(y)

=
ci+1

ci
exp

[(
− 1

Ti+1
+

1
Ti

)
h(y)

]
≥ ci+1

ci
exp

[(
− 1

Ti+1
+

1
Ti

)
HK

]
:= bi > 0.

Thus, αi
yx = min (1, (πi(x)πi+1(y))/(πi(y)πi+1(x))) ≥ min (1, bi(πi(x)/πi+1(x))),

Si
yx ≥ pee

πi(x)
pi

K

αi
yx ≥ pee

πi(x)
pi

K

min
(

1, bi
πi(x)

πi+1(x)

)
:= sx,i > 0,

where sx,i depends only on x and i. Inductively, we can prove

(Si)k
yx ≥ (sx,i)k, k ≥ 1.

Now for any z /∈ DK , since Si is irreducible and aperiodic, it follows that there
exists an integer Mz such that (Si)k

zx > 0 for all k > Mz. However, as there are
only finitely many z /∈ DK , we can take M = maxz /∈DK

Mz and have

(Si)M
zx > 0, for all z /∈ DK .

Let ε = min(minz /∈DK
(Si)M

zx, miny∈DK
(Si)M

yx). Since ε ≥ min(minz /∈DK
(Si)M

zx,
(sx,i)M ) > 0, then (Si)M

yx ≥ ε for all y ∈ X . It follows that for all y ∈ X and
all m ≥ M , (Si)m

yx =
∑

z(S
i)m−M

yz (Si)M
zx ≥ ε

∑
z(S

i)m−M
yz = ε. This Doeblin-type

condition tells us that any fixed x ∈ DK can serve as a renewal state. The rest of
the statement in the lemma can be proved using Doeblin’s well-known arguments
and the Strong Law of Large Numbers as in Stroock (2005, pp.28-39).

Next we prove a simple but useful result that shows that in a countable state
space, pointwise convergence self-improves to uniform convergence.
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Lemma 2. If {am,n, m, n ≥ 0} and {bm, m ≥ 0} are two sequences of real num-
bers such that limn→∞ am,n = bm for all m ≥ 0 and

∑∞
m=0 |am,n| →

∑∞
m=0 |bm| <

∞ as n → ∞, then we have

lim
n→∞

∞∑
m=0

|am,n − bm| = 0.

Proof. By the triangle inequality, we have
∣∣∣|am,n| − |bm| − |am,n − bm|

∣∣∣ ≤ 2|bm|.
Since

∑∞
m=0 |bm| < ∞, the Dominated Convergence Theorem implies that, as

n → ∞,
∞∑

m=0

||am,n| − |bm| − |am,n − bm|| → 0. (3.1)

Since |am,n − bm| = |am,n − bm| − (|am,n| − |bm|) + |am,n| − |bm|, we know

∞∑
m=0

|am,n − bm| ≤
∞∑

m=0

||am,n − bm| − (|am,n| − |bm|)| +
∞∑

m=0

(|am,n| − |bm|).

Sending n → ∞, (3.1) and the assumption that
∑∞

m=0 |am,n| →
∑∞

m=0 |bm| now
imply

lim
n→∞

∞∑
m=0

|am,n − bm| = 0.

3.2. Ergodicity of the EE sampler

We use induction to establish the individual ergodic property for each chain
in the EE sampler.

Lemma 3. If the individual ergodic property holds for the (i + 1)th chain, that
is, for any x ∈ X , as n → ∞, Li+1

n (x) → πi+1(x) a.s., then we have as n → ∞,

‖Li+1
n − πi+1‖ → 0 a.s., (3.2)

‖Ki,n − Si‖ → 0 a.s.. (3.3)

Proof. Equation (3.2) is a direct consequence of Lemma 2 and the fact that∑
x∈X

Li+1
n (x) =

∑
x∈X

πi+1(x) = 1.

Therefore, for any ε > 0, there is an integer N such that ‖Li+1
n − πi+1‖ < ε, a.s.

for all n > N . For 0 ≤ j ≤ K, define εj =
∑

z∈Dj
πi+1(z)−

∑
z∈Dj

Li+1
n (z). Then
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for any n > N ,∑
y∈Dj

∣∣∣ Li+1
n (y)∑

z∈Dj
Li+1

n (z)
− πi+1(y)∑

z∈Dj
πi+1(z)

∣∣∣
=

∑
y∈Dj

∣∣∣ Li+1
n (y)∑

z∈Dj
Li+1

n (z)
− Li+1

n (y)∑
z∈Dj

πi+1(z)
+

Li+1
n (y)∑

z∈Dj
πi+1(z)

− πi+1(y)∑
z∈Dj

πi+1(z)

∣∣∣
≤

∑
y∈Dj

{ Li+1
n (y)|εj |(∑

z∈Dj
Li+1

n (z)
)(∑

z∈Dj
πi+1(z)

) +
|Li+1

n (y) − πi+1(y)|∑
z∈Dj

πi+1(z)

}

=
∑
y∈Dj

|εj | + |Li+1
n (y) − πi+1(y)|∑
z∈Dj

πi+1(z)
≤ 2

∑
y∈Dj

|Li+1
n (y) − πi+1(y)|∑

z∈Dj
πi+1(z)

≤ 2
∑
y∈Dj

|Li+1
n (y) − πi+1(y)| 1

minj
∑

z∈Dj
πi+1(z)

.

Let c = minj
∑

z∈Dj
πi+1(z) > 0, which depends only on i. It follows that for

n > N ,

K∑
j=0

∑
y∈Dj

∣∣∣ Li+1
n (y)∑

z∈Dj
Li+1

n (z)
− πi+1(y)∑

z∈Dj
πi+1(z)

∣∣∣ ≤ 2
c
‖Li+1

n − πi+1‖ ≤ 2ε

c
, a.s.

Hence, for any x ∈ X ,∑
y∈X

|Ki,n
xy − Si

xy| =
∑

y∈DI(x)

∣∣∣ Li+1
n (y)∑

z∈DI(x)
Li+1

n (z)
− πi+1(y)∑

z∈DI(x)
πi+1(z)

∣∣∣αi
xy ≤ 2ε

c
, a.s.,

which implies that ‖Ki,n − Si‖ = supx

∑
y∈X |Ki,n

xy − Si
xy| ≤ 2ε/c, a.s. for all

n > N .

With the establishment of Lemma 3, we can prove that the transition prob-
abilities Ki lead to the target distribution πi, and, as a consequence, the mean
ergodic property holds.

Lemma 4. If equation (3.3) holds for Xi, then as n → ∞,∥∥∥ n∏
k=0

Ki,k − Πi

∥∥∥ → 0 a.s. (3.4)

and, for any x ∈ X ,

E[Li
n(x)|Xi+1] → πi(x) a.s., n → ∞. (3.5)
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Proof. If equation (3.3) holds for Xi, then for any fixed n, we have

∥∥∥ m+n∏
k=m

Ki,k − (Si)n
∥∥∥ → 0 a.s., as m → ∞.

By Lemma 1, ‖(Si)n − Πi‖ → 0, as n → ∞. Furthermore
∏m−1

k=0 Ki,k is a
probability matrix (i.e., each row of the matrix is a probability vector) and Πi

has constant rows πi. Therefore,

∥∥∥ m−1∏
k=0

Ki,k(Si)n − Πi

∥∥∥ =
∥∥∥ m−1∏

k=0

Ki,k(Si)n −
m−1∏
k=0

Ki,kΠi

∥∥∥
≤

(∥∥∥ m−1∏
k=0

Ki,k
∥∥∥)

‖(Si)n−Πi‖=‖(Si)n−Πi‖→0, n→∞.

Hence,

∥∥∥ m+n∏
k=0

Ki,k − Πi

∥∥∥ ≤
∥∥∥ m−1∏

k=0

Ki,k
m+n∏
k=m

Ki,k −
m−1∏
k=0

Ki,k(Si)n
∥∥∥ +

∥∥∥ m−1∏
k=0

Ki,k(Si)n − Πi

∥∥∥
≤

∥∥∥ m+n∏
k=m

Ki,k − (Si)n
∥∥∥ +

∥∥∥ m−1∏
k=0

Ki,k(Si)n − Πi

∥∥∥ → 0, a.s.

as m,n → ∞. This proves (3.4). To prove (3.5), let

Ai
n =

1
n

n−1∑
m=0

Ki,0 . . .Ki,m.

From (3.4) we have, as n → ∞,

‖Ai
n − Πi‖ ≤ 1

n

n−1∑
m=0

‖Ki,0 . . .Ki,m − Πi‖ → 0, a.s..

Consequently, for any x ∈ X ,

E[Li
n(x)|Xi

0, X
i+1] =

1
n

n−1∑
m=0

E[1x(Xi
m)|Xi

0, X
i+1]

=
1
n

n−1∑
m=0

Ki,0 . . .Ki,m1x(Xi
0)

= Ai
n1x(Xi

0) → πi(x) a.s., n → ∞.
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It follows that for any x ∈ X , as n → ∞,

E[Li
n(x)|Xi+1] → πi(x) a.s., and E[Li

n(x)] → πi(x).

Lemma 4 shows that if chain i + 1 has the individual ergodic property, then
chain i will have the mean ergodic property conditioning on chain i+1. Next we
show that the mean ergodic property can be improved to the individual ergodic
property.

Lemma 5. If the individual ergodic property holds for the chain X i+1, then for
any x ∈ X , Li

n(x) → πi(x) a.s., n → ∞.

Proof. Recall that conditioning on X i+1, the ith chain has the Markov prop-
erty: ∀A ∈ σ(Xi

1, . . . , X
i
n) and ∀B ∈ σ(Xi

m,m ≥ n), P (A ∩ B|Xi
n, Xi+1) =

P (A|Xi
n, X i+1)P (B|X i

n, Xi+1). Suppose the initial state of the ith chain is some
xi

0 ∈ X . Let ρi
m(x) be the time of the mth return to x of the ith chain Xi. In

other words, ρi
0(x) := 0 and ρi

m(x) = inf{n > ρi
m−1(x) : Xi

n = x}. (inf(∅) is in-
terpreted to be ∞.) Then by the Markov property, {ρi

m(x)− ρi
m−1(x),m ≥ 1} is

a sequence of independent random variables conditioning on X i+1 and X i
0 = xi

0.
By assumption, limn→∞ Li+1

n (x) = πi+1(x) a.s., so we can focus on realiza-
tions Xi+1 = X̂ i+1 such that limn→∞(1/n)

∑n−1
m=0 1{x}(X̂i+1

m ) = πi+1(x). For
notational convenience, we write δm = ρi

m(x)− ρi
m−1(x) and µm = E[δm|X i+1 =

X̂i+1, Xi
0 = xi

0]. We will show that

c1. µm < ∞ for all m and limm→∞ µm = 1/πi(x),
c2. δm are uniformly integrable conditioned on X i+1 = X̂ i+1 and Xi

0 = xi
0, that

is,
lim

R→∞
sup
m≥1

E
[
δm1(R,∞)(δm)|Xi+1 = X̂ i+1, Xi

0 = xi
0

]
= 0.

Then it easily follows that

lim
R→∞

sup
m≥1

E
[
(δm − µm)1(R,∞)(δm − µm)

∣∣∣ X i+1 = X̂i+1, Xi
0 = xi

0

]
= 0,

and hence by the Strong Law of Large Numbers under uniform integrability
(Landers and Rogers (1985)) we have

P
(

lim
n→∞

1
n

n−1∑
m=0

(δm − µm) = 0
∣∣∣ Xi+1 = X̂i+1, Xi

0 = xi
0

)
= 1.

But limm→∞ µm = 1/πi(x), so it follows that

P
(

lim
n→∞

1
n

n−1∑
m=0

δm =
1

πi(x)

∣∣∣ X i+1 = X̂ i+1, Xi
0 = xi

0

)
= 1.
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By elementary manipulations (e.g. those on page 39 of Stroock (2005)) we can
show that for m = [nπi(x)],

|Li
n(x) − πi(x)| ≤ 2

n
+ 3πi(x)

∣∣∣ρi
m(x)
m

− 1
πi(x)

∣∣∣.
But (1/m)

∑n−1
i=0 δi = ρi

m(x)/m. Therefore,

P
(

lim
n→∞

Li
n(x) = πi(x)|X i+1 = X̂ i+1, Xi

0 = xi
0

)
= 1,

which holds for almost all realizations X̂i+1 of Xi+1. It follows that

P
(

lim
n→∞

Li
n(x) = πi(x)

)
= 1.

We first prove c1 for x ∈ DK . By Lemma 3, ‖Ki,k − Si‖ → 0 as k → ∞
given X̂i+1 such that limn→∞(1/n)

∑n−1
m=0 1{x}(X̂i+1

m ) = πi+1(x). For x ∈ DK ,
we have shown in Lemma 1 that there is an integer M and some ε > 0 such that
((Si)M )yx ≥ ε for all y ∈ X . By Lemma 4, there is an integer N > 0 that depends
on X̂ i+1 such that ‖

∏n+M
k=n Ki,k − (Si)M‖ < ε/2 for all n ≥ N . Therefore, for all

y ∈ X and n ≥ N , (
n+M∏
k=n

Ki,k

)
yx

≥ ε

2
.

It follows that for any integer 0 ≤ n′ < N and any y ∈ X ,(
N+M∏
k=n′

Ki,k

)
yx

=

(
N−1∏
k=n′

Ki,k
N+M∏
k=N

Ki,k

)
yx

≥ ε

2
.

Let m > 1 be any integer. If ρi
m−1(x) = t for some 1 ≤ t < N , then

P (ρi
m(x) ≤ M + N |X i+1 = X̂i+1, ρi

m−1(x) = t, Xi
0 = xi

0)

≥
(
Ki,t . . .Ki,N+M

)
xx

≥ ε

2
.

Therefore, P (ρi
m(x) > M + N |Xi+1 = X̂ i+1, ρi

m−1(x) = t,Xi
0 = xi

0) ≤ 1 − ε/2.
Inductively, suppose P (ρi

m(x) > nM + N |Xi+1 = X̂i+1, ρi
m−1(x) = t,Xi

0 =
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xi
0) ≤ (1 − ε/2)n, then

P (ρi
m(x) > (n + 1)M + N |Xi+1 = X̂i+1, ρi

m−1(x) = t,Xi
0 = xi

0)

=
∑

z∈X ,z 6=x

P (ρi
m(x)>nM+N,X i

nM+N =z |Xi+1 =X̂ i+1, ρi
m−1(x)= t, Xi

0 =xi
0)

×P (X i
k 6= x, nM + N ≤ k ≤ (n + 1)M + N |

X i
nM+N = z,X i+1 = X̂i+1, ρi

m−1(x) = t, Xi
0 = xi

0)

≤
∑
z∈X

P (ρi
m(x)>nM+N,X i

nM+N = z |X i+1 =X̂i+1, ρi
m−1(x)= t,Xi

0 =xi
0)

×
(
1 −

(
Ki,nM+N . . .Ki,(n+1)M+N

)
zx

)
≤ (1 − ε

2
)n · (1 − ε

2
) = (1 − ε

2
)n+1.

Summing over all 1 ≤ t < N gives for any integer n ≥ 0,

P (ρi
m(x) > nM + N |Xi+1 = X̂i+1, Xi

0 = xi
0, 1 ≤ ρi

m−1(x) < N) ≤ (1 − ε

2
)n,

and thus

P (ρi
m(x) − ρi

m−1(x) > nM + N |X i+1 = X̂ i+1, Xi
0 = xi

0, 1 ≤ ρi
m−1(x) < N)

≤ (1 − ε

2
)n. (3.6)

If ρi
m−1(x) = t for some t ≥ N then

P (ρi
m(x) ≤ M + t |Xi+1 =X̂ i+1, ρi

m−1(x)= t,Xi
0 =xi

0)≥(Ki,t . . .Ki,M+t)xx≥
ε

2
.

Therefore, P (ρi
m(x) > M + t |Xi+1 = X̂ i+1, ρi

m−1(x) = t,Xi
0 = xi

0) ≤ 1 − ε/2.
Using induction again, we can verify P (ρi

m(x) > nM + t |X i+1 = X̂ i+1, ρi
m−1(x)

= t,Xi
0 = xi

0) ≤ (1 − ε/2)n. Summing over all t ≥ N gives, for any n ≥ 0,

P (ρi
m(x)−ρi

m−1(x) > nM |Xi+1 =X̂ i+1, Xi
0 =xi

0, N ≤ρi
m−1(x)<∞)≤(1− ε

2
)n.

(3.7)
(3.6) and (3.7) together imply that for any m > 1,

P (ρi
m(x)−ρi

m−1(x) > nM + N |Xi+1 = X̂i+1, Xi
0 = xi

0, 1 ≤ ρi
m−1(x) < ∞)

≤ (1 − ε

2
)n. (3.8)
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Therefore, for any p > 0

E[(ρi
m(x) − ρi

m−1(x))p|X i+1 = X̂i+1, Xi
0 = xi

0, 1 ≤ ρi
m−1(x) < ∞]

=
∞∑

n=N+2M+1

npP (ρi
m(x)−ρi

m−1(x)=n|Xi+1 =X̂ i+1, Xi
0 =xi

0, 1≤ρi
m−1(x)<∞)

+
N+2M∑

n=1

npP (ρi
m(x)−ρi

m−1(x) = n |Xi+1 =X̂ i+1, Xi
0 =xi

0, 1≤ρi
m−1(x)<∞)

≤
∞∑

k=[N/M ]+2

(k + 1)pMp

(k+1)M∑
n=kM+1

P (ρi
m(x) − ρi

m−1(x) = n|X i+1 = X̂ i+1,

Xi
0 = xi

0, 1 ≤ ρi
m−1(x) < ∞) +

N+2M∑
n=1

np

≤
∞∑

k=[N/M ]+2

(k + 1)pMpP (ρi
m(x) − ρi

m−1(x) > kM |Xi+1 = X̂i+1,

Xi
0 = xi

0, 1 ≤ ρi
m−1(x) < ∞) +

N+2M∑
n=1

np

≤ Mp
∞∑
i=1

(i +
[ N

M

]
+ 2)p(1 − ε

2
)i+1 +

N+2M∑
n=1

np < ∞.

In particular, for p = 1 we have

E[ρi
m(x) − ρi

m−1(x)|X i+1 = X̂ i+1, Xi
0 = xi

0, 1 ≤ ρi
m−1(x) < ∞] < ∞ (3.9)

for all m > 1. For m = 1, note that ρi
0(x) = 0 by definition. Therefore

P (ρi
1(x) ≤ M + N |Xi+1 = X̂i+1, Xi

0 = xi
0) ≥ (Ki,0 . . .Ki,N+M )xi

0x ≥ ε

2
.

Using induction we can show that

P (ρi
1(x) > nM + N |Xi+1 = X̂i+1, Xi

0 = xi
0) ≤ (1 − ε

2
)n, (3.10)

E[ρi
1(x)p|Xi+1 = X̂i+1, Xi

0 = xi
0] < ∞, ∀p > 0. (3.11)

Combining (3.9) and (3.11), we obtain P (ρi
m(x) < ∞) = 1 and E[ρi

m(x) −
ρi

m−1(x)|X i+1 = X̂i+1, Xi
0 = xi

0] < ∞ for all m ≥ 1. Hence the first part of c1 is
true for x ∈ DK . Furthermore, (3.8) can be combined with (3.10) to give

P (ρi
m(x) − ρi

m−1(x) > nM + N |Xi+1 = X̂i+1, Xi
0 = xi

0) ≤ (1 − ε

2
)n, ∀ m ≥ 1.

(3.12)
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For the second part of c1, note that for any k ≥ 1 and any t ≥ 0, it is
easy to check by induction that P (ρi

m(x) − ρi
m−1(x) > k |Xi+1 = X̂ i+1, Xi

0 =
xi

0, ρ
i
m−1(x) = t) is a polynomial of degree at most k in variables (

∏l+n
j=l Ki,j)xx,

where l = t, t + 1, . . . , t + k − 1 and n ≤ t + k − l − 1. For example, P (ρi
m(x) −

ρi
m−1(x) > 2 |Xi+1 = X̂i+1, Xi

0 = xi
0, ρ

i
m−1(x) = t) = 1 −Ki,t

xx − (Ki,tKi,t+1)xx +
Ki,t

xxKi,t+1
xx . Let λ(x) be the return time of the Markov chain Yn under the tran-

sition matrix Si with initial state Y0 = x, i.e., λ(x) = inf{n > 0;Yn = x}. Then
P (λ(x) > k |Y0 = x) is a polynomial of degree at most k in variables (Si)j

xx,
j = 0, . . . , k. Using Lemma 3, for any fixed k,

lim
t→∞

P
(
ρi

m(x) − ρi
m−1(x) > k |X i+1 = X̂ i+1, Xi

0 = xi
0, ρ

i
m−1(x) = t

)
= P (λ(x) > k |Y0 = x).

Thus,

lim
m→∞

P (ρi
m(x) − ρi

m−1(x) > k |X i+1 = X̂ i+1, Xi
0 = xi

0)

≤ lim
m→∞

sup
t≥m−1

P (ρi
m(x) − ρi

m−1(x) > k |Xi+1 = X̂i+1, Xi
0 = xi

0, ρ
i
m−1(x) = t)

= P (λ(x) > k |Y0 = x).

Similarly, we have

lim
m→∞

P (ρi
m(x) − ρi

m−1(x) > k |Xi+1 = X̂i+1, Xi
0 = xi

0)

≥ lim
m→∞

inf
t≥m−1

P (ρi
m(x) − ρi

m−1(x) > k |Xi+1 = X̂i+1, Xi
0 = xi

0, ρ
i
m−1(x) = t)

= P (λ(x) > k |Y0 = x).

Therefore, limm→∞ P (ρi
m(x)−ρi

m−1(x) > k |Xi+1 = X̂i+1, X i
0 =xi

0)=P (λ(x) >

k |Y0 = x).
By (3.12), for all m ≥ 1, P (ρi

m(x)− ρi
m−1(x) > k |Xi+1 = X̂i+1, X i

0 = xi
0) is

bounded above by an integrable function g: g(k) = (1 − ε)[(k−N)/M ] for k ≥ N

and g(k) = 1 for k < N . Therefore, by the Dominated Convergence Theorem,

lim
m→∞

E[ρi
m(x) − ρi

m−1(x)|X i+1 = X̂ i+1, Xi
0 = xi

0]

= lim
m→∞

(
∞∑

k=0

P (ρi
m(x) − ρi

m−1(x) > k |X i+1 = X̂ i+1, Xi
0 = xi

0))

=
∞∑

k=0

P (λ(x) > k |Y0 = x) = E(λ(x)|Y0 = x) =
1

πi(x)
.

Thus, we have proved c1 for x ∈ DK .
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For c2, note that for any integer r > 0, any p > 0, and any m ≥ 1, by (3.12),

E[(ρi
m(x) − ρi

m−1(x))p1(rM+N,∞)(ρ
i
m(x) − ρi

m−1(x))|Xi+1 = X̂i+1, X i
0 = xi

0]

=
∞∑

n=rM+N+1

npP (ρi
m(x) − ρi

m−1(x) = n|Xi+1 = X̂i+1, X i
0 = xi

0)

≤
∞∑

k=r

((k+1)M+N)p

(k+1)M∑
n=kM+1

P (ρi
m(x)−ρi

m−1(x)=n+N |X i+1 =X̂i+1, Xi
0 =xi

0)

≤
∞∑

k=r

((k + 1)M + N)pP (ρi
m(x) − ρi

m−1(x) > kM + N |X i+1 = X̂ i+1, Xi
0 = xi

0)

≤ max(M,N)p
∞∑

k=r

(k + 2)p(1 − ε

2
)k.

In particular, for p = 1,

E[(ρi
m(x) − ρi

m−1(x))1(rM+N,∞)(ρ
i
m(x) − ρi

m−1(x))|Xi+1 = X̂i+1, Xi
0 = xi

0]

≤ 4max(M,N)
1
ε2

(
(r + 2)(1 − ε

2
)r − (r + 1)(1 − ε

2
)r+1

)
,

which is independent of m and tends to 0 as r → ∞. Thus c2 holds for x ∈ DK .
Finally for x ∈ Dj , j 6= K, since Si is irreducible, for any fixed x0 ∈ DK

there is an integer M ′ such that
(
(Si)M ′

)
x0x

≥ ε′ for some ε′ > 0. From Lemma

1, there exists M0 such that for all k ≥ M0 and y ∈ X ,
(
(Si)k

)
yx0

≥ ε0 for

some ε0 > 0, which implies
(
(Si)k

)
yx

≥
(
(Si)k−M ′

)yx0((S
i)M ′

)
x0x

≥ ε′ε0 for

k ≥ M ′ + M0. Thus we can find an integer N ′ a.s. that depends on X̂i+1 such
that, for m ≥ N ′ and all y ∈ X ,( m+M ′+M0∏

k=m

Ki,k

)
yx

≥ ε′ε0
2

.

With this result we note that the same argument that we used to prove c1 and
c2 for x ∈ DK applies for general x ∈ Dj .

Now we are ready to prove the main theorem.

Proof of Theorem 1. By assumption, the highest order chain XK has transi-
tion probabilities PK that targets πK and is irreducible and aperiodic. Therefore,
standard Markov theory tells us that πK is the unique stationary probability
and the individual ergodicity holds: as n → ∞, LK

n (x) → πK(x) a.s. Induc-
tively, if the (i + 1)th (i ≤ K − 2) chain is strongly ergodic a.s. and satisfies
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Li+1
n (x) → πi+1(x) a.s., n → ∞, then by Lemmas 3 and 4,∥∥∥ n∏

k=0

Ki,k − Πi

∥∥∥ → 0 a.s., n → ∞.

Therefore, the ith chain is strongly ergodic, and by Lemma 5, Li
n(x) → πi(x)

a.s., n → ∞. Therefore, the ith chain also has the individual ergodic property.
This induction result completes the proof.

Remark. It is worth pointing out that our theoretical results can be easily
extended to cover more general settings of the EE sampler. The energy function
hi for the ith distribution, πi(x) ∝ exp(−hi(x)), can be any function that depends
only on Ti and Hi; for example, hi(x) = h(x)/Ti.

4. Applying the EE Sampler to the Ising Model

In this section, we apply the EE sampler to the Ising model and compare
its efficiency with the MH algorithm and the parallel tempering algorithm, a
well-known all-purpose Monte Carlo simulation method.

4.1. The Ising model

The Ising model is a simple model of a magnet in which spins si are placed
on the sites i of a lattice (Newman and Barkema (1999)). Each spin can take
either of two values: +1 (up) and −1 (down). If there are N sites on the lattice,
then the system can be in any of 2N states and the energy of any particular state
is given by the Ising Hamiltonian:

H = −J
∑
i∼j

sisj ,

where J is an interaction energy between nearest neighbor spins i and j.
It is known that there is a critical temperature Tc at which a phase transition

occurs. Below the critical temperature, the system forms into large clusters of
predominantly up- or down-pointing spins and magnetization develops. Above
the critical temperature, the spins tend to be randomly arranged and the average
magnetization is zero. For the two-dimensional Ising model, the exact value of
Tc is known:

Tc =
2J

log(1 +
√

2)
≈ 2.269J.

As the system approaches Tc, the typical size of the clusters, termed correlation
length, diverges. These clusters contribute significantly to both the magnetiza-
tion m =

∑
i si and the energy E = H of the system so that, as they flip from
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one orientation to another, they produce large fluctuations in m and E, a phe-
nomenon termed critical fluctuations. As the typical size of the clusters diverges
as T → Tc, the variation of E, termed specific heat, and the variation of m,
termed susceptibility, diverge as well.

4.2. Simulation result

Ising models on square lattices of finite sites have been extensively studied
by Monte Carlo methods from the MH algorithm to parallel tempering to the
more sophisticated cluster algorithms such as the Swendsen-Wang (Swendsen and
Wang (1987)) and Wolff (1989) algorithms. The MH algorithm is known to have
a very long correlation time at the critical temperature. More specifically, if we
take a square lattice of L×L sites and let τ be the integrated correlation time of
magnetization m(t) obtained from an algorithm at the critical temperature Tc,
then we typically have

τ ∼ Lz,

where z is called the dynamic critical exponent. It is a key characteristic of
an algorithm’s efficiency in studying phase transition systems (Nightingale and
Blote (1996)): a small z is much preferred. For the MH algorithm, the best
available dynamic exponent measurement is zMH = 2.1665±0.0012 (Nightingale
and Blote (1996)).

To test the efficiency of the EE sampler, we apply it to the Ising model and
measure the dynamic exponent at the critical temperature. We used hi(x) =
h(x)/Ti, and five chains with temperature levels 2.47, 2.41, 2.35, 2.3, 2.269, and
pee = 0.05. Each chain was burned for 100,000 steps per site to ensure the
system was in equilibrium, then was run for 180,000 steps per site for sampling.
From the Monte Carlo samples, we estimated the integrated correlation times
τ̂ to be 19.87 ± 0.88, 23.88 ± 1.59, 30.97 ± 2.45, 37.46 ± 3.27, 44.20 ± 3.14,
51.474 ± 4.144 for L = 24, 32, 48, 64, 80, 96, respectively. Figure 2 plots log τ̂

versus log L. Regressing log τ̂ on log L, we measure the dynamic exponent to be
zEE = 0.678 ± 0.054.

The integrated correlation time τ̂ and its standard error were calculated by

τ̂ =
W∑
t=0

A(t)
A(0)

,

Var(τ̂) =
2(2W + 1)

n
τ̂2,

where n =180,000 is the sample size, A(t) = (1/(n − t))
∑n−t

i=1 (m(i) − m̄)(m(i +
t) − m̄) is the sample autocorrelation function, and W satisfying τ̂ ¿ W ¿ n is
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Figure 2. The estimated correlation times τ̂ (measured in Monte Carlo steps
per lattice site) at L = 24, 32, 48, 64, 80, 96 from the EE sampler output,
which uses five chains at temperatures 2.47, 2.41, 2.35, 2.3, 2.269. The
linear regression fit gives zEE = 0.678 ± 0.054.

estimated as in Sokal (1989). For large sample size, τ̂ is approximately normally
distributed (Wei (1990)). The dynamic exponent is estimated as

ẑ =
∑

i(log Li − log L)(log τ̂i − log τ̂)∑
i(log Li − log L)2

,

and the standard deviation of our estimate of z is√∑
i(log Li − log L)2Var(log τ̂i)∑

i(log Li − log L)2
,

where the Var(log τ̂i) are estimated by numerical integration under normal ap-
proximation (Wei (1990)). Tables 1 and 2 report the energy ladders used in the
simulation and the acceptance rates of the EE jumps.

For comparison, we also estimated the dynamic exponent of parallel temper-
ing. We also used five chains. In general, for optimal performance, the temper-
ature levels in the parallel tempering should be different from those of the EE
sampler. After numerous trials, we found that, for parallel tempering, taking
the five temperature levels to be 2.41, 2.365, 2.33, 2.3, 2.269, and swapping fre-
quency p = 0.15, appeared to offer good performance. Each chain was burned for
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Table 1. Energy ladders for L = 24, 32, 48, 64, 80, 96 in the EE sampling.

L H0 H1 H2 H3 H4

24 -1152 -850 -800 -720 -650
32 -2048 -1556 -1444 -1334 -1222
48 -4608 -3500 -3250 -3000 -2750
64 -8192 -5800 -5400 -4800 -4200
80 -12800 -9000 -8500 -7800 -7200
96 -18432 -13000 -11800 -10800 -9800

Table 2. Acceptance rates of EE jumps for L = 24, 32, 48, 64, 80, 96.

L 0th chain 1st chain 2nd chain 3rd chain
24 0.88 0.82 0.79 0.79
32 0.84 0.75 0.71 0.70
48 0.73 0.60 0.55 0.54
64 0.59 0.43 0.30 0.43
80 0.50 0.31 0.26 0.29
96 0.40 0.10 0.15 0.24

Table 3. Acceptance rates of swap moves for L = 32, 40, 48, 64, 80, 96 in the
parallel tempering sampling.

L 0th chain 1st chain 2nd chain 3rd chain
32 0.66 0.69 0.67 0.62
40 0.58 0.60 0.59 0.56
48 0.50 0.54 0.52 0.47
64 0.36 0.42 0.40 0.36
80 0.23 0.33 0.31 0.25
96 0.14 0.23 0.24 0.17

200,000 steps per site to ensure the system was in equilibrium, then was run for
350,000 steps per site for sampling. Table 3 reports the acceptance rates of swap
moves in the parallel tempering sampling. We measured τ̂ to be 409.7 ± 90.1,
660.9±220.8, 1029.3±296.3, 1524.7±857.5, 2828.9±1406.2, 3604.0±2142.4 for
L = 32, 40, 48, 64, 80, 96, respectively. Figure 3 plots log τ̂ versus log L. The dy-
namic exponent of the parallel tempering was measured to be zPT = 1.98± 0.59.
The large standard error in our estimation reflects the very long correlation time
in parallel tempering.

Contrasting the dynamic exponents — zMH = 2.1665±0.0012, zPT = 1.98±
0.59, zEE = 0.678±0.054 — of the three algorithms, we see that the EE sampler
was much more efficient than both the MH algorithm and the parallel tempering
algorithm in studying the Ising model. Parallel tempering does not seem to
significantly improve the MH algorithm even with high swapping acceptance
rates. This is probably because, when the parallel tempering performs a swap,
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Figure 3. The estimated correlation times τ̂ (measured in Monte Carlo steps
per lattice site) at L = 32, 40, 48, 64, 80, 96 from the output of the parallel
tempering with five chains at temperatures 2.41, 2.365, 2.33, 2.3, 2.269. The
linear regression fit gives zPT = 1.9846 ± 0.5858.

the new state is not significantly different from the old state, whereas the EE
sampler can reach all previously visited states through the EE jumps. We note
that the Wolff algorithm with z = 0.25 ± 0.01 (Coddington and Baillie (1992))
is still more efficient than the EE sampler. This is not surprising as the Wolff
algorithm is specifically designed for the Ising model (to tackle the critical slow
down), whereas the EE sampler is a universal Monte Carlo algorithm and can be
combined with virtually any simulation algorithm as its local update.

Using the energy rings constructed by the EE sampler, we can also estimate
the density of states and calculate the Boltzmann averages of various functions
of the Ising system, as described in Kou, Zhou and Wong (2006). Figures 4 and
5 show the specific heat C(T ) and the expectation of the absolute magnetization
E{|m(T )|} estimated at temperatures around Tc for L = 96, using the energy
rings constructed by an EE sampler, where the temperature ladder is taken to
be 2.5, 2.4, 2.35, 2.305, 2.28, 2.25, 2.2, and the energy ladder is the same as in
Table 1.



CONVERGENCE OF THE EQUI-ENERGY SAMPLER 1709

Figure 4. Temperature dependence of the specific heat around the critical
temperature. The solid line is the exact curve for the 96 × 96 Ising lattice
(Ferdinand and Fisher (1969)). Error bars represent the standard deviation
obtained from ten independent runs.

5. Conclusion

In this paper, we presented a rigorous proof of the convergence and ergodicity
of the EE sampler in the case of countable state spaces. We then applied it to the
Ising model as a further test of its sampling efficiency. The simulation showed
that the dynamic exponent of the EE sampler is significantly smaller than those
of the MH algorithm and parallel tempering, indicating the EE sampler’s high
efficiency. An important open problem is to study the convergence rate of the
EE sampler. Although many empirical studies support the EE sampler as a
highly effective general purpose Monte Carlo algorithm, a rigorous theoretical
investigation of its convergence rate is very desirable. Such results not only
would provide the theoretical underpinning of the empirical observations, but
might also lead to new methods for analyzing general non-Markov algorithms.
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Figure 5. Temperature dependence of E|m| around the critical temperature.
The solid line is the exact curve for the infinite Ising lattice (Ferdinand and
Fisher (1969)). Similar deviations from the exact curve are observed in
Newman and Barkema (1999) and Landau (1976). Error bars represent the
standard deviation obtained from ten independent runs.
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