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Abstract

Dengue is a mosquito-borne disease that threatens over half of the world’s population.

Despite being endemic to more than 100 countries, government-led efforts and tools for

timely identification and tracking of new infections are still lacking in many affected areas.

Multiple methodologies that leverage the use of Internet-based data sources have been pro-

posed as a way to complement dengue surveillance efforts. Among these, dengue-related

Google search trends have been shown to correlate with dengue activity. We extend a

methodological framework, initially proposed and validated for flu surveillance, to produce

near real-time estimates of dengue cases in five countries/states: Mexico, Brazil, Thailand,

Singapore and Taiwan. Our result shows that our modeling framework can be used to

improve the tracking of dengue activity in multiple locations around the world.

Author summary

As communicable diseases spread in our societies, people frequently turn to the Internet

to search for medical information. In recent years, multiple research teams have investi-

gated how to utilize Internet users’ search activity to track infectious diseases around our

planet. In this article, we show that a methodology, originally developed to track flu in the

US, can be extended to improve dengue surveillance in multiple countries/states where

dengue has been observed in the last several years. Our result suggests that our methodol-

ogy performs best in dengue-endemic areas with high number of yearly cases and with

sustained seasonal incidence.

Introduction

Dengue fever poses a growing health and economic problem throughout the tropical and sub-

tropical world. Dengue is today one of the fastest-growing and most important mosquito-

borne viral diseases in the world, with an estimated 390 million infections each year and

threatening an estimated 3.9 billion people in 128 countries [1]. Infection often causes high
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fever and joint pain, and severe cases can lead to hemorrhage, shock and death. Dengue epi-

demics strain health services and lead to massive economic losses.

Dengue transmission is subject to complex environmental factors influencing the Aedes
aegypti and albopictus mosquitoes which spread the disease. A mosquito is able to transmit

dengue within a few weeks of contracting the virus, and a person bitten by such a mosquito

will usually fall ill within a week, with symptoms lasting for up to 10 days afterward [2, 3].

There is a 5-day window when another mosquito can pick up the virus from an infected per-

son [3]. The time scale of these transmission dynamics lends itself to tracking patterns of infec-

tion at a weekly or monthly level. Seasonal conditions such as temperature and precipitation

can affect mosquito feeding rate, development, and lifespan, contributing to annual seasonality

in observed dengue cases [4–8]. Other factors affecting the local or regional level include

human population density and mobility, mosquito control efforts, and the distribution of the

four dengue virus serotypes, adding complications to efforts to model transmission dynamics

[9, 10].

Dengue mortality and morbidity both need to be addressed to reduce this heavy burden.

The World Health Organization has called for better early case detection among other tactics

to reduce dengue mortality, and for the reduction of dengue morbidity through coordinating

epidemiological and entomological surveillance. Timely identification of outbreaks can inform

and help preventative measures to lower infection rates, including mosquito population con-

trol and providing supplies such as screens and nets for mosquito bite prevention. Thorough,

data-informed implementations of these vector control methods have been found effective in

reducing case counts in many locations, but require sustainable investment to prevent resur-

gence [3, 11], highlighting the need for accurate and timely dengue surveillance tools.

However, such a comprehensive, effective and reliable disease surveillance system for den-

gue is not yet available. Governments traditionally rely on hospital-based reporting, a method

that is often lagged and limited with frequent post-hoc revisions, due to communication ineffi-

ciencies across local and national agencies and the time needed to aggregate information from

the clinical to the state level [12, 13]. This lack of timely information limits the identification

and optimization of effective interventions. Measurement difficulties are compounded by the

fact that a majority of dengue cases are asymptomatic [14].

In this context, building an effective disease surveillance tool is essential to being able to

identify and assess the severity of dengue outbreaks and to enable better assessment of the

effectiveness of ongoing interventions. Such tools should provide accurate and consistent mea-

sures of regional or national infection levels, be updated in near real-time, and be immune to

bureaucratic or resource-related delays. To improve accuracy, these tools should use and link

together multiple sources of information, using both traditional and non-traditional sources.

Over the years, a broad range of traditional epidemiological methods have been proposed

by research teams to fill this time gap of information by supplementing official case counts

with now-cast estimation using dengue incidence data from previous seasons. Autoregressive

models, such as Seasonal Autoregressive Integrated Moving Average (SARIMA) model, that

take into account recent and seasonal patterns, have been shown to produce useful disease esti-

mates, some including additional variables such as concurrent weather information [15–19].

Other studies have further examined climate-driven models, finding associations of seasonal

and long-term weather patterns such as El Niño with dengue levels in various countries [5, 20–

22]. In addition, various mechanistic models on the dynamics of dengue transmission have

also been explored, with some recent promise [23]. A comprehensive survey of these methods

are given in Andraud et al. [24]

In parallel and complementary to the aforementioned methodologies, the global spread of

the Internet has opened up the opportunity to investigate whether users’ activity patterns on

Advances in using Internet searches to track dengue

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005607 July 20, 2017 2 / 14

infectiousDiseasesStatistics/weekly_

infectiousdiseasesbulletin.html http://nidss.cdc.

gov.tw/ch/SingleDisease.aspx?dc=1&dt=

4&disease=94061&position=1 As described in the

manuscript, the input variables (Google search

frequencies for each country) can be obtained from

the website: www.google.com/trends.

Funding: SY, FL, and MS were supported by a

grant from the the Synergist, award 01-2016.

SCK’s research is supported in part by NSF grant

DMS-1510446. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005607
https://www.moh.gov.sg/content/moh_web/home/statistics/infectiousDiseasesStatistics/weekly_infectiousdiseasesbulletin.html
https://www.moh.gov.sg/content/moh_web/home/statistics/infectiousDiseasesStatistics/weekly_infectiousdiseasesbulletin.html
http://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&amp;dt=4&amp;disease=94061&amp;position=1
http://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&amp;dt=4&amp;disease=94061&amp;position=1
http://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&amp;dt=4&amp;disease=94061&amp;position=1
http://www.google.com/trends


Internet search-engines and social media platforms may lead to reasonable estimates of dengue

infection levels [25–27]. In theory, Internet search tracking is consistent, efficient, and reflects

real-time population trends, giving it strong potential to supplement current epidemiological

methods [13, 28]. Studies have previously demonstrated the feasibility of using Internet search

data to track dengue case counts [25, 27]. Google Dengue Trends (GDT), launched in 2011,

was one of the first tools to quantitatively track dengue activity in multiple regions throughout

the world by leveraging the aggregate Google search patterns of millions of users [25]. Since its

start, the methodology behind GDT has been updated to address flaws found in its sister effort,

Google Flu Trends [29–37], before finally being discontinued in August 2015. An assessment

of GDT in Mexico showed mixed prediction accuracy compared to official case counts, with

strong correlation in some states [38].

Despite progress in the use of both dengue time-series information (time series

approaches [15]) and real-time Internet searches for dengue tracking [25], an approach for

accurate tracking of dengue by combining the respective strengths of each data source has

not been documented to the best of our knowledge. We extend a methodology recently

introduced in the flu surveillance literature to combine dengue-related Google searches with

dengue case count time-series to track dengue activity. Specifically, we evaluate the perfor-

mance of the ARGO model (AutoRegressive model with GOogle search queries as exogenous

variables), as introduced in [35], in tracking dengue in five countries/states around the

globe: Mexico, Brazil, Thailand, Singapore, and Taiwan. These countries were chosen to

explore the applicability of our approach in a diverse set of ecological situations where den-

gue has been identified as an important local threat. Our contribution shows that the lessons

learned to track influenza in data-rich environments, like the United States, can be used to

develop methodologies to track an often-neglected tropical disease, dengue, in data-poor

environments.

Materials and methods

Data

We used two kinds of data sets for our study: (a) historical dengue incidence from govern-

ment-led health agencies and (b) Google search fractions of dengue-related queries, aggregated

at the national-level.

Dengue time-series data. Mexico. Monthly-aggregated dengue case counts data from Jan-

uary 2001 to August 2015 were obtained from Mexico’s Department of Epidemiology. http://

www.epidemiologia.salud.gob.mx/anuario/html/anuarios.html

Brazil. Monthly dengue case counts data from January 2001 to December 2012 were

obtained from the old website of Brazil’s Ministry of Health (http://dtr2004.saude.gov.br/

sinanweb/tabnet/dh?sinannet/dengue/bases/denguebrnet.def) on July 14, 2015. This site is no

longer accessible, since the Ministry has moved to a new website (http://portalsaude.saude.

gov.br/index.php/situacao-epidemiologica-dados-dengue), which now publishes weekly den-

gue data from 2014-present. This site contains annual dengue cases since 1990 but no longer

has the historical monthly data. We confirmed that the annual totals match the sum of case

counts over each year in our dataset.

Thailand. Monthly dengue case count data from January 2003 to August 2015 were

obtained from the Bureau of Epidemiology, Thailand (http://www.boe.moph.go.th/boedb/

surdata/disease.php?ds=66). New data are published in an annual document available on the

site.

Singapore. Weekly dengue case counts from January 10, 2004 to August 29, 2015

were obtained from the Singapore Ministry of Health and were aggregated into months.
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https://www.moh.gov.sg/content/moh_web/home/statistics/infectiousDiseasesStatistics/

weekly_infectiousdiseasesbulletin.html.

Taiwan. Weekly dengue case counts from January 3, 2009 to March 19, 2016 were obtained

from the Taiwan Ministry of Health and Welfare and were aggregated into months. http://

nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&dt=4&disease=061&position=1.

Online search volume data. Google search fractions for dengue-related queries were

obtained from Google Trends (www.google.com/trends).

Online search term selection. While we initially intended to use Google Correlate (www.

google.com/correlate), which is designed to identify search terms correlating highly with a

given time series over a given country, we found this tool unreliable as many of the search

terms returned were not related at all to dengue. Consequently, we used the Google Trends

(www.google.com/trends) tool to identify the top ten queries most highly correlated with the

term ‘dengue’ in each country, ignoring terms unrelated to dengue (one feature of Google

Trends is that in addition to the trends of a specific term, it gives the top query terms that are

most highly correlated with the specific term). The monthly aggregated search fractions of

these terms were then downloaded within the time period of interest for each country. The

query terms used for each country in this study were later verified by native speakers of each

language and are presented in Table A in S1 Text.

Methods

We used the multivariate linear regression modeling framework ARGO (AutoRegressive

model with GOogle search queries as exogenous variables) [35], previously used to track flu

incidence using flu-related Google searches, to combine information from historical dengue

case counts and dengue-related Google search frequencies with the goal of estimating dengue

activity one month ahead of the publication of official local health reports. ARGO uses a train-

ing set that consists of a two-year moving time window (immediately prior to the month of

estimation) and an L1 regularization approach, to identify the best performing parsimonious

model [39]. This moving window approach allows the model to constantly improve its predic-

tive ability by capturing the changing relationship between Internet search behavior and den-

gue activity.

ARGO model formulation. Our ARGO model assumes that more dengue-related

searches will be observed in times when more people are affected (either experiencing symp-

toms or hearing about someone who may have been infected) by the virus. This is formalized

mathematically via a hidden Markov model in ARGO as explained in [35].

Let yt = log(ct + 1) be the log-transformed dengue case counts ct at time t, and Xk,t the log-

transformed Google search frequency of query term k at time t. Then

yt ¼ my þ
X

j2J

ajyt� j þ
X

k2K

bkXk;t þ �t; �t�
iid N ð0; s2Þ; ð1Þ

where J is the set of auto-regressive lags, K is the set of Google query terms, and Xt can be

thought of as the exogenous variables to time series {yt} as introduced in [35].

ARGO model parameter estimation. We take J = {1, . . ., 12} [ {24}, i.e., J consists of the

most recent 12 months and the month exactly two years ago. Such choice of J captures the

influence of short and mid-term yearly fluctuations, as well as long-term seasonality previously

shown to have strong predictive power in dengue [15]. We take K = 10, corresponding to the

top ten dengue-related search terms as described in the data subsection.

Advances in using Internet searches to track dengue

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005607 July 20, 2017 4 / 14

https://www.moh.gov.sg/content/moh_web/home/statistics/infectiousDiseasesStatistics/weekly_infectiousdiseasesbulletin.html
https://www.moh.gov.sg/content/moh_web/home/statistics/infectiousDiseasesStatistics/weekly_infectiousdiseasesbulletin.html
http://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&dt=4&disease=061&position=1
http://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&dt=4&disease=061&position=1
http://www.google.com/trends
http://www.google.com/correlate
http://www.google.com/correlate
http://www.google.com/trends
https://doi.org/10.1371/journal.pcbi.1005607


We impose L1 regularity for parameter estimation. In a given month, the goal is to find

parameters μy, α = {αj: j 2 J}, and β = (β1, . . ., β10) that minimize

X

t

yt � my �
X

j2J

ajyt� j �
X10

k¼1

bkXk;t

 !2

þ
X

j2J

laj
jajj þ

X10

k¼1

lbk
jbkj ð2Þ

where λαj, λβk are regularization hyper-parameters.

For a given time window, ARGO automatically selects the most relevant variables to gener-

ate an out-of-sample dengue activity estimate. This is achieved by zeroing out regression coef-

ficients of terms that contribute little (or have redundant information) to the estimation. This

approach leads to interpretable results by allowing us to clearly identify which variables had a

role in detection for each month.

All statistical analyses were performed with R, version 3.2.4.

Benchmark models

For comparison with ARGO, we included estimation results from five alternative methods.

These are:

1. A seasonal autoregressive model without Google information, denoted as SAR, using a time

series of the most recent 3 lags, as well as 2 seasonal lags. Specifically, the monthly time

series model is comprised of time lags 1,2,3,12,24: yt = α1yt−1 + α2yt−2 + α3yt−3 + α12yt−12 +

α24yt−24 + �t, �t � N ð0; s2Þ. This model serves as a baseline for estimates made only using

dengue time-series information.

2. Google Dengue Trends [25], which ended in August 2015. Data are obtained from https://

www.google.org/flutrends/about/. Because Google Dengue Trends reported dengue inten-

sity in a scale from 0 to 1, we dynamically rescaled it using a sliding training window to rec-

reate case estimates.

3. A penalized multivariate linear regression model with Google Trends information only

[34], denoted as GT. This is essentially ARGO without autoregressive lags, and incorporates

a common L1 penalty on the Google Trends data;

4. A seasonal autoregressive model with Google Dengue Trends as exogenous variable,

denoted as SAR+GDT. yt = α1yt−1 + α2yt−2 + α3yt−3 + α12yt−12 + α24yt−24 + β log GDTt + �t,

�t � N ð0; s2Þ.

5. A naive method, which simply uses the case count at the previous month as the guess for

the value of the current month.

All benchmark models (except the naive method) were trained by linear regression with slid-

ing two year windows for fair comparison.

Accuracy metrics

We used five accuracy metrics to compare model performance: root mean squared error

(RMSE), mean absolute error (MAE), root mean squared percentage error (RMSPE), mean

absolute percentage error (MAPE), and Pearson correlation.

Mathematically, these accuracy metrics of estimator ĉ for target dengue case count c
are defined as, RMSE ¼ ½1=n

Pn
t¼1
ðĉt � ctÞ

2
�
1=2

, MAE ¼ 1=n
Pn

t¼1
jĉt � ctj,

RMSPE ¼ f1=n
Pn

t¼1
½ðĉt � ctÞ=ct�

2
g

1=2
, MAPE ¼ 1=n

Pn
t¼1
jĉt � ctj=ct .
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Retrospective estimations

Retrospective out-of-sample estimates of dengue case counts were generated for each country

using ARGO and the five benchmark models, assuming we only had access to information

available at the time of estimation. The time windows in which we assessed the performance of

our dengue estimates for each country were chosen based on the availability of official and

GDT benchmark data.

These time windows are: Brazil from Mar 2006–Dec 2012, Mexico from Mar 2006–Aug

2015, Thailand from Oct 2010–Aug 2015, Singapore from Feb 2008–Aug 2015, and Taiwan

from Jan 2013–Mar 2016.

Results

In four of the five countries/states, Brazil, Mexico, Thailand and Singapore, ARGO outper-

formed all benchmark models across essentially all accuracy metrics (RMSE, MAE, RMSPE,

MAPE, correlation). See Table 1. In particular, by incorporating information from the Internet

searches and the dengue time-series, ARGO achieved better results than using either informa-

tion alone. This accuracy improvement is reflected in the decreased errors during both peaks

of dengue activity and off-season/periods with low levels of infection. See Fig 1. Unlike the

seasonal autoregression with GDT model (SAR+GDT), ARGO avoided the significant over-

shooting problem that has been previously noted in Google Trends data ([35], [40]). This is

especially notable between 2006–2008 and 2012–2014 in Mexico, and 2006–2010 in Brazil.

Taiwan shows notably different results. Of all the available models, the naive and seasonal

autoregressive models have the best performance, but neither is clearly effective. The naive

model has the lowest RMSE and MAE, but the worst RMSPE, MAPE and correlation, while

the seasonal model shows the best RMSPE, MAPE and correlation. In comparison, the other

models have a much greater RMSE to MAE ratio, indicating worse performance during high

prevalence relative to the naive model. ARGO does not outperform the benchmarks in this

case.

This result seems to reflect the distinct case count pattern in Taiwan compared to the other

countries. Taiwan experienced little to no dengue prevalence for years until two epidemic

spikes occurred in 2014 and 2015. In contrast, the other countries experience seasonal fluctua-

tions of dengue over their entire estimation windows. This lack of predictability may be the

reason that both seasonal and Google Trends-based models have greater error than the naive

model, significantly over-estimating the 2015 peak for example. Yet overall, these methods

show greater correlation than the naive method, perhaps because they are more responsive.

Because ARGO over-estimates to a greater extent than the autoregressive methodology, this

again reflects previous observations on the tendency of Google data to overshoot.

ARGO dynamically adjusts weights of dengue time-series and Google Trends data to best

fit the most recent dengue behavior (See Fig. A, B, C, D, and E in S1 Text).

Discussion

Our findings confirm that combining historical dengue incidence information with dengue-

related Google search data, in a self-adjusting manner, leads to better near real-time dengue

activity estimates than those obtained with previous methodologies that exploit the informa-

tion separately. This also confirms that the hidden Markov model framework used by ARGO

is appropriate in this context [35].

ARGO’s uniform out-performance of other benchmark methods for Mexico, Brazil, Thai-

land, and Singapore demonstrates its robustness and broad applicability. ARGO achieves

this by balancing the influence of Internet search data, which quickly change in the face of
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outbreaks, and auto-regressive information, which tempers the estimations to mitigate the

problem of overshooting. The application of an L1 regularization approach [34, 35, 39] helps

identify the query terms most relevant to estimation at any given time, providing easy-to-inter-

pret information as shown in the heatmaps in Figures A, B, C, D, and E in S1 Text. ARGO

dynamically trains on a two-year rolling window, allowing model parameters to adjust over

time to account for changes in Internet users’ behavior. The success of our methodology is

based on the intuition that the more people are affected by dengue, the higher the number of

dengue-related searches will be during an outbreak, and therefore the more likely Google

query information will be useful at detecting dengue activity. This is observed in our findings,

Table 1. Comparison of ARGO to benchmark models across countries and evaluation metrics. The bold face value is the best value among all methods

according to each performance metric. Google Dengue Trends was not published for Taiwan and therefore the GDT benchmark is not available for Taiwan.

The assessment period for the five regions, chosen based on the common available periods for all methods, are: Brazil (Mar 2006–Dec 2012), Mexico (Mar

2006–Aug 2015), Thailand (Oct 2010–Aug 2015), Singapore (Feb 2008–Aug 2015), Taiwan (Jan 2013–Mar 2016). The error value is relative to the naive,

whose absolute error value is reported in the parenthesis.

RMSE MAE RMSPE MAPE CORR

Brazil

ARGO 0.394 0.369 0.397 0.389 0.971

GDT 0.666 0.633 0.984 0.817 0.916

GT 0.902 0.829 0.877 0.838 0.861

SAR 0.660 0.563 0.664 0.583 0.917

SAR+GDT 0.629 0.587 0.564 0.560 0.938

naive 1 (30560.436) 1 (21677.634) 1 (0.703) 1 (0.546) 0.812

Mexico

ARGO 0.680 0.651 0.558 0.678 0.924

GDT 0.944 0.961 1.270 1.311 0.863

GT 0.950 0.927 1.097 1.100 0.861

SAR 0.790 0.737 0.776 0.815 0.911

SAR+GDT 1.249 0.986 0.779 0.854 0.891

naive 1 (3570.105) 1 (2161.018) 1 (0.816) 1 (0.492) 0.833

Thailand

ARGO 0.715 0.715 0.708 0.706 0.928

GDT 0.880 0.868 1.494 1.284 0.884

GT 1.364 1.224 1.510 1.368 0.833

SAR 0.774 0.836 0.906 0.898 0.917

SAR+GDT 1.157 0.983 0.923 0.936 0.903

naive 1 (2058.891) 1 (1276.068) 1 (0.426) 1 (0.326) 0.852

Singapore

ARGO 0.893 0.889 0.931 0.917 0.903

GDT 1.182 1.285 1.427 1.439 0.821

GT 1.287 1.165 1.287 1.254 0.796

SAR 1.153 1.104 1.166 1.087 0.847

SAR+GDT 2.452 1.297 1.185 1.009 0.775

naive 1 (329.318) 1 (202.651) 1 (0.283) 1 (0.230) 0.878

Taiwan

ARGO 2.180 1.264 0.233 0.359 0.834

GT 12.211 4.904 1.069 0.898 0.724

SAR 1.852 1.397 0.247 0.408 0.878

naive 1 (2422.559) 1 (1063.597) 1 (3.248) 1 (1.601) 0.734

https://doi.org/10.1371/journal.pcbi.1005607.t001
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Fig 1. Estimation results. Monthly dengue case-count estimations are displayed for all studied countries for four different estimation

methodologies: ARGO, a seasonal auto-regressive model with and without Google Dengue Trends information (SAR+GDT, and

SAR, respectively), and a naive detection that estimates current month case counts using the last month’s observed cases. Historical

dengue case counts, as reported by local health authorities, are shown for reference (black line), as well as the corresponding

estimation errors associated to each methodology when compared to the reference.

https://doi.org/10.1371/journal.pcbi.1005607.g001
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where the median yearly dengue case counts are strongly associated with the performance of

our methodology (i.e. the higher the median yearly cases the higher the correlation of ARGO),

as shown in Table 2. This is consistent with earlier findings that dengue virus prevalence is cor-

related with model performance in sub-regions of Mexico [38]. In addition, in Brazil, Mexico,

and Thailand, the countries where our methodology works best, a clear seasonal pattern is

observed in the disease incidence trends over time, as shown in Table 2.

On the other hand, the results from Taiwan illustrate the limitations of our approach. Tai-

wan does not present either an observable seasonal trend or a high number of dengue cases.

As a result, neither ARGO nor the model using only Google search terms reliably track den-

gue. Low dengue-related Internet search activity during most years and sudden public interest

during the outbreaks of 2014 and 2015, causing mis-calibration of the Google Trends data,

may be another contributor. Other unique characteristics of the Taiwan outbreaks are that

they were largely localized in South Taiwan, where Aedes aegypti is resident, and featured viral

strains from neighboring countries rather than endemic strains [45, 46]. Also of interest is that

the increased case counts occurred during periods of significantly increased temperature and

rainfall [46]. The unpredictable character of these outbreaks present challenges for the perfor-

mance of ARGO, and generally of all the methods considered in our comparison, but also

highlight the potential of incorporating environmental predictors such as temperature and

precipitation in our approaches.

While Internet penetration may seem to be an important factor in assessing the quality of

Google Trends data, the statistics from Table 2 show that it alone is not as effective as dengue

prevalence or seasonality in predicting the overall performance of our methodology. As an

example, although Taiwan has high Internet penetration, the dengue case count may be low

enough over most years that dengue-related searches motivated by other medical or educa-

tional purposes may introduce significant noise in the Google-query data. On the other hand,

ARGO shows strong improvement over the seasonal autoregressive model in Brazil and Singa-

pore, two countries with moderate to high Internet access, compared to Mexico and Thailand,

which have low Internet access, suggesting that web penetration is nevertheless still an impor-

tant factor. Finally, the proportion of the population within a country using Google as a search

engine also provides some insight into the performance of ARGO (Table 2). ARGO shows the

lowest correlation in Taiwan, which happens to have the lowest Google market share among

the countries studied here [42].

Despite dengue and flu having very different biological transmission patterns, the fact that

modifications to the ARGO methodology yield robust and accurate dengue estimates indicates

Table 2. Comparison of countries/states.

Characteristics Brazil Mexico Thailand Singapore Taiwan

ARGO correlation 0.971 0.924 0.928 0.903 0.834

Median yearly case count 590,000 48,000 47,000 5,400 1,700

Seasonality (correlation of SAR) 0.917 0.911 0.917 0.847 0.878

Internet penetration [41] 50% 38% 27% 74% 76%

Google market share [42] 97% 93% 99% 84% 42%

Report frequency monthly monthly monthly weekly weekly

Population (avg. in millions) [43, 44] 198 120 67 5.2 23

Median yearly incidence (per 10,000) 29.1 4.1 8.0 10.5 6.8

Country size (103 mi2) 3,290 758 198 0.28 14

Population density (per mi2) [43] 60 160 340 18,700 1,600

GDP (per capita avg. over study period) [43] $10,100 $9,200 $5,800 $55,000 $31,900

https://doi.org/10.1371/journal.pcbi.1005607.t002
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the strength of our methodological framework. Although the monthly time scale chosen for

this study was originally chosen based on data availability, inspection shows that a monthly

surveillance approach is better suited for the 2-week serial interval of dengue [47].

The dengue activity estimates obtained with our methodology, like estimates from any

novel digital disease detection tool, are not meant to replace dengue information obtained

from traditional healthcare-based disease surveillance; instead, they can help decision-makers

confirm (or deny) suspected disease trends ahead of traditional disease surveillance systems.

Ultimately, the goal of this effort is to take a step closer to the development of an accurate,

real-time modeling platform, where dengue case estimates can be constantly updated to pro-

vide authorities and non-governmental organizations with potentially actionable and close

to real-time data on which they can make informed decisions, as well as providing travelers

visiting high-risk areas with warnings. Such a platform could bring multiple information

sources together, including but not limited to traditional epidemiological case reports, Google

searches, crowd-sourced data, and climate and transportation information, creating a rapid

response and alert system for users based on their specific location. Timely and precise detec-

tion may turn out to play a large role in reducing infections in the near future by influencing

the timing of vector control efforts, hospital and clinical preparation, and providing public and

individual alerts.

The platform would also enable users to verify dengue risk information with their own

observations, creating a positive feedback loop that would continuously improve the accu-

racy of the tool. We are currently implementing two building-blocks that could help shape

such a platform. The first one consists of a webpage Healthmap.org/denguetrends where

dengue estimates produced with the methodology introduced in this manuscript are contin-

uously displayed, and the second one is a crowd-sourced tool (currently in beta) that offers a

user-friendly online chat system which maps dengue cases worldwide, and gives the public

free access to toolkits that help reduce their risk of infection. This second effort is led by

Break Dengue’s “Dengue Track” initiative www.breakdengue.org/dengue-track/. The

potential impact may be far reaching, as the same models could also be used to track and

map other infectious and mosquito-borne diseases, like Zika, malaria, yellow fever or

Chikungunya.

Real-time implementation of our methods requires robust responses to changes in data

quality, availability, and format. For example, Google correlate data shows internal variability

attributed to re-sampling when the tool is accessed at different times. In addition, epidemio-

logical data is not always published consistently by countries, creating lags in reporting that

would make our methodology (which assumes having access to last month’s dengue case

counts) not applicable.

In order to understand the impact of these data limitations, we performed two robustness

studies of ARGO with respect to (1) the variations in Google Trends data, and (2) the availabil-

ity of the most recent dengue case count data. For the first, we obtained multiple data sets con-

taining the search frequencies of the query terms displayed on Table A in S1 Text by accessing

Google Trends 10 different times during a week. We then produced Dengue activity estimates

with ARGO using these 10 data sets as input. Table B in S1 Text shows that ARGO still outper-

forms all other methods in Brazil, Mexico, Thailand and Singapore, despite the random varia-

tions observed in Google Trends data. For the second, we retrained all the models under the

assumption that the dengue case count from the past month was never available due to report-

ing delays. Table C in S1 Text shows that despite the unavailability of the last month dengue

counts, ARGO had competitive predictive performance in the five countries/states when com-

pared to other models (similar to the full data case), suggesting that our methodology is robust

to the time delays in reporting in addition to variations in the input variables.
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While our methods are designed to self-correct over time, the introduction of an interven-

tion to curb dengue activity that could lead to a reduction in dengue cases, such as vector

control or behavioral education (e.g. use of bed nets), may potentially lead our models to tem-

porarily over-predict incidence. However, once such an intervention has been established and

remains active in a given location, our models will self-correct over time to predict the new lev-

els of dengue activity. Sporadic, nation-wide mosquito control methods would provide a big-

ger challenge to dengue case count predictability and, therefore, our model’s usability.

In light of ARGO’s strengths and limitations, future work should analyze the feasibility of

applying our methodology to other countries, finer spatial resolutions, and temporal resolu-

tions. This will be followed by routine reassessments of our methods to identify changes in

information or potential improvements, including new search terms. As an example of such

a change, Brazil has started publishing weekly dengue case counts since 2014. While our

work used only the monthly resolution for fair comparison among all countries, adapting

our methods to shorter time horizons for regions that provide such information would be

useful.

Information on national-level dengue activity may not be ideal for decision-making at the

local level since this information has been aggregated over a wide variety of potentially hetero-

geneous spatial environments. Future work should explore finer spatial resolution estimations

to identify whether region-specific factors may improve or worsen results, similar to what has

been done in [15, 38]. The five countries/states explored in this study vary on orders of magni-

tudes of size; for example, Brazil, Mexico, and Thailand each spans over 100 million square

miles. As a result, these three countries contain wide ecological diversity and potentially vary-

ing patterns of dengue transmission among different sub-regions. It may be expected, for

example, that Brazil would show different levels of seasonality in tropical compared to temper-

ate areas. The success of finer spatial resolutions would depend on the quality of local case

count and Google Trends data; the former can be affected by reporting efficiency, and the lat-

ter can be subject to Internet availability and Google use in a given region. Using national level

data, on the other hand, has the advantage of smoother incidence curves for extraction and

extrapolation of signal at the cost of more granular information. This is reflected in the obser-

vation that ARGO performed best in the three large countries despite the inherent heterogene-

ity within each country. This fits with our previous observation that a combination of higher

dengue prevalence at the national level, seasonality and Google use in these countries leads to

better results. We believe that these strengths and limitations also apply to extending our meth-

odology to other countries/states besides those studied in the paper.

Producing short-term forecasts of dengue activity, in addition to the nowcast presented

here should also be pursued (See [48] for such an extension for flu forecasting). Our approach

may help produce dengue activity estimates in higher spatial resolutions that can lead to alert

systems for people with an increased risk of exposure to the dengue virus at any given point in

time. It is important to keep in mind that state-level or city-level spatial scales with low dengue

activity may present similar challenges to the applicability of our approach as seen in Taiwan.

The incorporation of other Internet-based data sources [48, 49] and cross-country spatial rela-

tionships should also be exploited in order to improve the accuracy in predictions.

Supporting information

S1 Text. Supporting information text. This file includes: (1) Query terms used for each coun-

try/state as Table A; (2) ARGO hyper-parameters for each country/state; (3) Aggregation from

weekly data to monthly data; (4) Robustness to Google Trends variation as Table B; (5) Sensi-

tivity to the availability of dengue case count in the past month as Table C; (6) Heatmaps of
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ARGO coefficients for each country/state as Figure A, B, C, D, and E.

(PDF)

Author Contributions

Conceptualization: SCK JSB NB MS.

Data curation: SY FL.

Formal analysis: SY SCK FL MS.

Funding acquisition: NB MS.

Investigation: SY SCK FL MS.

Methodology: SY SCK FL MS.

Project administration: SCK MS.

Software: SY FL.

Supervision: SCK MS.

Validation: SY SCK FL MS.

Visualization: SY FL.

Writing – original draft: SY SCK FL MS.

Writing – review & editing: SY SCK FL JSB NB MS.

References
1. World Health Organization. Dengue and severe dengue; 2016. http://www.who.int/mediacentre/

factsheets/fs117/en/.

2. Chan M, Johansson MA. The incubation periods of dengue viruses. PloS one. 2012; 7(11):e50972.

https://doi.org/10.1371/journal.pone.0050972 PMID: 23226436

3. Centers for Disease Control and Prevention. Dengue; 2016. http://www.cdc.gov/dengue/.

4. Ibarra AMS, Ryan SJ, Beltrán E, Mejı́a R, Silva M, Muñoz Á. Dengue vector dynamics (Aedes aegypti)
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Supporting Information

Table A. Query terms used for each country/state

Brazil Mexico Thailand Singapore Taiwan

dengue dengue โรคไข้เลือดออก dengue 登革熱

sintomas.dengue dengue.dengue.dengue อาการ.โรค.ไข้เลือดออก dengue.fever 登革熱噴藥

mosquito el.dengue ไข้เลือดออก dengue.symptoms 出血性登革熱

sintomas.da.dengue dengue.sintomas โรค.ไข้เลือดออก dengue.singapore 埃及斑蚊

a.dengue sintomas.del.dengue การ.ป้องกัน.ไข้เลือดออก symptoms.dengue.fever 登格熱

mosquito.dengue dengue.hemorragico อาการ.ของ.ไข้เลือดออก symptoms.of.dengue 防蚊液

mosquito.da.dengue sintomas.de.dengue สาเหตุ.ไข้เลือดออก dengue.fever.singapore 白線斑蚊

dengue.hemorrágica que.es.dengue โครงการ.ไข้เลือดออก dengue.mosquito 登革樂

sintomas.de.dengue dengue.clasico สถานการณ์.โรค.ไข้เลือดออก mosquito dengue fever

sobre.a.dengue dengue.mosquito สถานการณ์.ไข้เลือดออก dengue.in.singapore 蚊子叮

ARGO hyper-parameters for each country/state

Mexico Since we found the nearest three time lags to have significant predictive effect

on future dengue occurrence, we decided not to penalize these three time lags, setting

λαj
= 0, j = 1, 2, 3. We do not have knowledge of the predictive power of the later time

lags, so we set a common penalty for all of them λαj = λα, j ≥ 4. We applied the same

argument to the Google search terms. We further set λα = λβ to reduce the number of

hyper parameters, therefore λαk
= λβk

= 0 for k = 1, 2, 3, λαj = λ for j = 4, . . . , 12, 24,

and λβk
= λ for k = 4, . . . , 10.
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Brazil We found the same pattern for Brazil as for Mexico. Thus, we set

λαk
= λβk

= 0 for k = 1, 2, 3, λαj
= λ for j = 4, . . . , 12, 24, and λβk

= λ for

k = 4, . . . , 10.

Thailand The first three time lags for Thailand were significant, but none of the

Google terms by themselves were significant. This observation led us to set the

hyper-parameters as λαj
= 0 for j = 1, 2, 3, λαj

= λ for j = 4, . . . , 12, 24, and λβk
= λ

for k = 1, . . . , 10.

Singapore Singapore showed a similar pattern to Thailand, so we set λαj = 0 for

j = 1, 2, 3, λαj = λ for j = 4, . . . , 12, 24, and λβk
= λ for k = 1, . . . , 10.

Taiwan The same argument applied for Taiwan, so we set λαj = 0 for j = 1, 2, 3,

λαj = λ for j = 4, . . . , 12, 24, and λβk
= λ for k = 1, . . . , 10.

Aggregation from weekly data to monthly data

We aggregate the Google Trends data from weekly frequency to monthly frequency

using summation. If a fraction of the week belongs to a certain month, the summing

value will be that fraction multiplied by the value reported for that week.

Robustness to Google Trends variation

We include a robustness study to identify the effects of the observed variations in the

(input) data acquired from the Google Trends website. For this, we downloaded 11

copies of data on different days in November 2016, and repeated the implementation of

the methodology described in the main text. Our findings are presented in Table B. The

mean of the 11 evaluation metric values is displayed as well as the standard deviation,

in parenthesis. GDT has no variation since it is taken as exogenous in this study. If we

had access to the raw data GDT is constructed from, we should expect to see similar

variations as well. Autoregressive models do not suffer from these variations since they

do not use Google Trends data as input. As expected, ARGO, which combines Google

Trends data with time series data, suffers less from the variations of the Google Trends

data than the model based on Google Trends data only.
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Table B. Sensitivity to Google Trends variation. The mean evaluation metric

value of the 11 different datasets is displayed in the table, as well as the the standard

deviation. All values are absolute.

RMSE MAE RMSPE MAPE CORR

Brazil

ARGO 14602.591(1303.123) 9043.447(746.341) 0.329(0.029) 0.234(0.014) 0.957(0.008)

GDT 20349.593(0) 13725.535(0) 0.692(0) 0.446(0) 0.916(0)

GT 31606.088(3458.28) 20243.862(1716.244) 0.821(0.07) 0.565(0.043) 0.815(0.04)

SAR 20158.471(0) 12215.217(0) 0.467(0) 0.318(0) 0.917(0)

SAR+GDT 19220.295(0) 12732.517(0) 0.397(0) 0.306(0) 0.938(0)

naive 30560.436(0) 21677.634(0) 0.703(0) 0.546(0) 0.812(0)

Mexico

ARGO 2695.046(145.838) 1532.008(79.432) 0.516(0.063) 0.355(0.025) 0.903(0.011)

GDT 3370.184(0) 2076.24(0) 1.036(0) 0.645(0) 0.863(0)

GT 4628.805(456.821) 2528.918(208.179) 1.016(0.13) 0.616(0.045) 0.705(0.065)

SAR 2821.504(0) 1593.552(0) 0.633(0) 0.401(0) 0.911(0)

SAR+GDT 4460.343(0) 2131.342(0) 0.635(0) 0.42(0) 0.891(0)

naive 3570.105(0) 2161.018(0) 0.816(0) 0.492(0) 0.833(0)

Thailand

ARGO 1543.473(129.498) 911.561(43.288) 0.303(0.014) 0.23(0.008) 0.925(0.011)

GDT 1811.26(0) 1107.728(0) 0.636(0) 0.419(0) 0.884(0)

GT 2590.984(499.302) 1582.48(134.678) 0.687(0.068) 0.495(0.04) 0.82(0.05)

SAR 1592.675(0) 1066.51(0) 0.386(0) 0.293(0) 0.917(0)

SAR+GDT 2381.833(0) 1253.851(0) 0.393(0) 0.305(0) 0.903(0)

naive 2058.891(0) 1276.068(0) 0.426(0) 0.326(0) 0.852(0)

Singapore

ARGO 309.492(24.395) 185.639(7.578) 0.282(0.011) 0.22(0.005) 0.895(0.014)

GDT 389.389(0) 260.421(0) 0.404(0) 0.331(0) 0.821(0)

GT 362.286(30.443) 246.596(13.725) 0.398(0.019) 0.323(0.017) 0.866(0.031)

SAR 379.794(0) 223.633(0) 0.33(0) 0.25(0) 0.847(0)

SAR+GDT 807.414(0) 262.783(0) 0.336(0) 0.232(0) 0.775(0)

naive 329.318(0) 202.651(0) 0.283(0) 0.23(0) 0.878(0)

Taiwan

ARGO 2919.016(1284.247) 989.77(258.632) 0.846(0.154) 0.628(0.062) 0.873(0.026)

GT 5031.846(7248.156) 1336.656(1157.202) 4.092(1.126) 1.655(0.272) 0.848(0.062)

SAR 4487.372(0) 1485.911(0) 0.801(0) 0.653(0) 0.878(0)

naive 2422.559(0) 1063.597(0) 3.248(0) 1.601(0) 0.734(0)
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Sensitivity to the availability of dengue case count in the past

month

Formulation of ARGO and benchmark models assuming past month

dengue case count is not available

ARGO model We now define the ARGO model as in equation (1) of main text, but

we set J = {2, . . . , 12} ∪ {24} assuming that the most recent month data is not yet

available. We take the same K = 10, which includes the query search frequencies of

both the current and the previous month. The slightly refined model is outlined below.

yt = µy +
∑
j∈J

αjyt−j +
∑
k∈K

βk,0Xk,t +
∑
k∈K

βk,1Xk,t−1 + εt, εt
iid∼ N (0, σ2), (1)

The same L1 regularization is imposed to minimize the number of parameters as stated

in the ARGO parameter estimation section. In a given month, the goal is to find

parameters µy, α = {αj : j ∈ J}, and β = (β1,0, ..., β10,0, β1,1, ..., β10,1) that minimize

∑
t

yt − µy −∑
j∈J

αjyt−j −
10∑
k=1

βk,0Xk,t −
10∑
k=1

βk,1Xk,t−1

2

+

∑
j∈J

λαj |αj |+
10∑
k=1

λβk
|βk,0|+

10∑
k=1

λβk
|βk,1|

where λαj , λβk
are regularization hyper-parameters. For Brazil, Mexico, and Thailand,

we set λαk
= λβk

= 0 for k = 2, 3, λαj = λ for j = 4, . . . , 12, 24, and λβk
= λβ1 = λ for

k = 4, . . . , 10. For Singapore and Taiwan, we set λαk
= 0 for k = 2, 3, λαj

= λ for

j = 4, . . . , 12, 24, and λβk
= λ for k = 1, . . . , 10.

Benchmark models For comparison with ARGO, the benchmark models also

assume dengue case count of the most recent month not available:

1. A seasonal autoregressive model without Google information, denoted as SAR,

using a time series of the most recent 3 months (i.e., 2 lags, because most recent

month is not available), as well as 2 seasonal lags. Specifically, the monthly time

series model is comprised of time lags 2,3,12,24:

yt = α2yt−2 +α3yt−3 +α12yt−12 +α24yt−24 + εt, εt ∼ N (0, σ2). This model serves

as a baseline for estimations made only using dengue time-series information.

2. Google Dengue Trends [25], which ended in August 2015. Data are obtained from

https://www.google.org/flutrends/about/. Because Google Dengue Trends

reported dengue intensity in a scale from 0 to 1, we dynamically rescaled it using

a sliding training window to recreate case estimates.

3. A penalized multivariate linear regression model with Google Trends information

only [34], denoted as GT. This is essentially ARGO without autoregressive lags,

and incorporates a common L1 penalty on the Google Trends data of current

month and most recent month;
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4. A seasonal autoregressive model with Google Dengue Trends as exogenous

variable, denoted as SAR+GDT.

yt = α2yt−2 + α3yt−3 + α12yt−12 + α24yt−24 + β1 log GDTt + β2 log GDTt−1 + εt,

εt ∼ N (0, σ2).

5. A naive method, which simply uses the case count two months ago as the

estimation for the value of the current month.

All benchmark models (except the naive method) were trained by linear regression with

sliding two year windows for fair comparison.

Performance comparison

As shown in Table C, ARGO has almost uniform outperformance to other benchmark

models except in Taiwan. The performance of ARGO is similar to our finding in the

main text, suggesting that the method is robust to the availability schedule of the

ground truth data of dengue case count.
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Table C. Comparison of ARGO to benchmark models assuming past month dengue case

count is not available

RMSE MAE RMSPE MAPE CORR

Brazil

ARGO 0.357 0.321 0.260 0.285 0.927

GDT 0.419 0.372 0.370 0.364 0.897

GT 0.525 0.470 0.351 0.394 0.866

SAR 0.692 0.569 0.530 0.491 0.762

SAR+GDT 0.826 0.591 0.379 0.410 0.810

naive 1 (54101.159) 1 (40214.762) 1 (1.938) 1 (1.285) 0.423

Mexico

ARGO 0.524 0.536 0.389 0.527 0.872

GDT 0.583 0.593 0.539 0.620 0.833

GT 0.647 0.593 0.573 0.588 0.790

SAR 0.737 0.756 0.946 0.883 0.684

SAR+GDT 2.033 1.192 0.846 0.804 0.711

naive 1 (6231.484) 1 (3900.929) 1 (2.013) 1 (1.089) 0.495

Thailand

ARGO 0.417 0.450 0.466 0.484 0.936

GDT 0.519 0.519 0.792 0.730 0.877

GT 1.432 1.045 1.014 0.917 0.804

SAR 0.907 0.962 1.203 1.060 0.641

SAR+GDT 1.090 0.847 0.743 0.749 0.847

naive 1 (3647.191) 1 (2267.333) 1 (0.832) 1 (0.607) 0.532

Singapore

ARGO 0.748 0.778 0.790 0.836 0.835

GDT 0.782 0.875 0.899 0.979 0.809

GT 1.421 0.904 0.812 0.819 0.765

SAR 1.432 1.433 1.590 1.407 0.491

SAR+GDT 2.634 1.264 1.144 0.964 0.621

naive 1 (513.588) 1 (312.989) 1 (0.463) 1 (0.353) 0.704

Taiwan

ARGO 4.371 2.477 0.086 0.144 0.900

GT 30.431 13.435 0.502 0.436 0.721

SAR 2.238 1.429 0.062 0.119 0.594

naive 1 (3691.033) 1 (1895.974) 1 (21.261) 1 (8.280) 0.395
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Heatmaps of ARGO coefficients

Figure A. Dynamic ARGO coefficients for Brazil.
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Figure B. Dynamic ARGO coefficients for Mexico.
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Figure C. Dynamic ARGO coefficients for Thailand. The ten query terms are listed in

Table A
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Figure D. Dynamic ARGO coefficients for Singapore.
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Figure E. Dynamic ARGO coefficients for Taiwan. The ten query terms are listed in

Table A
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