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Abstract

Since the universal acceptance of atoms and molecules as the fundamental
constituents of matter in the early-twentieth century, molecular physics,
chemistry, and molecular biology have all experienced major theoretical
breakthroughs. Although researchers had to wait until the 1970s to see indi-
vidual biological macromolecules one at a time in action, the field of single-
molecule biophysics has witnessed extensive growth in both experiments and
theory since then. A distinct feature of single-molecule biophysics is that the
motions and interactions of molecules as well as the transformation of molec-
ular species are necessarily described in the language of stochastic processes,
whether one investigates equilibrium or far-from-equilibrium living behav-
ior. For laboratory measurements following a biological process, analysis of
experimental data obtained by sampling individual participating molecules
over time naturally calls for the inference of stochastic processes. The the-
oretical and experimental developments of single-molecule biophysics thus
present interesting questions and unique opportunities for applied statisti-
cians and probabilists. In this article, we review some important statistical
developments in connection to single-molecule biophysics, emphasizing the
application of stochastic-process theory and the statistical questions arising
from modeling and analyzing experimental data.
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1. INTRODUCTION

Although the concept of atoms and molecules can be traced back to ancient Greece, the corpus-
cular nature of atoms was firmly established only in the beginning of the twentieth century. The
stochastic movement of molecules and colloidal particles in aqueous solutions, known as Brow-
nian motion, explained by the diffusion theory of A. Einstein (1905) and M. von Smoluchowski
(1906) and the stochastic differential equation of P. Langevin (1908)—confirmed experimentally
through the statistical measurements of J.-B. Perrin (1912), T. Svedberg, and A.F. Westgren
(1915)—played a decisive role in its acceptance (Perrin 1916). The literature on this subject is
enormous. We refer readers to the excellent edited volume by N. Wax (1954), which includes
now classical papers by Chandrasekhar, Uhlenbeck-Ornstein, Wang-Uhlenbeck, Rice, Kac, and
Doob, and to M. Kac (1959) for a collection of lectures by one of the founding members of modern
probability theory (Kac 1985).

Although physicists, ever since Isaac Newton, have been interested in the position and velocity
of particle movements, chemists have always perceived molecular reactions as discrete events,
even though no one had seen such until the 1970s. Two landmark papers that marked the
beginning of statistical theories in chemistry (at least in the West) appeared in the 1940s (Kramers
1940, Delbrück 1940). First, Kramers (1940) elucidated the emergence of a discrete chemical
transition in terms of a continuous “Brownian motion in a molecular force field” with two stable
equilibria separated by an energy saddle and derived an asymptotic formula for the reaction
rate. Probabilistically speaking, this formula corresponds to the rate of an elementary chemical
reaction as a rare event (Schuss 2010). Second, Delbrück (1940) assumed discrete transitions
with exponential waiting time for each and every chemical reaction and outlined a stochastic
multidimensional birth-and-death process for a chemical reaction system with multiple reacting
chemical species. Together, these two mathematical theories have established a path from physics
to cell biology by (a) bridging the atomic physics with individual chemical reactions in aqueous
solutions and (b) connecting coupled chemical reactions with dynamic chemical/biochemical
systems. In 1977, Gillespie independently discovered Delbrück’s chemical master equation
approach (McQuarrie 1967) in terms of its Markovian trajectories on the basis of a computational
sampling algorithm that now bears his name within the biochemistry community (Gillespie
1977). In fact, the simulation method can be traced back to Doob (1942).

Experimental techniques have experienced major breakthroughs in parallel with these theo-
retical developments. Perrin’s investigations on Brownian motion gave perhaps the first set of
single-particle measurements with stochastic trajectory. In the 1910s, spatial and temporal res-
olutions were on the order of micrometer and tens of a second. By the late 1980s, they became
nanometer and tens of a millisecond. The observation of discrete stochastic transitions between
different states of a single molecule was first achieved in the 1970s on ion channels, proteins imbed-
ded in the biological cell membrane. This was made possible by the invention of the patch-clamp
technique, together with exquisite electronics, for measuring small electrical currents (Sakmann
& Neher 2009). To measure the stochastic dynamics of a tumbling single molecule in an aqueous
solution, one must be able to see the molecule under a microscope for a sufficiently long time.
For this purpose, an experimental technique to immobilize a molecule and highly sensitive opti-
cal microscopy are needed. These challenges were first overcome for enzyme molecules at room
temperature in 1998 (Lu et al. 1998).

To statisticians and probabilists, it is clear that biophysical dynamics at the molecular level are
stochastic processes. Thus, to characterize such dynamics, called fluctuations within the chemical
physics literature, one needs stochastic models. In an experiment, if such processes are sampled
over time, one molecule at a time, then the analysis of experimental data naturally calls for the
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inference of stochastic processes. Therefore, the theoretical and experimental developments of
single-molecule biophysics present great opportunities for applied statistics and probability.

The aim of this article is to review some important statistical developments in single-molecule
biophysics from the construction of theoretical models to advances in experiments, mostly drawing
from our own limited research experience. The discussion is far from complete, as the field of
single-molecule biophysics, with a substantial background, is advancing too rapidly to be captured
by a short review. Still, we hope to convey a certain amount of historical continuity as well as
current excitement at the research interface between statistics and molecular biophysics. Special
attention is paid to the application of stochastic-process theory and the statistical questions arising
from the analysis of experimental data.

In this presentation, we discuss the underlying theory, experiments, and analysis of experimental
data. The discussion of theory focuses more on the application of stochastic processes in modeling
various problems in single-molecule biophysics, whereas the discussion of experiments and data
focuses more on the statistical analysis of data. However, we want to emphasize that, similar to
advances in modern science, theory and experiment/data go hand in hand: Development in one
stimulates and inspires development in the other.

2. BROWNIAN MOTION AND DIFFUSION OF
BIOLOGICAL MACROMOLECULES

Before we discuss Brownian motion and its profound implications in biophysics, we want to clarify
some terminology because the term Brownian motion has different meanings when used in physics
and chemistry versus when used in probability and statistics: For physicists and chemists, Brownian
motion corresponds to the integral of the Ornstein–Uhlenbeck process (as discussed below);
by contrast, for statisticians and probabilists, Brownian motion refers to the Wiener process,
although both referents share the characteristic of E[x2(t)] ∝ t for large t. Likewise, diffusion has
a different meaning in statistics versus biophysics. In statistics and probability, diffusion processes
typically refer to continuous-time and continuous-space Markov processes, such as Itō’s diffusions.
In biophysics, diffusion typically refers to the physical motion of a particle without an external
potential; when there is drift, it is often called biased diffusion.

To facilitate our discussion, let us first review the derivation of the law of physical Brownian
motion (Schuss 2010). Suppose we have a particle with mass m suspended in a fluid. Then according
to Newton’s equation of motion formulated by Langevin, the velocity v(t) of the particle satisfies

m
dv(t)

dt
= −ζv(t) + F (t), 1.

where ζ is the damping coefficient and F(t) is white noise—formally, the derivative of the Wiener
process. To correctly represent an inert particle in thermal equilibrium with the fluid, the Langevin
equation must have an important physical constraint that links the damping coefficient ζ with the
noise level, because both the movement of the particle and the friction originate from one source—
the collision between the particle and surrounding fluid molecules:

E[F (t)F (s )] = 2ζkBT·δ(t − s ), 2.

where δ(·) is Dirac’s delta function, kB is the Boltzmann constant, and T is the underlying tem-
perature. Equation 2 is a consequence of the fluctuation-dissipation theorem for inert biophysical
systems in statistical mechanics (Chandler 1987). Probabilistically speaking, a Markov-process
model for an inert system that tends toward thermal equilibrium is necessarily reversible (Qian
2001, Qian et al. 2002).
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In more rigorous probability notation, Equations 1 and 2 translate to

m dv(t) = −ζv(t)dt +
√

2ζkBT dB(t), 3.

where B(t) is the Wiener process and the formal association of F (t) = √
2ζkBT dB(t)/dt is

recognized. The stationary solution of Equation 3 is the Ornstein–Uhlenbeck process (Wax
1954), which is Gaussian with mean function E[v(t)] = 0 and covariance function E[v(t)v(s )] =
(kBT/m) exp

(− ζ

m |t − s |). Thus, for the displacement, x(t) = ∫ t
0 v(s )ds , which can be recorded in

single-particle tracking (SPT), its mean squared is

E[x2(t)] = Var[x(t)] =
∫ t

0

∫ t

0
E[v(s )v(u)]du ds

= 2
(

kBT
ζ

)
t − 2

(
kBTm

ζ 2

)(
1 − e− ζ

m t
)

.

Therefore,

E[x2(t)] ∼
(

kBT
m

)
t2, for small t; 4a.

E[x2(t)] ∼ 2
(

kBT
ζ

)
t, for large t. 4b.

Equation 4b gives the famous Einstein–Smoluchowski relation, which links the diffusion constant
D with the damping ζ of the particle: D = kBT /ζ . This equation is historically highly significant:
By combining it with Stokes’s law (ζ = 6πηr) and the definition of the Boltzmann constant
(kB = R/N ), one obtains

D = RT
6πηr N

, 5.

where η is the viscosity, r is the radius of the spherical particle, R is the gas constant, and N is the
Avogadro constant.

An immediate experimental consequence of Equation 5 is that, by measuring the diffusion
constant of a spherical particle, one can estimate the Avogadro constant! Indeed, experiments
on Brownian motions have had a shining history in both physics and chemistry. For example, in
1926, Perrin and Svedberg won Nobel Prizes in physics and chemistry, respectively. Perrin studied
the trajectories of Brownian motions, verifying Einstein’s description of Brownian motion and
providing one of the first modern estimates of the Avogadro constant, whereas Svedberg developed
the method of analytical ultracentrifugation, using counts of Brownian particles in a well-defined
volume and studying how this counting process evolves over time. Per Kac (1959), this counting
process is referred to as the Smoluchowski process. Observations by both Perrin and Svedberg
were performed on large colloids; nearly half a century would pass before such measurements were
performed on biological macromolecules. As a version of the Svedberg experiment, fluorescence
correlation spectroscopy (FCS) appeared in the 1970s (see Section 4), and the measurement of
a single trajectory using the principle of spatial high-resolution by centroid localization (termed
single-particle tracking, SPT) was developed in the 1980s. Notably, SPT is responsible for driving
many recent advances in single-molecule biophysics and super-resolution imaging.

For experimental data from a true Brownian motion, a natural statistical aim is to obtain
estimates of the diffusion constant. If the data consist of the trajectories of individual particles as
in SPT, the diffusion constant can be estimated by either a least-square regression or a maximum
likelihood estimate (MLE) (for a detailed discussion, see Section 2.1). If the data consist of particle
counts over time, the statistical estimation becomes more involved (for a discussion starting with
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the Smoluchowski process, which is non-Markovian, see Section 3) (Ruben 1963, McDunnough
1978).

In addition to estimating the diffusion constant, the experimental objective often is to investigate
the motion that deviates from a simple Brownian motion. This aim has yielded many developments
in statistical treatments of these data, prompting additional questions: What if there is a drift, if
the space is not homogeneous, if the Brownian particles can reversibly attach to other stationary
or moving objects, or if the particles are interacting (e.g., not independent)? With the emergence
of super-resolution imaging, these questions are still being asked in laboratories; a systematic
statistical treatment of these problems has yet to be developed (Weber et al. 2012).

2.1. Single-Particle Tracking (SPT) of Biological Molecules

Since the late 1980s, camera-based SPT has been a popular tool for studying the microscopic
behavior of individual molecules (Saxton & Jacobson 1997). In such experiments, the trajectory
of an individual particle is typically recorded through a microscope by a digital camera; the speed
of the camera can be as fast as a few milliseconds per frame. The superb spatial resolution is due
to centroid localization.

One of the most common statistical issues is to determine the diffusion constant D of the
underlying particle from the experimental trajectory. If we denote (x(t1), . . . , x(tn)) as the true
positions of the particle at times t1, . . . , tn, where �t ≡ ti − ti−1 is the time interval between
successive positions, then the experimental observations (y1, y2, . . . , yn) are yi = x(ti ) + εi , where

εi
i.i.d.∼ N (0, σ 2) are the localization (measurement) errors. If the particle’s motion is Brownian,

then, as shown in Equation 4b, the process x(t) can be well approximated by
√

2DB(t), where B(t)
is the standard Wiener process, provided t � m/ζ . This leads to

yi =
√

2DB(ti ) + εi . 6.

An intuitive estimate of D used by many experimentalists utilizes the mean square displacements
(MSD) (H. Qian et al. 1991), such as

ρ̂k = 1
2(n − k)k�t

n−k∑
i=1

(yi+k − yi )2, k = 1, 2, . . . ,

which are averages of correlated (square) increments, or

ρ̂ ′
k = 1

2 �n/k	 k�t

�n/k	∑
i=1

(yik − y1+(i−1)k)2, k = 1, 2, . . . ,

which are averages of nonoverlapping (square) increments. One can also try to combine them, for
example, by weighting or a regression (against k) (Michalet 2010).

Given the parametric specification (Equation 6), another natural estimate of D is the MLE
(Berglund 2010). Notably, the MLE and the optimal estimate based on MSD have comparable
accuracy (Michalet & Berglund 2012). Furthermore, the estimation error in D decreases with n,
the sample size (the number of camera frames), at the rather slow rate of O(n−1/4), which contrasts
with the familiar rate of O(n−1/2) as in the central limit theorem (Gloter & Jacod 2001a,b; Cai
et al. 2010).

The determination of the diffusion constant D serves many purposes, including estimating
Avogadro’s constant (Perrin’s original aim), testing whether the underlying motion is Brownian,
and elucidating detailed molecular mechanisms. For example, Blainey et al. (2009) studied how
DNA-binding proteins move along DNA segments. If a DNA-binding protein simply slides along
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the DNA, then the protein executes simple one-dimensional translational movements parallel to
the DNA without rotation. By contrast, if a DNA-binding protein moves along the DNA through
a helical path, then it retains a specific orientation with respect to the DNA helix and rotates with
the helix (in a spiral fashion) (Halford & Marko 2004, Slutsky & Mirny 2004). If we measure
a protein’s position along the DNA over time, then the two motions are subject to different
expressions of the diffusion constant: In the parallel motion, the diffusion constant is

D = kBT
6πηr

,

as shown in Equation 5, where η is the viscosity and r is the size of the protein. In the helical
motion, the diffusion constant is

D = kBT
πηr

[
6 +

(
2π

b

)2 (
8r2 + 6r2

o c

)]−1

, 7.

where roc is the distance between the protein’s center of mass and the axis of the DNA and b is
the distance along the DNA traveled by the protein per helical turn. Equation 7 is derived from
hydrodynamic considerations (Schurr 1979, Bagchi et al. 2008). The parallel and helical motions
can thus be differentiated from the experimentally estimated diffusion constant. By tracking DNA-
binding proteins with various sizes from different functional groups and estimating their diffusion
constants from single-molecule experimental data, Blainey et al. (2009) found that the helical
motion is the general mechanism.

2.2. Subdiffusion

As shown in Equation 4b, a key characteristic of Brownian motion is that the MSD E[x2(t)] ∝ t
for moderate and large t. In some physical and biological systems (Bouchaud & Georges 1990,
Klafter et al. 1996), the motion is observed to follow E[x2(t)] ∝ tα with 0 < α < 1. These motions
are referred to as subdiffusion because α < 1. One theoretical approach to model subdiffusion
is to employ fractional calculus (such as the use of fractional derivatives) (reviewed in Metzler &
Klafter 2000). We review an alternative approach here: a generalized Langevin equation (GLE)
with fractional Gaussian noise as postulated in Kou & Xie (2004).

We start with a GLE (Chandler 1987),

m
dv(t)

dt
= −ζ

∫ t

−∞
v(u)K (t − u)du + G(t), 8.

where (a) a noise G(t) having memory replaces the white noise and (b) the memory kernel K
convoluted with the velocity make the process non-Markovian, contra the Langevin equation
(Equation 1). Owing to the fluctuation-dissipation theorem, the memory kernel K(t) and the noise
are linked by

E[G(t)G(s )] = kBT ζ ·K (t − s )

(Zwanzig 2001). Note that the GLE reduces to the Langevin equation when K is the delta function.
Within the GLE framework, we are looking for a kernel function that can give subdiffusion.

Because the white noise is the formal derivative of a Wiener process, which is the unique process
that satisfies (a) being Gaussian, (b) having independent increment, (c) having stationary increment,
and (d ) being self-similar, a good candidate to generalize the Wiener process is a process with
three properties: (a) Gaussian, (b) stationary, and (c) self-similar. It has been shown that the only
class of processes that embodies all three properties is the fractional Brownian motion (fBm)
BH (t) (Embrechts & Maejima 2002, Qian 2003), which has mean E[BH (t)] = 0 and covariance
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E[BH (t)BH (s )] = 1
2

(|t|2H + |s |2H − |t − s |2H
)
. H ∈ [0, 1] is called the Hurst parameter. BH (t)

reduces to the Wiener process when H = 1/2.
Taking G(t) in Equation 8 to be the (formal) derivative of fBm, FH (t) = √

2ζkBT dBH (t)/dt,
we reach the model m dv(t)

dt = −ζ
∫ t

−∞ v(u)KH (t − u)du + FH (t), where the kernel KH (t) is given
by

KH (t) = E[FH (0)FH (t)]/(kBT ζ ) = 2H (2H − 1)|t|2H −2, for t �= 0. 9.

FH (t) is known as the fractional Gaussian noise (fGn).
In more rigorous probability notation, the model can be written as

m dv(t) = −ζ

(∫ t

−∞
v(u)KH (t − u)du

)
dt +

√
2ζkBT dBH (t). 10.

This equation is non-Markovian. Nevertheless, it can be solved in closed form via Fourier analysis
(Kou 2008a). The solution v(t) is a stationary Gaussian process, and the displacement x(t) =∫ t

0 v(s )ds satisfies

E[x(t)2] = Var[x(t)] ∼ kBT
ζ

(
2 sin(2H π )

π H (2H − 1)(2H − 2)

)
t2−2H ∝ t2−2H ,

for large t. Therefore, the model with H > 1/2 leads to subdiffusion.
If there exists an external potential U(x), −U ′(x(t)) will be added to the right-hand side of

Equation 8, yielding

dx(t) = v(t)dt

m dv(t) = −ζ

(∫ t

−∞
v(u)KH (t − u)du

)
dt − U ′(x(t))dt +

√
2ζkBT dBH (t).

11.

For a harmonic potential U (x) = 1
2 mψx2, the model can again be solved by the Fourier transform

method (Kou 2008a).
Subdiffusive motion is observed in single-molecule experiments on protein conformational

fluctuation (Yang et al. 2003, Min et al. 2005b) studying conformation fluctuation through the
fluorescence lifetime of a protein. The fluorescence lifetime is a sensitive indicator, given its ex-
ponential dependence on the three-dimensional atomic arrangements of a protein. The stochastic
fluctuation of the fluorescence lifetime, recorded in experiments, reveals the stochastic fluctu-
ation in a protein’s conformation. Detailed analysis of the autocorrelation function and three-
and four-step high-order correlations of the experimental fluorescence lifetime data shows that
(a) the conformation fluctuations of the two protein systems undergo subdiffusion, (b) the mem-
ory kernel is well described by Equation 9, (c) the conformation fluctuation is reversible in time,
and (d ) a harmonic potential captures the fluctuation quite well. These subdiffusive observations,
therefore, directly support the notation of fluctuating enzymes, also known as dynamic disorder:
As an enzyme molecule spontaneously changes its conformation, its catalytic rate does not hold
constant. The different conformations of an enzyme molecule and their intertransitions thus could
have direct implications on the enzyme’s catalytic behavior (Min et al. 2005a) (see Section 5.5).
From a pure statistics standpoint, inference and testing of the subdiffusive models beyond the
autocorrelation function and the three- and four-step correlations are open issues.

3. PARTICLE COUNTING

The idea of counting the number of particles in a fixed region and using the temporal correlation
of the resulting counting process to extract the kinetic parameters of the underlying experimental
system has a long history, dating back to Smoluchowski’s investigation of Brownian motion in

www.annualreviews.org • Single-Molecule Biophysics 471

A
nn

ua
l R

ev
ie

w
 o

f 
St

at
is

tic
s 

an
d 

It
s 

A
pp

lic
at

io
n 

20
14

.1
:4

65
-4

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 H

ar
va

rd
 U

ni
ve

rs
ity

 o
n 

03
/2

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ST01CH21-Kou ARI 4 December 2013 20:46

the early-twentieth century. Suppose we have indistinguishable particles, each undergoing in-
dependent Brownian motion. Let n(t) be the number of particles at time t in a region � (such
as an area illuminated under a laser beam). This counting process {n(t), t ≥ 0} is referred to as
the Smoluchowski process. Under the assumption that the initial positions of the particles are
uniformly distributed in a volume S (which is typically much larger than �), it can be shown
that E(n(t)) = |�| / |S|, and that for t � m/ζ ,

Cov(n(t), n(t + τ )) = |�|
|S|

{
1 − 1

(4π Dτ )3/2

∫ ∫
x1,x2∈�

exp
(

−||x1 − x2||2
4Dτ

)
dx1dx2

}
, 12.

where |�| and |S| are the volumes of � and S, respectively, and D is the diffusion constant (Kac
1959, Ruben 1964, Brenner et al. 1978, McDunnough 1978, Bingham & Dunham 1997). Note that
under t � m/ζ , the Brownian diffusion is well approximated by the Wiener process, which is the
basis for Equation 12. Historically, this result allowed the Brownian diffusion theory to be tested
by particle counting, as Svedberg and Westgren did in the 1910s. It also allowed Smoluchowski to
successfully account for the apparent paradox between the microscopic reversibility of an individual
molecule’s motion and the macroscopic irreversibility as in the second law of thermodynamics
(Chandrasekhar 1943). Finally, it offers an experimental way to determine the diffusion constant.

Estimating D from experimental observations (n(t1), . . . , n(tM )), where �t ≡ ti − ti−1, is again
a statistical issue. An intuitive method is to match the theoretical covariance function with the
empirical one (Ruben 1964):

1
M − 1

M∑
i=2

(n(ti ) − n(ti−1))2 = C(�t, D), 13.

where C(�t, D) is the right-hand side of Equation 12, which is a function of �t and D. The
solution D̂ of the generalized difference (Equation 13) is the estimate of D. Alternatively, one can
also match lag-k square difference

Ĉov(k) := 1
M − k

M∑
i=k+1

(n(ti ) − n(ti−k))2 = C(k�t, D)

or use the nonlinear least square

arg min
D

∑
k

(
Ĉov(k) − C(k�t, D)

)2

or its (weighted) variation to estimate D (Brenner et al. 1978).
Use of MLE to estimate D encounters the difficulties that the Smoluchowski process is

non-Markovian and that it does not have analytically tractable joint probability function.
Approximating the Smoluchowski process by an emigration-immigration (birth-death) process,
which is Markovian, has been proposed (Ruben 1963, McDunnough 1978), where the birth and
death rates can be set by making sure that the emigration-immigration and Smoluchowski pro-
cesses share the same mean and covariance (for small �t). Systematic comparison between the two
different estimation methods—the one based on the empirical autocovariance function versus the
quasi-likelihood estimate based on the emigration-immigration approximation—is an open issue.

The scheme of counting particles and utilizing the temporal correlation to extract kinetic
parameters was further developed into FCS in the 1970s (see Section 4). With FCS, however,
instead of exact counts, the fluorescence level of the underlying system, which depends on the
molecules’ counts, is recorded. The autocorrelation of the stochastic fluorescence reading can be
used to estimate parameters such as the diffusion constant and the reaction rate.
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4. FLUORESCENCE CORRELATION SPECTROSCOPY (FCS)
AND CONCENTRATION FLUCTUATIONS

With the development of laser-based microscopy, the number of molecules in a very small region
within an aqueous solution can now be measured and counted: Counting is based on the fluorescent
light emitted from the molecules. If the molecules are continuously emitting fluorescence, then
the measurement of stationary fluorescence fluctuation from a small region provides information
on number fluctuation. Because fluorescent emission requires excitation of an incoming light, the
small region is naturally defined by the laser intensity function I(r), where r = (x, y, z) is the three-
dimensional location of the particle (Rigler & Elson 2001); I(r) can often be nicely represented by
a Gaussian function I (r) = I0 exp(−2(x2 + y2)/ω2 − 2z2/ω2

z ).
For a collection of free-moving, identical, independent fluorescence-emitting particles, the

theory is built on the function of a single Brownian motion: I(Xt), where Xt is a three-dimensional
Brownian motion, with diffusion coefficient D, confined in a large finite volume �. For comparison
with a real experiment, we consider N i.i.d. Brownian motions and let N , � → ∞ such that
N/|�| = c corresponds to the concentration of the particles in the real experiment (Qian et al.
1999), with |�| denoting the volume of �. Then the autocovariance function of I (X t) can be
derived (Rigler & Elson 2001):

Cov[I (X t+τ ), I (X t)] = var[I (X t)]
(1 + 4Dτ/ω2)(1 + 4Dτ/ω2

z )1/2
,

which can be used to obtain the diffusion constant D. This exact result and the corresponding
experiments were developed in the 1970s. If the number of fluorescent particles is very large,
then the measured stationary intensity I(t) is essentially a Gaussian process with the mean and
variance given by

E[I (t)] = c
∫

R3
I (r)dr = c I0

(π

2

)3/2
ω2ωz

Var[I (t)] = c
∫

R3
I 2(r)dr = c I 2

0

(π

4

)3/2
ω2ωz,

14.

which can be derived by assuming that the particles are distributed in space according to a homoge-
neous Poisson point process. Thus, in the Gaussian limit, the concentration c = (π3/2ω2ωz)−1 E2[I ]

var[I ]
and the brightness of a particle from the Fano factor Var[I ]/E[I ] can be measured.

FCS can also be used to obtain the reaction rate of a chemical process. Suppose we have a
two-state reversible chemical reaction A � B, where A and B are the two states of the reaction.
Let k+

1 be the rate of A changing to B and k−
1 be the rate of B changing to A. This two-state reaction

is typically described by a two-state continuous-time Markov chain where k+
1 and k−

1 represent
the (infinitesimal) transition rate. Suppose the two states A and B have different fluorescence
intensities IA and IB. If we use Xt to denote the two-state process, then

Cov[I (X t+τ ), I (X t)] = Var[I (X t)] exp(−(k+
1 + k−

1 )τ ).

This equation can be used to estimate the relaxation time (k+
1 + k−

1 )−1 of the reaction.
In the late 1980s, researchers started to measure non-Gaussian intensity distributions from

small systems and obtain information about the heterogeneity of brightness in a mixture of par-
ticles. Various methods emerged, with acronyms such as FDS (fluorescence distribution spec-
troscopy), HMA (high-moment analysis), PCH (photon-counting histogram), and FIDA (fluores-
cence intensity distribution analysis). Non-Gaussian behavior means that higher-order temporal
statistics such as E[I (t1 + t2)I (t1)I (0)] also contains useful information.
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If �I (t) = I (t) − E[I ] is a Markov process and is linear, i.e., the conditional expectation

E[�I (t + τ )|�I (t) = z] = zg(τ ) with g(0) = 1, 15.

then the autocovariance function

E[�I (t + τ )�I (t)] = E[(�I )2]g(τ ). 16.

Therefore, we see that the functional form of the autocorrelation function (Equation 16) and the
relaxation function after perturbation (Equation 15) are the same. This is the mathematical basis of
the traditional, phenomenological approach of Einstein, Onsager, Lax, and Keizer to fluctuations.
In a similar spirit, the higher-order temporal correlation functions are mathematically related to
relaxations with multiple perturbations, known as multidimensional spectroscopy (Wiener 1966,
Ridgeway et al. 2012).

The experimentally determined fluorescence autocorrelation function ĝ(nδ), where n =
1, 2, . . . and δ is the time step for successive measurements, often has a curious feature: The
measured ĝ(0) is always much greater than the extrapolated value from ĝ(n) based on n ≥ 1. In
fact, the difference, known as shot noise, is approximately E(I). Its origin is the Poisson nature of
the random emissions of fluorescent photons, which are completely uncorrelated on the timescale
of δ. Instead of treating the experimental fluorescence reading as a deterministic function of the
underlying Xt, one needs to consider the quantum nature of photon emission—the photon counts
are Poisson with the intensity function as the mean. Accordingly, the photon count from a single
diffusing particle is an integer random variable with distribution (Qian 1990)

Pr(I1(t) = k) =
∫

�

I k(r)
k!

e−I (r) fX (r, t)dr,

where fX (r, t) is the probability density function of Xt. Therefore, under the assumption that
Brownian particles are uniformly distributed in space,

E[I1] = 1
|�|

∫
�

I (r)dr, Var[I1] = 1
|�|

∫
�

(I (r) + I 2(r))dr − E2[I1].

Now again consider total N i.i.d. particles, and let N , � → ∞ and N/|�| = c . Assuming that the
particles are distributed in space according to a homogeneous Poisson point process, we have

E[I1] = c
∫

R3
I (r)dr, Var[I1] = E[I ] + c

∫
R3

I 2(r)dr.

Comparing this with Equation 14, we see the extra shot-noise term E[I]. This is a good example of
the textbook problem regarding the sum of a random number of independent random variables. In a
laser-illuminated region, there is a random number of fluorescent particles, and each particle emits
a Poisson number of photons; thus, the total photon count is a sum of a random number of terms.

Recently, the optical setup for FCS has been expanded to have two different colors of fluo-
rescence or to have two laser beams at different locations of the system (Schwille et al. 1997,
Dertinger et al. 2007). These measurements generate multivariate stationary fluorescence fluctu-
ations. There are good opportunities for in-depth statistical studies of the new data, for example,
the assessment of time reversibility of a Gaussian process (Qian 2001, Qian & Elson 2004).

5. DISCRETE MARKOV DESCRIPTION OF
SINGLE-MOLECULE KINETICS

Diffusion theory describes a continuous-state, continuous-time Markov process (Wax 1954, Schuss
2010). In the 1970s, motivated mainly by novel experimental data from single-channel recordings
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of membrane protein conductance, intense studies began to explore discrete-state continuous-
time Markov processes [also called a Q-process by Doob (1942) and Reuter (1957)] as models for
internal stochastic dynamics of individual biomacromolecules. For their contributions, E. Neher
and B. Sakmann received the Nobel Prize in 1976. Sakmann & Neher (2009) provide a thorough
review of single-channel recording. We also refer readers to earlier accounts of the development of
a discrete-state Markov approach in biochemistry prior to the single-channel era (Bharucha-Reid
1960, McQuarrie 1967) and an exhaustive summary of the literature on ion-channel modeling and
statistical analysis (Ball & Rice 1992).

Enzymes and proteins are large molecules consisting of tens of thousands of atoms, which
are sometimes called biopolymers (see also Section 6). One of the central concepts established
since the 1960s is that a protein can have several discrete conformational states: These states have
different atomic arrangements within the molecule, and they can be observed through their vari-
ous molecular characteristics, including absorption and emission optical spectra, physical sizes, or
biochemical functional activities. These different probes can have different temporal resolutions
and sensitivities. Using a highly sensitive probe with reasonably high temporal resolution, one
can measure the dynamic fluctuations of a single protein as a stationary, discrete-state stochas-
tic process. Therefore, Markov, or hidden Markov, models are natural tools for describing the
conformational dynamics of a protein and such measurements.

5.1. Single-Channel Recording of Membrane Proteins

The earliest single-molecule experiments were carried out in the 1970s on ion channels; the
patch-clamp technique pioneered by Neher and Sakmann enables reliable recording of membrane
protein conductance on a single channel. As the closing and opening of an ion channel control
the passage of ions across a cell membrane, the conductance recorded in experiments essentially
consists of step functions, such as (stochastically) alternating high and low current levels. The
simplest model to describe such on-off signaling is the two-state continuous-time Markov chain
model

open � close. 17.

Owing to experimental noise and data filtering, the sequence of real observations
{y(ti ), i = 1, 2, . . .} is better described by hidden Markov models. Under specific models,
such as y(ti )|X (ti ) ∼ N (X (ti ), σ 2), where X(t) is the underlying state of the ion channel, the
MLE for the transition rates can be obtained in straightforward fashion.

The conductance of real ion channels, however, is typically much more complicated than that
given by the simple two-state model. For example, in addition to the open and closed states of
the ion channel, there may exist blocked states, in which the binding of a blocking molecule
to the ion channel stops the ion flow. Alternatively, the opening of a channel may be triggered
by the binding of an agonist molecule. An ion channel, thus, could have multiple closed and
open states. A complication for modeling and inference is that these open (and closed) states
are not distinguishable from experimental data: Typically, the open (and closed) states have the
same conductance. Therefore, we are dealing with aggregated Markov processes: Although the
underlying mechanism is Markovian, we observe only in which aggregate (i.e., collection of states)
the process is found (Fredkin & Rice 1986). A natural issue regards the identifiability of different
models, given that we can observe only the aggregates. Note, that it is quite possible that two
distinct models may give the same data structure/likelihood.

Statistical questions include how to estimate the number of (open and closed) states, postulate
a model, and infer the parameters of the model. Ball & Rice (1992) surveyed the statistical analysis
and modeling of the ion channel data. Chapter 3 and part III of the encyclopedic book by Sakmann
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& Neher (2009) provide an introduction and review of ion channel data analysis, from initial data
processing to inference complications, such as the time interval omission problem.

Parallel to the construction, testing, and estimation of Markov models, an alternative sta-
tistical approach is to treat the inference as a change-point detection problem: Given the on-
off signal, use the data to determine the change points (i.e., the transition times) and then
infer the sojourn times and their correlation, which provide clues for eventual model build-
ing. The change-point approach can be viewed as nonparametric because it does not explic-
itly rely on a (Markov) model specification. The problem of change-point estimation has a
long history in statistics dating back to the 1960s. More recent approaches particularly rele-
vant for single-channel data include use of the BIC (Bayesian information criterion) penalty
(Yao 1988), the quasi-likelihood method (Braun et al. 2000), the L1 penalty method (Tibshi-
rani et al. 2005), the multiresolution method (Hotz et al. 2012), and the marginal likelihood
method (Du et al. 2013). Compared with the parametric inference methods based on continuous-
time Markov chains, many of these change-point methods are flexible and can be made auto-
matic. Thus, they are suitable for fast initial analysis of a large amount of single-channel data,
such as the thousands of data traces commonly generated in modern single-channel recording
experiments.

5.2. Two-State and Three-State Single-Molecule Kinetics

A two-state Markov chain, such as in Equation 17, is widely used in biochemical kinetics. It is
typically diagrammed as

A
k+

1�
k−

1

B, 18.

where A and B are the two states and k+
1 and k−

1 are the (infinitesimal) transition rates. One of
the simplest biochemical reactions is the reversible binding of a single protein E to its substrate
molecule S, E + S � ES. It can often be described by this two-state Markov model with rate
parameters k+

1 = k0
1 cS and k−

1 , where cS denotes the concentration of the substrate molecules.
In this case, k+

1 = k0
1 cS assumes that the protein concentration is sufficiently dilute. Thus, a

large number of substrate molecules S per E must be present for the concentration cS to remain
essentially constant. Writing out k+

1 = k0
1 cS also highlights the fact that the concentration cS of the

substrate can be controlled in experiments. Thus, one can study the effect of the concentration cS

on the overall reaction. In chemical kinetics, k0
1 and k+

1 are called second-order and pseudo-first-
order rate constants, respectively: A second-order rate constant has the dimension [time]−1 ×
[concentration]−1, whereas a first-order rate constant has the dimension [time]−1. The states
E and ES of a single protein can be monitored through a change in the fluorescence intensity of
the molecule, for example, through either the intrinsic fluorescence of the protein or the Föster
resonance energy transfer between the protein and the substrate.

A three-state Markov chain is often used to describe an enzyme’s cycling through three states,
E, ES, and EP:

E + S
k0

1�
k−

1

ES, ES
k+

2�
k−

2

E P, and E P
k+

3�
k0

3

E + P. 19.

An enzyme catalytic cycle is completed every time it helps convert a substrate molecule S to a prod-
uct P, while the state of the enzyme molecule returns to the E so that it can start the cycle to convert
the next substrate molecule (shown in Figure 1). The enzyme E serves as a catalyst to the chemical
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E

EP ES

k+
3

k–
3

k+
1

k–
1

k+
2

k–
2

Figure 1
Typical enzyme kinetics can be written as a sequence of biochemical steps, as in Equation 19, or from a
single-enzyme perspective, it can be expressed as a cycle, as illustrated here. Note that the second-order rate
constants k0

1 and k0
3 in Equation 19 have been replaced by pseudo-first-order rate constants k+

1 and k−
3 ,

respectively. The simplest statistical kinetics model is to consider this system as a continuous-time,
discrete-state Markov process. A more sophisticated model, when there are sufficient data, could be a
semi-Markov model with arbitrary, nonexponential sojourn time for each of the three states (Wang & Qian
2007).

transformations S � P . Again, using the idea of pseudo-first-order rate constants, we have the (in-
finitesimal) transition rates k+

1 = k0
1 cS and k−

3 = k0
3 cP , where cP is the concentration of the product P.

A three-state Markov process is reversible if k+
1 k+

2 k+
3 /(k−

1 k−
2 k−

3 ) = 1, which is a special case
of the Kolmogorov criterion of reversibility (Kelly 1979). This mathematical concept precisely
matches the important notion of a chemical equilibrium between S and P when(

cP
cS

)eq

= k0
1k+

2 k+
3

k−
1 k−

2 k0
3
. 20.

In fact, as is widely known in biochemistry, reaction S � P will have very small forward and
backward first-order rate constants α+ and α− when the enzyme is absent. Nevertheless, the
fundamental law of chemical equilibrium dictates that α+/α− = k0

1k+
2 k+

3 /(k−
1 k−

2 k0
3) (Lewis 1925).

In a living cell, however, the substrate and the product of an enzyme are usually not at their
chemical equilibrium, and their concentrations cS and cP do not satisfy the equality in Equation 20.
Accordingly,

k+
1 k+

2 k+
3

k−
1 k−

2 k−
3

= k0
1 cSk+

2 k+
3

k−
1 k−

2 k0
3 cP

�= 1,

for which the corresponding Markov chain is no longer reversible. This finding motivated the
mathematical theory of nonequilibrium steady state (NESS) ( Jiang et al. 2004, Ge et al. 2012,
Zhang et al. 2012). For a strongly irreversible, three-state Markov process, its Q-matrix (i.e., the
infinitesimal generator) may have a pair of complex eigenvalues, giving rise to a nonmonotonic,
oscillatory autocorrelation function (Qian & Elson 2002). For example, if k−

1 = k−
2 = k−

3 = 0 and
k+

1 = k+
2 = k+

3 = 1, then the two nonzero eigenvalues are − 1
2 (3 ± i

√
3). Such oscillatory behavior

has been observed in single-molecule experiments.

5.3. Entropy Production and Nonequilibrium Steady State

The chemical NESS also motivated the mathematical concept of entropy production rate (M.-P.
Qian et al. 1991, Jiang et al. 2004):

e p = lim
t→∞

1
t

ln
(

dPt

dP
−
t

)
. 21.

www.annualreviews.org • Single-Molecule Biophysics 477

A
nn

ua
l R

ev
ie

w
 o

f 
St

at
is

tic
s 

an
d 

It
s 

A
pp

lic
at

io
n 

20
14

.1
:4

65
-4

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 H

ar
va

rd
 U

ni
ve

rs
ity

 o
n 

03
/2

0/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ST01CH21-Kou ARI 4 December 2013 20:46

For a continuous-time Markov process X(t), Pt in Equation 21 is the likelihood of a stationary
trajectory, and P

−
t is the likelihood of the time-reversed trajectory. For example, if Pt is the

likelihood of a particular trajectory 2 → 3 → 1, where the transitions occur at t1 and t2 with
0 < t1 < t2 < t, then P

−
t is the likelihood of the trajectory 1 → 3 → 2, where the transitions

occur at t − t2 and t − t1.
For a three-state system, it is easy to show that

e p = JNESS ln
(

k+
1 k+

2 k+
3

k−
1 k−

2 k−
3

)
, 22.

with NESS probability circulation

JNESS = k+
1 k+

2 k+
3 − k−

1 k−
2 k−

3{
k+

1 k+
2 + k−

1 k−
3 + k+

2 k−
3 + k+

2 k+
3 + k−

2 k−
1

+k+
3 k−

1 + k+
3 k+

1 + k−
3 k−

2 + k+
1 k−

2

} .

We see that ep is never negative, and it is zero if and only if the Markov process is reversible. In fact,
in the energy unit of kBT , the logarithmic term in Equation 22 is the chemical potential difference

between S and P: �μS→P = kBT ln k+
1 k+

2 k+
3

k−
1 k−

2 k−
3

, JNESS is the number of reactions per unit time, and

ep is the amount of heat dissipated into the environment per unit time. The chemical potential
equaling heat dissipation is the first law of thermodynamics; e p ≥ 0 is interpreted as the second law
of thermodynamics. The second law has always been taught as an inequality; Equation 21 provides
a more quantitative formulation in terms of a Markov process. For finite t, ep in Equation 21 is
stochastic and has a negative tail. Characterizing this negative tail under a proper choice of the
initial probability for a finite trajectory is the central theme of the recently developed fluctuation
theorems (Kim 2011, Seifert 2012).

5.4. Michaelis–Menten Single-Enzyme Kinetics

In single-molecule enzyme kinetics (Lu et al. 1998), one can measure the arrival times of successive
product P, following the simple Michaelis–Menten (MM) enzyme kinetic scheme (Kou et al. 2005,
English et al. 2006):

E + S
k+

1�
k−

1

ES, ES
k+

3�
k−

3

E + P. 23.

This is a simpler model than that in Equation 19: It is assumed that reactions associated with k+
2

and k−
2 are so fast that they can be neglected. Because each arriving P is immediately processed,

k−
3 = k0

3 cP = 0. The arrivals of every P are now a renewal process with mean waiting time E[T]
easily computed (Qian & Elson 2002, Kou et al. 2005, Qian 2008) from

E[T ] = 1
k+

1
+ 1

k−
1 + k+

3
+ k−

1

k−
1 + k+

3
E[T ] + k+

3

k−
1 + k+

3
0.

Solving E[T] and noting k+
1 = k0

1 cS, one obtains

E−1[T ] = V maxcS
KM + cS

, V max = k+
3 , KM = k−

1 + k+
3

k0
1

. 24.

This is the celebrated MM equation for steady-state enzyme catalytic velocity, first discovered in
1913 on the basis of a nonstatistical theory. One of the immediate insights from the probabilistic
derivation of the MM equation is that, if an enzyme has only a single unbound state E, then
irrespective of how many and how complex the bounding states (ES)1, . . . , (ES)n may be, the MM
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equation is always valid. The expressions for the Vmax and KM can be very complex (English et al.
2006, Min et al. 2006). We discuss in some detail the single-molecule experiments on enzymes
and models beyond the MM mechanism in Section 5.5. If cP �= 0, then the NESS probability
circulation in the enzyme cycle is as follows (Qian 2008):

JNESS = (V max/KM )cS − (V −
max/K P

M )cP
1 + cS/KM + cP/K P

M
, V −

max = k−
1 , K P

M = k−
1 + k+

3

k0
3

.

This is known as the Briggs–Haldane equation for a reversible enzyme.

5.5. Single-Molecule Enzymology in Aqueous Solution

We have seen how the schemes noted in Equations 19 and 23 describe enzyme kinetics. Tradition-
ally, they are used to set up (coupled) differential equations, which specify how the concentrations
of the enzyme, the substrate, and the product change over time. These theoretical descriptions
then can be compared with experimental results carried out in bulk solution, which involve a large
ensemble of enzyme molecules.

In contrast to these traditional ensemble experiments, observing the action of a single enzyme
molecule in aqueous solution requires the development of methods that immobilize an enzyme
molecule and make the experimental system fluorescent as well as the use of high-sensitivity
optical microscopy. This was first accomplished in 1998 (Lu et al. 1998) on cholesterol oxidase,
where the active site of the enzyme, E + S and ES in Equation 23, is fluorescent, yielding an
on-off system. The experimental data of Lu et al. (1998) have an appearance similar to that
of the on-off data from ion channels (Section 5.1). Thus, many data analysis tools developed
for single-channel recording can be applied. Experimental fluorescence techniques, such as the
design and utilization of a fluorescent substrate, fluorescent active site, and fluorescent product,
and experimental techniques to immobilize an enzyme molecule were reviewed in Xie & Lu (1999)
and Xie (2001), which also discuss the relationship between single-molecule enzymology and the
traditional ensemble approach.

As experimental methods have developed and matured, we can finally study and test the MM
mechanism directly (Equation 23) on the single-molecule scale. Using a fluorescent product,
English et al. (2006) conducted single-molecule experiments on the enzyme β-galactosidase. The
sharp fluorescence spikes from the product enable experimental resolution of β-galactosidase’s
individual turnovers (i.e., the successive cycles of the enzyme). Experimental data showed that
(a) the distribution of the enzyme’s turnover times is much heavier than an exponential distri-
bution, contradicting the MM mechanism’s prediction; (b) there is a strong serial correlation in
a single enzyme’s successive turnover times, also contradicting the MM mechanism; and (c) the
hyperbolic MM relationship of E−1(T ) ∝ cS/(cS + KM ), as given in Equation 24, still holds. To
explain these experimental results, particularly their contradiction with the MM mechanism, Kou
et al. (2005) introduced the following model (diagrammed in Figure 2).

In Figure 2, E1, E2, . . . represent the different conformations of the enzyme, and SEi are the
different conformations of the enzyme-substrate complex. The model is based on the insight that
a protein molecule can have multiple conformational states: These states have different atomic
arrangements and can have different biochemical functional activities. Detailed calculations (see
Kou et al. 2005, English et al. 2006, Kou 2008b, Du & Kou 2012) show that the model is capable
of explaining the experimental data.

Data from experiments such as those of English et al. (2006) have different patterns from the
on-off data of Lu et al. (1998). The fluorescent product, which, once formed, quickly diffuses
away from the focus of the microscope, is used in these experiments. Thus, the experimental
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k+
11

k–
11

k+
31

k–
31

δ2

δ1
S + E1 P + E0

1 E0
1 E1SE1

k+
12

k–
12

k+
32

k–
32

S + E2 P + E0
2 E0

2 E2SE2

…

δnk+
1n

k–
1n

k+
3n

k–
3n

S + En P + E0
n E0

n EnSE1

… … … …

Figure 2
A discrete schematic illustrating the Markovian kinetics of a single enzyme molecule with conformational
fluctuations.

data consist of fluorescent spikes, with each spike corresponding to the formation of one product
molecule, amid fluorescence from the background. In principle, the time lag between two suc-
cessive spikes is the (individual) turnover time of the enzyme. In practice, because the level of
the fluorescent spike is random (as a product molecule spends a random time in the focal area
of the microscope before diffusing away), one needs to threshold the data to locate the spikes.
Finding a statistically efficient threshold level (to minimize false positives) for such data is an open
problem.

5.6. Motor Proteins with Mechanical Movements Against External Force

Particular enzymes called motor proteins can move along their designated linear, periodic tracks
inside a living cell, even against a resistant force. The energy of the motor is derived from the
chemical potential in the S → P reaction, given in Equation 22 (Qian 1997, 2005; Fisher &
Kolomeisky 1999; Kolomeisky & Fisher 2007; Chowdhury 2013). An external mechanical force
Fext enters the rate constants to effect the conformational transition of a motor protein as follows:
If the transition from conformational state A to state B moves a distance dAB along the track against
the force, then according to Boltzmann’s law

kA→B (Fext)
kB→A(Fext)

= kA→B (0)
kB→A(0)

exp
(

− FextdAB

kBT

)
.

Substitute such a relation into Equation 22 and let d be the total motor step length for one enzyme
cycle (from S to P), then

e p = JNESS × 1
kBT

(�μS→P − Fextd ) .

In this case, part of the chemical energy from transformation S → P is converted to mechanical
energy. The part that becomes heat is the entropy production.
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The motor protein carries out a biased random walk with velocity vmotor = JNESSd . With
increasing force Fext, vmotor decreases. When Fext = �μS→P/d , the random walk is no longer
biased; this is known as a stalling force. One can also compute the dispersion of the motor, i.e., a
diffusion coefficient:

Dmotor = d 2

2E[Tc ]
, E[Tc ] = 1 + cS/KM + cP/K P

M

(V max/KM )cS + (V −
max/K P

M )cP
.

In fact, as a semi-Markov process (also known as Markov renewal process or continuous-time
random walk), the mean cycle time is E[Tc] and the ratio of probabilities of forward and backward
cycles is (V max/KM )cS

(V −
max/K P

M )cP
.

5.7. Advanced Topics

This brief section highlights some more advanced statistical topics from single-molecule analysis.
Most of these works have been described in the physics and physical chemistry literature; the
analyses remain to be properly treated in the hands of statisticians.

5.7.1. Empirical measure with finite time. Even for the simplest two-state Markov process,
some of the statistics can be complex. For example, Geva & Skinner (1998) analytically studied
the statistical quantity

Xτ = 1
τ

∫ τ

0
ξB (t) dt,

where ξB (t) is the indicator function for state B in Equation 18. They showed that the pdf (prob-
ability density function) of Xτ can be obtained in terms of its Fourier transform γ (y):

γ (y) = e− 1
2 (kτ+i y)

[
cosh φ +

(
α

φ

)
sinh φ

]
,

where k = k+
1 + k−

1 , α = 1
2 kτ − i

(
p − 1

2

)
y , p = k+

1 /(k+
1 + k−

1 ), and

φ2 =
(

kτ

2

)2

− i
(

p − 1
2

)
−

( y
2

)2
.

Thus, for large τ ,

γ (y) = e− σ 2(τ )y2

2 −i py
, σ 2(τ ) = 2p(1 − p)

kτ
.

5.7.2. Non-Markovian two-state systems. Some enzymes exhibit clear two-state stochastic
behavior, but the process is not Markovian. For example, the consecutive dwell times in state
B could have nonzero correlation (Lu et al. 1998). This is a strong violation of the Markovian
property. To explain this observation, the theory of dynamic disorder, or fluctuating enzyme,
assumes that k+

1 and k−
1 in Equation 18 are stochastic processes in the form k±

1 (t) = k̃±
1 e−X t , where

Xt is an Ornstein-Uhlenbeck process (see Equation 3) (Agmon & Hopfield 1983, Schenter et al.
1999, Kou et al. 2005). In this case, even though ξB (t) is no longer a Markov process, (ξB, X )
together is now a coupled diffusion process (Qian 2002). A more complex model on Xt (describing
it as fractional Gaussian noise) is considered in Wang & Wolynes (1995). One can also model Xt

by the GLE (Kou & Xie 2004) of Section 2.2.

5.7.3. Dwell time distribution peaking. As discussed above, a continuous-time Markov chain
in an NESS can have complex eigenvalues. Thus, the power spectrum of its stationary data
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can exhibit an off-zero peak representing intrinsic frequency (Qian & Qian 2000). However, a
surprising result discovered independently by Li & Qian (2002) and Tu (2008) is that one can also
observe an off-zero peak in the pdf of the dwell time within a group of states, which is impossible
for a reversible process.

5.7.4. Detailed balance violation and event ordering. The fundamental insight that a sustained
chemical energy input is necessary to observe an irreversible Markov process in molecular systems
has opened several lines of inquiry on stationary data. On the one hand, for stationary molecular
fluctuations in chemicothermodynamic equilibrium, one wants to test the preservation of detailed
balance (Rothberg & Magleby 2001, Witkoskie & Cao 2006, Nagy & Tóth 2012). On the other
hand, for a molecular process with unknown mechanism, one wants to discover whether it is
chemically driven (Qian & Elson 2004). In fact, quantification of the deviation from reversibility
could reveal the source of the external energy supply. Finally, for a system with breakdown of
detailed balance, event ordering from statistical analysis provides insights regarding the molecular
mechanism (Sisan et al. 2010).

The concept of detailed balance also exists in chemistry (Fowler & Milne 1925, Lewis 1925,
Feinberg 1989), but it is essentially different from the same term known in statistics. For a chem-
ical detailed balance, a set of linear and nonlinear reactions forming a reaction cycle must have
zero cycle flux in chemical equilibrium. This chemical detailed balance is expressed in terms of
the concentrations of the reactants, which are deterministic quantities. There is no probabil-
ity involved in this statement. If all the reactions are unimolecular, however, then a chemical
reaction system in terms of the law of mass action is equivalent to a continuous-time Markov
chain. Only in this case are the chemical and the probabilistic detailed balance conditions the
same.

6. POLYMER DYNAMICS AND GAUSSIAN PROCESSES

Polymer dynamics is another highly successful theory based on stochastic processes (Flory 1969,
Doi & Edwards 1988). A polymer chain in aqueous solution is modelled by a string of identical
beads connected by harmonic springs. The Langevin equation for the kth bead (k = 1, 2, . . . , N )
is

m
d2 X k

dt2
+ ζ

dX k

dt
= α (X k−1 − 2X k + X k+1) +

√
2ζkBT

dBk(t)
dt

, 25.

where α is the spring constant, m and ζ are the mass and damping coefficient of a bead, and
Bk(t) are i.i.d. Wiener processes, again representing the collisions with the solvent. Usually, the
mechanical system is under an overdamped condition, e.g., mα � ζ 2, in which the acceleration
is negligible. Then Equation 25 is simplified to

ζ
dX k

dt
= α (X k−1 − 2X k + X k+1) +

√
2ζkBT

dBk(t)
dt

, 26.

which is a multidimensional Ornstein–Uhlenbeck process. A polymer molecule represented by
such a dynamical model is called a Gaussian chain.

The boundary condition X0(t) = 0 is used to represent a tethered polymer end, and
XN (t) = XN +1(t) represents a free polymer end. To study Equation 26, an elegant approach
is to approximate it using a stochastic partial differential equation:

ζ
∂ X(s , t)

∂t
= α

∂2 X(s , t)
∂s 2

+
√

2ζkB T
dB(s , t)

dt
,
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where d
dt B(s , t) represents spatiotemporal white noise. With the boundary conditions X (0, t) = 0

and ∂ X (L,t)
∂s = 0, the Fourier transform yields

X(s , t) =
∞∑
j=0

ξ j (t) sin(λ j s ), λ j =
(

j + 1
2

)
π

L
,

where each normal mode

ζ
dξ j (t)

dt
= −αλ2

j ξ j (t) + Fj (t),

and

E
[
Fi (t)Fj (τ )

] =
(

4ζkBT
L

)
δi j δ(t − τ ).

Each ξ j (t) is an Ornstein–Uhlenbeck process; its stationary distribution has variance

σ 2
j = 2kBT

αλ2
j L

.

Therefore, X(s, t) is a Gaussian random field with stationary variance

σ 2(s ) =
∞∑
j=0

(
2kBT
αλ2

j L

)
sin2(λ j s ).

One strong prediction of the Gaussian polymer theory is that the end-to-end distance of a long
polymer should be scaled as the square root of its molecular weight M. This result has become the
standard against which a real polymer is classified: When a polymer is dissolved in a bad solvent, its
conformation is more collapsed. Thus, its end-to-end distance may scale as M ν with ν < 1/2. By
contrast, owing to physical exclusion among polymer segments, a real polymer in a good solvent
is expected to be more expanded with ν > 1/2. Indeed, the problem of excluded-volume effect
in polymer theory has been a major topic in chemistry and mathematics. Paul Flory received the
1974 Nobel Prize in Chemistry for his studies leading to ν = 3/5. The rigorous mathematical
work on this subject, known as self-avoiding random walks, was carried out by Wendelin Werner,
who received the 2006 Fields Medal for related work.

6.1. Tethered Particle Motion Measuring DNA Looping

Polymer theory has been widely applied in the modeling of biomacromolecules, especially DNA
(Schellman 1980). In the 1990s, Gelles, Sheetz, and their colleagues developed tethered particle
motion (TPM), a single-molecule method to study transcription and DNA looping (Schafer et al.
1991, Finzi & Gelles 1995). In TPM, the trajectory of a Brownian motion particle is attached to
a piece of DNA and followed. The statistical movements of the particle provide information on
DNA flexibility, length, etc. The theory for TPM requires a boundary condition at XN that is
different from Equation 26, taking into account the much larger particle that serves as the optical
marker (Qian & Elson 1999, Qian 2000).

6.2. Rubber Elasticity and Entropic Force

Gaussian chain theory owes its great success to the central limit theorem. The end-to-end distance
of a polymer chain can be thought of as a sum of N i.i.d. random segments lk, 1 ≤ k ≤ N , where N
is proportional to the total molecular weight M. As long as l has a distribution with finite second
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moment, then

E

⎡⎣∥∥∥∥∥
N∑

k=1

lk

∥∥∥∥∥
2
⎤⎦ =

N∑
j=1

N∑
k=1

E[l j · lk] = N σ 2

(Flory 1969), where it is assumed that E[l j · lk] = σ 2δ j k, owing to spatial symmetry.
We would like to point out that, to a large extent, the elasticity of rubber is not due to any other

molecular interaction, but instead is simply a consequence of this statistical behavior of a Gaussian
chain. The end-to-end distance is asymptotically a Gaussian random variable with variance
N σ 2:

1√
2π N σ 2

e−x2/(2N σ2) (for large N ).

Let one end of a chain be attached. Then the stochastic chain dynamics, on average, pulls the
free end from a less-probable position toward a more-probable one: This is called entropic force
in polymer physics. In fact, reversing Boltzmann’s law, there is an equivalent harmonic entropy
potential energy U(x) = kBT x2/(2N σ 2) with spring constant kBT/(N σ 2).

6.3. Potential of Mean Force and Conditional Probability

Stationary probability giving rise to an equivalent force is one of the fundamental insights
from polymer chemistry. A key concept in statistical chemistry, first developed by Kirkwood
(1935), is the potential of mean force. In essence, it is an incarnation of the conditional
probability.

To illustrate the idea, let us again consider the Langevin equation for an overdamped particle
in a potential U(x):

dX (t) = 1
ζ

(
−U ′(X )dt +

√
2ζkBT dB(t)

)
.

The corresponding Kolmogorov forward equation for the probability density function fX (x, t) is

∂ fX (x, t)
∂t

= 1
ζ

∂

∂x

(
kBT

∂ fX (x, t)
∂x

+ dU(x)
dx

fX (x, t)
)

, 27.

where −U ′(x) represents a potential force acting on the Brownian particle.

Now let us consider a Brownian particle in a three-dimensional space without any force. If one
is interested only in the distance of the Brownian particle to the origin, R(t), then the pdf fR(r, t)
follows a Kolmogorov forward equation:

∂ fR(r, t)
∂t

= kBT
ζ

∂

∂r

(
∂ fR(r, t)

∂r
− 2

r
fR(r, t)

)
. 28.

Comparing Equation 28 with Equation 27, we see that the stochastic motion of R(t) expe-
riences an equivalent force 2kBT /r , with a potential function UR(r) = −2kBT ln r . This
is again an entropic force, and the corresponding UR(r) is called the potential of mean
force. The entropic force arises essentially from a change of measure; therefore, it is funda-
mentally rooted in the theory of probability. The potential of mean force UR(r) should be
understood as

UR(r) = −kBT ln {conditional stationary prob. given R = r} + const. 29.

Equation 29 is again applying the Boltzmann’s law in reverse, relating an energy to probability.
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7. STATISTICAL DESCRIPTION OF GENERAL
STOCHASTIC DYNAMICS

7.1. Chemical Kinetic Systems as a Paradigm for Complex Dynamics

It is arguable that, since the work of Kramers, chemists have been among the first groups to fully
appreciate the nature of separation of timescales in complex dynamics: Whereas the rapid atomic
movements in a molecule are extremely fast, on the order of pico- to femtoseconds, a chemical
reaction that involves passage through a saddle point in the energy landscape on this timescale
is a rare event. From this realization, the notions of transition state and reaction coordinate
have become two of the most elusive, yet extremely important, distinctly chemical concepts.
Yet, they are even more important in biophysics, which, among other disciplines, deals with the
transitions between conformational states of proteins. Although not widely articulated, this is the
appropriate statistical treatment of any dynamic system with a separation of timescales due to
statistical multimodality.

7.2. General Markov Dynamics with Irreversible Thermodynamics

Ever since the work of Kolmogorov, reversible, or symmetric, Markov processes have been widely
studied both in theory and in applications. Detailed balance is one of the most important concepts
in the theory of Markov chain Monte Carlo (MCMC). By contrast, the notion of entropy has
grown increasingly prominent in general discussions on complex systems, usually in connection
to information theory.

The central role of irreversible Markov processes in describing complex biophysical processes
is now firmly established. In recent years, it has also become clear that entropy and entropy pro-
duction are essential concepts in irreversible, often stationary, Markov processes. In this section,
we give a concise description of this emergent statistical dynamic theory. We present only key
results and leave out all mathematical proofs, which can be found elsewhere (see Qian et al. 2002,
Esposito & van den Broeck 2010, Ge & Qian 2010, Qian 2013a).

Consider a diffusion process with its Kolmogorov forward equation in the form of

∂ f (x, t)
∂t

= ∇ · (D(x)∇ f (x, t) − b(x) f (x, t)) = L[ f ]. 30.

Assume that it has an ergodic, differentiable stationary density f NESS(x), x ∈ �. Then one
can define two essential thermodynamic quantities: the internal energy of the system U(x) =
− ln f NESS(x) and the entropy of the entire system

S[ f (x, t)] = −
∫

�

f (x, t) ln f (x, t)dx.

Given the expected value of the U and the so-called generalized free energy �[ f (x, t)] = E[U ]−S,

E[U ](t) =
∫

�

U(x) f (x, t)dx, �[ f (x, t)] =
∫

�

f (x, t) ln
(

f (x, t)
f NESS(x)

)
dx. 31.

As relative entropy, the importance of � ≥ 0 is widely known, yielding the following set of
equations that constitute a theory of irreversible thermodynamics:

d�

dt
= Ein − ep ≤ 0,

dS
dt

= ep − hex, Ein, ep ≥ 0; 32a.

Ein(t) =
∫

�

(∇ ln f NESS(x) − D−1(x)b(x))J(x, t)dx; 32b.
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ep (t) =
∫

�

(∇ ln f (x, t) − D−1(x)b(x))J(x, t)dx; 32c.

hex(t) =
∫

�

b(x)D−1(x)J(x, t)dx; 32d.

and

J(x, t) = b(x) f (x, t) − D(x)∇ f (x, t). 32e.

The first equation in Equation 32a can be interpreted as an energy balance equation, with the
non-negative Ein and ep as a source and a sink, respectively. ep is called entropy production. The
second equation in Equation 32a is an entropy balance equation, with heat exchange hex that can
be either positive or negative. d�/dt ≤ 0 is the second law of thermodynamics.

For a reversible Markov process, Ein(t) ≡ 0 for all t. Its stationary version has J(x) ≡ 0 for all x
and ep = hex = 0. This is known as chemicothermodynamic equilibrium in biophysics. In general,
in an NESS, ∇ · JNESS = 0, but JNESS �= 0.

We now turn our attention to the dynamic Equation 30. Its generator isL∗ = ∇·D(x)∇+b(x)∇.
Introducing the inner product

(φ,ψ) =
∫

�

φ(x)ψ(x) f NESS(x)dx,

we find that the linear differential operator L∗ can be decomposed into L∗ = L∗
s +L∗

a , a symmetric
and an antisymmetric part, respectively. Thus, one has the operator in Equation 30, L = Ls +La :

Ls [u] = ∇ · (D(x)∇u(x) − (D(x)∇ ln f NESS(x))u(x)), 33a.

La [u] = ∇ · ((D(x)∇ ln f NESS(x) − b(x))u(x)). 33b.

In connection to the thermodynamics in Equation 32, a diffusion process with pure Ls has
Ein(t) = 0; a process with pure La has d�/dt = 0 for all t. Note that the operator in Equation 33b
is hyperbolic rather than elliptical: It is a generalization of conservative, classical Hamiltonian dy-
namics (Qian 2013a). Equation 33a is a generalization of the heat kernel. The generalized Markov
dynamics, therefore, unifies the Newtonian conservative and Fourier’s dissipative dynamics.

Thermodynamics and the notions of dissipative and conservative dynamics have been the
cornerstones of classical physics. We now see that they emerged from a statistical description of
Markov processes. It will be an exciting challenge for practicing statisticians to apply this newfound
stochastic perspective when modeling dynamic data.

How can the mathematical relations in Equation 32 be used? We give a speculative example:
Consider a stochastic biophysical process Xt in stationarity and assume its stationary density
f NESS(x) is known. Now one carries out a measurement at time t0 and observes Xt0 = x0 ± ε.
Conditioning on this information, the process is no longer stationary. Indeed, the system possesses
an amount of chemical energy, which can be utilized for t > t0. According to thermodynamic
theory, the amount of energy is �[ f (x, t0)] = − ln

(
f NESS(x0)/(2ε)

)
. This result is consistent with

information theory. How to calibrate this mathematical result against energy in joules and calories,
however, is a challenge.

8. SUMMARY AND OUTLOOK

Biological dynamics are complex. Uncertainty is one of the hallmarks of complex behavior, either
in the cause(s) of an occurred event or in the prediction of its future—modeling and predicting
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weather, for example. This intuitive sense can be mathematically justified: Voigt (1981) showed
that the generalized free energy � defined in Equation 31 is monotonically decreasing if a dynamics
is stochastic with uncertainty in the future or is deterministic but noninvertable with uncertainty
in the past (i.e., many-to-one in discrete time). � is conserved in one-to-one dynamics such as
has been determined by differential equations! In contrast to the deterministic view of classi-
cal physics with certainty, quantitative descriptions of biological systems and processes require a
statistical perspective (Qian 2013b), as demonstrated by many successful theories and discover-
ies from population genetics, genomics, and bioinformatics. Within single-molecule biophysics,
where individual molecules are followed one at a time to study their behavior and interactions,
this stochastic view is fundamental: The random motion of and interaction between molecules
in time and space are necessarily described by stochastic processes. As discussed in this review,
the basic laws and our understanding of statistical mechanics has naturally led to many stochastic
processes that govern the behavior of the underlying single-molecule system. More importantly,
our understanding and advances in stochastic-process theory have motivated new physical and
chemical concepts—for example, entropy production in NESS was developed from studies of ir-
reversible Markov processes. Statistical inference of single-molecule experimental data, including
exploratory data analysis, tests of stochastic models, and estimation of model parameters, has the
distinctive feature that the data are typically not the familiar i.i.d. (or independence) type. Often,
the underlying stochastic-process model does not offer closed-form likelihood; even numerical
evaluations are difficult in many models. Missing data, in the form of missing components/states
or state aggregation, are prevalent owing to experimental limitations. There are many outstand-
ing problems associated with stochastic model building, theoretical investigation of stochastic
processes, testing of stochastic models, and estimation of model parameters. Developments in
stochastic-process theory and statistical analysis of stochastic-process data will provide new mod-
eling and data-analysis tools for biologists, chemists, and physicists. We believe these problems
present great opportunities for statisticians and probabilists, not only to provide correlations and
distributions, but also to determine mechanistic causality through statistical analysis.

Stochastic process is a more natural language than are classical differential equations for under-
standing chemical and biochemical dynamics at the level of single molecules in aqueous solutions
and individual cells. It is still not widely appreciated that many of the key notions in chemistry
echo important concepts in the theory of probability: transition state as the origin of a rare event,
chemical potential as a form of stationary probability, a Gaussian chain as a consequence of the
central limit theorem, and the potential of mean force as a manifestation of conditional probabil-
ity, to name a few. All these chemical concepts have fundamental roots in statistics, though most
were developed independently by chemists without explicit use of modern theory of probability
and stochastic processes.

Before closing, we would like to discuss a philosophical point inevitably encountered in statis-
tical modeling of complex dynamic data. A fundamental reason to study dynamics within classical
sciences is to establish causal relations between events in the sense that modern scientific under-
standing demands a mechanism beyond mere statistical correlations. However, nondeterministic
dynamics with random elements raises a very different kind of understanding: A force that exists
on a population level may not exist on an individual level; the former is an emergent phenomenon.

Take Fick’s law as an example. For a large collection of i.i.d. Brownian particles with diffusion
coefficient D, their density flux clearly follows J(x, t) = −D∇c (x, t), where c(x, t) is the concen-
tration of the particle. A net movement of the particle population is due to more particles moving
from a high-concentration region to a low-concentration region than the reverse, even though
every particle moves in a completely random direction. A Fickean force pushes the particle popu-
lation, but this force is not acting on any one individual in the population. Therefore, this Fickean
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force is a simple example of the concept of entropic force discussed in Section 6.2. In fact, because
D = kBT /ζ , J(x, t) can be expressed as (1/ζ )∇S(x, t) × c (x, t), where S(x, t) = −kBT ln c (x, t) is a
form of energy if one applies Boltzmann’s law in reverse.

This simple example illustrates how statistical understanding of stochastic dynamics requires
an appreciation of a fundamentally novel type of law of force that has no mechanical counterpart,
i.e., the notion of entropy first developed by physicists in thermodynamics. But its significance
goes far beyond molecular physics, as does the second law of thermodynamics that accompanies it.
In fact, we believe these concepts are firmly grounded in the domain of probability and statistics.
More and deeper investigations are clearly needed.
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