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Use Internet search data 
to accurately track state level 
influenza epidemics
Shihao Yang1,4, Shaoyang Ning2,4 & S. C. Kou3*

For epidemics control and prevention, timely insights of potential hot spots are invaluable. Alternative 
to traditional epidemic surveillance, which often lags behind real time by weeks, big data from 
the Internet provide important information of the current epidemic trends. Here we present a 
methodology, ARGOX (Augmented Regression with GOogle data CROSS space), for accurate real-time 
tracking of state-level influenza epidemics in the United States. ARGOX combines Internet search data 
at the national, regional and state levels with traditional influenza surveillance data from the Centers 
for Disease Control and Prevention, and accounts for both the spatial correlation structure of state-
level influenza activities and the evolution of people’s Internet search pattern. ARGOX achieves on 
average 28% error reduction over the best alternative for real-time state-level influenza estimation for 
2014 to 2020. ARGOX is robust and reliable and can be potentially applied to track county- and city-
level influenza activity and other infectious diseases.

Each year in the United States (US) alone, the seasonal influenza (flu) epidemics may claim up to 61,000 deaths1. 
Quick responses and preventive actions to changes in flu epidemics rely on timely and accurate information on 
the current flu severity. In particular, due to the geographically varying timing and intensity of disease epidem-
ics, most public health decisions and executive orders for disease control and prevention are made at the state 
or local level. Accurate real-time flu tracking at the state/local level is thus indispensable. Traditional flu surveil-
lance, such as those conducted by the US Centers for Disease Control and Prevention (CDC), however, often 
lags behind real time by up to two weeks. Here we propose a statistically principled, self-coherent framework 
ARGOX (Augmented Regression with GOogle data CROSS space) for real-time, accurate flu estimation at the 
state level. ARGOX efficiently combines publicly available Internet search data with traditional flu surveillance 
data and coherently utilizes the data from multiple geographical resolutions (national, regional, and state levels).  

For the last two decades, tracking of flu activities in the US mainly relies on traditional surveillance systems, 
such as the US Outpatient Influenza-like Illness Surveillance Network (ILINet) by the CDC. Through the ILINet, 
thousands of healthcare providers across the US report their numbers of outpatients with Influenza-like Illness 
(ILI) to CDC on a weekly basis. CDC then aggregates the data and publishes the ILI percentages (%ILI, i.e., 
the percentages of outpatients with ILI) in its weekly reports at the national and regional levels (there are ten 
Health and Human Services (HHS) regions in the US, each consisting of multiple states). Starting from 2017, the 
state-level %ILI reports became available for selected states, and in late 2018 the state-level %ILI reports became 
available for all states except Florida. Owing to the time for administrative processing and aggregation, CDC’s 
flu reports typically lag behind real time for up to 2 weeks and are also subject to subsequent revisions. Such 
delay and inaccuracy are far from optimal for public health decision making, especially in the face of epidemic 
outbreaks or pandemics.

Big data from the Internet offer the potential of real-time tracking of public health or social events. In fact, 
valuable insights have been gained from the Internet data about current social and economical status of a nation, 
including epidemic outbreaks2,3 and macro economic indices4,5. Furthermore, real-time data from the Internet 
could also offer insights at the regional, state, or local level. Examples include foreshadowing state-wise hous-
ing price index in the US6, estimating New York City flu activity7, estimating real-time county-level unreported 
COVID-19 severity in the US8 among others. For epidemic surveillance, such real-time digital data at local 
level can be potentially used to provide insights for early epidemic hot-spot detection and timely public health 
resource allocation (e.g. vaccine campaigns) as well as to gather information on the overall disease prevalence.
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Various models have been proposed to utilize Internet data, especially Internet search volume data, to provide 
real-time estimation of the current flu activity at the national level. Google Flu Trends (GFT), as one of the early 
examples, uses the search frequency of selected query terms from Google to estimate the real-time %ILI2. Recent 
models on combining CDC’s surveillance data with Internet-derived data appear to work well at the national 
level9,10. Other methods, primarily targeting national flu epidemics, were also developed based on traditional 
epidemiology data and mechanistic models, such as susceptible-infectious-recovered-susceptible model with 
ensemble adjustment Kalman filter (SIRS-EAKF)7,11–14.

Compared to estimation at the national level, %ILI estimation at the regional or state level is much more 
challenging, as documented by FluSight, the CDC-sponsored Flu Prediction Initiative15. Due to factors like 
geographical proximity, transportation connectivity, and public health communication, the state-wise epidemic 
spread exhibits strong spatial structure. However, many digital flu estimation methods12,16,17, including GFT, 
ignore such spatial structure and apply the same national-level method to regional, and/or state-level flu estima-
tion. A few attempts have been made to incorporate the geographical dependence structure. For example, Ref.18 
studied the estimation of ILI activity in the boroughs and neighborhoods of New York City using a traditional 
epidemiological mechanistic SIRS-network model without Internet search data, where the dynamic system is 
multivariate with explicit parameters to characterize traffic between locales, and concluded that the spatial net-
work is helpful at the borough scale but not at the neighborhood scale; Ref.19 utilized an ordinary-least-squares-
based network model to improve upon the output of GFT, where a weighted average of GFT from all regions is 
produced as an network-enhanced final estimate for each individual region; Ref.20 employs a multi-task nonlinear 
regression method for regional %ILI estimation, where a Multi-Task Gaussian Process is proposed to regress 
each region’s %ILI on the corresponding Google search data; Ref.21 uses a network approach for %ILI estimation 
in a few selected states, where they first built a stand-alone state %ILI prediction based on the ARGO method9, 
and then obtained a multiple linear regression prediction for a given state’s %ILI from other states’ %ILI, and 
finally a winner-takes-all approach was adopted for each state separately to select one of the two approaches; 
Ref.22 shows that careful spatial structure modeling can lead to much improved accuracy in %ILI estimation at 
the regional level. An ensemble approach has also been proposed to utilize the output of a variety of available 
models to achieve better accuracy23.

Nevertheless, at the state level, no existing methods provide real-time flu tracking with satisfactory accuracy 
and reliability. (i) There are no unified approaches to combine multi-resolution and cross-state information 
effectively to provide national, regional and state-level estimates within the same framework. (ii) Few existing 
models can outperform a naive estimation method, which, for each state, without any modeling effort, simply 
uses CDC’s reported %ILI from the previous week as the %ILI estimate for the current week (see Fig. 1 for an 
illustration). This would be particularly worrisome for public health officials who rely on accurate flu estimation 
at the local level to make informed decisions.

In this article we introduce ARGOX, a unified spatial-temporal statistical framework that combines multi-
resolution, multi-source information to provide real-time state-level %ILI estimates while maintaining coherency 
with %ILI estimation at the regional and national levels (in a cascading fashion). To illustrate the underlying 
idea of ARGOX, let us take estimating the %ILI in California as an example. The real-time Google search vol-
umes for flu-related terms like "flu symptoms" or "flu duration" from California reflect its current state-level flu 
intensity to some extent. In addition, California’s flu epidemics could be highly correlated with flu epidemics of 
nearby states such as Oregon and Nevada, as well as with geographically distant but transportation-wise well-
connected states such as Illinois. California’s current flu situation may also depend heavily on the recent trends of 
flu epidemics, in particular, the overall national and Pacific-west regional flu trends. Taken these considerations 
together, ARGOX operates in two steps: at the first step, it extracts Google search information of most relevant 
query terms at three geographical resolutions—national, regional, and state levels; at the second step, the cross-
time, cross-resolution, cross-state information mentioned above, together with Internet-extracted information, 
is integrated through careful modeling of their temporal-spatial dependence structure, which yields significant 
enhancement in the estimation accuracy.

ARGOX was inspired in part by Refs.9 and22, which studied the %ILI estimation at the national and regional 
levels respectively. Although the methods introduced in Refs.9 and22 worked well for flu-tracking at the national 
or regional level, these methods cannot be directly applied to accurately track state-level %ILI for a number of 
reasons, which are specifically solved by ARGOX. In particular, ARGOX addresses the following issues: (i) how 
to simultaneously provide accurate, real-time flu tracking at the higher-resolution level for all 51 US states (dis-
trict/city), as opposed to only at the national or regional level, (ii) how to effectively combine multi-resolution 
information from the national, regional and state levels for state %ILI estimation, i.e., how to leverage the infor-
mation from the national and regional levels, in addition to the information at a particular state, for the %ILI 
estimation at a given state; (iii) how to solve the challenge of declining quality of Internet search data at higher 
geographical resolution, since compared to the Internet search data at the national level, the state-level Internet 
search data are of much inferior quality; (iv) how to determine when to borrow information from other states 
for the %ILI estimation at a given state and when not to borrow, since the states have varying degree of connec-
tions—for a state well connected with others, borrowing information probably would help its %ILI estimation, 
but for a state not (geographically or epidemically) well connected with others, using information from other 
states might hurt (as opposed to help) its %ILI estimation; and (v) how to model the correlation structure of 
%ILI across the “well-connected” states to effectively borrow such cross-state information to improve prediction 
accuracy. ARGOX, therefore, significantly advances accurate flu tracking from the national and regional levels 
to the state level, which could help public health officials make much more informed decisions.

Through the ARGOX framework, the state-level flu activity estimates are produced in a unified and coher-
ent way with the national and regional estimates. ARGOX achieves on average 28% mean squared error (MSE) 
reduction compared to the best alternative and shows strong advantages over all benchmark methods, including 
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GFT, time-series-based vector autoregression (VAR), and another recent Internet-search-based method devel-
oped in Lu et al.21. ARGOX achieves its high estimation accuracy through a few features: (i) it automatically 
selects the most relevant search queries to address the problem of lower-quality Google search information at 
state or regional level; (ii) it incorporates time-series momentum of flu activity; (iii) it pools the multi-resolution 
information by combining the national-, regional-, and state-level data; (iv) it explicitly models the spatial cor-
relation structure of state-level flu activities; (v) it adapts to the evolution in people’s search pattern, Google’s 
search engine algorithms, epidemic trends, and other time-varying factors24 with a dynamic two-year rolling 
window for training; and (vi) it achieves selective pooling of most immediately relevant information for a handful 
of stand-alone states (details in Methods).

Results
We conducted retrospective estimation of the weekly %ILI at the US state level—50 states excluding Florida 
whose ILI data is not available from CDC, plus Washington DC and New York City—for the period of Oct 11, 
2014 to March 21, 2020. For each week during this period, we only used the data that would have been avail-
able—the historical CDC’s ILI reports up to the previous week and Google search data up to the current week—to 
estimate state-level %ILI of the current week. To evaluate the accuracy of our estimation, we compared the esti-
mates with the actual %ILI released by CDC weeks later in multiple metrics, including the mean squared error 
(MSE), the mean absolute error (MAE), and the correlation with the actual %ILI (detailed in Methods). We also 
compared the performance of ARGOX with several benchmark methods, including (a) GFT (last estimate avail-
able: the week ending on August 15, 2015), (b) estimates by the lag-1 vector autoregressive model (VAR model), 
(c) the naive estimates, which for each state without any modeling effort simply use CDC’s reported %ILI of the 
previous week as the estimate for the current week, and (d) a recent Internet-search-based state-level estimation 
model developed in Lu et al.21. As ARGOX uses a two-year training window, for fair comparison we keep the 
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Figure 1.   State-by-state heatmap of relative Mean Squared Error of ARGOX, VAR, GFT, and Lu et al.21 to the 
naive method. The relative MSE is the ratio of the MSE of a given method to that of the naive method. Blue 
color means smaller MSE (i.e., better performance) than the naive method; red color means larger MSE (i.e., 
worse performance ) than the naive method; grey color means result not available. ARGOX with all blue colors 
uniformly dominates the naive method, while mixed colors in the rest of the plots show that VAR, GFT, and 
Lu et al.21 were worse than the naive method in a large proportion of states. ARGOX and VAR are evaluated 
for the whole period of Oct 11, 2014 to March 21, 2020; GFT is evaluated for the period of Oct 11, 2014 to 
August 15, 2015 due to GFT data availability; Lu et al.21 is evaluated from Oct 11, 2014 to May 14, 2017 due to 
its availability.The figure was generated by the programming language R. The US maps were drawn based on the 
publicly available R package urbnmapr, which uses map shapefiles from the US Census Bureau (https​://www.
censu​s.gov/geogr​aphie​s/mappi​ng-files​/time-serie​s/geo/tiger​-line-file.html).

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
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same two-year training window for VAR as well. Also for fair comparison, the numerical results of the method 
of Lu et al.21 were directly quoted from the article (which reported results through May 14, 2017).

Table 1 summarizes the overall results of ARGOX, VAR, GFT, and the naive method, averaging over the 51 
states/district/city for the whole period of 2014 to 2020 (up to March 21, 2020). Table 2 summarizes the compari-
son between ARGOX and the method of Lu et al.21, averaging over 37 states for the period of 2014 to 2017. We 
need to compare ARGOX with Lu et al.21 in a separate Table 2 because the results of Lu et al.21 are only available 
for 37 states and only for the period of 2014 to 2017.

Table 1 shows that ARGOX gives the leading performance uniformly through all flu seasons in all metrics. 
Particularly, ARGOX achieves up to 28% error reduction in MSE and about 15 % error reduction in MAE com-
pared to the best alternative in the whole period. ARGOX also keeps consistent season-by-season performance, 
with at least 15% error reduction in MSE compared to the best alternative method in every season from 2014 
to 2019. For the 2019–2020 flu season with the (onset of) COVID-19 pandemic, ARGOX’s accuracy still main-
tains. Compared with other benchmarks, ARGOX’s advantages in state-level flu tracking are substantial. VAR 
and GFT fail to outperform the naive method in any of the evaluated flu seasons; both methods have MSE two 
or three times larger than the naive method. Table 2 shows that ARGOX also uniformly outperforms Lu et al.21 
in all three seasons when the benchmark is available. More detailed results comparing ARGOX with the bench-
marks can be found in the Supplementary Information (Table S4). The advantage of ARGOX over the method 
of Lu et al.21 could be attributed to (i) incorporating multi-resolution information in the modeling that pools 
national, regional and state-level information together, (ii) capturing the spatio-temporal information using 
one joint statistically structured variance-covariance matrix as opposed to ad hoc regression of each individual 
state’s %ILI on other states’, and (iii) using a statistically principled and interpretable method to dichotomously 

Table 1.   Comparison of different methods for state-level %ILI estimation. The evaluation is based on the 
average of 51 US states/district/city in multiple periods and multiple metrics. The MSE, MAE, and correlation 
are reported. The method with the best performance is highlighted in boldface for each metric in each period. 
Methods considered here include ARGOX, VAR, GFT, and the naive method. All comparisons are conducted 
on the original scale of CDC’s %ILI. The whole period is Oct 11, 2014 to March 21, 2020. Columns 3 to 8 
correspond to the regular flu seasons (week 40 to week 20 next year, defined by CDC’s Morbidity and Mortality 
Weekly Report; 19’-20’ season is up to March 21, 2020).

Whole period ’14–’15 ’15–’16 ’16–’17 ’17–’18 ’18–’19 ’19–’20

MSE

ARGOX 0.340 0.488 0.217 0.421 0.445 0.301 0.835

VAR 1.556 1.606 0.819 1.629 2.615 1.277 3.747

GFT – 2.186 – – – – –

naive 0.473 0.665 0.257 0.551 0.779 0.434 1.150

MAE

ARGOX 0.340 0.380 0.311 0.407 0.423 0.359 0.580

VAR 0.597 0.633 0.516 0.693 0.825 0.668 1.058

GFT – 0.944 – – – – –

naive 0.393 0.435 0.340 0.464 0.547 0.443 0.696

Correlation

ARGOX 0.949 0.914 0.832 0.875 0.937 0.921 0.902

VAR 0.857 0.806 0.693 0.752 0.854 0.813 0.772

GFT – 0.904 – – – – –

naive 0.931 0.885 0.803 0.842 0.902 0.890 0.874

Table 2.   Comparison of ARGOX to the method of Lu et al.21 for state-level %ILI estimation. The numbers 
of Lu et al. are directly obtained from Ref.21, which reported its estimation results of 37 states over three flu 
seasons: 2014–2017. For fair comparison, the result of ARGOX is restricted to the same 37 states and the same 
time period to match Ref.21. The method with best performance for each metric in each period is highlighted 
in boldface.

Overall (’14–’17) ’14–’15 ’15–’16 ’16–’17

MSE

ARGOX 0.269 0.406 0.163 0.339

Lu et al.21 0.418 0.467 0.528 0.544

Correlation

ARGOX 0.919 0.914 0.836 0.890

Lu et al.21 0.912 0.912 0.808 0.858
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select between either joint modeling for statistically “connected” states or stand-alone modeling for statistically/
geographically “disconnected” states.

Among all the methods that we numerically compared, ARGOX is the only one that uniformly outperforms 
the naive method in all 51 states/district/city in terms of MSE for the whole period of evaluation. Figure 1 plots 
the state-by-state estimation results, showing the ratio of the MSE of a given method to the MSE of the naive 
method. The results of four methods are plotted: ARGOX, VAR, GFT, and Lu et al.21 For each state, a blue color 
means that the MSE of a method is smaller (better) than the MSE of the naive method for that state, and a red 
color means the MSE of the method is larger (worse) than the MSE of the naive method. Darker blue means 
more advantage over the naive method, while darker red means more disadvantage than the naive method. It 
is noteworthy that ARGOX with all blue colors is the only method that gives uniformly better performance 
than the native method across all states. All other methods in comparison fail to do so for a large portion of the 
states investigated. Note that the naive method provides a model-free baseline benchmark that solely relies on 
information from CDC’s flu reports. Therefore, ARGOX is the only method that effectively utilizes the Internet 
data to uniformly improve flu tracking from the traditional surveillance system, indicating ARGOX’s reliability 
and adaptability. With its universally enhanced accuracy over the alternative methods for real-time state-level 
flu situation estimate, it appears that ARGOX could aid timely, proper public health decision making for the 
local monitoring and control of the disease.

Detailed numerical results for each state and for each flu season are reported in Tables S5–S55 and the figures 
in Supporting Information (SI), where ARGOX holds lead over other methods in the vast majority of the cases, 
further revealing its robustness over geographical and seasonal variability in flu epidemics.

In addition to the point estimate, ARGOX also provides 95% confidence intervals for each week’s estimates. 
For the entire period from 2014 to 2020, over all 51 states/district/city, the intervals provided by ARGOX suc-
cessfully cover the actual %ILI in 92.5% of the cases (Table S1), which is close to the nominal 95%, demonstrating 
ARGOX’s accurate uncertainty quantification.

Discussion
ARGOX effectively combines state-, regional-, and national-level publicly available data from Google searches 
and CDC’s traditional flu surveillance system. It incorporates geographical and temporal correlation of flu activi-
ties to provide accurate, reliable real-time flu tracking at the state level. Across all the available states, ARGOX 
outperforms time-series-based benchmark models, GFT, and the method of Lu et al.21 ARGOX’s weekly %ILI 
estimations are accompanied by reliable interval estimates as a measure for uncertainty. The state-level real-time 
tracking of flu epidemics by ARGOX could help public health officials and the general public to make more 
informed decisions to control and prevent the flu epidemics at the state or local levels. In particular, with the 
real-time estimates of flu activities by ARGOX in their home states and neighboring states, local public health 
officials could make more proper and timely decisions on the allocation of relevant resources, such as vaccines, 
hospitalization, medical equipment, personnel, etc. Also, informed with the current local flu situation provided 
by ARGOX, the general public could take necessary measures accordingly, such as taking the flu shot, social dis-
tancing, and mask wearing to reduce the risk of contracting flu; knowing the real-time flu severity at other states 
could help the general public make travel decisions and plan/arrange care for relatives and friends. More discus-
sion on the usefulness of influenza forecasts to public health decision making can be found in Ref.25 and Ref.23.

ARGOX’s adaptive pooling of the most-relevant information among the 51 US states/district/city plays an 
important role in its performance. To avoid the possibility of overfitting, a structured covariance matrix on the 
%ILI increments is utilized. Such structured dynamic modeling of the cross-state covariance serves to capture 
the ever-changing geographic spread pattern of the flu. It aggregates state-to-state, time-varying connectivity 
factors such as commuting traffic, airline frequency, geographic proximity, and climatic patterns. The utilization 
of cross-state correlation also helps pool information from different states, regions and the entire nation in addi-
tion to the information at a given state. The pooling from national and regional level estimates incorporates the 
shared seasonality component in flu trends across all the states, which further helps reduce the risk of overfitting.

ARGOX operates in two steps: the first step extracts Internet search information at the state level, and the 
second step enhances the estimates using cross-state and cross-resolution information (detailed in Methods). 
Such two-step design of ARGOX has broad applicability. With the general availability of ubiquitous Internet 
search data, ARGOX’s two-step framework could be flexibly adapted to track flu activities at even higher reso-
lutions, such as county or city levels, when such weekly %ILI data become available. In addition, the first step 
could be substituted by other models or include other data sources, while the second step remains adaptable for 
multi-resolution spatial-temporal boosting. A wide spectrum of flu estimation models, including susceptible-
infectious-recovered-susceptible model7, empirical Bayes method16, Wisdom-of-crowds forecast17, or ensemble 
of them26 can be fitted into the cross-state boosting step (the second step) of ARGOX.

Like all big-data-based models, our result has certain limitations. ARGOX’s accuracy depends on the reli-
ability of its inputs—Google Trends data and historical %ILI data from CDC. Google Trends data have increas-
ing amount of missing data and zero counts as the resolution goes from national to regional and state levels 
(Table S3). Such degeneracy in data quality is a challenge for high-resolution inference. Google search informa-
tion could also be sensitive to media coverage27–29. Furthermore, Google search data may only be representative 
of the search interests among Google users rather than the entire population. In states with less Internet penetra-
tion, such Google search data may be less predictive of the overall %ILI. The L1 penalty and the dynamic training 
of ARGOX aims to correct for the sparsity, over-shooting, and representative issues of Google data, where only 
the most relevant search terms to %ILI estimation are selected at each state’s level. Models to further alleviate 
or eliminate the bias in Internet search data (e.g. by incorporating data on media coverage intensity) could be 
an interesting future direction. In addition, we should be aware that our estimation target, the CDC’s %ILI, is 
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only a proxy for the true flu incidence in the population, as it’s calculated from a sample of outpatient visits with 
influenza-like symptoms. The reported %ILI at the state level could have (i) high noise due to its limited sample 
size, (ii) subsequent revision when healthcare providers update their information, and (iii) bias towards those 
with easy healthcare access. Nevertheless, accurate estimation of CDC’s %ILI at the state level is valuable for 
optimizing resource allocations. More detailed discussion about the importance of alternative indicators for flu 
incidence in the population can be found in Ref.30–32.

ARGOX is accurate, reliable, flexible and generalizable, making it adaptable to other spatial and temporal 
resolutions for tracking or forecasting other diseases and social/economic events that leave traces on people’s 
Internet activity records. The ARGOX framework can be potentially adapted for COVID-19 tracking by incor-
porating additional coronavirus-related query terms at city, state, regional, and national level33. With the current 
development of COVID-19 pandemic, it is likely that the coronavirus would come back in the future winters. 
In light of this, accurate localized tracking of epidemic activity has become more important than ever before.

Methods
CDC’s ILINet data.  Every Friday, CDC releases a report of %ILI for the previous week, which gives the 
percent of outpatient visits with influenza-like illness for the whole nation, each HHS region, each state (except 
Florida), Washington DC, and New York City (separated from New York State) (http://www.cdc.gov/flu/weekl​
y/overv​iew.htm). CDC also revises the initial report numbers in the subsequent weeks when more informa-
tion becomes available (gis.cdc.gov/grasp/fluview/fluportaldashboard.html). Consequently, CDC’s %ILI data lag 
behind real-time for up to 2 weeks and are less accurate for more recent weeks. CDC’s %ILI data for this study 
were downloaded on Mar 27, 2020.

Google data.  The Internet search volume data from Google are publicly available through Google Trends 
(trends.google.com). A user can specify the desired query term, geographical location, and time frame on Google 
Trends; the website then will return a (weekly) time series in integer values from 0 to 100, which corresponds 
to the normalized search volume of the query term within the specified time frame, where 100 represents the 
historical maximum, and 0 represents missing data due to inadequate search intensity. This integer-valued time 
series from Google Trends is based on sampling Google’s raw search logs.

The search query terms that we use are based on previous work for national and regional flu estimation9,22. 
We also included several additional queries and topics in this study, which were obtained from “Related queries” 
and “Related topics” on the Google Trends website when searching for flu related information. Table S2 in the 
Supplementary Information lists these search terms.

As one benchmark, we downloaded the discontinued Google Flu Trends (GFT) data (https​://www.googl​e.org/
flutr​ends/about​/data/flu/us/data.txt). GFT has national, regional, and state-level prediction for the weekly %ILI 
from Jan 1, 2004 to August 9, 2015.

Google search data may only be representative of the search interests among Google users rather than the 
entire population. ARGOX attempts to correct for such potential bias in the modeling.

Regional‑Enrichment of state‑level Google search data.  Google Trends provides (normalized) 
search volume data at both national and state levels. However, for the state-level data, there is a high level of 
sparsity (i.e., zero observations) among the returned integer-valued time series (see Table S3). These zeros, which 
correspond to missing data due to inadequate search intensity, significantly lower the data quality at the state 
level (compared to the national level), which in turn severely reduces the prediction accuracy at the state level. To 
enhance the predictive power of state-level Google data, we use a simple approach to borrow information from 
the regional level. First, we reconstruct regional-level search frequency for each region in the US by weighting 
the state-level search frequencies within a given region, where the weights are proportional to the state’s popula-
tion. Second, instead of using the state-level Google Trends time-series, for each search term, we use a weighted 
average of the state-level search frequency (2/3 weight) and the regional-level search frequency (1/3 weight) as 
the input for state-level %ILI estimation. We carry out this regional-enrichment process for all states/district/
city, except seven states—Hawaii (HI), Alaska (AK), Vermont (VT), Montana (MT), North Dakota (ND), Maine 
(ME), and South Dakota (SD)—because these seven states are modeled with a separate stand-alone model (as 
detailed in the following sections). For these seven states, the raw Google Trends state-level times series, not the 
regional-enriched time series, are used as input.

Evaluation metrics.  We use three metrics to evaluate the accuracy of an estimate against the actual %ILI 
released by CDC: the mean squared error (MSE), the mean absolute error (MAE), and the Pearson correlation 
(Correlation). MSE between an estimate p̂t and the true value pt over period t = 1, . . . ,T is 1T

∑T
t=1

(

p̂t − pt
)2 . 

MAE between an estimate p̂t and the true value pt over period t = 1, . . . ,T is 1T
∑T

t=1

∣

∣p̂t − pt
∣

∣ . Correlation is 
the Pearson correlation coefficient between p̂ = (p̂1, . . . , p̂T ) and p = (p1, . . . , pT ).

Prediction model of ARGOX.  ARGOX operates in two steps: the first step extracts Internet search infor-
mation at the state level, and the second step enhances the estimates using cross-state and cross-resolution 
information.

At the second step, we take a dichotomous approach for the 51 US states/district/city (50 states except Florida, 
which does not have %ILI data, plus Washington DC and New York City). We set apart seven states: HI, AK, VT, 
MT, ND, ME, and SD. The first two (HI and AK) are geographically separated from the contiguous US. The last 
five (VT, MT, ND, ME, and SD) are the states that have the lowest multiple correlations (a.k.a. the R) in %ILI to 
the %ILI of the entire nation, the %ILI of the other states, and the %ILI of the other regions (detailed calculation 

http://www.cdc.gov/flu/weekly/overview.htm
http://www.cdc.gov/flu/weekly/overview.htm
https://www.google.org/flutrends/about/data/flu/us/data.txt
https://www.google.org/flutrends/about/data/flu/us/data.txt
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method is given in Supplementary Information). A low multiple correlation of a state implies that the state’s flu 
activity is not well correlated with other states’ or other regions’. For these seven states, due to either the geological 
discontinuity or the low multiple correlation, it is not clear if using information cross the other states or other 
regions can help the state-level %ILI estimation. Therefore, we adopt the dichotomous approach: For the 44 states/
district/city (the vast majority), we apply a joint estimation approach at the second step to enhance the state-level 
%ILI estimation by using all information, including information from other states and other regions; for the 
above-mentioned seven states, we use a stand-alone estimation approach at the second step to enhance the %ILI 
estimation (not using information from other states and regions). The two steps of ARGOX are detailed below.

First step: extracting Internet search information at the state level.  This step concerns extracting Google search 
information at each state. In particular, for a given state/district/city m, m = 1, . . . , 51 , let Xi,t,m be the logarithm 
of 1 plus the state-level Google Trends data of search term i at week t (note: 1 is added to each state-level Google 
Trends data point to avoid taking logarithm of zero); let yt,m be the logit-transformation of CDC’s %ILI at time 
t for state m. To estimate yT ,m , an L1 regularized linear estimator is used in the first step based on the vector 
XT ,m = (xi,T ,m):

where the coefficients (β̂0,m, β̂m) are obtained via

We set N = 104 , i.e., a two-year window, as recommended in previous studies9,22,24. We set � through 
cross-validation.

In addition, we obtain an accurate estimate p̂natT  for the national %ILI by using the ARGO method9, which 
uses national level Google search data. We also obtain an estimate (p̂regT ,1, . . . , p̂

reg
T ,10) for the ten HHS regional %ILI 

by the first step of ARGO2 method22, which uses aggregated regional level Google search data.

Second step: joint model for the 44 states/district/city other than HI, AK, ND, VT, MT, ME, and SD.  For the 
44 states, let pt = (pt,1, . . . , pt,44)

⊺ denote CDC’s %ILI at the state level; they are related to yt,m through 
pt,m = exp(yt,m)/(1+ exp(yt,m)) . Our raw estimate for pt from the first step is p̂GTt = (p̂t,1, . . . , p̂t,44)

⊺ , 
where p̂t,m = exp(ŷt,m)/(1+ exp(ŷt,m)) . Our estimate of the national %ILI from the first step is p̂natt  . Let the 
boldface p̂natt  denote the length-44 vector p̂natt = (p̂natt , . . . , p̂natt )⊺ . We also have the regional %ILI estimate 
(p̂

reg
t,1 , . . . , p̂

reg
t,10) from the first step. Let p̂regt  denote the length-44 vector p̂regt = (p̂

reg
t,r1 , . . . , p̂

reg
t,r44 )

⊺ , where rm is the 
region number for state m.

Estimating pt is equivalent to estimating the time series increment �pt = pt − pt−1 . We denote Zt = �pt for 
notational simplicity. For the estimation of Zt , we want to incorporate the cross-state, cross-source correlations. 
We have four predictors for Zt after the first step: (i) Zt−1 = �pt−1 , (ii) p̂GTt − pt−1 , (iii) p̂regt − pt−1 , and (iv) 
p̂
nat
t − pt−1 ; they represent time series information, information from the state level Google search, informa-

tion from the regional level estimation, and information from the national level estimation, respectively. Let 
W t denote the collection of these four vectors W t = (Z

⊺

t−1, (p̂
GT
t − pt−1)

⊺, (p̂
reg
t − pt−1)

⊺, (p̂
nat
t − pt−1)

⊺)⊺.
To combine the four predictors, we use the best linear predictor formed by them:

where µZ and µW are the mean vectors of Z and W  respectively, and �ZZ , �ZW , and �WW are the covariance 
matrices of and between Z and W . The best linear predictor gives the optimal way to linearly combine the four 
predictors to form a new one. The variance of Ẑt is

Consistent with the first step, we adopt a sliding two-year training window to estimate µZ , µW , �ZZ , �ZW , 
and �WW in Eq. (2) and (3). For µZ and µW , we use the empirical mean of the corresponding variables as the 
estimates. However, for the covariance matrices, due to their large sizes and the small number of observations, 
we need to structure the covariance matrices for reliable estimation.

We assume the following structure: 

1.	 The covariances between the time series increments satisfy Var(Zt) = Var(Zt−1) = �ZZ  and 
Cov(Zt ,Zt−1) = ρ�ZZ , where 0 < ρ < 1 . This essentially assumes that the time series increments are sta-
tionary and have a stable autocorrelation across time and states.

2.	 Independence among the different sources of information: time series increment, the estimation error of 
the first-step state-level estimate, the estimation error of the regional estimate, and the estimation error of 
the national estimate, i.e., Zt , p̂

GT
t − pt , p̂

reg
t − pt , p̂

nat
t − pt are all mutually independent.

The covariance matrices are thereby simplified as:

ŷT ,m = β̂0,m + X
⊺

T ,mβ̂m,

(1)argmin
β0,m ,βm

T−1
∑

t=T−N

(

yt,m − β0,m − X
⊺

t,mβm

)2
+ ��βm�1.

(2)Ẑt = µZ +�ZW�−1
WW (W t − µW ),

(3)Var(Ẑt |W t) = �ZZ −�ZW�−1
WW�WZ .

(4)�ZW =
(

ρ�ZZ �ZZ �ZZ �ZZ

)
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where �reg = Var(p̂
reg
t − pt) , �nat = Var(p̂

nat
t − pt) , and �GT = Var(p̂

GT
t − pt) . To further control the estima-

tion stability, we incorporate a ridge-regression-inspired shrinkage34 to the linear predictor (2), replacing the joint 
covariance matrix of (Z⊺

t ,W
⊺

t )
⊺ by the average of the structured covariance matrix and its empirical diagonal. 

Effectively, in Eq. (2), �ZW is replaced by 12�ZW , and �WW is replaced by ( 12�WW + 1
2DWW ) , where DWW is the 

diagonal of the empirical covariance of W t:

�ZZ , �nat , �reg , �GT and DWW are estimated by the corresponding sample covariance from the data in the most 
recent 2-year training window; ρ is estimated by minimizing the Frobenius norm ( L2 distance) between the 
empirical correlation and structured correlation. Based on Eq. (3), the variance estimate is similarly updated by

Our final state-level %ILI estimate for week T after the second step is:

with corresponding 95% interval estimate

Second step: stand‑alone model for HI, AK, ND, VT, MT, ME and SD.  For m ∈ {HI, AK, ND, VT, MT, ME, SD} , 
we take a stand-alone modeling approach. For each of these states, which is either non-contiguous or has the 
lowest multiple correlation with out-of-state %ILI (detailed in Supplementary Information), we focus on esti-
mating the individual state’s %ILI by integrating the within-state and national information in the second step. 
Thereby, our target is a scalar Z(m)

t = pt,m − pt−1,m , the state’s %ILI increment at the current week. The predic-
tor vector in the second step for state m is W (m)

t = (Z
(m)
t−1, (p̂

GT
t,m − pt−1,m), (p̂

nat
t − pt−1,m)) , where the regional 

terms are dropped. The best linear predictor with ridge-regression inspired shrinkage is then used to get the 
final estimate

The corresponding covariance matrices between the components �(m)
ZW = Cov(Z(m),W (m)) , 

�
(m)
WW = Var(W (m)) , and D(m)

WW = diagonal(�
(m)
WW ) are estimated by the corresponding sample covariance from 

the data in the most recent 2-year training window.
The final state-level %ILI estimate for week T after the second step for m ∈ {HI, AK, ND, VT, MT, ME, SD} is:

with corresponding 95% interval estimate

where �(m)
ZZ = Var(Z(m)) is the scalar variance of the univariate time series Z(m)

t .
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