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Abstract

Background: Accurate influenza activity forecasting helps public health officials prepare and allocate resources for
unusual influenza activity. Traditional flu surveillance systems, such as the Centers for Disease Control and Prevention’s
(CDC) influenza-like illnesses reports, lag behind real-time by one to 2 weeks, whereas information contained in cloud-
based electronic health records (EHR) and in Internet users’ search activity is typically available in near real-time. We
present a method that combines the information from these two data sources with historical flu activity to produce
national flu forecasts for the United States up to 4 weeks ahead of the publication of CDC’s flu reports.

Methods: We extend a method originally designed to track flu using Google searches, named ARGO, to combine
information from EHR and Internet searches with historical flu activities. Our regularized multivariate regression model
dynamically selects the most appropriate variables for flu prediction every week. The model is assessed for the flu
seasons within the time period 2013–2016 using multiple metrics including root mean squared error (RMSE).

Results: Our method reduces the RMSE of the publicly available alternative (Healthmap flutrends) method by 33, 20, 17
and 21%, for the four time horizons: real-time, one, two, and 3 weeks ahead, respectively. Such accuracy improvements
are statistically significant at the 5% level. Our real-time estimates correctly identified the peak timing and magnitude of
the studied flu seasons.

Conclusions: Ourmethod significantly reduces the prediction error when compared to historical publicly available
Internet-based prediction systems, demonstrating that: (1) themethod to combine data sources is as important as data quality;
(2) effectively extracting information from a cloud-based EHR and Internet search activity leads to accurate forecast of flu.
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Background
Influenza causes about 500,000 death per year worldwide
and about 3000 to 50,000 per year in the United States
(US) [1]. Accurate and reliable forecasting of influenza
incidence can help public health officials and decision
makers prepare for unusual influenza activity, including
promoting timely vaccine campaigns, improving risk as-
sessment and communication, and improving hospital
resource allocation during influenza (flu) outbreaks [2].

Traditional flu surveillance tracks flu activity
through patients’ clinical visits; in the US the Cen-
ters for Disease Control and Prevention (CDC)'s
influenza-like illness (ILI) reports track the percent-
age of patients seeking medical attention with ILI
symptoms. ILI symptoms are defined by the CDC as
having temperature of 100 °F (37.8 °C) or greater
and a cough and/or a sore throat without a known
cause other than influenza [3]. Owing to the time
needed for processing and aggregating clinical infor-
mation, CDC’s ILI reports lag behind real time by
one to 2 weeks, which is far from optimal for deci-
sion making.
Technological advances in the last two decades have

changed the way in which health information is accessed,
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modified, and distributed. First, a large portion of the gen-
eral public gains access to health information through
Internet searches [4–8]. Second, many hospitals and med-
ical centers have adopted electronic health records (EHR)
to give clinicians faster and easier access to retrieve,
enter and modify patient information. These sources of
digital information offer the possibility for real-time flu
surveillance and forecast, as previous studies have sug-
gested [9–18]. However, it is the community consensus
that further improvements are needed for these fore-
casting methods to be reliably used for policy making
purpose [19, 20]. Our paper presents one of such
improvements.
We study two questions in this article. (a) How much

information can these digital sources provide? (b) Is
there an efficient way to extract/combine information
from these digital sources to produce accurate flu
forecasts?
Our contribution consists of rigorously adapting and

expanding an existing statistical method to combine infor-
mation from (i) near real-time aggregated patient visits via
EHR and (ii) population wide flu-related Google searches
with (iii) flu activity levels contained in CDC’s historical
ILI reports, to produce national flu forecasts for the US
up to 4 weeks ahead of CDC’s ILI reports. Our prediction
target is the percentage of patients seeking medical atten-
tion with ILI symptoms as represented and reported by
CDC’s ILI activity level, an established public health sur-
veillance tool to track flu activity [2, 16, 17, 21–24]. A col-
lection of methods aimed at predicting the same target
have emerged in response to the recent CDC-organized
flu-prediction contest (https://predict.phiresearchlab.org/)
and are documented, for example, in [19].
Some of the methodologies studying digital disease de-

tection include for example, empirical Bayes framework
[25], Susceptible-Exposed-Infected-Recovered (SEIR) epi-
demiological mechanistic model, SEIR-based models
coupled with data-assimilation Kalman filters [24, 26–28],
linear regression models with Twitter in addition to short-
term lagged ILI activity level [29], ensemble models
with several data sources [30], SEIR models combined
with Wikipedia-based nowcast [31], and Gaussian
process on Google query logs combined with autore-
gressive moving average time series model on historical
ILI activity level [8, 18].
It is important to note that some of the aforemen-

tioned methods pursue different forecasting targets: for
instance, [25] and [31] focused on the influenza season
onset, peak and intensity in national level; [24, 26–28]
aimed at predicting the number (or proxies) of lab-
confirmed influenza cases in multiple sub-regions and cit-
ies of the US; [30] predict ILI case counts for 15 Latin
American countries. As a consequence, the predictive per-
formance of our method and all of the aforementioned

methods cannot be directly compared in this study. We
primarily compare our forecasts with results in [11] since
their historical flu estimates for the four time-horizons for
the 2013–2016 time period studied here are publicly avail-
able. We also compare our results to other mathematical
models and estimates produced in [18, 29].
Our forecasts show a significant improvement in ac-

curacy among the existing Internet-based prediction sys-
tem targeting CDC’s ILI activity level. Our method is
named ARGO, which stands for AutoRegression with
General Online data. It was previously proposed in [10]
for the real-time estimate of flu activity level using flu-
related Google search data alone. We extend the ARGO
methodology to use information from both EHR data
and flu-related Google search data for flu forecasting;
furthermore, we extend it to produce flu forecasts up to
3 weeks ahead of current time, not only real-time esti-
mate. The extended ARGO method dynamically selects
the appropriate set of variables from both the EHR data
and Google search data to produce accurate flu esti-
mates for every time horizon of forecast, i.e., real-time,
one, two, and 3 weeks ahead of current time, and auto-
matically identifies which variables are important in the
predictions in every week.
We assess the accuracy of our forecasts using multiple

metrics, including root mean squared error (RMSE), for
the flu seasons from 2013 to 2016 based on the availabil-
ity of data. For the retrospective time period of July 2013
to February 2015, ARGO reduces the RMSE of the best
available method by 33, 20, 17 and 21%, for the four
time horizons: real-time, one, two, and 3 weeks ahead,
respectively. Moreover, such accuracy improvements are
statistically significant at the 5% significance level. Our
real-time estimates correctly identified the peak timing
and magnitude of the three flu seasons. As a further val-
idation, we conduct strict out-of-sample testing by ap-
plying ARGO to the 2015–2016 flu season (from
February 2015 to July 2016), where ARGO reduces the
RMSE of the best available method by 36, 8, 28, and
10%, respectively, for the four time horizons.
Our result demonstrates: (1) the method used to com-

bine information sources is equally as important as the
quality of the information source; (2) effectively extract-
ing and combining information from the EHR and Inter-
net search activity leads to accurate forecasts of flu. We
expect that our approach can be potentially extended to
finer geographic regions and the forecasting of other in-
fectious diseases.

Methods
Study Design
We used our method, ARGO, to produce retrospective
forecasts of flu activity for the time period of July 6,
2013 through February 21, 2015 based on the availability
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of EHR data. The CDC’s weekly ILI unweighted activity
level is our prediction target. At every week of prediction
we only used information that would have been available
at that time. Data used in our prediction include the his-
torical unrevised original CDC ILI reports, online flu-
related search query volumes data from Google Trends,
and EHR data obtained from athenahealth.
At the ending Saturday of each week, we produced the

estimate for the current weekly ILI activity as well as the
forecasts 3 weeks into the future. We then compared
our forecasts to the subsequently revealed ILI activity
level as reported by CDC weeks later. We also compared
the performance of ARGO with other available methods.
To further assess our method and to reduce the possi-

bility of overfitting, we used the ARGO method to pro-
duce flu forecasts for the 2015–2016 time period
(February 28, 2015 to July 2, 2016). These forecasts pro-
vide strict out-of-sample validation since all the settings
of our model are determined without ever touching the
data from February 28, 2015 and onward.

Data Collection
We used the weekly revised unweighted ILI activity level
published by CDC as our prediction target (gis.https://
gis.cdc.gov/grasp/fluview/fluportaldashboard.html; date
of access: July 9, 2016). In a given week, the most recent
CDC’s ILI reports typically reflect the ILI activity of the
previous week. These reports are often subsequently re-
vised to reflect updates and consistency checks. The his-
torical CDC reports and their revised versions, including
the timing of their release can be found on CDC’s web-
site. For example, original ILI report for week 7 of sea-
son 2015–2016 is available at www.cdc.gov/flu/weekly/
weeklyarchives2015-2016/data/senAllregt07.html.
Google publishes weekly search query volumes

through Google Trends (www.google.com/trends) in real
time. The Google Trends website provides weekly rela-
tive search volume of query terms specified by a user.
Specifically, the number provided by Google Trends is
that week’s search volume of a particular search query
term divided by the total online search volume of that
week, normalized to integer values from 0 to 100, where
100 corresponds to the maximum weekly search within
the time period of January 2004 to present.
The query terms that we used were identified from

Google Correlate (www.google.com/trends/correlate),
which gives the top 100 most highly correlated search
terms with a time series specified by a user. We identi-
fied 129 flu-related Google search terms in total (see
Table S1 in the Additional file 1) by supplying Google
Correlate with CDC’s unweighted ILI activity level for
two different time periods: (a) January 2004–March
2009 (prior to the H1N1 pandemic) and (b) March
2009–May 2010, and removing search terms unrelated

to flu. We did not use ILI activity level after 2011 on
Google Correlate to avoid using any forward-looking in-
formation in the selection of search terms.
The EHR data that we used are from athenahealth, a

provider of cloud-based services and mobile applications
for medical groups and health systems (www.athena-
health.com). It covers over 78,000 healthcare providers
nationwide. We used historical values of four nationally
aggregated weekly counts: total patient visit counts, flu
visit counts, ILI visit counts, and unspecified viral or ILI
visit counts. These aggregated data of a given Sunday-to-
Saturday week are typically available on the following
Monday, implying that athenahealth’s data are available
at least 1 week ahead of the publication of CDC’s ILI
reports. The EHR data are available in real time starting
from July 2009. Further details about the EHR data
collected from athenahealth were described in Santillana
et al. [12].

Statistical Formulation
We combined online search volume data, EHR data, and
historical flu information to produce flu forecasts for
four time-horizons: real-time, one, two, and 3 weeks
ahead. We rigorously expand ARGO for forecast by
mathematically deriving the induced multivariate linear
regression model based on the underlying assumptions
of ARGO. Our independent variables included CDC’s
historical ILI values, flu related search volumes of 129
selected query terms from Google Trends, and three flu-
related ratio variables derived from athenahealth’s visit
counts: (flu visit counts)/(total patient visit counts), (ILI
visit counts)/(total patient visit counts), and (unspecified
viral or ILI visit counts)/(total patient visit counts).
We used a rolling two-year window to train the multi-

variate linear regression model of ARGO to capture dy-
namic changes in people’s online search pattern over
time. This two-year training window was used in earlier
work [10], and we adopted it here. Therefore, we avoid
the potential of overfitting because the length of the
training period is predetermined before we even touched
the data for this study (as opposed to tuning it from the
data). As we have more independent variables (52 histor-
ical ILI terms, 129 search query terms, and 3 EHR
terms) than response variables (104 in total, correspond-
ing to 104 weeks in 2 years) in the training window, we
utilized regularized multivariate linear regression by
minimizing (a) the sum of squared errors plus (b) the
sums of absolute values of the regression coefficients
(part (b) is referred to as regularization [32]). Please see
the Additional file 1 for detailed mathematical formula-
tion. For a given time window and a forecasting target,
the regularized multivariate linear regression used by
ARGO automatically selects the most relevant variables
for forecasting by zeroing out regression coefficients of
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terms that contribute little to the prediction. This stabi-
lizes the estimation and leads to interpretable result by
identifying which variables are important for prediction
in every week.
Our method naturally extends the previous method by

Yang et al. [10], which tracks flu in real-time using only
flu-related Google search terms. We intentionally extend
ARGO with minor adaptation in order to take advantage
of the robustness of original ARGO model and to
minimize the possibilities of overfitting.
All analyses were performed with the R statistical

software.

Comparative Analyses
We compared ARGO’s retrospective forecasts for the four
time-horizons to the ground truth, the finalized (i.e.,
revised) CDC ILI activity level, for the time period of July
6, 2013 to February 21, 2015. For strict out-of-sample val-
idation, we also used ARGO to produce flu forecasts for
the time period of February 28, 2015 to July 2, 2016.
For context, we compared our method with three

other predictive methods for the period of July 6, 2013
to February 21, 2015. These methods are: (a) an ensem-
ble prediction approach that combines multiple data
sources (Google searches, Twitter microblogs, EHR data,
participatory mobile surveillance data), which represents
the top Internet-based flu forecasts as described in
Santillana el al. [11], (b) an autoregression model (auto-
regression with 4 time lags) using CDC’s ILI alone, and
(c) a baseline “naive” prediction, which simply uses the
prior week ILI activity level as the prediction for ILI
activity of the current week, one, two, and 3 weeks later.
We note that the same assessment period of July 6, 2013
to February 21, 2015 is studied in the benchmark en-
semble method of Santillana el al. [11].
For the validation test (covering February 28, 2015 to

July 2, 2016), where all the settings of ARGO are deter-
mined without ever touching the data from February 28,
2015 onward, we compared ARGO forecasts with (a) the
predictions produced and recorded in the Healthmap
Flu Trends system (http://www.healthmap.org/flutrends/),
which uses a modified approach that incorporated two
additional methodological improvements [10, 12] into the
original method of Santillana et al. [11], (b) the autore-
gression model with 4 time lags using CDC’s ILI alone,
and (c) the baseline “naive” prediction.
Four accuracy metrics: root mean squared error

(RMSE), mean absolute error (MAE), root mean squared
percentage error (RMSPE), and mean absolute percent-
age error (MAPE), as well as the correlation, were used
to assess the performance of each method. RMSE is the
square root of the sample average of the squared predic-
tion error. MAE is the sample average of the absolute
prediction error. RMSPE is the square root of the sample

average of the squared value of relative prediction error,
relative to the target. MAPE is the sample average of the
absolute value of relative prediction error. For their
mathematical definitions, please see Table 1. We calcu-
lated the error reduction of ARGO compared to the best
available method in the study period (together with a
95% confidence interval based on stationary bootstrap
[33]) and the validation period.

Results
For the period of July 6, 2013 to February 21, 2015,
ARGO reduces the RMSE of the (best) available method
by 33%, 20%, 17%, and 21%, for the four time horizons:
real-time, one, two, and 3 weeks ahead, respectively. See
Table 1, which reports the ratio of the error of a given
method to that of the naive method; the raw error num-
ber of the naive method is given in the parentheses.
Likewise, ARGO reduces the MAE of the best available
method by 19%, 27%, 24%, and 28%; reduces the RMSPE
by 32%, 30%, 23%, and 33%; and reduces the MAPE by
23%, 35%, 31%, and 38%, respectively, for the four time
horizons. Thus, uniformly across all evaluation metrics,
ARGO reduces the forecasting error by about 20–35%.
Table S3 in the Additional file 1 gives the raw error of
each method in each horizon. A close look at the first
panel of Fig. 1 shows that ARGO’s real-time estimation
captures the timing and intensity of all the peaks of the
flu seasons. In addition, we compared our real-time
(nowcast) results with real-time estimates obtained by
the method that combines autoregressive information
with flu-related Twitter microblogs [29] and with the
method that combines Google searches with autoregres-
sive information [18] in different time periods. ARGO
provides about 20% more MAE reduction from the
time-series baseline model compared to that of [29] for
all 4 forecasting horizons (MAE reduction of 29.6%,
27.5%, 24.5%, 22.0% for nowcast, forecast 1,2,3 week
were reported in [29]), and has about 10–15% more
MAE and MAPE reduction from AR model compared
to those of [18] for nowcast (MAE reduction from AR
model 43.9%, MAPE reduction from AR model 30.5%
were derived from the numbers reported in [18]).
ARGO’s additional error reduction is likely attributed to
the joint modeling of multiple information sources. One
caveat that we do want to point out is that [29] was
reporting for period 2011–2014 and that [18] was
reporting for period 2009–2013, which are not exactly
the same as the time period of this study.
These error reductions are statistically significant at

the 5% significance level in that the 95% confidence
intervals of the error reduction to the best alternative,
produced using the stationary bootstrap method [33],
are all strictly above zero. See Table 1. The p-values of
the significance tests (i.e., testing whether the ARGO
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improvements are statistically significant) are reported
in Additional file 1: Table S5, where all values are below
the 5% significance level.
For the strict out-of-sample validation period of February

28, 2015 to July 2, 2016, ARGO reduces the RMSE of the

(best) alternative by 36, 8, 28 and 10%; reduces the MAE
by 27, 11, 24 and 19%; reduces the RMSPE by 32, 23, 40
and 32%; and reduces the MAPE by 24, 21, 27 and 24% for
the four time horizons, respectively. See Table 2, which re-
ports the ratio of the error of a given method to that of the

Table 1 ARGO performance compared to alternative methods for the time period of July 6, 2013 to February 21, 2015

real-time forecast 1 week forecast 2 week forecast 3 week

RMSE

ARGO 0.315 0.435 0.487 0.459

Ref. [11] 0.469 0.544 0.590 0.578

ar4 0.944 0.954 0.935 0.902

naive 1 (0.374) 1 (0.613) 1 (0.756) 1 (0.869)

MAE

ARGO 0.403 0.446 0.456 0.426

Ref. [11] 0.497 0.614 0.603 0.593

ar4 0.895 0.880 0.872 0.867

naive 1 (0.221) 1 (0.363) 1 (0.480) 1 (0.575)

RMSPE

ARGO 0.449 0.474 0.504 0.461

Ref. [11] 0.655 0.677 0.657 0.691

ar4 1.001 1.018 1.032 1.044

naive 1 (0.126) 1 (0.194) 1 (0.246) 1 (0.293)

MAPE

ARGO 0.481 0.458 0.454 0.419

Ref. [11] 0.625 0.704 0.662 0.676

ar4 0.956 0.965 0.977 0.988

naive 1 (0.101) 1 (0.156) 1 (0.205) 1 (0.251)

Correlation

ARGO 0.995 0.976 0.952 0.942

Ref. [11] 0.989 0.960 0.928 0.904

ar4 0.954 0.871 0.804 0.748

naive 0.951 0.867 0.796 0.727

Error reduction of ARGO
over the best available
alternative (in %)

RMSE 32.90
[16.38,55.54]

20.07
[5.13,31.38]

17.40
[1.29,28.82]

20.53
[11.82,27.33]

MAE 18.79
[0.23,36.67]

27.44
[10.28,39.18]

24.41
[7.66,34.53]

28.13
[15.84,36.38]

RMSPE 31.50
[21.63,40.84]

29.90
[9.42,41.95]

23.26
[4.69,33.00]

33.32
[19.94,41.69]

MAPE 22.92
[7.93,35.94]

34.95
[18.59,46.76]

31.42
[12.90,43.04]

38.02
[26.00,47.26]

The evaluation metrics between the prediction pt and the target pt include RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

PT
t¼1 pt−ptð Þ2

q

� �

;MAE ¼ 1
T

PT
t¼1jpt−pt j

� �

; RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

PT
t¼1

pt −pt
pt

� �2
r

 !

;
MAPE ¼ 1

T

PT
t¼1

∣pt −pt∣
pt

� �

, and Pearson correlation. The benchmark models include the ensemble method by Santillana et al. [11], an autoregression model with 4
lags, and a naive model, which uses prior week’s ILI level as the prediction for the current week as well as the next 3 weeks. Boldface highlights the best method
for each metric in each forecasting time horizon. RMSE, MAE, RMSPE, MAPE are relative to the error of the naive method, i.e., the numbers are the ratio of the
error of a given method over that of the naive method; the absolute error of the naive method is given in the round bracket. Table S3 in the Additional file 1
gives the absolute error of all methods. For each forecasting time horizon and each evaluation metrics, the error reduction of ARGO over the best alternative
method is given in the second half of the table, together with 95% confidence intervals (in the square bracket) constructed using stationary bootstrap [33] with
mean block size of 52 weeks.
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naive method; the raw error number of the naive
method is given in the parentheses. For most error met-
rics and forecasting horizons, ARGO reduces the fore-
casting error by about 20–35%. The similarity of the
results between the validation period and the first test
period shows the robustness of our method and greatly
reduces the possibility of overfitting. Table S4 in the

Additional file 1 gives the raw error of each method in
each horizon.
A video showing the performance of ARGO can be

found in the Additional file 2; Additional file 3 provides
the cover image of this video. We plan to broadcast the
real-time performance of ARGO online at http://
www.healthmap.org/flutrends
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Fig. 1 Forecasting results. The four panels show the forecasted ILI activity levels for real-time and 1 to 3 weeks into the future from ARGO (thick
red), the method of Santillana et al. [11](blue), Healthmap Flu Trends system (green), and the autoregression model with 4 lags (grey), compared to
the true CDC’s ILI activity level (thick black), which became available weeks later. The plot at the bottom of each panel shows the estimation error,
namely the estimated value minus the true CDC’s ILI activity level
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Discussion
Our results demonstrate that the digital information con-
tained in EHR and Internet users online search activity can
be effectively used to produce accurate and reliable fore-
casting of flu activity up to 4 weeks ahead of the publica-
tion of traditional flu tracking reports from CDC’s ILINet.
Our method ARGO reduces the error from previous

publicly available Internet-based flu prediction systems by
about 20–35% across multiple error metrics, which makes
it one of the most accurate flu forecast methods in the lit-
erature. The improvement of ARGO over previous

methods is even more pronounced given that the ensem-
ble method by Santillana et al. [11] used two more data
sources than ARGO in the estimation – Twitter micro-
blogs [29, 34] and participatory mobile surveillance data
(from Flu Near You) [35] – in addition to the data that
ARGO had access to.
The accuracy improvement in ARGO’s forecasts

emerges from its capability to simultaneously optimize
the role of different data sources (and all independent
variables) in the predictive model. In contrast, previous
approaches [11] used different data sources to produce

Table 2 ARGO performance compared to alternative methods for the validation period of February 28, 2015 to July 2, 2016

real-time forecast 1 week forecast 2 week forecast 3 week

RMSE

ARGO 0.341 0.540 0.604 0.704

healthmap 0.530 0.590 0.932 0.949

ar4 0.902 0.909 0.838 0.780

naive 1 (0.206) 1 (0.330) 1 (0.439) 1 (0.552)

MAE

ARGO 0.386 0.502 0.529 0.563

healthmap 0.527 0.564 0.697 0.700

ar4 0.994 0.952 0.852 0.766

naive 1 (0.146) 1 (0.248) 1 (0.341) 1 (0.435)

RMSPE

ARGO 0.425 0.472 0.524 0.593

healthmap 0.622 0.613 0.868 0.871

ar4 0.959 1.006 0.958 0.920

naive 1 (0.108) 1 (0.173) 1 (0.232) 1 (0.293)

MAPE

ARGO 0.448 0.466 0.489 0.494

healthmap 0.592 0.593 0.666 0.654

ar4 1.034 1.018 0.935 0.860

naive 1 (0.083) 1 (0.139) 1 (0.194) 1 (0.250)

Correlation

ARGO 0.995 0.963 0.916 0.823

healthmap 0.987 0.956 0.843 0.774

ar4 0.961 0.896 0.842 0.776

naive 0.963 0.900 0.829 0.745

Error reduction of ARGO
over the best alternative
(in %)

RMSE 35.63 8.38 27.94 9.77

MAE 26.75 11.07 24.16 19.49

RMSPE 31.63 22.94 39.59 31.93

MAPE 24.29 21.42 26.58 24.42

The evaluation metrics are defined in Table 1. The benchmark methods are the same as Table 1 except that the ensemble method of Santillana et al. [11] is
replaced by a refined version broadcasted by the Healthmap Flu Trends system. Boldface highlights the best method for each metric in each forecasting time
horizon. RMSE, MAE, RMSPE, MAPE are relative to the error of the naive method, i.e., the numbers are the ratio of the error of a given method over that of the
naive method; the absolute error of the naive method is given in the round bracket. Table S4 in the Additional file 1 gives absolute error of all methods. For each
forecasting time horizon and each evaluation metrics, the error reduction of ARGO over the best alternative method is given in the second half of the table.
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independent predictive models and subsequently took
each model’s output into a meta-model. Therefore, while
previous studies [11] have shown the utility of multiple
data sources over a single one, our result shows that a
unified method that transparently accounts for how each
data source contributes to the prediction in each time
horizon leads to significant performance improvement.
Furthermore, as our method also takes the seasonality
into account, it is able to produce reliable flu forecasts
three to 4 weeks into the future.
We note that while CDC’s %ILI is only a proxy for flu ac-

tivity in the population, since it is calculated as the number
of visits to healthcare facilities with influenza-like illnesses
symptoms, successfully estimating it can help officials allo-
cate resources in preparation for potential surges of patient
visits to healthcare facilities. A more detailed discussion
about the importance of other indicators for flu incidence
in the population can be found in [2, 17, 21].
Our proposed digital surveillance system, by accur-

ately tracking and forecasting flu activity, could poten-
tially help promote timely vaccine campaigns, improve
risk assessment and communication, and improve
hospital resource allocation during flu outbreaks.

Conclusions
Novel approaches that use digital data to predict disease
incidence, ahead of traditional clinical-based methods,
have emerged in recent years [5, 10–12, 16, 25, 29, 35–39].
Slowly, these approaches are gaining acceptance in the
public health decision making process. For instance, Inter-
net users’ online search activity has proved to be capable
of providing helpful information to public health officials
and the general public [10, 16, 40, 41].
As the emergence of internet-based data and EHR offers

the potential for real-time disease surveillance and fore-
cast, augmenting traditional syndromic disease surveil-
lance, an important question often overlooked is the
statistical methods/models that are capable to efficiently
extract information from the digital data sources and ag-
gregate them to produce accurate and reliable forecasts. It
can be argued that well-tested methods delivering accur-
ate disease estimates are in critical need. For instance,
Google Flu Trends was criticized [9, 10, 42–45] not be-
cause people questioned the value of online search data
[27, 46], but because Google Flu Trends produced mis-
leading forecasts in both 2009 and 2012 when it was
needed most, due to its sub-optimal method to process
the valuable information [44]. On the contrary, our model,
ARGO, demonstrates that effectively extracting and com-
bining information from the EHR and Internet search ac-
tivity, based upon rigorous statistical reasoning, can lead
to accurate flu forecasting. We expect that our approach
can be potentially extended to finer geographic regions
and the forecasting of other infectious diseases.

Additional files

Additional file 1: This file provides details for ARGO model formulation,
ARGO model derivation, ARGO model training, Google query terms, and
Sensitivity analysis. Table S1 contains the 129 Google query terms used
in ARGO. Table S2 contains sensitivity study of ARGO performance with
respect to Google Trends data variation. Tables S3 and S4 give the
performance metrics of different flu estimation methods in absolute
terms. Table S5 gives the p-values of the significance tests (testing whether
the ARGO improvements are statistically significant). (DOCX 32 kb)

Additional file 2: Video S1. This file is the animation for the ARGO real-
time estimation and forecast up to 3 weeks into the future. The thick red
line is the real-time estimation with forecasts 1, 2, 3 weeks into the future;
the black line is the CDC-reported ILI activity level as of each week, with
future revision; the red line is the trajectory of the real-time estimates; the
pink region is the pointwise band constructed by plus or minus 1.96
times standard deviation of historical error on logit scale, and transformed
back into the original scale from 0 to 100. (MP4 281 kb)

Additional file 3: Figure S1. Cover image of the Additional file 2: Video
S1. This file is the cover image of the animation. (EPS 16 kb)
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