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REPORT

Decoding the emotional valence of future thoughts
Aleea L. Devitta,b, Preston P. Thakral b,c and Daniel L. Schacter b

aSchool of Psychology, The University of Waikato, New Zealand; bDepartment of Psychology, Harvard University, MA, USA; cDepartment of 
Psychology and Neuroscience, Boston College, MA, USA

ABSTRACT
Affective future thinking allows us to prepare for future outcomes, but we know little about neural 
representation of emotional future simulations. We used a multi-voxel pattern analysis to deter
mine whether patterns of neural activity can reliably distinguish between positive and negative 
future simulations. Neural patterning in the anterior cingulate and ventromedial prefrontal cortices 
distinguished positive from negative future simulations, indicating that these regions code for the 
emotional valence of future events. These results support prior findings that anterior medial 
regions contain representations of emotions across various stimuli, and contribute to identifying 
potential rewarding outcomes of future events. More broadly, these results demonstrate that the 
phenomenological features of future thinking can be decoded using neural activity.
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Introduction

The emotional signals evoked by future thinking provide 
information and motivation for farsighted decisions 
(Bulley & Schacter, 2020). How does the brain represent 
affective future simulations? Studies employing univari
ate analyses have revealed specific brain regions 
recruited during emotional future simulations, including 
the amygdala, hippocampus, anterior cingulate cortex 
(ACC), ventromedial prefrontal cortex (vmPFC), and pos
terior cingulate cortex (PCC) (Benoit et al., 2014; 
D’Argembeau et al., 2008; Murphy et al., 2017; Sharot 
et al., 2007). However, few studies have examined pat
terns of neural activity when thinking about personal 
future events (e.g., Benoit et al., 2019; Hassabis et al., 
2014), and no studies have examined neural patterning 
of emotional future events.

Recent attempts to classify the emotion of autobio
graphical memories have been successful in regions 
typically involved in episodic memory retrieval (Frid 
et al., 2020; Nawa & Ando, 2014). Given the similarity in 
neural activation when remembering the past and ima
gining the future (Addis et al., 2007), we may expect 
neural patterning in similar regions to carry information 
about emotion when simulating future events. However, 
previous work shows that memory and future thinking 
can exhibit differences in neural patterning even when 
overall activation is similar (Kirwan et al., 2014). 
Moreover, it has been shown that it is possible to classify 
emotional states when viewing impersonal stimuli, yet 
there is little overlap in brain regions expressing 

emotion-predictive patterns across studies, suggesting 
that different regions might represent affective quality 
depending on the type of stimuli being processed 
(Kragel & LaBar, 2016). As such, it is important to exam
ine whether neural patterning when simulating future 
events carries information about emotion.

We used multi-voxel pattern analysis (MVPA) to 
examine whether patterns of neural activity can reli
ably distinguish between positive and negative future 
simulations. We focused on regions known to elicit 
univariate mean-signal differences in activity for posi
tive and negative events: amygdala, hippocampus, 
ACC, vmPFC, and PCC. We expected that neural pat
terning in these regions would distinguish positive 
from negative simulations, indicating that these 
regions code for the emotional valence of future 
events.

Method

Participants

Twenty-two participants gave informed consent in 
a manner approved by Harvard University’s ethics 
board, and were compensated with 20 USD/hour. 
Participants were 18–35 years old, fluent English 
speakers, right-handed, with no neurological or psy
chiatric impairments. One participant was dropped 
for task noncompliance, leaving 21 participants 
(M age = 22.05 yr, SD = 2.12, 8 males).

CONTACT Aleea L. Devitt aldevitt@gmail.com The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.

COGNITIVE NEUROSCIENCE                              
https://doi.org/10.1080/17588928.2021.1906638

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-6603-6186
http://orcid.org/0000-0002-2460-6061
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17588928.2021.1906638&domain=pdf&date_stamp=2021-04-07


Procedure

During a pre-scan phase, participants were randomly 
shown 48 of 72 scenarios with an ambiguous outcome 
(e.g., ‘Bike ride’), along with a neutral description of the 
scenario (e.g., ‘You and a friend decide to cycle along the 
river’), and an instruction to simulate an event going well 
(positive condition) or poorly (negative condition). 
Scenarios were randomly assigned to the positive or 
negative condition for each participant (24 of each). 
For each scenario, participants simulated a specific 
future event occurring within the next year at a specific 
time and place, describing the event aloud for 
one minute (see the Supplementary Information for 
detailed participant instructions). Participants rated the 
simulation from 1–5 for emotional valence (from 
strongly negative to strongly positive), vividness, emo
tional arousal, personal significance, plausibility, and 
similarity to previous experiences (from low to high). 
The pre-scan phase ensured that participants could 
simulate a detailed and emotionally provoking event 
for each cue. Participants first completed two practice 
trials to ensure that instructions were understood. 
Stimuli were shown via computer with E-Prime Version 
3. The prescan phase took approximately 1 hour to 
complete.

The scanned phase occurred following a 30 minute 
break. During this phase, participants silently re- 
simulated the same 48 scenarios for 15s each, focusing 
on the emotional aspects, then rated the event for emo
tional valence and vividness (3s each). Trials were inter
spersed with a variable fixation cross (3.5, 5, or 6.5s). 
There were three task runs, each lasting 10 minutes 
with 16 scenarios presented in a random order. 
Participants also completed 24 semantic control trials 
which are not relevant to the current analysis. The 
scanned phase took approximately 1 hour to complete.

fMRI acquisition and analysis

Images were acquired on a 3 T Siemens Prisma scanner 
equipped with a 32-channel head coil. Anatomic images 
were acquired with a magnetization-prepared rapid gra
dient echo sequence (matrix size of 256x256, 1mm3 

resolution, 176 slices). Functional images were acquired 
with a multiband echo-planar imaging (EPI) sequence 
(repetition time [TR] = 2s, echo time [TE] = 30 ms, matrix 
size 124x124, 87 slices, 1.7mm3 resolution, multiband 
factor of 3, in-plane GRAPPA acceleration factor of 2). 
Slices were auto-aligned to an angle 20° toward coronal 

from anterior-posterior commissure alignment. fMRI 
data were analyzed using Statistical Parametric 
Mapping (SPM12). Preprocessing included slice-time 
correction, two-pass spatial realignment, and normaliza
tion into Montreal Neurological Institute (MNI) space 
(using the SPM12 TPM template; no resampling). 
Anatomic images were also normalized into MNI space.

Feature selection
We selected five regions of interest (ROIs), and con
ducted MVPA separately in each hemisphere: amygdala 
(number of left/right voxels = 355/349), hippocampus 
(1379/1267), ACC (2094/2003), vmPFC (1008/1218), and 
PCC (500/311). ROIs were identified using WFU PickAtlas 
v3.0, with voxels restricted to gray matter by inclusively 
masking ROIs with the default SPM gray matter prob
ability map thresholded at p > 0.2. A univariate analysis 
confirmed that the contrast of positive versus negative 
future simulation identified neural regions that over
lapped with those defined by the WFU PickAtlas. Our 
choice to employ anatomical, as opposed to univariate- 
defined, ROIs was based on prior studies (Benoit et al., 
2014; D’Argembeau et al., 2008; Murphy et al., 2017; 
Sharot et al., 2007) and ensured that our feature selec
tion procedure was wholly independent of the data 
employed for the MVPA.

MVPA
For each participant, a general linear model (GLM) was 
constructed where each trial was modeled as separate 
regressor, yielding one model with a beta image corre
sponding to each trial (Rissman et al., 2004; Ritchey et al., 
2013). Trials were modeled with a boxcar function con
volved with a canonical hemodynamic response func
tion for the 15s stimulus duration (72 regressors of 
interest, concatenated across the three runs). The GLM 
included regressors modeling the 6s rating window (72 
total), six regressors representing movement-related 
variance, and regressors modeling each run. Temporal 
smoothing was conducted using a high-pass filter of 
128s. The resulting parameter estimates were extracted 
from each ROI for each simulation trial, and z-scored 
within each ROI both across trials and voxels. We con
ducted MVPA on the resulting values using the 
Princeton MVPA Toolbox and custom MATLAB scripts.1

Classification was implemented with regularized 
logistic regression (L2) using an a priori penalty para
meter (λ) of 10.2 Within each ROI, we used a three-fold 
cross validation approach where a classifier was trained 

1Code and experimental materials are available upon request.
2To confirm similar results using other penalties, we ran a post-hoc classification analysis for each ROI using a range of penalties (0.01–100), and found no 

significant differences in accuracy.
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on data from two runs and tested on the remaining run. 
Accuracy was defined as the proportion of correct study 
trial assignments (positive vs. negative) across the three 
iterations of training and testing. Accuracy was binarized 
to give a score of 1 for correct and 0 for incorrect 
classification for each trial. Classification was deemed 
accurate if the average returned classifier evidence for 
the correct category was greater than .5 (i.e., chance). To 
ensure that 50% was an accurate estimate of chance 
accuracy, permutation analyses were conducted for 
each ROI (100 permutations) by scrambling the study 
trial assignments before cross-validation. Permutation 
analyses revealed that accuracy was not significantly 
different from .5 (all means = .50, SD = 0.007–0.01; ts 
(20) < 1.51, ps > 0.15).

Results

Behavioral results

During the pre-scan phase, positive relative to negative 
events were rated as more positive, plausible, personally 
significant, and similar to previous experiences. During 
the scan, positive events were again rated as more 

positive, but not more vivid than negative events (see 
Table 1).

MVPA results
An ANOVA examining classifier accuracy across ROIs, 
emotion conditions, and hemispheres revealed a main 
effect of ROI (F(2.93, 58.59) = 5.67, p = .002, η2

p = 0.22), 
and of condition (F(1, 20) = 17.73, p < .001, η2

p = 0.47), 
where accuracy was higher for negative (M = 0.57, 
SD = 0.07) than positive simulations (M = 0.54, 
SD = 0.07). Because there was no main effect of hemi
sphere, we collapsed accuracy across hemispheres.

Next we conducted one-tailed t-tests comparing clas
sification accuracy to chance (.5) for each ROI and emo
tion condition, with a Bonferroni correction for multiple 
comparisons (α = .05/(5 ROIs x 2 conditions), yielding 
a corrected p-value of .005). Classifier accuracy was 
above chance for positive and negative events in the 
ACC and vmPFC (Table 2 and Figure 1). Additionally, 
classifier accuracy was above chance for negative events 
in the amygdala and PCC.

Discussion

We show that medial PFC regions that track the emotion 
of future events using univariate mean-signal analyses 
also carry information about emotional valence in their 
multi-voxel neural patterning. These results support 
findings that the medial PFC codes for emotion across 
various stimuli (Kim et al., 2015; Kragel & LaBar, 2016), 
and extend them to include simulations of personal 
future events. Our findings also align with theories that 
anterior medial regions like the ACC and vmPFC process 
reward value (e.g., D’Argembeau, 2013; Roy et al., 2012), 
and are involved in identifying potential rewarding out
comes of future events (Benoit et al., 2014) and simula
tions (Lin et al., 2015). Since vmPFC dysfunction is 
implicated in depression and anxiety disorders (Drevets 
et al., 1997), a question for future research is whether 

Table 2. Mean classifier accuracy compared to chance (0.5).
Region and emotion 
condition

Classifier accuracy 
(SD) t df

p (one- 
tailed)

Amygdala negative 0.54 (0.07) 3.06 20 0.003*
Amygdala positive 0.50 (0.07) −0.20 20 0.421
Hippocampus negative 0.56 (0.11) 2.53 20 0.010
Hippocampus positive 0.53 (0.09) 1.39 20 0.090
Anterior cingulate cortex 

negative
0.61 (0.07) 6.80 20 0.001*

Anterior cingulate cortex 
positive

0.57 (0.11) 2.82 20 0.005*

Ventromedial PFC negative 0.59 (0.10) 4.46 20 <0.000*
Ventromedial PFC positive 0.57 (0.11) 2.91 20 0.004*
Posterior cingulate cortex 

negative
0.57 (0.08) 3.79 20 0.001*

Posterior cingulate cortex 
positive

0.53 (0.10) 1.62 20 0.060

Note. * indicates significant at corrected p < .005. PFC = prefrontal cortex.

Table 1. Mean behavioral ratings of positive and negative future simulations (1–5 scale).

Rating Positive (SD) Negative (SD) t df p

Pre-scan phase

Valence 3.80 (0.50) 1.92 (0.34) −11.31 20 .000*

Vividness 3.55 (0.49) 3.50 (0.55) −0.64 20 .533
Arousal 2.93 (0.49) 3.16 (0.61) 2.09 20 .050

Plausibility 3.07 (0.55) 2.56 (0.50) −5.25 20 .000*
Personal significance 2.81 (0.54) 2.38 (0.55) −3.88 20 .001*

Similarity to previous events 2.40 (0.59) 1.93 (0.39) −4.57 20 .000*

Scan phase

Valence 4.03 (0.42) 1.90 (0.34) −13.52 20 .000*

Vividness 3.71 (0.61) 3.58 (0.68) −2.00 20 .060

Note. * indicates significant at p < .05.
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dysphoric individuals show differential coding of posi
tive and negative events in this region.

Overall, negative events were more accurately classi
fied than positive events. In addition to the ACC and 
vmPFC, negative events were classified above chance in 
the amygdala and PCC. It is possible that the content 
and subjective experience of negative events is more 
consistent across scenarios/trials, leading to more con
sistent neural patterning, whereas positive events are 
more variable in nature, leading to reduced classifier 
accuracy. The subjective ratings support this view; nega
tive simulations were rated as less plausible, personally 
significant, and similar to previous events than positive 
simulations, which might contribute to decreased simu
lation variability and increased consistency in neural 
patterning. Alternatively, these phenomenological dif
ferences raise the possibility that negative events were 
more difficult to simulate than positive events. However, 
the prescan phase was designed to mitigate differences 
in simulation difficulty, and the equivalent vividness and 
arousal ratings suggest that participants were able to 
successfully simulate a novel event regardless of emo
tion condition.

Above chance classifier accuracy in the amygdala 
and PCC for negative simulations is also interesting 
in comparison to autobiographical memories. While 
anterior medial regions have been reported as repre
senting autobiographical memory valence (Frid 
et al., 2020), the amygdala and PCC have not, raising 
the possibility that these regions differentially 

represent phenomenological content when thinking 
about past versus future. This possibility merits 
further study because MPVA can highlight neural 
differences between memory and future thinking 
missed by univariate analyses (Kirwan et al., 2014).

A limitation of the current paradigm is that future 
events had been previously simulated in the pre- 
scan phase. While this design ensured that partici
pants simulated emotionally evocative future events, 
it introduces an episodic memory component, in 
that future events are not simulated for the first 
time in the scanner. Previous studies examining 
future thinking have used a similar repeated simula
tion design with emotional future events (e.g., 
D’Argembeau et al., 2008; Devitt et al., 2020; 
Szpunar et al., 2015, 2014), and obtained broadly 
similar results as studies in which events are simu
lated in the scanner for the first time. Because the 
present study is the first to decode emotional 
valence during future simulation, the reliability of 
the current findings should be examined in future 
work.

In conclusion, we find that neural patterning can 
reliably distinguish positive from negative future simula
tions in the ACC and vmPFC, indicating that these 
regions code for the emotional valence of future events. 
These results demonstrate that we can decode the phe
nomenological features of future simulation, and afford 
a starting point for decoding other features of personal 
future events using neural activation.

Figure 1. Classifier accuracy for each of the regions analyzed, split by emotion condition. Error bars denote standard error. Masks for 
each region of interest (ROI) are depicted in yellow (analyses were conducted in each hemisphere separately for each ROI, see main text 
for details). Note. * indicates significant at corrected p < .005, dotted line indicates chance classifier performance, ACC = anterior 
cingulate cortex, vmPFC = ventromedial prefrontal cortex, PCC = posterior cingulate cortex.
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