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Abstract

We address the challenge of constructing valid confidence intervals and sets in problems
of prediction across multiple environments. We investigate two types of coverage suitable
for these problems, extending the jackknife and split-conformal methods to show how
to obtain distribution-free coverage in such non-traditional, hierarchical data-generating
scenarios. Our contributions also include extensions for settings with non-real-valued re-
sponses and a theory of consistency for predictive inference in these general problems.
We demonstrate a novel resizing method to adapt to problem difficulty, which applies
both to existing approaches for predictive inference with hierarchical data and the meth-
ods we develop; this reduces prediction set sizes using limited information from the test
environment, a key to the methods’ practical performance, which we evaluate through
neurochemical sensing and species classification datasets.

1 Introduction

In the predictive inference problem, a statistician observes a training sample {(Xi, Yi)}ni=1 of
size n and wishes to predict the unknown value of Yn+1 at a test point Xn+1, where in the
classical setting, {(Xi, Yi)}n+1

i=1 are exchangeable random variables. Vovk et al.’s conformal
prediction [26] addresses this problem, even in finite sample and distribution-free settings,
constructing a prediction band Ĉ such that Ĉ(Xn+1) covers Yn+1 with a desired probability
on average over the draw (Xn+1, Yn+1).

In contemporary problems, however, the statistician rarely observes data from a single
set of identically distributed training examples. She often has access to data that implicitly
or explicitly arises from multiple environments. For instance, a neuroscientist investigating
diseases of the nervous system may use multiple electrodes to measure neurotransmitter levels,
with a goal to predict these levels at future time points. Variations—whether in voltage
potentials, experimental conditions, build of the electrode, or otherwise—yields data from
different electrodes that follow distinct distributions [18]. To understand the neurobiological
underpinnings of decision making, the statistician must leverage information from multiple
electrodes to develop a robust prediction model that alleviates spurious electrode-to-electrode
variations. Even in cases in which one tries to exactly replicate data generating methodology,
distribution shift effectively means that prediction methods lose substantial accuracy [20, 23].
In this paper, we investigate and develop methodology for constructing prediction intervals
for such multi-environment problems.
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1.1 Problem Setting

Data from multiple environments should improve predictions on a target only if the training
and test data share common characteristics. To model this, we operate under a framework
of hierarchical sampling [19, 16, 9], where one assumes that data from different environments
arise from a common hierarchical model. Specifically, let P be a set of distributions on X ×Y,
where Y is the outcome/response space and X is the space of covariates. Let µ denote a
probability distribution on P × N. Consider a sequence of exchangeable random pairs

(P 1
XY , n1), . . . , (P

m+1
XY , nm+1) (1)

generated from µ, where in training we observe i.i.d. samples

(Xi, Y i) := {Xi
j , Y

i
j }

ni
j=1, (Xi

j , Y
i
j )

iid∼ P i
XY , j ∈ [ni],

for i ∈ [m], treating P i
XY as the ith environment. In the test, we observe an i.i.d. sample

{Xm+1
j }nm+1

j=1 generated from the marginal distribution on X according to the (m + 1)st

Pm+1
XY , and we wish to construct confidence sets for the unknown responses {Y m+1

j }nm+1

j=1 with
valid coverage. We depart from the traditional predictive inference literature in the sense that
individual observations are not exchangeable. Instead, we focus on a more flexible assumption:
within each environment, the observations are exchangeable, and the environments themselves
are exchangeable as well. This weaker assumption allows addressing scenarios where the data
may exhibit variations across different environments, but defining valid coverage therefore
requires careful consideration.

To that end, we consider two plausible coverage notions for multi-environment settings.
The first considers properties close to those conformal coverage guarantees [26, 2] provide: we
seek a confidence set Ĉ that covers a single example with a prescribed probability.

Definition 1.1. A confidence set mapping Ĉ : X ⇒ Y provides 1 − α hierarchical coverage
in the setting (1) if for the single observation (Xm+1

1 , Y m+1
1 ) ∼ Pm+1

XY ,

P
(
Y m+1
1 ∈ Ĉ(Xm+1

1 )
)
≥ 1− α. (2)

Dunn et al. [9] and Lee et al. [16] both adopt the guarantee (2) as a notion of coverage
in hierarchical data generation scenarios. Instead of this marginal guarantee over a single
observation from the new environment m + 1—and given the setting (1) that we expect to
collect multiple observations from each environment—it is also natural to consider coverage
notions over entire new samples (Xm, Y m) = {(Xm+1

j , Y m+1
j )}nm+1

j=1 . We therefore define the
following stronger coverage property.

Definition 1.2. A confidence set mapping Ĉ : X ⇒ Y provides distribution-free level (α, δ)-

coverage if for (Xm+1
j , Y m+1

j )
iid∼ Pm+1

XY , j = 1, . . . , n,

P
(
1

n

n∑
j=1

1
{
Y m+1
j ∈ Ĉ(Xm+1

j )
}
≥ 1− α

)
≥ 1− δ. (3)

That is, the confidence set covers a 1−α fraction of observed examples in the new environment
with probability at least 1− δ; taking n = 1 shows that (2) follows (3).
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1.2 Main Contributions

Our main contributions include the following.

1. We introduce the multi-environment jackknife and split conformal methods (Algorithms 1
and 2, respectively). Theorems 1 and 2 establish that these provide distribution-free level
(α, δ)-coverage (3) when the response space Y = R. These algorithms, as well as other
procedures for hierarchical predictive inference, straightforwardly extend (see Algorithms
5 and 6) to general response spaces Y, and they continue to provide (α, δ)-coverage (see
Theorems 3 and 4).

2. Our experiments indicate that multi-environment algorithms can be conservative. To mit-
igate this, we propose a novel resizing method (Algorithm 7) to reduce the size of pre-
diction sets given access to a limited amount of information from the test environment.
This strategy appears to be useful for predictive inference problems more generally; for
example, applying the resizing idea to Lee et al.’s algorithms [16], we observe notable set
size reduction.

3. We develop new consistency theory (see Theorems 6 and 7) for multi-environment predic-
tive inference, showing how both multi-environment jackknife and split conformal methods
produce consistent confidence sets.

4. We investigate the behavior of both our algorithms, which target (α, δ)-coverage (3),
and previous work on hierarchical conformal inference [16], evaluating methods on neu-
rochemical sensing [18] and species classification [15, 6] data. Our experiments reveal
that the multi-environment jackknife tends to yield smaller confidence sets than the split-
conformal methodology when there are fewer training environments. Conversely, the multi-
environment split conformal method demonstrates better performance when the number
of training environments is large.

1.3 Related Work

Standard predictive inference methods include split-conformal [26, 17, 7, 22] and modified
jackknife procedures [4]. The current paper extends these to multi-environment problems.
Split conformal prediction separates the data into a training and a calibration set, using
the training data to fit a model and the calibration data to set a threshold for constructing
prediction intervals. Since it only splits the data once, the method may sacrifice statistical
efficiency for computational gains. Addressing this issue, jackknife-style procedures use all
available data for training and calibration by fitting leave-one-out models, increasing com-
putational cost for accuracy. Both methods require exchangeability of the entire observed
data to ensure valid coverage, while multi-environment methods work under the weaker as-
sumption that within (but not across) environments, observations are exchangeable, and the
environments themselves are exchangeable.

Recognizing the challenges inherent in collecting data, implicitly or explicitly, across mul-
tiple environments, a recent literature considers conformal prediction under hierarchical mod-
els, assuming the multi-environment setting (1). Among these, both Dunn et al. [9] and
Lee et al. [16] study conformal prediction under hierarchical sampling and propose meth-
ods satisfying the marginal coverage guarantee (2), as well as a few other distribution-free
guarantees, which may be a satisfying coverage guarantee for many applications. The (α, δ)-
coverage condition (3) requires coverage for multiple observations in the test environment
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simultaneously, necessitating new development, as it is unclear if existing multi-level confor-
mal approaches [9, 16] satisfy it.

1.4 Paper Outline

The remainder of this paper is organized as follows. Section 2 introduces multi-environment
jackknife-minmax and multi-environment split conformal. Section 3 presents a general for-
mulation of confidence sets and extends our methods to settings beyond regression. Section 4
proposes a resizing method for reducing the average length of prediction sets. Section 5 devel-
ops a consistency theory for the general formulation of confidence sets introduced in Section 3.
Section 6 applies our methods to neurochemical sensing and species classification data [18, 6].
Appendix A contains technical proofs and Appendix B contains additional simulations.

2 Methods for regression

To introduce our basic methods, we assume the target space Y = R. In this case, we wish
to return a confidence set C : X ⇒ R, and typically C(x) is an interval. We define a fitting
algorithm A to be a function that takes a collection of samples as input and outputs an element
of F ⊂ X → Y. To describe our algorithms formally, we introduce the following mappings.

Definition 2.1. For values vi, i = 1, . . . , n, define the quantile mappings

q̂+n,α({vi}) := the ⌈(1− α)(n+ 1)⌉ th smallest value of v1, . . . , vn,

q̂−n,α({vi}) := the ⌊α(n+ 1)⌋ th smallest value of v1, . . . , vn = −q̂+n,α({−vi}).

We also recall the notation (1) that the ith sample (Xi, Y i) = {(Xi
j , Y

i
j )}

ni
j=1.

2.1 Multi-environment Jackknife-minmax

We first introduce a multi-environment version of Barber et al.’s jackknife-minmax [4]. The
idea is simple: we repeatedly fit a predictor f̂−i to all environments except environment i,
then evaluate residuals on environment i to gauge the typical variability while predicting on a
new environment. We define f̂ = A((X1, Y 1), . . . , (Xm, Y m)) to be the predictor we “would”
fit given all environments and consider the leave-one-out predictors

f̂−i := A
(
(X1, Y 1), . . . , (Xi−1, Y i−1), (Xi+1, Y i+1), . . . , (Xm, Y m)

)
.

From these, we construct the leave-one-out residuals for each example j = 1, . . . , ni in envi-
ronment i, letting

Ri
j = |Y i

j − f̂−i(X
i
j)| for j ∈ [ni], i ∈ [m].

We then pursue a blocked confidence set construction. Within each environment, we let
Si
1−α = q̂+ni,α({R

i
j}

ni
j=1) be the 1 − α quantile of the residuals for predicting in environment

i using f̂−i. To obtain an interval that is likely to cover, we use quantiles of these residuals
across environments, as the environments are exchangeable. We therefore construct intervals
of the form

C(x) :=
[
flow(x)− q̂+m,δ({S

i
1−α}i), fhigh(x) + q̂+m,δ({S

i
1−α}i)

]
,

where all that remains is to choose flow and fhigh to obtain valid coverage. Algorithm 1 achieves
this, using the minimum and maximum values of the held-out predictions to construct the
multi-environment jackknife-minmax confidence set.
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Algorithm 1: Multi-environment Jackknife-minmax: the regression case

Input: samples {Xi
j , Y

i
j }

ni
j=1, i = 1, . . . ,m, confidence levels α, δ

For i = 1, . . . ,m, set

f̂−i = A
(
(X1, Y 1), . . . , (Xi−1, Y i−1), (Xi+1, Y i+1), . . . , (Xm, Y m)

)
,

and construct residual quantiles

Ri
j = |Y i

j − f̂−i(X
i
j)|, j = 1, . . . , ni, and Si

1−α = q̂+ni,α

(
Ri

1, R
i
2, . . . , R

i
ni

)
.

Return confidence interval mapping

Ĉ jk-minmax
m,α,δ (x) :=

[
min
i∈[m]

f̂−i(x)− q̂+m,δ

(
{Si

1−α}mi=1

)
,max
i∈[m]

f̂−i(x) + q̂+m,δ

(
{Si

1−α}mi=1

) ]
.

Theorem 1. The multi-environment confidence mapping Ĉ jk-minmax
m,α,δ Algorithm 1 returns pro-

vides level (α, δ)-coverage (3).

See Section A.1 for the proof. In words, with probability at least 1−δ, the prediction intervals
from Algorithm 1 cover at least (1− α)× 100% of the examples in the test environment.
Remark In Algorithm 1, it may appear that taking the minimum and maximum of
the held-out predictions could yield conservative prediction intervals; intuitively, suitably
corrected δ and (1 − δ) quantiles (as in the jackknife+ [4]) of f̂−i(x) ± Si

1−α should yield
a confidence set satisfying the guarantee (3). Unfortunately, this approach fails to provide
(α, δ)-coverage; see Appendix B.

2.2 A multi-environment split conformal method

We also introduce a multi-environment version of split conformal inference. Our algorithm
partitions the environment index set {1, . . . ,m} into subsets D1 and D2 randomly. We use
the data in environments indexed by D1 to fit a model f̂D1 = A({Xj , Y j}j∈D1) with which
we construct residuals for each example j = 1, . . . , ni in each environment i ∈ D2. Then for
each environment in D2, we construct the (1− α)-th quantile of its ni residuals. This yields
a set Si

1−α, i ∈ D2, of quantiles. To obtain a likely-to-cover interval, we consider as before
quantiles of these quantiles, constructing a prediction interval of the form[

f̂D1(x)− q̂+m,δ

({
Si
1−α

}
i∈D2

)
, f̂D1(x) + q̂+m,δ

({
Si
1−α

}
i∈D2

)]
.
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Algorithm 2: Multi-environment Split Conformal Inference: the regression case

Input: samples {Xi
j , Y

i
j }

ni
j=1, i ∈ [m], confidence levels α, δ, split ratio γ

Randomly partition {1, 2, . . . ,m} into two sets D1 and D2 such that |D1|
m = γ.

Set
f̂D1 = A({Xj , Y j}j∈D1).

For i ∈ D2, construct residual quantiles

Ri
j =

∣∣∣Y i
j − f̂D1

(
Xi

j

)∣∣∣ , j = 1, . . . , ni, and Si
1−α = q̂+ni,α

(
Ri

1, R
i
2, . . . , R

i
ni

)
.

Return confidence interval mapping

Ĉsplit
m,α,δ(x) :=

[
f̂D1(x)− q̂+m,δ

({
Si
1−α

}
i∈D2

)
, f̂D1(x) + q̂+m,δ

({
Si
1−α

}
i∈D2

)]
.

Theorem 2. The multi-environment confidence mapping Ĉsplit
m,α,δ Algorithm 2 returns provides

level (α, δ)-coverage (3). If additionally the observations Y i
j are almost surely distinct,

P

nm+1∑
j=1

1
{
Y m+1
j ∈ Ĉsplit

m,α,δ

(
Xm+1

j

)}
≥ ⌈(1− α) (nm+1 + 1)⌉

 ≤ 1− δ +
1

m(1− γ) + 1
.

See Section A.2 for the proof.
We discuss the relative merits of our algorithms. They both provide valid coverage as

proved in Theorems 1 and 2. Multi-environment split conformal fits the model once, and is
therefore computationally attractive. Moreover, we expect this method to be less conservative
since it does not take a maximum or minimum over predictions coming from multiple models.
In contrast, multi-environment split conformal uses fewer samples both to fit the initial model
and to construct the residual quantiles. Thus, we expect it to suffer when the number of
training environments is relatively small. We demonstrate these points further via real data
experiments in Section 6.

2.3 Methods to achieve marginal coverage in hierarchical predictive infer-
ence

As we discuss earlier, Dunn et al. [9] and Lee et al. [16] provide predictive inference methods for
the hierarchical (multi-environment) setting (1), focusing on guarantees that provide coverage
for a single new observation (2), as in Definition 1.1. Focusing on the more recent paper [16],
we review (with a correction to avoid an accidental infinite quantile [16, App. A.2.1]) their
hierarchical jackknife+ and hierarchical conformal prediction algorithms. In the procedures,
we let δz denote a point mass at z, and for a distribution P on R, define the (usual) left
quantile and (non-standard) right quantile mappings Qα(P ) := inf{t | P (Z ≤ t) ≥ α} and
Q′

α(P ) := sup{t | P (Z ≤ t) < α}.
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Algorithm 3: Hierarchical Jackknife+ (Lee et al. [16])

Input: samples {Xi
j , Y

i
j }

ni
j=1, i ∈ [m], confidence level α

For i = 1, . . . ,m, set

f̂−i = A
(
(X1, Y 1), . . . , (Xi−1, Y i−1), (Xi+1, Y i+1), . . . , (Xm, Y m)

)
,

and construct residual quantiles

Ri
j = |Y i

j − f̂−i(X
i
j)|, j = 1, . . . , ni.

Return confidence interval mapping

Ĉhjk+
m,α (x) := [low(x), high(x)] ,

where

low(x) := Q′
α

( m∑
i=1

nk∑
j=1

1

(m+ 1)ni
· δ

f̂−i(x)−Ri
j
+

1

m+ 1
· δ−∞

)
,

high(x) := Q1−α

( m∑
i=1

nk∑
j=1

1

(m+ 1)ni
· δ

f̂−i(x)+Ri
j
+

1

m+ 1
· δ−∞

)
.

Algorithm 4: Hierarchical Conformal Prediction

Input: samples {Xi
j , Y

i
j }

ni
j=1, i ∈ [m], confidence level α, split ratio γ

Randomly partition {1, 2, . . . ,m} into two sets D1 and D2 such that |D1|
m = γ.

Set
f̂D1 = A({Xj , Y j}j∈D1).

For i ∈ D2, construct residual quantiles

Ri
j =

∣∣∣Y i
j − f̂D1

(
Xi

j

)∣∣∣ , j = 1, . . . , ni

Set

T = Q1−α

( m∑
i=mγ+1

nk∑
j=1

1

(|D1|+ 1)ni
· δRi

j
+

1

|D1|+ 1
· δ+∞

)
,

Return confidence interval mapping

Ĉhcp
m,α(x) :=

[
f̂D1(x)− T, f̂D1(x) + T

]
.

These algorithms construct prediction intervals for a single observation (Xm+1
1 , Y m+1

1 ) in
the test environment m+1, providing guarantees of marginal coverage (2) as in Definition 1.1.
In particular, Lee et al. [16] prove the following results.

Corollary 2.1 (Lee et al. [16], Theorems 1 and 5). The jackknife+ mapping Ĉhjk+
m,α that

Algorithm 3 returns provides 1 − 2α hierarchical coverage, and the conformal mapping Ĉhcp
m,α

that Algorithm 4 returns provides 1− α hierarchical coverage.

These results are not completely comparable to (α, δ)-coverage guarantees (Definition 1.2).
We do so somewhat heuristically in our experiments in Section 6.4, where for values of
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α ∈ (0, 1)—the outer coverage guarantee, over environments—we may vary δ to compare
performance of the methods. Previewing our results, it appears that both the hierarchical
jackknife+ and split-conformal methods generate prediction sets with comparable size and
coverage properties to the multi-environment methods in Algorithms 1 and 2.

3 General confidence sets and extensions

To this point, we have described our algorithms for real-valued predictions, where confidence
intervals C(x) = [a, b] are most practicable. Here, we generalize the algorithms beyond
regression, where the target space may not be the real line and the prediction sets may be
asymmetric. We first present the general formulation and abstract algorithms. Subsequently,
we specialize our construction to demonstrate implementation in a few cases of interest: (i)
when we represent general target spaces Y and confidence sets by labels y that suffer small
loss under a prediction f(x), i.e., {y ∈ Y | ℓ(y, f(x)) ≤ τ}, and (ii) for quantile regression-type
approaches, which allow asymmetric confidence sets in regression problems [21].

3.1 General nested confidence sets

We begin with our most general formulation. Here, we treat confidence sets themselves as the
objects of interest (adopting the interpretation [11]), rather than any particular prediction
method f̂ , and assume that confidence sets are indexed by a threshold τ and nested in that

Cτ (x) ⊂ Cτ+δ(x) for all δ ≥ 0.

We assume now that the algorithm A returns a collection of confidence set mappings {Ĉτ}τ∈R,
where each Ĉτ : X ⇒ Y is a set-valued function. To see how this generalizes the initial
Algorithm 1, note that we may write

Ĉτ (x) = [f(x)− τ, f(x) + τ ] or Ĉτ (x) = [flow(x)− τ, fhigh(x) + τ ] .

Assuming A can perform this calculation, the immediate extension of Algorithm 1 follows.

Algorithm 5: Multi-environment Jackknife-minmax via nested confidence sets

Input: samples {Xi
j , Y

i
j }

ni
j=1, i ∈ [m], levels α, δ, predictive set algorithm A

For i = 1, . . . ,m, set

{Ĉ−i
τ }τ∈R = A

(
(X1, Y 1), . . . , (Xi−1, Y i−1), (Xi+1, Y i+1), . . . , (Xm, Y m)

)
,

and construct residual quantiles

Ri
j = inf

{
τ | Y i

j ∈ Ĉ−i
τ (Xi

j)
}
, j = 1, . . . , ni, and Si

1−α = q̂+α
(
Ri

1, R
i
2, . . . , R

i
ni

)
.

Return confidence interval mapping with τ̂ = q̂+δ ({S
i
1−α}mi=1),

Ĉ jk-minmax
m,α,δ (x) :=

⋃
i∈[m]

Ĉ−i
τ̂ (x).

Theorem 3. The multi-environment confidence mapping Ĉ jk-minmax
m,α,δ Algorithm 5 returns pro-

vides level (α, δ)-coverage (3).
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The proof of Theorem 3 mimics that of Theorem 1, and we present it in Section A.3.
Similarly, the extension of Algorithm 2 follows.

Algorithm 6: Multi-environment Split Conformal via nested confidence sets

Input: samples {Xi
j , Y

i
j }

ni
j=1, i ∈ [m], confidence levels α, δ, split ratio γ, predictive set

algorithm A

Randomly partition {1, 2, . . . ,m} into two sets D1 and D2 such that |D1|
m = γ.

Set {ĈD1
τ }τ∈R = A({(Xi, Y i)}i∈D1).

For i ∈ D2, construct residual quantiles

Ri
j = inf

{
τ | Y i

j ∈ ĈD1
τ

(
Xi

j

)}
, j = 1, . . . , ni, and Si

1−α = q̂+ni,α

(
Ri

1, R
i
2, . . . , R

i
ni

)
.

Return confidence interval mapping with τ̂ = q̂+δ

({
Si
1−α

}
i∈D2

)
,

Ĉsplit
m,α,δ(x) := ĈD1

τ̂ (x).

Theorem 4. The multi-environment confidence mapping Ĉsplit
m,α,δ Algorithm 6 returns provides

level (α, δ)-coverage (3). If additionally the scores Si
1−α are almost surely distinct, then

P

nm+1∑
j=1

1
{
Y m+1
j ∈ Ĉsplit

m,α,δ

(
Xm+1

j

)}
≥ ⌈(1− α) (nm+1 + 1)⌉

 ≤ 1− δ +
1

m(1− γ) + 1
.

We omit the proof of Theorem 4, as it mutatis mutandis mimics that of Theorem 2.

3.2 Specializations and examples of the nested confidence set approach

We specialize the general nested prediction set Algorithms 5 and 6 to a few special cases where
implementation is direct and natural.

3.2.1 General loss functions and targets

In extension to the preceding section, we consider the following scenario: we have targets
y ∈ Y, covariates x ∈ X , and prediction functions f ∈ F ⊂ X → Rk. Then for a loss
ℓ : Y × Rk → R+, we consider predictive sets of the form

Cτ (x) = {y ∈ Y | ℓ(y, f(x)) ≤ τ}

where, for now, f ∈ F and τ ∈ R are left implicit. These are nested, allowing application
of Theorem 3 and Algorithm 5. A slight specialization allows easier presentation: define the
residual losses on environment i by

R
(i)
j := ℓ

(
Y

(i)
j , f̂−i(X

(i)
j )
)
,
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where as previously f̂−i is the leave-one-out predictor f̂−i = A((Xk, Y k)k ̸=i). Setting S
(i)
1−α =

q̂+α ({R
(i)
j }j), the nested union in Algorithm 5 is exactly

Ĉ jk-minmax
m,α,δ (x) :=

{
y ∈ Y | min

k≤m
ℓ(y, f̂−k(x)) ≤ q̂+δ

(
{S(i)

1−α}
m
i=1

)}
.

Corollary 3.1. The loss-based set Ĉ jk-minmax
m,α,δ provides (α, δ)-coverage (3).

3.2.2 Quantile regression

Romano et al. [21] highlight how moving beyond symmetric confidence sets to use quantile-
based regressoin functions allows more accurate and tighter confidence bands even for R-valued
responses Y . Algorithm 5 and Theorem 3 let us adapt their technique to obtain quantile-type
confidence sets in multi-environment settings. Imagine we have two algorithms fitting lower
and upper predictors

l̂−i = Alow

(
(Xk, Y k)k ̸=i

)
, û−i = Ahigh

(
(Xk, Y k)k ̸=i

)
,

where we leverage the idea that the methods target that Y lies in [l̂−i(x), û−i(x)] with a
prescribed probability 1− α. To construct nested confidence sets from l̂, û, we set

Ĉ−i
τ (x) =

[
l̂−i(x)− τ, û−i(x) + τ

]
.

Specializing the generic construction in Algorithm 5 to this case, set the residuals

Ri
j := max

{
l̂−i(X

i
j)− Y i

j , Y
i
j − û−i(X

i
j)
}
,

which by inspection satisfies

Ri
j = inf

{
τ ∈ R | l̂−i(X

i
j)− τ ≤ Y i

j ≤ û−i(X
i
j) + τ

}
.

We then construct Si
1−α = q̂+α ({Ri

j}
ni
j=1) (as in Algorithm 5), and setting τ̂ = q̂+δ

(
{Sk

1−α}mk=1

)
,

the multi-environment jackknife-minmax confidence set takes the form

Ĉ jk-minmax
m,α,δ (x) :=

m⋃
i=1

[
l̂−i(x)− τ̂ , û−i(x) + τ̂

]
.

This set provides valid coverage by Theorem 3:

Corollary 3.2. The lower/upper set Ĉ jk-minmax
m,α,δ provides (α, δ)-coverage (3).

4 Resizing residuals to reduce interval lengths

Our experimental results in Section 6 make clear that naive application of multi-environment
algorithms often produces wide prediction intervals. The bottom plots in Figures 6.1 and
6.3 show that the average size of the confidence sets are particularly large when the input
parameter δ is small. This conservativeness is a natural consequence of the constructions of
the multi-environment confidence sets, just as Romano et al. [21] note that naive symmetric
and uniform prediction intervals (i.e., those of the form Ĉ(x) = [f(x) − τ, f(x) + τ ]) can be
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overly conservative as they must typically cover even values X for which Y is highly non-
symmetric or has high variance. In our context, this presents when an environment i has
residual quantile Si

1−α much larger than the rest—it is an outlier environment. For small δ,
such outlier environments mostly determine the 1− δ quantile of the training environments’
scores Si

1−α, and consequently, these outlier training environments govern the size of the
confidence set for test samples regardless of whether the test environment is outlying.

To mitigate this issue, we scale the residual quantiles by a resizing factor so that the
adjusted quantiles (i) remain exchangeable, and (ii) are supported on a similar range for all
environments. We compute the 1 − δ quantile of these adjusted residual quantiles. Finally,
we multiply this 1 − δ quantile by the test environment’s resizing factor to construct valid
confidence sets. This way, the constructed confidence set length remains small if the test
environment is not an outlier. Since the probability of any environment being an outlier is
small, the size of the constructed confidence set tends to be small on average.

The question therefore turns to finding an accurate strategy for constructing these resiz-
ing factors. One natural approach is—if they are available—to incorporate environmental
covariates. If environmental covariates e ∈ E are available for each environment, then we can
estimate resizing factors using them, as an expanded covariate (X, e) remains i.i.d. conditional
on the environment. (One could also incorporate these into the predictor f : X × E → Y via
an expanded covariate (X, e).) Alternatively, we show that given access to a limited amount
of labeled data from the test environment, one can indeed construct suitable resizing factors.
We describe our strategy in the context of the multi-environment split conformal algorithm.

Suppose we observe Lm+1 labeled random examples from the test environment. As before,
we partition the training environments into two setsD1 andD2. Using data from environments
in D1, we construct a nested confidence set {Ĉτ}τ∈R. We randomly select Lm+1 samples
from each training environment and compute residuals for these samples using the {Ĉτ}τ∈R
confidence sets. We then pick some quantile α0 close to 0, and compute the 1 − α0 quantile
of these residuals as the resizing factor for each environment. As a result, the resizing factors
for outlier environments tend to be large as desired. Empirically, we find that α0 = 0.05
works well for a reasonable range of input α. One can adapt this approach to any of multi-
environment jackknife-minmax, hierarchical conformal prediction, or hierarchical jackknife+;
Algorithm 7 shows how to do so for multi-environment split conformal prediction.
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Algorithm 7: Resized Multi-environment Split Conformal

Input: samples {Xi
j , Y

i
j }

ni
j=1, i ∈ [m], labeled samples {Xm+1

j , Y m+1
j }j∈Lm+1 , confidence

levels α, δ, split ratio γ, predictive set algorithm A, resizing quantile α0

Randomly partition {1, 2, . . . ,m} into two sets D1 and D2 such that |D1|
m = γ.

Set {ĈD1
τ }τ∈R = A({(Xi, Y i)}i∈D1).

For i ∈ D2,

1. Compute residuals

Ri
j = inf

{
τ | Y i

j ∈ ĈD1
τ

(
Xi

j

)}
, j = 1, . . . , ni.

2. Randomly select |Lm+1| samples in environment i, and denote the set of selected
samples as Li. Compute the resizing factor

si := q̂+|Li|,α0

(
{Ri

j}j∈Li

)
,

and resized residual quantiles

Si
1−α = q̂+ni,α

({
Ri

j/s
i
}
j∈[ni]\Li

)
.

Compute the resizing factor for the test environment

sm+1 := q̂+|Lm+1|,α0

({
Ri

j

}
j∈Lm+1

)
.

Return confidence interval mapping with τ̂ = sm+1 · q̂+δ ({S
i
1−α}i∈D2),

Ĉresized
m,α,δ (x) := ĈD1

τ̂ (x).

As long as the resizing factors si, i ∈ D2 ∪ {m+ 1} are exchangeable and independent of
samples (Xi, Yi), i ∈ Y i

j }
ni
j=1, i ∈ D1, the proof of Theorem 2 immediately extends to show the

following result:

Theorem 5. The multi-environment confidence mapping Ĉresized
m,α,δ (x) that Algorithm 7 returns

provides level (α, δ)-coverage (3), that is, the event

Em :=

{ ∑
j∈[nm+1]

\Lm+11
{
Y m+1
j ∈ Ĉresized

m,α,δ (Xm+1
j )

}
≥
⌈
(1− α)(nm+1 − |Lm+1|+ 1)

⌉}

satisfies P(Em) ≥ 1− δ. If additionally the quantiles Si
1−α are distinct with probability 1, then

P(Em) ≤ 1− δ + 1
m(1−γ)+1 .

5 General Consistency Results

In this section, we develop a theory of consistency for the nested confidence sets in Section 3.
We define consistency via convergence to a particular limiting confidence set mapping. When
this confidence set is in some sense optimal, then our methods are consistent. To that end,
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we shall assume there is a fixed collection {Cτ} of nested confidence sets, and we let E be a
random environment drawn from the collection of possible environments E , letting P(· | E)
denote the induced distribution conditional on E. For a fixed α, δ ∈ (0, 1), we define

τ⋆(δ, α) := inf {τ s.t. P (P (Y ∈ Cτ (X) | E) ≥ 1− α) ≥ 1− δ} .

Thus, for the given confidence mappings C = {Cτ}, the value τ⋆(δ, α) yields the smallest
confidence set providing (δ, α) coverage (Definition 1.2) at a population level. Then for Al-

gorithms 5 and 6 to be consistent, we must have the resulting confidence sets Ĉ jk-minmax
m,α,δ and

Ĉsplit
m,α,δ approach Cτ⋆ in an appropriate sense.

5.1 Conditions and preliminary definitions

We require a few more definitions, providing examples as we state them. For a given nested
confidence family C = {Cτ}, we define the coverage threshold

τ(x, y, C) := inf {τ ∈ R | y ∈ Cτ (x)} (4)

to be the smallest value τ such that Cτ (x) covers y.
Example 1 (Coverage thresholds): The coverage threshold (4) has straightforwardly com-
putable values for most of the “standard” cases of confidence sets we consider. For the
interval-based confidence set Cτ (x) = [f(x) − τ, f(x) + τ ], evidently τ(x, y, C) = |f(x) − y|.
For the lower/upper sets we use in quantile regression (recall Section 3.2.2), where Cτ (x) =
[l(x)− τ, u(x)+ τ ], we have τ(x, y, C) = max{l(x)− y, y−u(x)}, so that τ(Xj

i , Y
j
i , Ĉ

−i) = Ri
j

is simply the residual. For the generic loss-based set Cτ (x) = {y | ℓ(y, f(x)) ≤ τ} (recall
Section 3.2.1), it is immediate that τ(x, y, C) = ℓ(y, f(x)), and so once again we have equality
with the residuals Ri

j = τ(Xj
i , Y

j
i , Ĉ

−i). 3

To discuss convergence of the estimators in general, we must address various modes of
quantile convergence, which we do at a generic level via convergence in distribution. To that
end, for an R-valued random variable Z, let

L(Z | P )

denote the induced probability law of Z under the probability distribution P . For example,

given observed values of (Xi
j , Y

i
j )

iid∼ P i, j = 1, . . . , ni, we denote the corresponding empirical

distribution as P̂ i. Then L(τ(X,Y, Ĉ−i) | P̂ i) denotes the empirical distribution of the values
τ(Xi

j , Y
i
j , Ĉ

−i). We recall the bounded Lipschitz metric between distributions P and Q,

∥P −Q∥BL := sup
∥f∥∞≤1,∥f∥Lip≤1

∫
f(dP − dQ),

noting that for any distribution P on Rd, if P̂n denotes the empirical distribution of Zi
iid∼ P ,

i = 1, . . . , n, then ∥P̂n − P∥BL
a.s.→ 0 (see, e.g., van der Vaart and Wellner [25, Chs. 1.10–1.12]).

An essentially standard lemma relates convergence in the bounded Lipschitz metric to
quantiles; for completeness we include a proof in Appendix A.4.

Lemma 5.1. Let Q be a distribution on R with α-quantile Qα(Q) such that if Z ∼ Q, then

Q(Z ≤ Qα(Q)− u) < α and Q(Z ≤ Qα(Q) + u) > α

for all u > 0. Then the quantile mapping Qα is continuous at Q for the bounded Lipschitz
metric: for all ϵ > 0, there exists δ > 0 such that if ∥P −Q∥BL ≤ δ, then |Qα(P )−Qα(Q)| ≤ ϵ.
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With these definitions, we make a few assumptions on the convergence of the estimated
families of nested confidence sets. After stating the assumptions, we will revisit the ma-
jor examples of confidence sets we have considered—the symmetric sets in the basic multi-
environment jackknife-minmax (Section 2), the loss-based sets in Section 3.2.1, and the
quantile-type sets in Section 3.2.2—and show natural sufficient conditions for the assump-
tions to hold.

The first two relate to consistency and continuity of the nested confidence sets.

Assumption A1.a. Fix environment E = i. As n → ∞,∥∥∥L(τ(X,Y,C) | P i)− L(τ(X,Y, Ĉ−i) | P̂ i)
∥∥∥
BL

a.s.→ 0,

where Ĉ−i = {Ĉ−i
τ }τ∈R is defined in Algorithm 5.

Assumption A1.b. Fix any validation environment E = i. As n → ∞,∥∥∥L(τ(X,Y,C) | P i)− L(τ(X,Y, ĈD1) | P̂ i)
∥∥∥
BL

a.s.→ 0,

where ĈD1 = {ĈD1
τ }τ∈R is defined in Algorithm 6.

Assumption A2.a. Let λ be a measure on Y, fix τ⋆ ∈ R, and let ϵ > 0. Define the (random)
subsets

Bi
n,τ :=

{
x ∈ X s.t. λ

(
Ĉ−i
τ (x)△Cτ⋆(x)

)
≥ ϵ
}
,

indexed by n ∈ N, τ ∈ R, and i ≤ m, of X . Let τ(n) be such that limn→∞ τ(n) = τ⋆. Then
for suitably slowly growing m = m(n) → ∞, the X-measure of Bn,τ := ∪m

i=1B
i
n,τ satisfies

limn→∞ PX(Bn,τ(n)) = 0 with probability 1.

Assumption A2.b. Let λ be a measure on Y, fix τ⋆ ∈ R, and let ϵ > 0. Define the (random)
subsets

Bsplit
n,τ :=

{
x ∈ X s.t. λ

(
ĈD1
τ (X)△Cτ⋆(X)

)
≥ ϵ
}
,

indexed by n ∈ N, τ ∈ R, and i ≤ m, of X . Let τ(n) be such that limn→∞ τ(n) = τ⋆. Then

the X-measure of Bsplit
n,τ satisfies limn→∞ PX(Bsplit

n,τ(n)) = 0 with probability 1.

These give a type of consistency of the confidence set mappings Ĉ−i and ĈD1 to C.

5.1.1 Examples realizing the assumptions

A few examples may make it clearer that we expect Assumptions A1.a and A2.a to hold.
Similar arguments apply for Assumptions A1.b and A2.b, and thus are omitted. Through-
out the examples, we make the standing assumption that if π is the (prior) distribution on
environments and PX =

∫
P e
Xdπ(e) is the marginal distribution over X, then

sup
e∈E

Dχ2 (P e
X ||PX) ≤ ρ2χ2 < ∞.

Note that in this case, for any function g : X → R, we have∣∣∣∣∫ g(dP e − dP )

∣∣∣∣ = ∣∣∣∣∫ g

(
dP e

dP
− 1

)
dP

∣∣∣∣ ≤√EP [g2]
√
Dχ2 (P e||P ) ≤

√
EP [g2]ρχ2 ,
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and in particular, for any set A ⊂ X , we have |P e(A)− P (A)| ≤
√
P (A)ρχ2 .

We now give three examples: regression, quantile regression, and (multiclass) logistic
regression, and for each we provide a simple sufficient condition for Assumptions A1.a and A2.a
to hold. For all three examples, the sufficient condition assumes the leave-one-out predictions
converge uniformly on compact sets. As the arguments are technical and do not particularly
impact the main thread of the paper, we defer the formal proofs to appendices.
Example 2 (The regression case): In the case that we perform regression as in Section 2,
we assume the existence of a population function f(x) = E[Y | X = x], where the expectation
is taken across environments, and f̂−i → f for each i. We assume this convergence is nearly
uniform on compact sets: for each ϵ > 0, there exists a subset Xϵ such that

sup
x∈Xϵ

|f̂−i(x)− f(x)| a.s.→ 0 and P (Xϵ) ≥ 1− ϵ. (5)

Let λ be Lebesgue measure. Then the locally uniform convergence condition (5) implies
Assumptions A1.a and A2.a for λ; see Appendix A.5 for the argument. 3

Uniform convergence on compact sets is not a particularly onerous condition for standard
problems. For example, for a linear regression model, if the estimate for model coefficients
converges almost surely to the model coefficients, then assumption (5) holds trivially.
Example 3 (Quantile regression): In the case of quantile-type regression problems, we recall
Section 3.2.2, and we assume the consistency conditions that

l(x) = Qα/2(Y | X = x) and u(x) = Q1−α/2(Y | X = x),

and that for each x, Y | X = x has a positive density, so that l and u are unique. Then in
analogue to condition (5), we assume that for each ϵ > 0, there exists Xϵ such that

sup
x∈Xϵ

max
{
|l̂−i(x)− l(x)|, |û−i(x)− u(x)|

}
a.s.→ 0 and PX(Xϵ) ≥ 1− ϵ. (6)

As in Example 2, if λ is Lebesgue measure, then the convergence (6) implies Assumptions A1.a
and A2.a for λ. See Appendix A.6 for a proof. 3

Example 4 (Classification and logistic regression): We consider a k-class logistic regression
problem, where we take the loss

ℓ(y, v) = log

(
k∑

i=1

evi−vy

)
= log

(
1 +

∑
i ̸=y

evi−vy

)
.

We assume the predictors f : X → Rk are (Bayes) optimal in that they satisfy

exp([f(x)]y)∑k
i=1 exp([f(x)]i)

= P(Y = y | X = x).

As the loss ℓ is invariant to constant shifts we make the standing w.l.o.g. assumption that
f(x) and f̂(x) are always mean zero (i.e. 1T f(x) = 0) and assume the consistency condition
that for each ϵ > 0, there exists Xϵ ⊂ X such that

sup
x∈Xϵ

∥∥∥f̂−i(x)− f(x)
∥∥∥ a.s.→ 0 and PX(Xϵ) ≥ 1− ϵ. (7)
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In this case, the uniqueness of quantile estimators requires a type of continuity condition that
was unnecessary for the regression cases, and we make the additional continuity assumption
that for each c ∈ R+ and y ∈ [k], the set {x ∈ X | ℓ(y, f(x)) = c} has measure zero. As a
consequence, the sets

Dc,ϵ := {x ∈ X | there exists y s.t. |ℓ(y, f(x))− c| < ϵ}

satisfy limϵ→0 PX(Dc,ϵ) = 0 for each c, by continuity of measure.
An analogous argument to that in Examples 2 and 3 then shows that the conditions above

suffice for Assumptions A1.a and A2.a to hold with counting measure. See Appendix A.7. 3

5.2 Consistency of the multi-environment Jackknife-minmax

With the motivating examples in place, we now provide the main convergence theorem. We
state one final assumption, which makes the environment-level quantiles sufficiently unique
that identifiability is possible.

Assumption A3. Define the quantile of the coverage threshold (4) on environment i by

Q1−α(P
i) := inf

{
t | P i(τ(X,Y,C) ≤ t) ≥ 1− α

}
.

For a given δ, there exists a (unique) q(δ) such that for any u > 0,

P
(
Q1−α(P

E) ≤ q(δ)− u
)
< 1− δ and P

(
Q1−α(P

E) ≤ q(δ) + u
)
> 1− δ,

where the probability is taken over E drawn randomly from E.
Given this assumption, we can show that theX-measure of sets where the multi-environment

jackknife-minmax and “true” confidence set Cτ⋆(δ,α) make different predictions converges to
zero.

Theorem 6. Let λ be a measure on Y such that Assumptions A1.a, A2.a, and A3 hold. Let
ϵ > 0 and m = m(n) be a sufficiently slowly growing sequence. Then the PX measure of

B̂(ϵ) :=
{
x ∈ X such that λ

(
Ĉ jk-minmax
m,α,δ (x)△Cτ⋆(δ,α)(x)

)
≥ ϵ
}

satisfies PX(B̂(ϵ))
a.s.→ 0.

Proof The key step in the argument is to recognize that Assumptions A1.a and A3 give
consistency of the estimated threshold τ̂ :

Lemma 5.2. Let Assumption A1.a hold and A3 hold for the choice δ. Then for all suitably
slowly growing sequences m = m(n) → ∞, the global estimated threshold τ̂ := q̂+δ ({S

i
1−α}mi=1)

in Algorithm 5 converges almost surely: τ̂
a.s.→ q(δ).

We defer this proof to Section A.8, continuing with the main thread of the theorem.
Let m = m(n) be a sequence tending to ∞ but such that the conclusions of Lemma 5.2

hold. Let τ̂ = q̂+δ ({S
i
1−α}mi=1) be the random δ-quantile in Alg. 5. Lemma 5.2 guarantees that

τ̂
a.s.→ q(δ). Following a slight variation of the notation of Assumption A2.a, define the sets

Bi
n = {x | λ(Ĉ−i

τ̂ (x)△Cτ⋆(δ,α)(x)) ≥ ϵ}. Then{
x | λ

(
Ĉ jk-minmax
m,α,δ (x)△Cτ⋆(δ,α)(x)

)
≥ ϵ
}
⊂

m⋃
i=1

Bi
n

and Assumption A2.a guarantees that the latter set has PX -measure tending to zero.
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5.3 Consistency of multi-environment split conformal prediction

Similarly, we can show that the X-measure of sets where the split conformal and “true”
confidence set Cτ⋆(δ,α) make different predictions converges to zero.

Theorem 7. Let λ be a measure on Y such that Assumptions A1.b, A2.b, and A3 hold. Let
ϵ > 0 and m = m(n) be a sufficiently slowly growing sequence. Then the PX measure of

B̂(ϵ) :=
{
x ∈ X such that λ

(
Ĉsplit
m,α,δ(x)△Cτ⋆(δ,α)(x)

)
≥ ϵ
}

satisfies PX(B̂(ϵ))
a.s.→ 0.

Proof As in Lemma 5.2, we let m = m(n) be a sequence tending to ∞ such that the global
estimated threshold τ̂ = q̂+δ ({S

i
1−α}i∈D2) in Algorithm 6 converges almost surely to q(δ). Use

Assumption A2.b to complete the proof.

6 Real Data Examples

6.1 Neurochemical Sensing

In this section, we apply our algorithms to the prediction of neurotransmitter concentration
levels, with a specific focus on dopamine [14]. Estimating dopamine levels in awake, function-
ing humans at a relatively high frequency is a notoriously challenging task. Yet dopamine
governs critical human behavior, thus understanding stimuli that maintain healthy dopamine
levels is of crucial importance.

With the advent of modern technology, scientists now have access to extensive lab gen-
erated multi-environment data that can aid in improving human dopamine level predic-
tions [19, 3]. To this end, scientists expose electrodes to various known dopamine concen-
trations and collect measurements of currents that pass through the electrodes at different
voltage potentials (say p different potentials). From each electrode, the scientist obtains a
matrix, where each row records the different current levels in the electrode, when one changes
its potential over a set of p values while exposing it to a specific dopamine concentration
level. For each electrode exposed to a certain concentration level, the scientist collects mul-
tiple p-dimensional measurements corresponding to different time points. By changing the
concentration over several levels (say ℓ levels) and collecting multiple observations at each
level (say t observations), the scientist obtains n = ℓ × t observations in total, resulting in
an n × p covariate matrix from each electrode. The t measurements corresponding to each
level might exhibit weak correlations, but since state-of-the-art scientific work in the area [19]
treats these to be independent, we stick to this convention. The outcome corresponding to
each row is the dopamine level that generated that row’s current values. Due to variations
in electrode construction as well as the experimental setup under which measurements are
obtained, the data from different electrodes follow different distributions.

To map this application to our setting, we may consider each electrode to be one of our
environments. We use data from multiple electrodes to train our algorithms, hoping that
such multi-environment learning would create robust prediction models that generalize better
when applied in a different context, e.g. while predicting dopamine levels on the human
brain. Formally, the training data comprises 15 environments corresponding to 15 electrodes.
Each includes roughly 20,000 observations [19, 18]. The covariates are current measured
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in nanoamps (nA) collected at 1000 discrete voltage potentials. For each observation, the
outcome is a measurement of dopamine concentration in nanomolars (nM). The outcomes lie
in [0, 2000], so we intersect our predictions with this range before producing intervals.

In each experiment, we select 5 environments at random for training and use the rest for
testing. We train Algorithms 1 and 2 and examine their coverage on the test data under the
(α, δ)-coverage notion in Definition 1.2. We use ridge regression for the base model f̂ and
leave-one-out cross validation for choosing the ridge parameter, repeating the experiment 100
times and plotting the average coverage and the average set length (defined below).

For the k-th experiment (k = 1, 2, . . . , 100), we let {ek,i}1≤i≤5 and {ek,i}6≤i≤15 denote
the train and test environments, respectively. For k ∈ [100], i ∈ [15], we use nk,i to denote

the sample size in environment ek,i and {Xk,i
j , Y k,i

j }1≤j≤nk,i
the observations. We define the

variable
Ak,i

j := 1
{
Y k,i
j ∈ Ĉ

(
Xk,i

j

)}
to indicate whether the outcome corresponding to the j-th sample in the i-th environment is
covered by the constructed confidence set during the k-th experiment.

We say a test environment is covered if the fraction of covered samples in the environment
is at least 1−α. Then by Theorems 3 and 4, we expect that at least 1− δ fraction of the test
environments are covered. We define “empirical 1 − δ” as the fraction of test environments
covered across our experiments, “empirical set length” as the average length of constructed
confidence sets averaged over the test environments, and “empirical 1 − α” as the average
fraction of covered samples over the covered test environments:

“Empirical 1− δ” :=
1

1000

100∑
k=1

15∑
i=6

1

{ nk,i∑
j=1

Ak,i
j ≥ ⌈(1− α) (nk,i + 1)⌉

}
,

“Empirical 1− α” :=

∑100
k=1

∑15
i=6 1

{∑nk,i

j=1A
k,i
j ≥ ⌈(1− α) (nk,i + 1)⌉

}
( 1
nk,i

∑nk,i

j=1A
k,i
j )∑100

k=1

∑15
i=6 1

{∑nk,i

j=1A
k,i
j ≥ ⌈(1− α) (nk,i + 1)⌉

} ,

“Empirical Set Length” :=
1

1000

100∑
k=1

15∑
i=6

1

nk,i

nk,i∑
j=1

∣∣∣Ĉ (Xk,i
j

)∣∣∣ ,
where |Ĉ(Xk,i

j )| denotes the length of Ĉ(Xk,i
j ).

6.1.1 Influence of Input δ

To examine the influence of the input δ on the performance of our algorithms, we set α = 0.05,
and the split ratio to be 0.5 for Algorithm 2. We vary the values of δ and display the results
in Figure 6.1. The plots show that both multi-environment split conformal and jackknife-
minmax produce valid coverage. But, multi-environment split conformal tends to generate
more conservative prediction intervals than jackknife-minmax. Moreover, we see that the
relationship between the empirical 1 − α and the input 1 − δ is non-monotone. This occurs
since an increase in the input 1 − δ tends to increase the set length for both algorithms,
which in turn may increase the empirical 1− α. On the other hand, a higher (1− δ) may be
achieved by including more environments with low coverage per environment. This may lead
to a decreased empirical (1− α). These opposing factors lead to the non-monotonicity.
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Figure 6.1. Influence of input δ on the performance of conformal algorithms applied to the
neurochemical sensing data. For these experiments, α is set to be 0.05. The plots show the
empirical 1 − δ, empirical 1 − α, and empirical set length for both the split conformal and
jackknife-minmax algorithms with various input δ.
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Figure 6.2. Influence of input α on the performance of conformal algorithms the neurochemical
sensing data. For these experiments, δ is set to be 0.33. The plots show the empirical 1 − δ,
empirical 1 − α, and empirical set length for both the split conformal and jackknife-minmax
algorithms with various input α.

6.1.2 Influence of Input α

To examine the influence of the input α on the performance of our conformal algorithms, we
set δ = 0.33, and the split ratio to be 0.5 for Algorithm 2. We chose δ = 0.33 as opposed to
a smaller value since otherwise multi-environment conformal always outputs [0, 2000] as the
prediction interval regardless of the input α. We vary the α values and display the results
in Figure 6.2. We observe that for both algorithms, the empirical 1 − α tends to increase
as the input 1 − α increases. However, the relationship between the empirical 1 − δ and the
input 1 − α is less clear. Two factors influence this relationship. As 1 − α increases, the set
length of conformal intervals will increase so that each sample is more likely to be covered.
Nonetheless, as the input 1− α increases, more samples in each test environment need to be
covered, and the fraction of environments satisfing the condition may decrease.
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6.2 Species Classification

We next apply our algorithms in the context of species classification. To monitor wildlife
biodiversity, ecologists use camera traps—heat or motion-activated cameras placed in the
wild—which exhibit variation in illumination, color, camera angle, background, vegetation,
and relative animal frequencies. We thus consider each camera trap an environment. Ecol-
ogists seek to use existing camera trap shots to train machine learning models that classify
wildlife species accurately in new camera trap deployments [15].

The covariates of this species classification data are 2D images, and the targets are species
of animals present in the images [6]. We pre-process the data by removing environments with
at most 100 observations, removing labels that appear in less than 5 percent of the remaining
environments. After the pre-processing, we obtain 219 environments and 57 labels. On
average, each environment consists of 874 images. We then randomly choose 50 environments
for training and keep the remaining 169 for testing. For the base model, we use a ResNet-50
model pretrained on ImageNet using a learning rate of 3 · 10−5 and no ℓ2-regularization [12].
Since the pretrained model takes in images of size 448×448, we rescale the inputs to the same
size. We repeat the experiment 20 times, and then plot the average coverage and the average
set length.

6.2.1 Influence of Input δ

We examine the performance of our algorithms as the input δ varies (Figure 6.3) similar to
Section 6.1.1 earlier. We observe that the performance is now flipped, the multi-environment
jackknife-minmax is now more conservative. With an increased number of training environ-
ments, the multi-environment split conformal outperforms jackknife-minmax also in terms of
empirical set length.

6.2.2 Influence of Input α

We examine the performance of our algorithms as the input α varies (Figure 6.4) similar to
Section 6.1.2. We observe that the empirical 1− α and empirical set length both increase as
the input 1 − α increases. Interestingly, the conformal sets output by jackknife-minmax are
not much larger than those output by split conformal under this setting.

6.3 Resizing Residuals to Reduce Average Set Size

We observe that for both datasets, when the input δ is small, the conformal intervals have large
set length on average. We next investigate the effects of our resizing technique (Section 4) in
reducing the average set length.

6.3.1 Resized Multi-environment Split Conformal

We apply the resized multi-environment split conformal (Algorithm 7) to both the neuro-
chemical sensing and the species classification datasets. We demonstrate that the resized
split conformal algorithm is able to reduce the average set length of conformal intervals. In
the following two examples, we set the resizing quantile α0 to be 0.05.

Each environment in the neurochemical sensing data consists of around 20,000 samples.
We use 30 randomly selected labeled data in each environment to construct the resizing factors.
The experimental settings are the same as in Section 6.1, except that we randomly sample

21



0.6 0.7 0.8 0.9 1.0
Input 1

0.6

0.7

0.8

0.9

1.0

Em
pi

ric
al

 1

Split Conformal
y=x
Jackknife Minmax

0.6 0.7 0.8 0.9 1.0
Input 1

0.990

0.992

0.994

0.996

0.998

1.000

Em
pi

ric
al

 1

Split Conformal
Jackknife Minmax

0.6 0.7 0.8 0.9 1.0
Input 1

25

30

35

40

45

50

55

Em
pi

ric
al

 S
et

 L
en

gt
h

Split Conformal
Jackknife Minmax

Figure 6.3. Influence of input δ on the performance of conformal algorithms applied to the
species classification data. For these experiments, α is set to be 0.05. The plots show the
empirical 1 − δ, empirical 1 − α, and empirical set length for both the split conformal and
jackknife-minmax algorithms with various input δ.
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Figure 6.4. Influence of input α on the performance of conformal algorithms the species
classification data. For these experiments, δ is set to be 0.33. The plots show the empirical
1 − δ, empirical 1 − α, and empirical set length for both the split conformal and jackknife-
minmax algorithms with various input α.
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Figure 6.5. Performance of the split conformal algorithm with and without resizing applied
to the neurochemical sensing data. For these experiments, δ is set to be 0.33. The left plot
shows the relation between empirical set length and input 1−α, while the right plot shows the
relation between empirical 1− δ and input 1− α.

30 labeled data in each environment to construct the resizing factors. The coverage results
presented in Figure 6.5 are with respect to the unlabeled data in each test environment.

The left plot shows the relation between the empirical set length and the input 1 − α.
The blue and the orange curves correspond to the results of split conformal with and without
resizing, respectively. The green curve corresponds to the oracle case where we know the
1−α0 residual quantile of all the unlabeled data in each test environment. In the oracle case,
we use the 1 − α0 residual quantile as the resizing factor. We observe that when the input
1−α is close to 1, the empirical set length is large for all three methods. This is because the
1−α residual quantile is large in each test environment, so the resizing method cannot reduce
the average set length by much. For moderate 1−α, on the other hand, the resizing methods
can reduce the average set length. The right plot shows the relation between empirical 1− δ
and input 1 − α. The results demonstrate that the resizing methods provide valid coverage,
corroborating the statement of Theorem 5.

For the species classification data, we use 20 randomly selected labeled samples in each
environment to construct the resizing factors. The experimental settings are the same as in
6.2, except that 1) we fix the input δ to be 0.05, and vary the input α, and 2) we randomly
sample 20 labeled data in each environment to construct the resizing factors. We display the
results in Figure 6.6. Again, we observe that the resizing method reduces the average set
length without breaking our coverage guarantees.

6.3.2 Resized HCP

To illustrate the utility of our resizing technique beyond our algorithms, we study its effects
on Lee et al. HCP algorithm [16]. Since Lee et al. design HCP to construct conformal intervals
for a single sample in each test environment, it may not be practical to use additional labeled
samples from the test environments to construct resizing factors. For illustration purposes,
we consider the oracle setting where we know the 1 − α0 residual quantile of all samples in
each test environment. We use this 1 − α0 residual quantile as the resizing factor. For both
the species classification data and the neurochemical sensing data, we vary the value of the
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Figure 6.6. Performance of the split conformal algorithm with and without resizing applied
to the species classification data. For these experiments, δ is set to be 0.05. The left plot
shows the relation between empirical set length and input 1−α, while the right plot shows the
relation between empirical 1− δ and input 1− α.

input α and compare the performance of HCP and resized HCP algorithms. We display the
results in Figure 6.7 and 6.8. We find that the oracle resizing method reduces the average
size of the HCP prediction intervals without breaking the coverage guarantees.

6.4 Comparison with Hierarchical Conformal Prediction and Jackknife+

To conclude, we provide a comparison of our algorithms with HCP. Setting up this compar-
ison is non-trivial since HCP provides intervals with a different form of coverage guarantee.
Nonetheless, since they work under similar hierarchical models, we believe a comparison to be
instructive. To set this up, for each fixed value of α, we find the largest δ such that the fraction
of overall test samples covered by multi-environment split conformal exceeds that of HCP. We
then compare the performance of multi-environment split conformal with parameters α, δ and
HCP with parameter α. We apply the two methods on the neurochemical sensing and species
classification data. We display the results in Figures 6.9 and 6.10, respectively.

Due to the way of selecting δ, multi-environment split conformal and jackknife-minmax
produce slightly larger prediction sets than HCP and hierachical jackknife+, respectively.
Moreover, we observe that for all the conformal algorithms considered, coverage (i.e. empirical
1− δ and empirical 1−α) generally increase as the input 1−α increases. However, as shown
in Figure 6.10, this relation does not always hold. As the input 1 − α becomes larger, the
average set size of the produced prediction sets also becomes larger, which tend to increase
the empirical 1−δ. On the other hand, as the input 1−α becomes larger, fewer environments
will have at least 1 − α fraction of samples covered, which tend to decrease the empirical
1− δ. Thus the relation between empirical 1− δ and input 1−α is not necessarily monotone.
Similarly, as the definition of empirical 1− α involves the parameter δ, the relation between
empirical 1− α and input 1− α is not necessarily monotone either.

In sum, with an appropriate choice of δ, we observe that the multi-environment split con-
formal and jackknife-minmax produce prediction sets with similar size and coverage properties
as the HCP and hierarchical jackknife+, respectively.
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Figure 6.7. Performance of HCP and resized HCP applied to the neurochemical sensing data.
Left plot shows the average set size over all test samples, and right plot shows the fraction of
all test samples covered by their conformal sets.
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Figure 6.8. Performance of HCP and resized HCP applied to the species classification data.
Left plot shows the average set size over all test samples, and right plot shows the fraction of
all test samples covered by their conformal sets.
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Figure 6.9. Performance of multi-environment jackknife-minmax and hierarchical jackknife+
applied to the neurochemical sensing data. Multi-environment jackknife-minmax takes in the
parameters α, δ, and hierarchical jackknife+ takes in the parameter α. For each value of α,
we find the largest δ such that the fraction of test samples covered by multi-environment split
conformal exceeds that of hierarchical jackknife+.
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Figure 6.10. Performance of multi-environment split conformal and HCP applied to the
species classification data. Multi-environment split conformal takes in the parameters α, δ, and
HCP takes in the parameter α. For each value of α, we find the largest δ such that the fraction
of test samples covered by multi-environment split conformal exceeds that of HCP.
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7 Discussion and conclusions

The challenge of maintaining predictive validity when distributions change remains one of the
core challenges in statistics and machine learning. At the most basic level, any claim of a
study’s external validity is a claim that statistical conclusions remain valid in environments
distinct—however slightly—from the study’s population [13]. A growing literature in machine
learning also highlights the challenges of prediction across environments. In some cases,
those environments are obvious, arising from distinct experimental conditions or measurement
devices [15] or from changing populations, such as identifying pathologies from lung scans
across hospitals [27]. In others, new environments arise even when constructing new evaluation
datasets that replicate original data collection as exactly as possible [20, 23].

The approaches this paper outlines to predictive inference across environments and in
other hierarchical data collection scenarios should therefore see wide application. One might
argue that, given that applications of learning algorithms always involve some distribution
shift, however mild, we should always employ some type of corrective measure to attempt
to maintain validity. Section 4 highlights a key insight, which we believe is one of the main
takeaways of this work: measuring variance and the scale of uncertainty across environments
is essential for practicable confidence sets and predictions. Most types of predictive inference
repose on some type of exchangability [26, 24, 8, 5]—excepting a recent line of work moves
toward coverage guarantees that hold asymptotically irrespective of the data [10, 1]—as does
this work and others on maintaining validity across populations [16, 9]. The optimality and
adaptivity of predictive inference procedures, such as the techniques we develop in Section 5,
also rely on some type of independence and exchangability. Future research to identify more
nuanced ways in which data remains exchangeable could thus have substantial impact, allow-
ing us to enhance the versatility and utility of conformal prediction, the jackknife, and other
predictive inferential approaches.
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A Technical proofs

A.1 Proof of Theorem 1

We take as inspiration the proof of Barber et al. [4, Theorem 3]. For the sake of the proof only,
to demonstrate the appropriate exchangeability, we assume we have access to both the features
and responses of the test environment {(Xm+1

j , Y m+1
j )}nm+1

j=1 . Then we let f̃−(i,k) define the
predictive function fitted on all environments (training and test) except that environments i
and k are removed, i.e.,

f̃−(i,k) = A
(
{X l, Y l}l ̸=i,l ̸=k

)
.

With this construction, we have f̃−(i,k) = f̃−(k,i) for i ̸= k and

f̃−(i,m+1) = f̂−i for i ∈ [m],
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the key identity that allows us to exploit block exchangeability.
We define a matrix of (1− α)-quantile of residuals, R ∈ R(m+1)×(m+1), with entries

Rik =

∞ if i = k

q̂+ni,α

({
|Y i

j − f̃−(i,k)(X
i
j)|
}ni

j=1

)
if i ̸= k,

(8)

and so Ri,m+1 = Si
1−α in Algorithm 1.

Now [cf. 4, Proof of Theorem 3], define the comparison matrix A ∈ {0, 1}(m+1)×(m+1) with
entries

Aik = 1

{
min
k′

Rik′ > Rki

}
,

so that the smallest residual (1 − α) quantile when omitting environment i is larger than
the (1 − α) quantile of residuals in environment k when not including i or k. Define the set
S(A) ⊆ {1, . . . ,m+ 1} of strange environments

S(A) = {i ∈ {1, . . . ,m+ 1} : Ai,• ≥ (1− δ)(m+ 1)} ,

where Ai,• =
∑m+1

k=1 Aik is the ith row sum of A, to be those where environment i typically
has “too small” residuals.

We identify three steps that together yield the proof.

Step 1. Observe that |S(A)| ≤ δ(m+ 1).

Step 2. Using that the environments are exchangeable, the probability that the test envi-
ronment m+ 1 is strange (i.e., m+ 1 ∈ S(A)) satisfies

P(m+ 1 ∈ S(A)) ≤ δ. (9)

Step 3. Prove the desired coverage guarantee of the theorem by showing that if coverage in
environment m+ 1 fails, then it is strange, i.e., m+ 1 ∈ S(A).

The result in Step 1 is an immediate consequence of Barber et al. [4, Thm. 3, Step 1].
Step 2 similarly follows immediately [4, Thm. 3, Step 2]. It remains to prove step 3.

Proof of Step 3: Suppose that coverage fails, that is,

nm+1∑
j=1

1
{
Y m+1
j ∈ Ĉ jk-minmax

m,α,δ (Xm+1
j )

}
< ⌈(1− α)(nm+1 + 1)⌉ . (10)

We will show that on the event (10), the environment m+1 is strange, so that by Step 2 the
failure has probability at most δ.

Before we complete the proof, we provide two technical lemmas that we use. These lemmas
allow us to transition between coverage guarantees “columnwise,” in the sense of within an
environment, and “rowwise” in the sense of across environments.

Lemma A.1. Let B ∈ Rn×m and c ∈ R. Then

q̂+n,α

(
1
{
c < min

k
Bjk

}n

j=1

)
= 1 implies c < min

k
q̂+n,α

(
{Bjk}nj=1

)
.

That is, if fewer than ⌈(1− α)(n+ 1)⌉ indicators 1{c < mink Bjk} are 0, then c is less than
each (k = 1, 2, . . . ,m) of the (1− α) quantiles q̂+n,α{Bjk}nj=1.
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Proof We have q̂+n,α(1{c < mink Bjk}nj=1) = 1 if and only if at least n − ⌈(1− α)(n+ 1)⌉
values in 1{c < mink Bjk} are 1. In this case, there are at least n − ⌈(1− α)(n+ 1)⌉ rows
Jdom ⊂ [n] in B satisfying c < mink Bjk for j ∈ Jdom. Then for each column k, the indices
j ∈ Jdom satisfy Bjk > c, and as |Jdom| ≥ n− ⌈(1− α)(n+ 1)⌉, the (1− α) quantile satisfies

q̂+n,α({Bjk}nj=1) ≥ min
j∈Jdom

Bjk > c,

giving the lemma.

Lemma A.2. Let B ∈ {0, 1}n×m. Assume that there exist rows J ⊂ [n] with |J | ≥ ⌊α(n+ 1)⌋
and columns K ⊂ [m] such that |K| ≥ ⌈(1− δ)m⌉ such that bjk = 1 for j ∈ J and k ∈ K.
Then

m∑
k=1

q̂+n,α

(
{Bjk}nj=1

)
≥ (1− δ)m.

Proof Fix any column k ∈ K. Then at least ⌊α(n+ 1)⌋ elements of {Bjk}nj=1 are 1 (those
in J), so that q̂+n,α({Bjk}nj=1) = 1 for these k ∈ K. Thus

m∑
k=1

q̂+n,α

(
{Bjk}nj=1

)
≥
∑
k∈K

q̂+n,α

(
{Bjk}nj=1

)
= |K| ≥ (1− δ)m

as desired.

We return to the main thread. On the event (10), there exists a set Jbad of indices where
coverage fails and |Jbad| ≥ ⌊α(nm+1 + 1)⌋, that is, such that

Y m+1
j > max

i∈[m]
f̂−i(X

m+1
j ) + q̂+m,δ({S

k
1−α}) or Y m+1

j < min
i∈[m]

f̂−i(X
m+1
j )− q̂+m,δ({S

k
1−α})

for each j ∈ Jbad. We can also be a bit more precise about the indices of {Sk
1−α}mk=1: by

the definitions of the quantiles q̂+m,δ, there exists an index set Kbad ⊂ [m] such that |Kbad| ≥
⌈(1− δ)(m+ 1)⌉ and for each k ∈ Kbad and j ∈ Jbad,

Y m+1
j > max

i∈[m]
f̂−i(X

m+1
j ) + Sk

1−α or Y m+1
j < min

i∈[m]
f̂−i(X

m+1
j )− Sk

1−α

by taking Kbad to be the order statistics of Sk
1−α.

We now show that on event (10), the environment m + 1 is strange, that is, Am+1,• is
large. We have

m+1∑
k=1

Am+1,k =
m+1∑
k=1

1

{
Rk,m+1 < min

k′
Rm+1,k′

}

=

m+1∑
k=1

1

{
Rk,m+1 < min

k′
q̂+nm+1,α

(
{|Y m+1

j − f̂−k′(X
m+1
j )|}j

)}

≥
m+1∑
k=1

q̂+nm+1,α

([
1
{
Rk,m+1 < min

k′
|Y m+1

j − f̂−k′(X
m+1
j )|

}]nm+1

j=1

)
,
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where we use Lemma A.1 with the choices c = Rk,m+1 and B as the residual matrix with

entries Bjk = |Y m+1
j − f̂−k(X

m+1
j )|.

Finally, recall that by construction of the residual quantile matrix (8) we have Rk,m+1 =

Sk
1−α. Then Rk,m+1 < mink′ |Y m+1

j − f̂−k′(X
m+1
j )| if and only if Sk

1−α < mink′ |Y m+1
j −

f̂−k′(X
m+1
j )|, which in turn occurs if and only if

Y m+1
j < min

k′
f̂−k′(X

m+1
j )− Sk

1−α or Y m+1
j > max

k′
f̂−k′(X

m+1
j ) + Sk

1−α.

Revisiting the sum above, then, we have

Am+1,• ≥
m+1∑
k=1

q̂+nm+1,α

([
1
{
Y m+1
j ̸∈

[
min
k′

f̂−k′(X
m+1
j )− Sk

1−α,max
k′

f̂−k′(X
m+1
j ) + Sk

1−α

]}]nm+1

j=1

)
≥ (1− δ)(m+ 1),

where in the last line we used Lemma A.2 with the choiceBjk = 1{Y m+1
j ̸∈ [mink′ f̂−k′(X

m+1
j )−

Sk
1−α,maxk′ f̂−k′(X

m+1
j ) + Sk

1−α]}, recognizing that Bjk = 1 for all indices j ∈ Jbad and
k ∈ Kbad. In particular, we have shown that m+ 1 ∈ S(A). As P(m+ 1 ∈ S(A)) ≤ δ by step
2 (recall Eq. (9)), we have the theorem.

A.2 Proof of Theorem 2

With loss of generality, let

D1 = {1, 2, . . . ,mγ}, D2 = {mγ + 1,mγ + 2, . . . ,m}.

We show that the rank of {Sm+1
1−α } among {Smγ+1

1−α , Smγ+2
1−α , . . . , Sm+1

1−α } is uniformly dis-
tributed over {1, 2, . . . ,m(1 − γ) + 1}. For simplicity, we assume there are no ties. The
proof can be modified to address the case where ties exists, and are broken randomly. For
any i ∈ {mγ + 1,mγ + 2, . . . ,m + 1}, define Rank(Si

1−α) to be the rank of Si
1−α among

{Sj
1−α}mγ+1,mγ+2,...,m+1. Moreover, define

Zi :=
{
Xi

j , Y
i
j

}ni

j=1
, 1 ≤ i ≤ m+ 1.

For any permutation π on {1, 2, . . . ,m(1− γ) + 1}, let Cπ be the set such that

{(Z1, Z2, . . . , Zm+1) ∈ Cπ} = {Rank(Smγ+j
1−α ) = π(j), 1 ≤ j ≤ m(1− γ) + 1}.

By exchangeability, for any permutations π on {1, 2, . . . ,m(1− γ) + 1}, we have

P
({

Rank(Smγ+j
1−α ) = π(j), 1 ≤ j ≤ m(1− γ) + 1

})
= P

({(
Z1, Z2, . . . , Zmγ , Zmγ+1, Zmγ+2, . . . , Zm+1

)
∈ Cπ

})
= P

({(
Z1, Z2, . . . , Zmγ , Zmγ+π(1), Zmγ+π(2), . . . , Zmγ+π(m(1−γ)+1)

)
∈ Cπ

})
≤ P

({
Rank(Smγ+j

1−α ) = j, 1 ≤ j ≤ m(1− γ) + 1
})

.

By symmetry, we also have

P
({

Rank(Smγ+j
1−α ) = j, 1 ≤ j ≤ m(1− γ) + 1

})
≤ P

({
Rank(Smγ+j

1−α ) = π(j), 1 ≤ j ≤ m(1− γ) + 1
})

.
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As a result, for any permutation π on {1, 2, . . . ,m(1− γ) + 1},

P
({

Rank
(
Smγ+j
1−α

)
= π(j), 1 ≤ j ≤ m(1− γ) + 1

})
=

1

(m(1− γ) + 1)!
,

which implies that the rank of {Sm+1
1−α } among {Smγ+1

1−α , Smγ+2
1−α , . . . , Sm+1

1−α } is uniformly dis-
tributed over {1, 2, . . . ,m(1− γ) + 1}.

Next, we show that with probability at most δ,

nm+1∑
j=1

1
{
Y m+1
j ∈ Ĉsplit

m,α,δ

(
Xm+1

j

)}
< ⌈(1− α) (nm+1 + 1)⌉ . (11)

Since Sm+1
1−α is the ⌈(1− α) (nm+1 + 1)⌉-th largest residuals among all residuals in environ-

ment m+ 1, if

Sm+1
1−α ≤ q̂+m,δ

({
Si
1−α

}m
i=mγ+1

)
,

then at least ⌈(1− α) (nm+1 + 1)⌉ samples in environment m+1 will have residuals less than

or equal to q̂+m,δ

({
Si
1−α

}m
i=mγ+1

)
. For these samples, their corresponding outcomes will be

covered by the predictive intervals, which contradicts inequality (11). As a result, we know
inequality (11) implies

Sm+1
1−α > q̂+m,δ

({
Si
1−α

}m
i=mγ+1

)
.

Therefore

P

nm+1∑
j=1

1
{
Y m+1
j ∈ Ĉsplit

m,α,δ

(
Xm+1

j

)}
< ⌈(1− α) (nm+1 + 1)⌉


≤ P

[
Sm+1
1−α > q̂+m,δ

({
Si
1−α

}m
i=mγ+1

)]
≤ δ,

where the last step is due the fact that the rank of {Sm+1
1−α } among {Smγ+1

1−α , Smγ+2
1−α , . . . , Sm+1

1−α }
is uniformly distributed over {1, 2, . . . ,m(1− γ) + 1}.

On the other hand, the predictive sets
{
Ĉsplit
m,α,δ

(
Xm+1

j

)}
1≤j≤nm+1

do not provide valid

coverage (i.e. inequality (11) holds) if the corresponding Sm+1
1−α is among the m(1 − γ) −

⌈(m(1− γ) + 1)(1− δ)⌉ largest in
{
S
m(1−γ)+1
1−α , S

m(1−γ)+2
1−α , . . . , Sm

1−α

}
. By symmetry, we have

P

nm+1∑
j=1

1
{
Y m+1
j ∈ Ĉsplit

m,α,δ

(
Xm+1

j

)}
< ⌈(1− α) (nm+1 + 1)⌉


≥ m(1− γ)− ⌈(m(1− γ) + 1) (1− δ)⌉

m(1− γ) + 1

≥ δ − 1

m(1− γ) + 1
.

This completes the proof.
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A.3 Proof of Theorem 3

The proof is quite similar to that of Theorem 1, with appropriate redefinitions of residual
matrices and the A matrix. We begin with the analogues of f̃−(i,k) and the R matrix (8).
Define the collections of confidence set mappings{

C̃−(i,k)
τ

}
τ∈R

= A
(
{X l, Y l}l ̸=i,l ̸=k

)
,

so that
C̃−(i,m+1)
τ = Ĉ−i

τ for i ∈ [m].

We can then define the (1− α)-quantile residual matrix R ∈ R(m+1)×(m+1) with entries

Rik =

+∞ if i = k

q̂+α

([
inf
{
τ | Y i

j ∈ C̃
−(i,k)
τ (Xi

j)
}]ni

j=1

)
if i ̸= k,

(12)

so that again Ri,m+1 = Si
1−α in Alg. 5, while Rm+1,i = q̂+n,α([inf{τ | Y m+1

j ∈ Ĉ−i
τ (Xm+1

j )]
nm+1

j=1 )
gives quantiles for coverage on the new environment m+1. We define the matrix A identically
as in the proof of Theorem 1, Aik = 1{mink′ Rik′ > Rki} and the set of strange environments
S(A) = {i ∈ [m+ 1] | Ai,• ≥ (1− δ)(m+ 1)} as before.

We again have that |S(A)| ≤ δ(m+ 1) and that P(m+ 1 ∈ S(A)) ≤ δ, as in Eq. (9). We
show that if coverage in environment m+1, fails, then environment m+1 is strange. To that
end, suppose that coverage fails, that is,

nm+1∑
j=1

1
{
Y m+1
j ∈ Ĉ jk-minmax

m,α,δ (Xm+1
j )

}
< ⌈(1− α)(nm+1 + 1)⌉ . (13)

Recall that for the threshold τ̂ = q̂+δ ({S
i
1−α}mi=1), Algorithm 5 sets Ĉ jk-minmax

m,α,δ (x) = ∪m
i=1Ĉ

−i
τ̂ (x).

Then on the event (13), there necessarily exists a set Jbad, |Jbad| ≥ ⌊α(nm+1 + 1)⌋, such that
coverage fails for examples Xm+1

j whose indices j ∈ Jbad:

Y m+1
j ̸∈

m⋃
i=1

Ĉ−i
τ̂ (Xm+1

j ) for j ∈ Jbad.

By definition of τ̂ as the quantile q̂+δ ({S
i
1−α}), then, we also see that there exists a set Kbad ⊂

[m] with cardinality |Kbad| ≥ ⌈(1− δ)(m+ 1)⌉ and for which if k ∈ Kbad and j ∈ Jbad, we
have

Y m+1
j ̸∈

m⋃
i=1

Ĉ−i
Sk
1−α

(Xm+1
j ).

With these equivalences of failing to cover, we replicate the chain of inequalities in the
proof of Theorem 1. Assuming event (13) occurs, we have

Am+1,• =

m+1∑
k=1

1

{
Rk,m+1 < min

k′
Rm+1,k′

}

=
m+1∑
k=1

1

{
Rk,m+1 < min

k′
q̂+α

([
inf
{
τ | Y i

j ∈ Ĉ−k′
τ (Xm+1

j )
}]nm+1

j=1

)}

≥
m+1∑
k=1

q̂+α

([
1

{
Rk,m+1 < min

k′
inf
{
τ | Y i

j ∈ Ĉ−k′
τ (Xm+1

j )
}}]nm+1

j=1

)
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where the inequality follows from Lemma A.1. But of course, by the construction (12) of the
residual matrix, we have Rk,m+1 = Sk

1−α, and Sk
1−α < mink′ inf{τ | Y i

j ∈ Ĉ−k′
τ (Xm+1

j )} if and
only if

Y m+1
j ̸∈ Ĉ−k′

Sk
1−α

(Xm+1
j ) for any k′

by the assumed nesting property of the confidence sets Ĉτ . We therefore obtain

Am+1,• ≥
m+1∑
k=1

q̂+α

([
1

{
Y m+1
j ̸∈ ∪m

i=1Ĉ
−i
Sk
1−α

(Xm+1
j )

}]nm+1

j=1

)
≥ (1− δ)(m+ 1),

where the final inequality uses Lemma A.2 and that the index sets Jbad and Kbad have
cardinalities |Kbad| ≥ ⌈(1− δ)(m+ 1)⌉ and |Jbad| ≥ ⌊α(nm+1 + 1)⌋.

On the event (13), the environment m+1 is thus strange, and so applying the probability
bound (9) gives Theorem 3.

A.4 Proof of Lemma 5.1

Let t = Qα(Q) and u > 0 be otherwise arbitrary, and let v > 0 be such that Q(z ≤ t−u/2) ≤
α− v and Q(Z ≤ t+ u/2) ≥ α+ v. We show that for small enough ϵ > 0, if ∥P −Q∥BL ≤ ϵ,
then

P (Z ≤ t− u) ≤ α− v

2
and P (Z ≤ t+ u) ≥ α+

v

2
.

As Qα(P ) = inf{t′ | P (Z ≤ t′) ≥ α}, we then immediately see that t − u ≤ Qα(P ) ≤ t + u,
and as u is otherwise arbitrary, this proves the lemma.

To see the first claim, let 0 < δ ≤ u/2, and define the 1/δ-Lipschitz continuous and
bounded function

fδ(z) :=


1 if z ≤ t

1− z/δ if t ≤ z ≤ t+ δ

0 if t+ δ ≤ z,

which approximates the threshold 1{z ≤ t}. Then we have

P (Z ≤ t− u) ≤ Pfδ(Z + u)
(⋆)

≤ Qfδ(Z + u) +
ϵ

δ
≤ Q(Z + u ≤ t+ δ) +

ϵ

δ
,

where inequality (⋆) follows because ∥P −Q∥BL ≤ ϵ. As δ ≤ u/2, we have

Q(Z ≤ t+ δ − u) ≤ Q(Z ≤ t− u/2) ≤ α− v,

and so we have
P (Z ≤ t− u) ≤ α− v +

ϵ

δ
.

Any ϵ < vδ/2 thus guarantees P (Z ≤ t− u) ≤ α− v/2. A completely similar argument gives
P (Z ≤ t+ u) ≥ α+ v/2 for small enough ϵ.

A.5 Proof of Example 2

To see how Assumption A1.a follows, note that∣∣∣τ(x, y, Ĉ−i)− τ(x, y, C)
∣∣∣ = ∣∣∣|f̂−i(x)− y| − |f(x)− y|

∣∣∣ ≤ ∣∣∣f̂−i(x)− f(x)
∣∣∣ ,
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so
sup
y

sup
x∈Xϵ

∣∣∣τ(x, y, Ĉ−i)− τ(x, y, C)
∣∣∣ a.s.→ 0

for any ϵ > 0. Let τ̂ = τ(·, ·, Ĉ−i) for shorthand and τ = τ(·, ·, C). Then we claim that∥∥∥L(τ̂ | P̂ i)− L(τ | P i)
∥∥∥
BL

≤
∥∥∥L(τ̂ | P̂ i)− L(τ | P̂ i)

∥∥∥
BL

+
∥∥∥L(τ | P̂ i)− L(τ | P i)

∥∥∥
BL

. (14)

We consider the two terms in turn. For the first, let η > 0 and consider the event that
|τ(x, y, Ĉ−i)− τ(x, y, C)| ≤ η for x ∈ Xϵ, which occurs eventually (with probability 1). Note
that for any function h with ∥h∥∞ ≤ 1 and ∥h∥Lip ≤ 1, we have∫

[h(τ̂(x, y))− h(τ(x, y))] dP̂ i(x, y) =

∫
Xϵ

[h(τ̂(x, y))− h(τ(x, y))] dP̂ i(x, y) +

∫
X c

ϵ

[h(τ̂)− h(τ)] dP̂ i

≤ P̂ i(Xϵ) sup
x∈Xϵ,y

|τ̂(x, y)− τ(x, y)|+ 2P̂ i(X c
ϵ )

≤ η + 2P̂ i(X c
ϵ ).

The final term converges a.s. to P i(X c
ϵ ) ≤ PX(X c

ϵ ) +
√

PX(X c
ϵ )ρχ2 ≤ ϵ + ρχ2

√
ϵ. For the

second term in (14), τ is fixed and so standard bounded Lipschitz convergence [25] guarantees
its a.s. convergence to 0. Then with probability 1, for any ϵ > 0 and η > 0, we have

lim sup
n

∥∥∥L(τ̂ | P̂ i)− L(τ | P i)
∥∥∥
BL

≤ η + 2(ϵ+ ρχ2

√
ϵ),

which gives Assumption A1.a.
For Assumption A2.a, let λ be Lebesgue measure, and recognize that for any τ0, τ , we

have
Ĉ−i
τ0 (x)△Cτ (x) = [f̂−i(x)± τ0]△[f(x)± τ ],

so λ(Ĉ−i
τ0 (x)△Cτ (x)) ≤ 2|f(x)− f̂−i(x)|+ 2|τ − τ0|. For any ϵ > 0, if |τ⋆ − τ | ≤ ϵ/4, the sets

Bn,τ in Assumption A2.a satisfy

Bi
n,τ =

{
x | λ(Ĉ−i

τ (x)△Cτ⋆(x)) ≥ ϵ
}
⊂
{
x ∈ X | |f̂−i(x)− f(x)| ≥ ϵ/2

}
.

The conditions (5) guarantee that for any large enough n such that τ = τ(n) satisfies |τ(n)−
τ⋆| ≤ ϵ/4 and any m ∈ N,

PX

( m⋃
i=1

Bi
n,τ

)
≤ PX

( m⋃
i=1

{
x | |f̂−i(x)− f(x)| ≥ ϵ/2

})
→ 0

as n → ∞. This then must occur for any slowly enough growing sequence m(n).

A.6 Proof of Example 3

The argument to justify Assumption A1.a is similar to that in Example 2 (see Section A.5):
as Cτ (x) = [l(x)− τ, u(x) + τ ] and τ(x, y, C) = max{l(x)− y, y − u(x)}, we have

|τ(x, y, C)− τ(x, y, Ĉ−i)| =
∣∣∣max{l(x)− y, y − u(x)} −max{l̂−i(x)− y, y − û−i(x)}

∣∣∣
≤
∣∣|l(x)− y| − |l̂−i(x)− y|

∣∣+ ∣∣|y − u(x)| − |y − û−i(x)|
∣∣

≤
∣∣l̂−i(x)− l(x)

∣∣+ ∣∣û−i(x)− u(x)
∣∣.
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In particular, as in Example 2, we have supy supx∈Xϵ
|τ(x, y, C) − τ(x, y, Ĉ−i)| a.s.→ 0, and so

the bounded Lipschitz convergence argument there applies and Assumption A1.a follows.
To obtain the conditions in Assumption A2.a, recognize that for Lebesgue measure λ an

application of the triangle inequality gives

λ
(
Ĉ−i
τ0 (x)△Cτ (x)

)
≤ 2

(∣∣l̂−i(x)− l(x)
∣∣+ ∣∣û−i(x)− u(x)

∣∣+ |τ − τ0|
)

for any τ, τ0. The remainder of the argument is, mutatis mutandis, identical to that in
Example 2.

A.7 Proof of Example 4

We present an analogous argument to that we use in Example 2, Section A.5 to show how
Assumptions A1.a and A2.a follow from the convergence (7). In this case, the loss ℓ is Lipschitz
continuous, and so as

Cτ (x) = {y ∈ [k] | ℓ(y, f(x)) ≤ τ}

and τ(x, y, C) = ℓ(y, f(x)), we have

max
y∈[k]

sup
x∈Xϵ

∣∣∣τ(x, y, Ĉ−i)− τ(x, y, C)
∣∣∣ a.s.→ 0

under the convergence (7). Then exactly as in the proof of Example 2 in Section A.5, we have∥∥∥L(τ(X,Y, Ĉ−i) | P̂ i)− L(τ(X,Y,C) | P i)
∥∥∥
BL

a.s.→ 0,

implying Assumption A1.a holds.
Consider Assumption A2.a. Let τ⋆ = τ⋆(δ, α) for shorthand and x ̸∈ Dτ⋆,ϵ, so there is no

y such that |ℓ(y, f(x))− τ⋆| < ϵ. Then

Cτ⋆(x) = {y | ℓ(y, f(x)) ≤ τ⋆} = {y | ℓ(y, f(x)) ≤ τ⋆ − ϵ} = {y | ℓ(y, f(x)) ≤ τ⋆ + ϵ}

by definition of Dτ⋆,ϵ. The Lipschitz continuity of v 7→ ℓ(y, v) implies there exists η > 0 such

that if ∥f̂−i(x)− f(x)∥ ≤ η, we have |ℓ(y, f̂−i(x))− ℓ(y, f(x))| ≤ ϵ/4, and so if |τ − τ⋆| < ϵ/4
and ∥f̂−i(x)− f(x)∥ ≤ η, then ℓ(y, f(x)) ≤ τ⋆ − ϵ implies ℓ(y, f̂−i(x)) ≤ τ⋆ − ϵ/4 ≤ τ − ϵ/2,
and similarly, ℓ(y, f(x)) > τ⋆ + ϵ implies that ℓ(y, f̂−i(x)) > τ⋆ + 3ϵ/4 ≥ τ + ϵ/2. That is,

Cτ⋆(x) = Ĉ−i
τ (x).

Recalling the notation of Assumption A2.a, the sets Bn,τ then satisfy

(Bi
n,τ )

c =
{
x | Ĉ−i

τ (x) = Cτ⋆(x)
}
⊃
{
x ∈ X | ∥f̂−i(x)− f(x)∥ ≤ η, |τ − τ⋆| ≤ ϵ/4, x ̸∈ Dτ⋆,ϵ

}
.

As by assumption the sets Xϵ on which f̂−i uniformly converges have PX(Xϵ) ≤ ϵ, the
convergence (7) yields that if τ = τ(n) → τ⋆, then for any fixed m ∈ N,

lim
n→∞

PX

( m⋃
i=1

Bi
n,τ

)
→ 0.

Once again, this must occur for any sequence m(n) growing slowly enough to ∞.
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A.8 Proof of Lemma 5.2

We show the argument in a few steps, first showing that Si
1−α and Q1−α(P

i) are quite close,
then using Assumption A3 to show that the 1− δ quantile of Q1−α(P

i) converges.
First, we leverage Lemma 5.1. Recalling that in Algorithm 5, the residualsRi

j = τ(Xi
j , Y

i
j , Ĉ

−i) =

inf{τ | Y i
j ∈ Ĉ−i

τ (Xi
j)}, we see that the empirical distribution P̂ i

R = 1
ni

∑ni
j=1 1Ri

j
satisfies∥∥∥P̂ i

R − L(τ(X,Y,C) | P i)
∥∥∥
BL

a.s.→ 0

by Assumption A1.a. In particular, the assumption that τ(X,Y,C) has a density under
(X,Y ) ∼ P i in a neighborhood of

Q1−α(P
i) := inf{τ | P i(τ(X,Y,C) ≤ τ) ≥ 1− α}

then guarantees, via Lemma 5.1 and the continuous mapping theorem, that as ni → ∞ the
quantile Si

1−α = q̂+α ({Ri
j}

ni
j=1) satisfies

Si
1−α − Q1−α(P

i)
a.s.→ 0.

As an immediate consequence, we obtain

max
i≤m

|Q1−α(P
i)− Si

1−α|
a.s.→ 0

for any fixed m, and hence a sequence m(n) growing slowly enough as m(n) → ∞ as n → ∞.
From this convergence, an application of the triangle inequality gives that if L(Q1−α(P

E))
denotes the induced probability law over Q1−α(P

E) by sampling E ∈ E and L({Si
1−α}mi=1)

denotes the empirical law of the Si, then∥∥∥L(Q1−α(P
E))− L({Si

1−α}
m(n)
i=1 )

∥∥∥
BL

a.s.→ 0

as n → ∞. Combining Assumption A3 and Lemma 5.1 yields that

q̂+δ
(
{Si

1−α}mi=1

) a.s.→ q(δ),

where q(δ) in the assumption is the unique 1− δ quantile of Q1−α(P
E) over random E.

B Performance of Multi-environment Jackknife+ Quantile

One may consider a slightly different jackknife algorithm compared to Algorithm 1:

Algorithm 8: Multi-environment Jackknife+ Quantile: the regression case

Input: samples {Xi
j , Y

i
j }

ni
j=1, i = 1, . . . ,m, confidence levels α, δ

For i = 1, . . . ,m, set

f̂−i = A
(
(X1, Y 1), . . . , (Xi−1, Y i−1), (Xi+1, Y i+1), . . . , (Xm, Y m)

)
,

and construct residual quantiles

Ri
j = |Y i

j − f̂−i(X
i
j)|, j = 1, . . . , ni, and Si

1−α = q̂+ni,α

(
Ri

1, R
i
2, . . . , R

i
ni

)
Return confidence interval mapping

Ĉm,α,δ(x) :=
[
q̂−m,δ

(
f−i(x)− {Si

1−α}mi=1

)
, q̂+m,δ

(
f−i(x) + {Si

1−α}mi=1

) ]
.
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Figure B.11. Influence of input δ on the performance of Algorithms 1, 2, and 8 applied to
the neurochemical sensing data. For these experiments, α is set to be 0.05. The plots shows
the empirical 1− δ, empirical 1− α, and empirical set length for both the split conformal and
jackknife-minmax algorithms with various input δ.

We apply Algorithms 1, 2, and 8 to the neurochemical sensing data introduced in Section
6.1. We set α = 0.05, and the split ratio to be 0.5 for Algorithm 2. During each experiment,
we vary the values of δ, and record the empirical 1 − α, 1 − δ, and set length. We repeat
the experiment 100 times, and display the results in Figure B. We observe that although
Algorithm 8 tends to output less conservative confidence intervals than the other two, it does
not provide valid coverage except when the input 1− δ is large.
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