Supplemental Materials for:
 "The Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square"

Pragya Sur* Yuxin Chen ${ }^{\dagger} \quad$ Emmanuel J. Candès* ${ }^{*}$

June 2017

Abstract

This document presents the proof of Lemma 6(ii) given in the paper 1: "The Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square".

1 Proof of Lemma 6(ii)

We shall prove that $\mathcal{V}\left(\tau^{2}\right)<\tau^{2}$ whenever τ^{2} is sufficiently large. Before proceeding, we recall from the main text and [2, Proposition 6.4] that

$$
\begin{equation*}
\mathcal{V}\left(\tau^{2}\right):=\frac{1}{\kappa} \mathbb{E}\left[\Psi^{2}(\tau Z ; b(\tau))\right]=\frac{1}{\kappa} \mathbb{E}\left[\left(b(\tau) \rho^{\prime}\left(\operatorname{prox}_{b(\tau) \rho}(\tau Z)\right)\right)^{2}\right] \tag{1}
\end{equation*}
$$

where $b(\tau)$ obeys

$$
\begin{equation*}
\kappa=\mathbb{E}\left[\Psi^{\prime}(\tau Z ; b(\tau))\right]=1-\mathbb{E}\left[\frac{1}{1+b(\tau) \rho^{\prime \prime}\left(\operatorname{prox}_{b(\tau) \rho}(\tau Z)\right)}\right] \tag{2}
\end{equation*}
$$

In what follows, we study the logistic and probit models separately.

1.1 The logistic case

Consider the bivariate functions

$$
\begin{aligned}
h(b, \tau): & =\mathbb{E}\left[\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)}\right] \\
w(b, \tau) & =\mathbb{E}\left[\left(\rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)\right)^{2}\right]
\end{aligned}
$$

which plays a central role in (1) and (2). In the sequel, we will first analyze these two functions for any b obeying

$$
\begin{equation*}
b=c_{0} \tau \tag{3}
\end{equation*}
$$

for some constant $c_{0}>0$. The result is this:

[^0]Lemma 1. For any constant $c_{0}>0$, one has

$$
\begin{gather*}
\lim _{\tau \rightarrow \infty} h\left(c_{0} \tau, \tau\right)=\mathbb{P}\left\{Z<0 \text { or } Z>c_{0}\right\} \tag{4}\\
\lim _{\tau \rightarrow \infty} w\left(c_{0} \tau, \tau\right)=\mathbb{P}\left\{Z>c_{0}\right\}+\frac{1}{c_{0}^{2}} \mathbb{E}\left[Z^{2} \mathbf{1}_{\left\{0<Z<c_{0}\right\}}\right]
\end{gather*}
$$

Recall that $0<\kappa<1 / 2$. One can easily find two constants $c_{0}>\tilde{c}_{0}>0$ such that

$$
\mathbb{P}\left\{Z<0 \text { or } Z>c_{0}\right\}<1-\kappa<\mathbb{P}\left\{Z<0 \text { or } Z>\tilde{c}_{0}\right\}
$$

In view of Lemma 1, for any sufficiently large $\tau>0$ one has

$$
h\left(c_{0} \tau, \tau\right)<1-\kappa=h(b(\tau), \tau)<h\left(\tilde{c}_{0} \tau, \tau\right)
$$

According to [1, Lemma 5], $h(b, \tau)$ is a monotonic function in b for any given $\tau>0$, thus indicating that

$$
b(\tau) \in\left[\tilde{c}_{0} \tau, c_{0} \tau\right]
$$

that said, $b(\tau)$ scales linearly in τ as $\tau \rightarrow \infty$. Furthermore, since $b(\tau)$ is the solution to $h\left(b_{\tau}, \tau\right)=1-\kappa$, one has

$$
\lim _{\tau \rightarrow \infty} \mathbb{P}\left\{Z<0 \text { or } Z>\frac{b(\tau)}{\tau}\right\}=1-\kappa
$$

which leads to the closed-form expression

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \frac{b(\tau)}{\tau}=\Phi^{-1}(\kappa+0.5) \tag{5}
\end{equation*}
$$

We are now ready to characterize the variance map. Note that when τ is sufficiently large,

$$
\begin{align*}
\frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}} & =\frac{b^{2}(\tau)}{\tau^{2}} \cdot \frac{\mathbb{E}\left[\left(\rho^{\prime}\left(\operatorname{prox}_{b(\tau) \rho}(\tau Z)\right)\right)^{2}\right]}{1-\mathbb{E}\left[\frac{1}{1+b(\tau) \rho^{\prime \prime}\left(\operatorname{prox}_{b(\tau) \rho}(\tau Z)\right)}\right]} \tag{6}\\
& =(1+o(1)) \frac{b^{2}(\tau)}{\tau^{2}} \frac{\left\{\mathbb{P}\left\{Z>\frac{b(\tau)}{\tau}\right\}+\frac{\tau^{2}}{b^{2}(\tau)} \mathbb{E}\left[Z^{2} \mathbf{1}_{\left\{0<Z<\frac{b(\tau)}{\tau}\right\}}\right]\right\}}{\mathbb{P}\left\{0<Z<\frac{b(\tau)}{\tau}\right\}} \tag{7}\\
& =\left.(1+o(1)) \frac{x^{2} \mathbb{P}\{Z>x\}+\mathbb{E}\left[Z^{2} \mathbf{1}_{\{0<Z<x\}}\right]}{\mathbb{P}\{0<Z<x\}}\right|_{x=\frac{b(\tau)}{\tau}} \tag{8}
\end{align*}
$$

This together with the expression of $\frac{b(\tau)}{\tau}$ in 5 gives

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}}=\left.\frac{x^{2} \mathbb{P}\{Z>x\}+\mathbb{E}\left[Z^{2} \mathbf{1}_{\{0<Z<x\}}\right]}{\mathbb{P}\{0<Z<x\}}\right|_{x=\Phi^{-1}(\kappa+0.5)} \tag{9}
\end{equation*}
$$

In order to prove that $\mathcal{V}\left(\tau^{2}\right) \leq \tau^{2}$ for large τ, it suffices to show that the function

$$
g(x):=x^{2} \mathbb{P}\{Z>x\}+\mathbb{E}\left[Z^{2} \mathbf{1}_{\{0<Z<x\}}\right]-\mathbb{P}\{0<Z<x\}
$$

obeys $g(x)<0$ for all $x>0$. To this end, some algebra gives

$$
\begin{align*}
g(x) & =x^{2} \int_{x}^{\infty} \phi(z) \mathrm{d} z+\int_{0}^{x} z^{2} \phi(z) \mathrm{d} z-\int_{0}^{x} \phi(z) \mathrm{d} z \\
& =x^{2} \int_{x}^{\infty} \phi(z) \mathrm{d} z-\left.z \phi(z)\right|_{0} ^{x}+\int_{0}^{x} \phi(z) \mathrm{d} z-\int_{0}^{x} \phi(z) \mathrm{d} z \tag{10}\\
& =x\left(x \int_{x}^{\infty} \phi(z) \mathrm{d} z-\phi(x)\right)<0
\end{align*}
$$

where $\sqrt{10}$ comes from integration by parts, and the last inequality follows from $\int_{x}^{\infty} \phi(z) \mathrm{d} z<\frac{1}{x} \phi(x)$. This establishes that $\mathcal{V}\left(\tau^{2}\right) \leq \tau^{2}$ for any sufficiently large $\tau>0$.

Finally, we prove Lemma 1 .
Proof of Lemma 1. Take $\varepsilon>0$ to be an arbitrarily small constant. We study $\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)}$ and $\left(\rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)\right)^{2}$ in three separate cases.

- Case 1: $Z \leq-\varepsilon$. Recall that $\operatorname{prox}_{b \rho}(\tau Z)$ is the solution to

$$
\begin{equation*}
b \frac{e^{t}}{1+e^{t}}+t=\tau Z \tag{11}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\operatorname{prox}_{b \rho}(\tau Z)=\tau Z-\left.b \frac{e^{t}}{1+e^{t}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)}<\tau Z \leq-\varepsilon \tau \tag{12}
\end{equation*}
$$

When $\tau \rightarrow \infty$, this yields

$$
\begin{aligned}
0 & \leq b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)=\left.b \frac{e^{t}}{\left(1+e^{t}\right)^{2}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)} \leq\left. b e^{t}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)} \\
& \leq c_{0} \tau e^{-\varepsilon \tau} \rightarrow 0
\end{aligned}
$$

or equivalently,

$$
1-\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)} \rightarrow 0 \quad \text { as } \quad \tau \rightarrow \infty
$$

Similarly, one can derive

$$
\left(\rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)\right)^{2}=\left.\frac{e^{2 t}}{\left(1+e^{t}\right)^{2}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)} \leq e^{2 \operatorname{prox}_{b \rho}(\tau Z)} \stackrel{(\mathrm{a})}{\leq} e^{-2 \varepsilon \tau} \rightarrow 0
$$

where (a) follows from 12 .

- Case 2: $Z \geq \frac{b}{\tau}+\varepsilon$. In this case, it holds that

$$
\operatorname{prox}_{b \rho}(\tau Z)=\tau Z-\left.b \frac{e^{t}}{1+e^{t}}\right|_{t=\operatorname{prox}_{\rho}(\tau Z ; b)}>\tau\left(\frac{b}{\tau}+\varepsilon\right)-b=\varepsilon \tau
$$

Applying a similar argument as in the previous case, we see that as $\tau \rightarrow \infty$,

$$
1-\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)} \rightarrow 0 \quad \text { and } \quad\left(\rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)\right)^{2} \rightarrow 1
$$

- Case 3: $\varepsilon<Z<\frac{b}{\tau}-\varepsilon$. We can first rule out the possibility of $\left|\operatorname{prox}_{b \rho}(\tau Z)\right| \gtrsim \tau$. In fact, if $\left|\operatorname{prox}_{b \rho}(\tau Z)\right| \gtrsim \tau$ and $\operatorname{prox}_{b \rho}(\tau Z) \geq 0$, then

$$
\begin{aligned}
\left.b \frac{e^{t}}{1+e^{t}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)}+\operatorname{prox}_{b \rho}(\tau Z) \geq\left. b \frac{e^{t}}{1+e^{t}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)} & =b-\frac{b}{1+e^{\operatorname{prox}_{b \rho}(\tau Z)}} \\
& \stackrel{(\mathrm{b})}{=} b-\frac{c_{0} \tau}{e^{\Theta(\tau)}} \stackrel{(\mathrm{c})}{>} b-\varepsilon \tau>\tau Z
\end{aligned}
$$

where (b) follows from the assumptions $b_{0}=c \tau$ and $\left|\operatorname{prox}_{b \rho}(\tau Z)\right| \gtrsim \tau$, and (c) holds when τ is sufficiently large. This violates the identity 11. Similarly, if $\left|\operatorname{prox}_{b \rho}(\tau Z)\right| \gtrsim \tau$ and $\operatorname{prox}_{b \rho}(\tau Z)<0$, then

$$
\begin{aligned}
\left.b \frac{e^{t}}{1+e^{t}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)}+\operatorname{prox}_{b \rho}(\tau Z)<b \frac{e^{\operatorname{prox}_{b \rho}(\tau Z)}}{1+e^{\operatorname{prox}_{b \rho}(\tau Z)}} & =c_{0} \tau \frac{e^{-\left|\operatorname{prox}_{b \rho}(\tau Z)\right|}}{1+e^{-\left|\operatorname{prox}_{b \rho}(\tau Z)\right|}} \\
& \stackrel{\text { (d) }}{<} \varepsilon \tau \leq \tau Z,
\end{aligned}
$$

where (d) follows when τ is sufficiently large. This inequality contradicts (11) as well. As a result, we reach $\left|\operatorname{prox}_{b \rho}(\tau Z)\right|=o(\tau)$ in this case, which combined with 11 gives

$$
\begin{equation*}
\left.b \frac{e^{t}}{1+e^{t}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)}=(1+o(1)) \tau Z \tag{13}
\end{equation*}
$$

Additionally, (13) leads to

$$
\begin{equation*}
\left.\frac{1}{1+e^{t}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)}=(1+o(1))\left(1-\frac{\tau Z}{b}\right) \tag{14}
\end{equation*}
$$

which is bounded away from 0 in this case. Taken together, (13) and 14) yield

$$
\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)}=\frac{1}{1+\left.b \frac{e^{t}}{\left(1+e^{t}\right)^{2}}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)}}=\frac{1}{1+(1+o(1)) \tau Z\left(1-\frac{\tau Z}{b}\right)} \rightarrow 0
$$

and

$$
\left(\rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)\right)^{2}=\left.\left(\frac{e^{t}}{1+e^{t}}\right)^{2}\right|_{t=\operatorname{prox}_{b \rho}(\tau Z)}=(1+o(1)) \frac{\tau^{2} Z^{2}}{b^{2}}
$$

Putting the above cases together and applying dominated convergence gives

$$
\begin{aligned}
& \lim _{\tau \rightarrow \infty}\left\{\mathbb{E}\left[\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)}\right]-\mathbb{E}\left[\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)} \mathbf{1}_{\{|Z| \leq \varepsilon \text { or }|Z-b / \tau| \leq \varepsilon\}}\right]\right\} \\
&= \lim _{\tau \rightarrow \infty}\left\{\mathbb{E}\left[\mathbf{1}_{\{Z<-\varepsilon\}}\right]+\mathbb{E}\left[\mathbf{1}_{\left\{Z>\frac{b}{\tau}-\varepsilon\right\}}\right]\right\}=\lim _{\tau \rightarrow \infty} \mathbb{P}\left\{Z<-\varepsilon \text { or } Z>\frac{b}{\tau}+\varepsilon\right\}
\end{aligned}
$$

when $b=c_{0} \tau$ for some constant $c_{0}>0$. Recognizing that

$$
\begin{gathered}
\mathbb{E}\left[\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)} \mathbf{1}_{\{|Z| \leq \varepsilon \text { or }|Z-b / \tau| \leq \varepsilon\}}\right] \leq \mathbb{E}\left[\mathbf{1}_{\{|Z| \leq \varepsilon \text { or }|Z-b / \tau| \leq \varepsilon\}}\right] \leq 4 \varepsilon \\
\text { and } \quad \mathbb{P}\left\{-\varepsilon \leq Z \leq 0 \text { or } \frac{b}{\tau} \leq Z \leq \frac{b}{\tau}+\varepsilon\right\} \leq 2 \varepsilon,
\end{gathered}
$$

we arrive at

$$
\left.\left\lvert\, \lim _{\tau \rightarrow \infty} \mathbb{E}\left[\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)}\right]-\lim _{\tau \rightarrow \infty} \mathbb{P}\left\{Z<0 \text { or } Z>\frac{b}{\tau}\right\}\right. \right\rvert\, \leq 6 \varepsilon
$$

Since $\varepsilon>0$ can be arbitrarily small, we have

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \mathbb{E}\left[\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)}\right]=\lim _{\tau \rightarrow \infty} \mathbb{P}\left\{Z<0 \text { or } Z>\frac{b}{\tau}\right\} \tag{15}
\end{equation*}
$$

when $b=c_{0} \tau$. Similarly,

$$
\lim _{\tau \rightarrow \infty} \mathbb{E}\left[\left(\rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right)\right)^{2}\right]=\lim _{\tau \rightarrow \infty}\left\{\mathbb{P}\left\{Z>\frac{b}{\tau}\right\}+\frac{\tau^{2}}{b^{2}} \mathbb{E}\left[Z^{2} \mathbf{1}_{\left\{0<Z<\frac{b}{\tau}\right\}}\right]\right\}
$$

1.2 The probit case

The proof proceeds with the following 3 steps:
(i) Show that for any $b>0$ and $\epsilon>0$, there exist constants $c_{1, b}, c_{2, b}, c_{3}, c_{4}>0$, depending on ϵ, such that

$$
\left\{\begin{array} { l }
{ \operatorname { s u p } _ { z > c _ { 1 , b } } | \operatorname { p r o x } _ { b \rho } (z) - \frac { z } { b + 1 } | \leq \epsilon , } \tag{16}\\
{ \operatorname { s u p } _ { z < - c _ { 2 , b } } | \operatorname { p r o x } _ { b \rho } (z) - z | \leq \epsilon , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{cc}
\sup _{z>c_{3}}\left|\rho^{\prime \prime}(z)-1\right| \leq \epsilon, \\
\sup _{z<-c_{4}}\left|\rho^{\prime \prime}(z)\right| & \leq \epsilon .
\end{array}\right.\right.
$$

In particular, one can take

$$
\begin{equation*}
c_{1, b}:=\max \left\{b \rho^{\prime}(\sqrt{2})+\sqrt{2}, 2 \sqrt{2} b, \frac{4}{\epsilon} b\right\} \quad \text { and } \quad c_{2, b}:=\max \left\{2 b \rho^{\prime}(0), \sqrt{8 \log \frac{b}{\epsilon}}\right\} . \tag{17}
\end{equation*}
$$

(ii) Show that for any constant $\eta>0$, for all τ sufficiently large, one has

$$
\begin{equation*}
\left|1-\frac{1}{b(\tau)+1}-2 \kappa\right| \leq \eta \tag{18}
\end{equation*}
$$

(iii) Show that for any constant $0<\eta<1-2 \kappa$ and for τ sufficiently large, one has

$$
\begin{equation*}
\left|\frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}}-2 \kappa\right| \leq \eta . \tag{19}
\end{equation*}
$$

In the sequel, we elaborate on each of these three steps.
Step (i). Recall that for any $x>0$, one has $\frac{\phi(x)}{x}\left(1-\frac{1}{x^{2}}\right) \leq 1-\Phi(x) \leq \frac{\phi(x)}{x}$. Since $\rho^{\prime}(x)=\frac{\phi(x)}{1-\Phi(x)}$, this gives

$$
\begin{equation*}
\left|\rho^{\prime}(x)-x\right| \leq \frac{1}{x-x^{-1}} \leq \frac{2}{x}, \quad x \geq \sqrt{2} . \tag{20}
\end{equation*}
$$

We start with the first inequality in (16). From the definition of prox(\cdot), we have the defining relation

$$
\begin{equation*}
b \rho^{\prime}\left(\operatorname{prox}_{b \rho}(z)\right)+\operatorname{prox}_{b \rho}(z)=z . \tag{21}
\end{equation*}
$$

Therefore, if we take $z_{b, 1}:=b \rho^{\prime}(\sqrt{2})+\sqrt{2}$, then this identity $\sqrt{21}$ indicates that prox ${ }_{b \rho}\left(z_{b, 1}\right)=\sqrt{2}$. Moreover, $\operatorname{prox}_{b \rho}(z)$ is monotonically increasing in z (see [2, Eqn. (56)]), which tells us that

$$
\begin{equation*}
\operatorname{prox}_{b \rho}(z) \geq \operatorname{prox}_{b \rho}\left(z_{b, 1}\right)=\sqrt{2}, \quad \forall z>z_{b, 1} . \tag{22}
\end{equation*}
$$

Rearranging the identity (21) and combining it with 20) and 22), we obtain

$$
\begin{align*}
& z-(b+1) \operatorname{prox}_{b \rho}(z)=b \rho^{\prime}\left(\operatorname{prox}_{b \rho}(z)\right)-b \operatorname{prox}_{b \rho}(z) \\
& \Longrightarrow\left|\frac{z}{b+1}-\operatorname{prox}_{b \rho}(z)\right|=\frac{b}{b+1}\left|\rho^{\prime}\left(\operatorname{prox}_{b \rho}(z)\right)-\operatorname{prox}_{b \rho}(z)\right| \leq \frac{2 b /(b+1)}{\operatorname{prox}_{b \rho}(z)} \tag{23}\\
& \leq \frac{\sqrt{2} b}{b+1}, \quad \forall z>z_{b, 1} . \tag{24}
\end{align*}
$$

This inequality provides a lower bound on $\operatorname{prox}_{b \rho}(z)$:

$$
\operatorname{prox}_{b \rho}(z) \geq \frac{z-\sqrt{2} b}{b+1} \geq \frac{z}{2(b+1)}
$$

for all z obeying $z>z_{b, 1}$ and $z>2 \sqrt{2} b$. Substitution into 23 once again gives

$$
\left|\frac{z}{b+1}-\operatorname{prox}_{b \rho}(z)\right| \leq \frac{2 b /(b+1)}{\operatorname{prox}_{b \rho}(z)} \leq \frac{4 b}{z} \leq \epsilon, \quad \forall z>\max \left\{z_{b, 1}, 2 \sqrt{2} b, \frac{4 b}{\epsilon}\right\},
$$

establishing the first bound in 16 .
We now turn to the second result in 16 . Similarly, it is seen from 21 that prox ${ }_{b \rho}\left(z_{b, 2}\right)=0$ with $z_{b, 2}:=b \rho^{\prime}(0)>0$. The monotonicity of $\operatorname{prox}_{b \rho}(\cdot)$ implies that

$$
\operatorname{prox}_{b \rho}(z) \leq \operatorname{prox}_{b \rho}\left(z_{b, 2}\right)=0, \quad \forall z<z_{b, 2}
$$

Recognizing that $\rho^{\prime}(x)>0$ and $\rho^{\prime \prime}(x)>0$ for any x and using the relation 21, we arrive at

$$
\begin{equation*}
\left|z-\operatorname{prox}_{b \rho}(z)\right|=b \rho^{\prime}\left(\operatorname{prox}_{b \rho}(z)\right) \leq b \rho^{\prime}(0), \quad \forall z<z_{b, 2} \tag{25}
\end{equation*}
$$

thus indicating that

$$
\operatorname{prox}_{b \rho}(z) \leq z+b \rho^{\prime}(0) \leq z / 2, \quad \forall z<-2 z_{b, 2}<0
$$

Substituting it into $\sqrt{25}$ and using the fact that $\rho^{\prime}(x)=\frac{\phi(x)}{1-\Phi(x)} \leq 2 \phi(x) \leq e^{-x^{2} / 2}$ for all $x<0$, we get

$$
\begin{equation*}
\left|z-\operatorname{prox}_{b \rho}(z)\right|=b \rho^{\prime}\left(\operatorname{prox}_{b \rho}(z)\right) \stackrel{(\mathrm{a})}{\leq} b \rho^{\prime}(z / 2) \leq b e^{-z^{2} / 8}, \quad \forall z<-2 z_{b, 2}<0 \tag{26}
\end{equation*}
$$

where (a) follows since $\rho^{\prime \prime}(x)>0$. The upper bound (26) will not exceed $\epsilon>0$ as long as $z<-\max \left\{2 z_{b, 2}, \sqrt{8 \log \frac{b}{\epsilon}}\right\}$. This establishes the second bound of 16 .

The remaining two inequalities regarding $\rho^{\prime \prime}$ are rather straightforward and the proofs are thus omitted.
Step (ii). Recognizing that $\Psi^{\prime}(z ; b)=\left.\frac{b \rho^{\prime \prime}(x)}{1+b \rho^{\prime \prime}(x)}\right|_{x=\operatorname{prox}_{b \rho}(z)}$, we see that $b(\tau)$ is the solution to

$$
\begin{equation*}
1-\kappa=\mathbb{E}[g(\tau Z, b)] \quad \text { with } g(x, b):=\frac{1}{1+b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(x)\right)} \tag{27}
\end{equation*}
$$

As a result, everything boils down to quantifying $\mathbb{E}[g(\tau Z, b)]$.
Consider any sufficiently small $\epsilon>0$. We first obtain an approximation of $\mathbb{E}[g(\tau Z, b)]$. Specifically, we claim that taking $c_{\epsilon}:=\frac{1}{2} \tau \epsilon^{2}$ leads to

$$
\begin{equation*}
\mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{|\tau Z|>c_{\epsilon}\right\}}\right] \leq \mathbb{E}[g(\tau Z, b)] \leq \mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{|\tau Z|>c_{\epsilon}\right\}}\right]+\epsilon \tag{28}
\end{equation*}
$$

The lower bound is trivial since $0 \leq g(x, b) \leq 1$. To see why the upper bound holds, we invoke CauchySchwarz to derive

$$
\begin{equation*}
\mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{|\tau Z| \leq c_{\epsilon}\right\}}\right] \leq \sqrt{\mathbb{E}\left[g^{2}(\tau Z, b)\right]} \sqrt{\mathbb{P}\left(|Z| \leq \frac{c_{\epsilon}}{\tau}\right)} \stackrel{(\mathrm{b})}{\leq} \sqrt{\mathbb{P}\left(|Z| \leq \frac{c_{\epsilon}}{\tau}\right)} \leq \sqrt{2 \frac{c_{\epsilon}}{\tau}}=\epsilon \tag{29}
\end{equation*}
$$

where (b) arises since $0 \leq g(x, b) \leq 1$. This inequality 29) matches the upper bound in 28). In short, we see that $\mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{|\tau Z|>c_{\epsilon}\right\}}\right]$ is a reasonably tight approximation of $\mathbb{E}[g(\tau Z, b)]$, and it suffices to look at

$$
\begin{equation*}
\mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{|\tau Z|>c_{\epsilon}\right\}}\right]=\mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{\tau Z<-c_{\epsilon}\right\}}\right]+\mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{\tau Z>c_{\epsilon}\right\}}\right] \tag{30}
\end{equation*}
$$

We first control the second term in the right-hand side of 30 . Suppose for the moment that

$$
c_{\epsilon}>\max \left\{c_{1, b},\left(c_{3}+\epsilon\right)(b+1), c_{2, b}, c_{4}+\epsilon\right\}
$$

According to 16 , on the event $\left\{\tau Z>c_{\epsilon}\right\}$ one has

$$
\frac{\tau Z}{b+1}-\epsilon \leq \operatorname{prox}_{b \rho}(\tau Z) \leq \frac{\tau Z}{b+1}+\epsilon \quad \text { and } \quad 1-\epsilon \leq \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right) \leq 1+\epsilon
$$

where the second inequality holds since $\operatorname{prox}_{b \rho}(\tau Z) \geq \frac{\tau Z}{b+1}-\epsilon>\frac{c_{\epsilon}}{b+1}-\epsilon \geq c_{3}$. Plugging these inequalities into (27) gives

$$
\frac{1}{1+b(1+\epsilon)} \leq g(\tau Z, b) \leq \frac{1}{1+b(1-\epsilon)}
$$

In addition, similar to 29 we get

$$
\frac{1}{2} \geq \mathbb{P}\left(\tau Z>c_{\epsilon}\right)=\mathbb{P}\left(\tau Z<-c_{\epsilon}\right)=\frac{1}{2}\left\{1-\mathbb{P}\left(|Z| \leq \frac{c_{\epsilon}}{\tau}\right)\right\} \geq \frac{1}{2}\left\{1-\frac{2 c_{\epsilon}}{\tau}\right\}=\frac{1}{2}\left(1-\epsilon^{2}\right)
$$

The above bounds taken collectively reveal that

$$
\begin{equation*}
\frac{1}{1+b(1+\epsilon)} \cdot \frac{1}{2}\left(1-\epsilon^{2}\right) \leq \mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{\tau Z>c_{\epsilon}\right\}}\right] \leq \frac{1}{1+b(1-\epsilon)} \cdot \frac{1}{2} \tag{31}
\end{equation*}
$$

We can employ similar arguments to control the first term in the right-hand side of (28) as well. Since $c_{\epsilon}>\max \left\{c_{2, b}, c_{4}+\epsilon\right\}$, on the event $\left\{\tau Z<-c_{\epsilon}\right\}$ we have

$$
\tau Z-\epsilon \leq \operatorname{prox}_{b \rho}(\tau Z) \leq \tau Z+\epsilon \quad \text { and } \quad-\epsilon \leq \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right) \leq \epsilon
$$

a direct consequence of 16 . This implies that

$$
\frac{1}{1+b \epsilon} \leq g(\tau Z, b) \leq \frac{1}{1-b \epsilon}
$$

and, therefore,

$$
\begin{equation*}
\frac{1}{1+b \epsilon} \cdot \frac{1}{2}\left(1-\epsilon^{2}\right) \leq \mathbb{E}\left[g(\tau Z, b) \mathbf{1}_{\left\{\tau Z<-c_{\epsilon}\right\}}\right] \leq \frac{1}{1-b \epsilon} \cdot \frac{1}{2} \tag{32}
\end{equation*}
$$

Combining 28, 31) and 32, we conclude that for any $\epsilon>0$,

$$
\frac{1-\epsilon^{2}}{2}\left\{\frac{1}{1+b(1+\epsilon)}+\frac{1}{1+b \epsilon}\right\} \leq \mathbb{E}[g(\tau Z, b)] \leq \frac{1}{2}\left\{\frac{1}{1+b(1-\epsilon)}+\frac{1}{1-b \epsilon}\right\}+\epsilon
$$

as long as $c_{\epsilon}=\frac{1}{2} \tau \epsilon^{2}>\max \left\{c_{1, b}, \quad\left(c_{3}+\epsilon\right)(b+1), c_{2, b}, c_{4}+\epsilon\right\}$, or equivalently,

$$
\tau>\frac{2 \max \left\{c_{1, b},\left(c_{3}+\epsilon\right)(b+1), c_{2, b}, c_{4}+\epsilon\right\}}{\epsilon^{2}}
$$

where the lower bound is on the order of b / ϵ^{3}. Effectively, we have established that for any given b and any sufficiently small $\epsilon>0$ (so that $b \epsilon<1$ and $\epsilon<1$), if τ is sufficiently large (as specified above) one has

$$
\begin{equation*}
\left|\mathbb{E}[g(\tau Z, b)]-\frac{1}{2}\left(\frac{1}{1+b}+1\right)\right| \leq \tilde{c}_{4}(\epsilon+b \epsilon) \tag{33}
\end{equation*}
$$

for some universal constant $\tilde{c}_{4}>0$ independent of b, ϵ, τ.
We can then combine this result (33) with the constraint (27) to derive an estimate on $b(\tau)$. Fix any $\eta>0$. Let b_{1} and b_{2} be two constants such that

$$
\frac{1}{2}\left(\frac{1}{1+b_{1}}+1\right)=1-\kappa-\frac{\eta}{4}, \quad \frac{1}{2}\left(\frac{1}{1+b_{2}}+1\right)=1-\kappa+\frac{\eta}{4}
$$

Picking $\epsilon>0$ sufficiently small so that $\max \left\{\tilde{c}_{4}\left(1+b_{1}\right) \epsilon, \tilde{c}_{4}\left(1+b_{2}\right) \epsilon\right\}<\eta / 4$ and $\tau \gg \max \left\{b_{1}, b_{2}\right\} / \epsilon^{3}$, we can ensure that

$$
\mathbb{E}\left[g\left(\tau Z, b_{1}\right)\right]<1-\kappa<\mathbb{E}\left[g\left(\tau Z, b_{2}\right)\right]
$$

Recall that for any $\tau>0$, the function $G(b):=1-\mathbb{E}[g(\tau Z, b)]$ is strictly increasing in b (see [1, Lemma 5]) and, hence,

$$
b_{2} \leq b(\tau) \leq b_{1}, \quad \Longrightarrow \quad \frac{1}{2\left(1+b_{1}\right)} \leq \frac{1}{2(1+b(\tau))} \leq \frac{1}{2\left(1+b_{2}\right)}
$$

Combining these together, we obtain

$$
\begin{equation*}
\left|\left(1-\frac{1}{b(\tau)+1}\right)-2 \kappa\right| \leq \eta \tag{34}
\end{equation*}
$$

for any $\eta>0$ with the proviso that τ is sufficiently large. This finishes Step (ii). In particular, this yields

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} b(\tau)=\frac{2 \kappa}{1-2 \kappa} \tag{35}
\end{equation*}
$$

Step (iii). Now we move on to the variance map

$$
\begin{equation*}
\mathcal{V}\left(\tau^{2}\right)=\frac{b(\tau)^{2}}{\kappa} \mathbb{E}\left[\rho^{\prime}\left(\operatorname{prox}_{b(\tau) \rho}(\tau Z)\right)^{2}\right] \tag{36}
\end{equation*}
$$

For notational convenience, we set

$$
h(x):=\rho^{\prime}\left(\operatorname{prox}_{b \rho}(x)\right)^{2}
$$

a key mapping in the definition (36). Before proceeding, we remark that from the properties of ρ^{\prime}, for any $\epsilon>0$, there exist constants $c_{5}, c_{6}>0$, depending on ϵ, such that

$$
\begin{equation*}
\sup _{z>c_{5}}\left|\rho^{\prime}(z)-z\right| \leq \epsilon, \sup _{z<-c_{6}}\left|\rho^{\prime}(z)\right| \leq \epsilon \tag{37}
\end{equation*}
$$

As before, we decompose the function $\mathcal{V}\left(\tau^{2}\right)$ as follows:

$$
\left|\mathcal{V}\left(\tau^{2}\right)-\frac{b(\tau)^{2}}{\kappa} \mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{|\tau Z|>\alpha_{\epsilon}\right\}}\right]\right|=\frac{b(\tau)^{2}}{\kappa} \mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{|\tau Z| \leq \alpha_{\epsilon}\right\}}\right]
$$

for some point $\alpha_{\epsilon}>0$ to be specified later. This gives

$$
\begin{equation*}
\mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{|\tau Z|<\alpha_{\epsilon}\right\}}\right] \leq \sqrt{\mathbb{E}\left[h^{2}(\tau Z) \mathbf{1}_{\left\{|\tau Z|<\alpha_{\epsilon}\right\}}\right]} \sqrt{\mathbb{P}\left(|\tau Z|<\alpha_{\epsilon}\right)} \leq C\left(\alpha_{\epsilon}, b\right) \sqrt{2 \Phi\left(\frac{\alpha_{\epsilon}}{\tau}\right)-1} \tag{38}
\end{equation*}
$$

where

$$
C\left(\alpha_{\epsilon}, b\right)=\rho^{\prime}\left(\operatorname{prox}_{b \rho}\left(\alpha_{\epsilon}\right)\right)^{2} .
$$

The last inequality of 38 holds since (1) $\rho^{\prime}(z) \geq 0$ is an increasing function of z; (2) prox ${ }_{b \rho}(x)$ is an increasing function of x (see [2, Eqn. (56)]). For any given $\epsilon>0$, one can pick τ sufficiently large so that the above bound $C\left(\alpha_{\epsilon}, b\right) \sqrt{2 \Phi}\left(\frac{\alpha_{\epsilon}}{\tau}\right)-1$ is below ϵ. The particular choice of τ will be made clear later. Under these conditions,

$$
\begin{equation*}
\mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{|\tau Z|>\alpha_{\epsilon}\right\}}\right] \leq \mathbb{E}[h(\tau Z)] \leq \mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{\tau Z<-\alpha_{\epsilon}\right\}}\right]+\mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right]+\epsilon . \tag{39}
\end{equation*}
$$

We first control the second term in the right-hand side of 39 . To this end, we choose

$$
\alpha_{\epsilon}>\max \left\{c_{1, b}, c_{2, b},\left(c_{5}+\epsilon\right)(b+1), c_{6}+2 \epsilon\right\}
$$

as before. Then from (16) and (37), on the event $\left\{\tau Z>\alpha_{\epsilon}\right\}$ we have

$$
\frac{\tau Z}{b+1}-\epsilon \leq \operatorname{prox}_{b \rho}(\tau Z) \leq \frac{\tau Z}{b+1}+\epsilon \quad \text { and } \quad \frac{\tau Z}{b+1}-2 \epsilon \leq \rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z)\right) \leq \frac{\tau Z}{b+1}+2 \epsilon
$$

This yields

$$
\left(\frac{\tau Z}{b+1}-2 \epsilon\right)^{2} \leq h(\tau Z) \leq\left(\frac{\tau Z}{b+1}+2 \epsilon\right)^{2}
$$

on the event $\left\{\tau Z>\alpha_{\epsilon}\right\}$, and hence

$$
\begin{equation*}
\mathbb{E}\left[\left(\frac{\tau Z}{b+1}-2 \epsilon\right)^{2} \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right] \leq \mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right] \leq \mathbb{E}\left[\left(\frac{\tau Z}{b+1}+2 \epsilon\right)^{2} \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right] \tag{40}
\end{equation*}
$$

Similarly for the first term in the right-hand side of 39 , as $\alpha_{\epsilon}>\max \left\{c_{2}, c_{6}+2 \epsilon\right\}$, on the event $\left\{\tau Z<-\alpha_{\epsilon}\right\}$, we have

$$
\tau Z-\epsilon \leq \operatorname{prox}_{b \rho}(\tau Z) \leq \tau Z+\epsilon \quad \text { and } \quad-\epsilon \leq \rho^{\prime}\left(\operatorname{prox}_{b \rho}(\tau Z) \leq \epsilon\right.
$$

Note that $\mathbb{P}\left(\tau Z>\alpha_{\epsilon}\right)=\mathbb{P}\left(\tau Z<-\alpha_{\epsilon}\right)=\frac{1}{2}\left(1-\delta_{\epsilon}\right)$ for some δ_{ϵ} small which is a function of ϵ and which vanishes as $\epsilon \rightarrow 0$. This yields

$$
\begin{equation*}
0 \leq \mathbb{E}\left[h(\tau Z) \mathbf{1}_{\left\{\tau Z<-\alpha_{\epsilon}\right\}}\right] \leq \frac{\epsilon^{2}}{2}\left(1-\delta_{\epsilon}\right) \tag{41}
\end{equation*}
$$

Combining the relations (39), 40 and 41) we obtain that

$$
\begin{equation*}
\frac{b^{2}}{\kappa} \mathbb{E}\left[\left(\frac{\tau Z}{b+1}-2 \epsilon\right)^{2} \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right] \leq \mathcal{V}\left(\tau^{2}\right) \leq \frac{b^{2}}{\kappa}\left\{\mathbb{E}\left[\left(\frac{\tau Z}{b+1}+2 \epsilon\right)^{2} \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right]+\frac{\epsilon^{2}}{2}\left(1-\delta_{\epsilon}\right)+\epsilon\right\} \tag{42}
\end{equation*}
$$

We still need to evaluate $\mathbb{E}\left[\left(\frac{\tau Z}{b+1}-2 \epsilon\right)^{2} \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right]$. To this end, we define two quantities

$$
\alpha_{1}:=\mathbb{E}\left[Z 1_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right] \quad \text { and } \quad \alpha_{2}:=\mathbb{E}\left[Z^{2} \mathbf{1}_{\left\{\tau Z>\alpha_{\epsilon}\right\}}\right] .
$$

Using the properties of the normal CDF, one can show that

$$
\begin{equation*}
\frac{\tau}{\sqrt{2 \pi}}-\alpha_{\epsilon} \frac{\delta_{\epsilon}}{2} \leq \tau \alpha_{1} \leq \frac{\tau}{\sqrt{2 \pi}} \quad \text { and } \quad \frac{\tau^{2}}{2}-\alpha_{\epsilon}^{2} \frac{\delta_{\epsilon}}{2} \leq \tau^{2} \alpha_{2} \leq \frac{\tau^{2}}{2} \tag{43}
\end{equation*}
$$

Using the above relations and rearranging, the bounds in 42 can be rewritten as

$$
\begin{aligned}
\mathcal{V}\left(\tau^{2}\right) & \geq \frac{b^{2}}{\kappa}\left[\frac{\tau^{2}}{2(b+1)^{2}}-\frac{\alpha_{\epsilon}^{2} \delta_{\epsilon}}{2(b+1)^{2}}-4 \epsilon \frac{\tau}{\sqrt{2 \pi}(b+1)}+2 \epsilon^{2}\left(1-\delta_{\epsilon}\right)\right] \\
\mathcal{V}\left(\tau^{2}\right) & \leq \frac{b^{2}}{\kappa}\left[\frac{\tau^{2}}{2(b+1)^{2}}+\epsilon\left(\frac{4 \tau}{\sqrt{2 \pi}(b+1)}+1\right)+\frac{5}{2} \epsilon^{2}\left(1-\delta_{\epsilon}\right)\right]
\end{aligned}
$$

Finally, observing that $b \geq 0$, we arrive at

$$
\left|\mathcal{V}\left(\tau^{2}\right)-\frac{b^{2}}{2 \kappa} \frac{\tau^{2}}{(b+1)^{2}}\right| \leq \frac{b^{2}}{\kappa}\left\{\epsilon\left(\frac{8 \tau}{\sqrt{2 \pi}}+1\right)+\frac{\delta_{\epsilon} \alpha_{\epsilon}^{2}}{2}+\frac{\epsilon^{2}}{2}\left(1-\delta_{\epsilon}\right)\right\}
$$

which is equivalent to

$$
\begin{equation*}
\left|\frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}}-\frac{1}{2 \kappa}\left(1-\frac{1}{b+1}\right)^{2}\right| \leq \frac{b^{2}}{\kappa}\left\{\epsilon\left(\frac{8}{\sqrt{2 \pi} \tau}+\frac{1}{\tau^{2}}\right)+\frac{\delta_{\epsilon} \alpha_{\epsilon}^{2}}{2 \tau^{2}}+\frac{\epsilon^{2}}{2 \tau^{2}}\left(1-\delta_{\epsilon}\right)\right\} \tag{44}
\end{equation*}
$$

Note that in the bound above α_{ϵ} also depends on b. Henceforth we denote α_{ϵ} as $\alpha_{\epsilon}(b)$. Next, we invoke the result from Step (ii) to ensure that $b(\tau)$ is bounded for all sufficiently large values of τ.

Fix $\eta^{\prime}>0$ such that $0<\eta^{\prime}<1-2 \kappa$. Let τ_{0} be the threshold above which for all values of τ the relation (34) holds with $\eta=\eta^{\prime} / 2$. Then $\forall \tau \geq \tau_{0}$, one has

$$
b(\tau) \leq \frac{2 \kappa+\eta^{\prime}}{1-2 \kappa-\eta^{\prime}}=: a\left(\eta^{\prime}\right)
$$

For all $\tau \geq \tau_{0}$, we have

$$
\left|\frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}}-\frac{1}{2 \kappa}\left(1-\frac{1}{b+1}\right)^{2}\right| \leq \frac{a\left(\eta^{\prime}\right)^{2}}{\kappa}\left\{\epsilon\left(\frac{8}{\sqrt{2 \pi} \tau}+\frac{1}{\tau^{2}}\right)+\frac{\delta_{\epsilon}\left(\alpha_{\epsilon}(a(\eta))\right)^{2}}{2 \tau^{2}}+\frac{\epsilon^{2}}{2 \tau^{2}}\left(1-\delta_{\epsilon}\right)\right\},
$$

where $\alpha_{\epsilon}(a(\eta))$ is any constant above $\max \left\{c_{1, a(\eta)}, c_{2, a(\eta)},\left(c_{5}+\epsilon\right)(a(\eta)+1), c_{6}+2 \epsilon\right\}$. We choose $\tau>\tau_{0}$ so that $C\left(\alpha_{\epsilon}(a(\eta)), a(\eta)\right) \sqrt{2 \Phi\left(\alpha_{\epsilon}\right)-1}$ is below ϵ, and the above bound in the RHS is below $\eta=\eta^{\prime} / 2$. This gives

$$
\left|\frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}}-2 \kappa\right| \leq\left|\frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}}-\frac{1}{2 \kappa}\left(1-\frac{1}{b+1}\right)^{2}\right|+\left|2 \kappa-\frac{1}{2 \kappa}\left(1-\frac{1}{b+1}\right)^{2}\right| \leq \eta^{\prime}
$$

Hence, for any such τ

$$
\frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}} \leq 2 \kappa+\eta^{\prime}<1
$$

from the choice of η^{\prime}. In particular, we have established that

$$
\lim _{\tau \rightarrow \infty} \frac{\mathcal{V}\left(\tau^{2}\right)}{\tau^{2}}=2 \kappa
$$

Remark 1. In fact, the above analysis works for a broader class of link functions beyond the probit case. Specifically, more general sufficient conditions for the above result to hold are the following: in addition to conditions mentioned in 1, Section 2.3.3].

- $\rho^{\prime}(x) \rightarrow 0$ when $x \rightarrow-\infty$, and $\rho^{\prime}(x) / x \rightarrow 1$, when $x \rightarrow \infty$; further, $\left|\rho^{\prime}(x)-x\right| \leq f(x)$ for all x positive, where $f(x)$ is some function obeying $f(x) \rightarrow 0$ when $x \rightarrow \infty$.
- $\rho^{\prime \prime}$ is bounded, converges to 1 when $x \rightarrow \infty$ and converges to 0 when $x \rightarrow-\infty$. $-\infty$ are swapped.
- In addition, for any given $z, b \rho^{\prime \prime}\left(\operatorname{prox}_{b \rho}(z)\right) \rightarrow \infty$ when $b \rightarrow \infty$.

References

[1] Pragya Sur, Yuxin Chen, and Emmanuel Candès. The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled chi-square. 2017.
[2] David Donoho and Andrea Montanari. High dimensional robust M-estimation: Asymptotic variance via approximate message passing. Probability Theory and Related Fields, pages 1-35, 2013.

[^0]: *Department of Statistics, Stanford University, Stanford, CA 94305, U.S.A.
 ${ }^{\dagger}$ Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
 ${ }^{\ddagger}$ Department of Mathematics, Stanford University, Stanford, CA 94305, U.S.A.

