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Abstract

This document presents the proof of Lemma 6(ii) given in the paper [1]: “The Likelihood Ratio Test
in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square”.

1 Proof of Lemma 6(ii)
We shall prove that V(τ2) < τ2 whenever τ2 is sufficiently large. Before proceeding, we recall from the main
text and [2, Proposition 6.4] that

V(τ2) :=
1

κ
E
[
Ψ2(τZ; b(τ))

]
=

1

κ
E
[(
b(τ)ρ′

(
proxb(τ)ρ (τZ)

))2
]
, (1)

where b(τ) obeys

κ = E [Ψ′ (τZ; b(τ))] = 1− E

 1

1 + b(τ)ρ′′
(
proxb(τ)ρ (τZ)

)
 . (2)

In what follows, we study the logistic and probit models separately.

1.1 The logistic case
Consider the bivariate functions

h (b, τ) : = E

[
1

1 + bρ′′
(
proxbρ (τZ)

)] ,
w (b, τ) = E

[(
ρ′
(
proxbρ (τZ)

))2]
,

which plays a central role in (1) and (2). In the sequel, we will first analyze these two functions for any b
obeying

b = c0τ (3)

for some constant c0 > 0. The result is this:
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Lemma 1. For any constant c0 > 0, one has

lim
τ→∞

h (c0τ, τ) = P {Z < 0 or Z > c0} ; (4)

lim
τ→∞

w (c0τ, τ) = P {Z > c0}+
1

c20
E
[
Z21{0<Z<c0}

]
.

Recall that 0 < κ < 1/2. One can easily find two constants c0 > c̃0 > 0 such that

P {Z < 0 or Z > c0} < 1− κ < P {Z < 0 or Z > c̃0} .

In view of Lemma 1, for any sufficiently large τ > 0 one has

h(c0τ, τ) < 1− κ = h(b(τ), τ) < h(c̃0τ, τ).

According to [1, Lemma 5], h(b, τ) is a monotonic function in b for any given τ > 0, thus indicating that

b(τ) ∈ [c̃0τ, c0τ ];

that said, b(τ) scales linearly in τ as τ →∞. Furthermore, since b(τ) is the solution to h(bτ , τ) = 1− κ, one
has

lim
τ→∞

P
{
Z < 0 or Z >

b(τ)

τ

}
= 1− κ,

which leads to the closed-form expression

lim
τ→∞

b(τ)

τ
= Φ−1 (κ+ 0.5) . (5)

We are now ready to characterize the variance map. Note that when τ is sufficiently large,

V
(
τ2
)

τ2
=
b2(τ)

τ2
·

E
[(
ρ′(proxb(τ)ρ (τZ))

)2
]

1− E
[

1

1+b(τ)ρ′′(proxb(τ)ρ(τZ))

] (6)

= (1 + o(1))
b2(τ)

τ2

{
P
{
Z > b(τ)

τ

}
+ τ2

b2(τ)E
[
Z21{0<Z< b(τ)

τ }
]}

P
{

0 < Z < b(τ)
τ

} (7)

= (1 + o(1))
x2P {Z > x}+ E

[
Z21{0<Z<x}

]
P {0 < Z < x}

∣∣∣∣∣
x=

b(τ)
τ

. (8)

This together with the expression of b(τ)
τ in (5) gives

lim
τ→∞

V
(
τ2
)

τ2
=
x2P {Z > x}+ E

[
Z21{0<Z<x}

]
P {0 < Z < x}

∣∣∣∣∣
x=Φ−1(κ+0.5)

. (9)

In order to prove that V(τ2) ≤ τ2 for large τ , it suffices to show that the function

g (x) := x2P {Z > x}+ E
[
Z21{0<Z<x}

]
− P {0 < Z < x}

obeys g(x) < 0 for all x > 0. To this end, some algebra gives

g (x) = x2

ˆ ∞
x

φ (z) dz +

ˆ x

0

z2φ (z) dz −
ˆ x

0

φ (z) dz

= x2

ˆ ∞
x

φ (z) dz − zφ (z)
∣∣∣x
0

+

ˆ x

0

φ (z) dz −
ˆ x

0

φ (z) dz (10)

= x

(
x

ˆ ∞
x

φ (z) dz − φ (x)

)
< 0,
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where (10) comes from integration by parts, and the last inequality follows from
´∞
x
φ (z) dz < 1

xφ(x). This
establishes that V(τ2) ≤ τ2 for any sufficiently large τ > 0.

Finally, we prove Lemma 1.

Proof of Lemma 1. Take ε > 0 to be an arbitrarily small constant. We study 1

1+bρ′′(proxbρ(τZ))
and(

ρ′
(
proxbρ (τZ)

))2 in three separate cases.

• Case 1: Z ≤ −ε. Recall that proxbρ (τZ) is the solution to

b
et

1 + et
+ t = τZ, (11)

which implies that

proxbρ (τZ) = τZ − b
et

1 + et

∣∣∣∣
t=proxbρ(τZ)

< τZ ≤ −ετ. (12)

When τ →∞, this yields

0 ≤ bρ′′(proxbρ (τZ)) = b
et

(1 + et)
2

∣∣∣∣∣
t=proxbρ(τZ)

≤ bet
∣∣
t=proxbρ(τZ)

≤ c0τe
−ετ → 0,

or equivalently,

1− 1

1 + bρ′′(proxbρ (τZ))
→ 0 as τ →∞.

Similarly, one can derive

(
ρ′
(
proxbρ (τZ)

))2
=

e2t

(1 + et)
2

∣∣∣∣∣
t=proxbρ(τZ)

≤ e2proxbρ(τZ)
(a)

≤ e−2ετ → 0,

where (a) follows from (12).

• Case 2: Z ≥ b
τ + ε. In this case, it holds that

proxbρ (τZ) = τZ − b
et

1 + et

∣∣∣∣
t=proxρ(τZ;b)

> τ

(
b

τ
+ ε

)
− b = ετ.

Applying a similar argument as in the previous case, we see that as τ →∞,

1− 1

1 + bρ′′(proxbρ (τZ))
→ 0 and

(
ρ′
(
proxbρ (τZ)

))2 → 1.

• Case 3: ε < Z < b
τ − ε. We can first rule out the possibility of

∣∣proxbρ (τZ)
∣∣ & τ . In fact, if∣∣proxbρ (τZ)

∣∣ & τ and proxbρ (τZ) ≥ 0, then

b
et

1 + et

∣∣∣∣
t=proxbρ(τZ)

+ proxbρ (τZ) ≥ b
et

1 + et

∣∣∣∣
t=proxbρ(τZ)

= b− b

1 + eproxbρ(τZ)

(b)
= b− c0τ

eΘ(τ)

(c)
> b− ετ > τZ,

where (b) follows from the assumptions b0 = cτ and
∣∣proxbρ (τZ)

∣∣ & τ , and (c) holds when τ is
sufficiently large. This violates the identity (11). Similarly, if

∣∣proxbρ (τZ)
∣∣ & τ and proxbρ (τZ) < 0,

then

b
et

1 + et

∣∣∣∣
t=proxbρ(τZ)

+ proxbρ (τZ) < b
eproxbρ(τZ)

1 + eproxbρ(τZ)
= c0τ

e−|proxbρ(τZ)|

1 + e−|proxbρ(τZ)|

(d)
< ετ ≤ τZ,
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where (d) follows when τ is sufficiently large. This inequality contradicts (11) as well. As a result, we
reach

∣∣proxbρ (τZ)
∣∣ = o(τ) in this case, which combined with (11) gives

b
et

1 + et

∣∣∣∣
t=proxbρ(τZ)

= (1 + o (1)) τZ. (13)

Additionally, (13) leads to

1

1 + et

∣∣∣∣
t=proxbρ(τZ)

= (1 + o (1))

(
1− τZ

b

)
, (14)

which is bounded away from 0 in this case. Taken together, (13) and (14) yield

1

1 + bρ′′(proxbρ (τZ))
=

1

1 + b et

(1+et)2

∣∣∣
t=proxbρ(τZ)

=
1

1 + (1 + o (1)) τZ
(
1− τZ

b

) → 0

and (
ρ′
(
proxbρ (τZ)

))2
=

(
et

1 + et

)2
∣∣∣∣∣
t=proxbρ(τZ)

= (1 + o(1))
τ2Z2

b2
.

Putting the above cases together and applying dominated convergence gives

lim
τ→∞

{
E
[

1

1 + bρ′′(proxbρ (τZ))

]
− E

[
1

1 + bρ′′(proxbρ (τZ))
1{|Z|≤ε or |Z−b/τ |≤ε}

]}
= lim
τ→∞

{
E
[
1{Z<−ε}

]
+ E

[
1{Z> b

τ−ε}
]}

= lim
τ→∞

P
{
Z < −ε or Z >

b

τ
+ ε

}
when b = c0τ for some constant c0 > 0. Recognizing that

E
[

1

1 + bρ′′(proxbρ (τZ))
1{|Z|≤ε or |Z−b/τ |≤ε}

]
≤ E

[
1{|Z|≤ε or |Z−b/τ |≤ε}

]
≤ 4ε

and P
{
−ε ≤ Z ≤ 0 or

b

τ
≤ Z ≤ b

τ
+ ε

}
≤ 2ε,

we arrive at ∣∣∣∣ lim
τ→∞

E
[

1

1 + bρ′′(proxbρ (τZ))

]
− lim
τ→∞

P
{
Z < 0 or Z >

b

τ

}∣∣∣∣ ≤ 6ε.

Since ε > 0 can be arbitrarily small, we have

lim
τ→∞

E
[

1

1 + bρ′′(proxbρ (τZ))

]
= lim
τ→∞

P
{
Z < 0 or Z >

b

τ

}
(15)

when b = c0τ . Similarly,

lim
τ→∞

E
[(
ρ′
(
proxbρ (τZ)

))2]
= lim

τ→∞

{
P
{
Z >

b

τ

}
+
τ2

b2
E
[
Z21{0<Z< b

τ }
]}

.

�
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1.2 The probit case
The proof proceeds with the following 3 steps:

(i) Show that for any b > 0 and ε > 0, there exist constants c1,b, c2,b, c3, c4 > 0, depending on ε, such that{
supz>c1,b

∣∣∣proxbρ(z)− z
b+1

∣∣∣ ≤ ε,
supz<−c2,b

∣∣proxbρ(z)− z∣∣ ≤ ε,
and

{
supz>c3

∣∣ρ′′(z)− 1
∣∣ ≤ ε,

supz<−c4
∣∣ρ′′(z)∣∣ ≤ ε.

(16)

In particular, one can take

c1,b := max

{
bρ′(
√

2) +
√

2, 2
√

2b,
4

ε
b

}
and c2,b := max

{
2bρ′(0),

√
8 log

b

ε

}
. (17)

(ii) Show that for any constant η > 0, for all τ sufficiently large, one has∣∣∣∣1− 1

b(τ) + 1
− 2κ

∣∣∣∣ ≤ η. (18)

(iii) Show that for any constant 0 < η < 1− 2κ and for τ sufficiently large, one has∣∣∣∣V(τ2)

τ2
− 2κ

∣∣∣∣ ≤ η. (19)

In the sequel, we elaborate on each of these three steps.

Step (i). Recall that for any x > 0, one has φ(x)
x

(
1− 1

x2

)
≤ 1−Φ(x) ≤ φ(x)

x . Since ρ′(x) = φ(x)
1−Φ(x) , this

gives ∣∣ρ′(x)− x
∣∣ ≤ 1

x− x−1
≤ 2

x
, x ≥

√
2. (20)

We start with the first inequality in (16). From the definition of prox(·), we have the defining relation

bρ′(proxbρ(z)) + proxbρ(z) = z. (21)

Therefore, if we take zb,1 := bρ′(
√

2)+
√

2, then this identity (21) indicates that proxbρ(zb,1) =
√

2. Moreover,
proxbρ(z) is monotonically increasing in z (see [2, Eqn. (56)]), which tells us that

proxbρ(z) ≥ proxbρ(zb,1) =
√

2, ∀z > zb,1. (22)

Rearranging the identity (21) and combining it with (20) and (22), we obtain

z − (b+ 1)proxbρ(z) = bρ′(proxbρ(z))− bproxbρ(z)

=⇒
∣∣∣∣ z

b+ 1
− proxbρ(z)

∣∣∣∣ =
b

b+ 1

∣∣ρ′(proxbρ(z))− proxbρ(z)
∣∣ ≤ 2b/(b+ 1)

proxbρ(z)
(23)

≤
√

2b

b+ 1
, ∀z > zb,1. (24)

This inequality provides a lower bound on proxbρ(z):

proxbρ(z) ≥
z −
√

2b

b+ 1
≥ z

2(b+ 1)

for all z obeying z > zb,1 and z > 2
√

2b. Substitution into (23) once again gives∣∣∣∣ z

b+ 1
− proxbρ(z)

∣∣∣∣ ≤ 2b/(b+ 1)

proxbρ(z)
≤ 4b

z
≤ ε, ∀z > max

{
zb,1, 2

√
2b,

4b

ε

}
,
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establishing the first bound in (16).
We now turn to the second result in (16). Similarly, it is seen from (21) that proxbρ(zb,2) = 0 with

zb,2 := bρ′(0) > 0. The monotonicity of proxbρ(·) implies that

proxbρ(z) ≤ proxbρ(zb,2) = 0, ∀z < zb,2.

Recognizing that ρ′(x) > 0 and ρ′′(x) > 0 for any x and using the relation (21), we arrive at∣∣z − proxbρ(z)
∣∣ = bρ′(proxbρ(z)) ≤ bρ′(0), ∀z < zb,2, (25)

thus indicating that
proxbρ(z) ≤ z + bρ′(0) ≤ z/2, ∀z < −2zb,2 < 0.

Substituting it into (25) and using the fact that ρ′(x) = φ(x)
1−Φ(x) ≤ 2φ(x) ≤ e−x2/2 for all x < 0, we get

∣∣z − proxbρ(z)
∣∣ = bρ′(proxbρ(z))

(a)

≤ bρ′(z/2) ≤ be−z
2/8, ∀z < −2zb,2 < 0, (26)

where (a) follows since ρ′′(x) > 0. The upper bound (26) will not exceed ε > 0 as long as z < −max

{
2zb,2,

√
8 log b

ε

}
.

This establishes the second bound of (16).
The remaining two inequalities regarding ρ′′ are rather straightforward and the proofs are thus omitted.

Step (ii). Recognizing that Ψ′(z; b) = bρ′′(x)
1+bρ′′(x)

∣∣∣
x=proxbρ(z)

, we see that b(τ) is the solution to

1− κ = E[g(τZ, b)] with g(x, b) :=
1

1 + bρ′′(proxbρ(x))
. (27)

As a result, everything boils down to quantifying E[g(τZ, b)].
Consider any sufficiently small ε > 0. We first obtain an approximation of E[g(τZ, b)]. Specifically, we

claim that taking cε := 1
2τε

2 leads to

E
[
g(τZ, b)1{|τZ|>cε}

]
≤ E[g(τZ, b)] ≤ E

[
g(τZ, b)1{|τZ|>cε}

]
+ ε. (28)

The lower bound is trivial since 0 ≤ g(x, b) ≤ 1. To see why the upper bound holds, we invoke Cauchy-
Schwarz to derive

E
[
g(τZ, b)1{|τZ|≤cε}

]
≤
√

E [g2(τZ, b)]

√
P
(
|Z| ≤ cε

τ

) (b)

≤
√
P
(
|Z| ≤ cε

τ

)
≤
√

2
cε
τ

= ε, (29)

where (b) arises since 0 ≤ g(x, b) ≤ 1. This inequality (29) matches the upper bound in (28). In short, we
see that E

[
g(τZ, b)1{|τZ|>cε}

]
is a reasonably tight approximation of E

[
g(τZ, b)

]
, and it suffices to look at

E
[
g(τZ, b)1{|τZ|>cε}

]
= E

[
g(τZ, b)1{τZ<−cε}

]
+ E

[
g(τZ, b)1{τZ>cε}

]
. (30)

We first control the second term in the right-hand side of (30). Suppose for the moment that

cε > max {c1,b, (c3 + ε) (b+ 1) , c2,b, c4 + ε} .

According to (16), on the event {τZ > cε} one has

τZ

b+ 1
− ε ≤ proxbρ(τZ) ≤ τZ

b+ 1
+ ε and 1− ε ≤ ρ′′(proxbρ(τZ)) ≤ 1 + ε,

where the second inequality holds since proxbρ(τZ) ≥ τZ
b+1 − ε >

cε
b+1 − ε ≥ c3. Plugging these inequalities

into (27) gives
1

1 + b(1 + ε)
≤ g(τZ, b) ≤ 1

1 + b(1− ε)
.
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In addition, similar to (29) we get

1

2
≥ P (τZ > cε) = P (τZ < −cε) =

1

2

{
1− P

(
|Z| ≤ cε

τ

)}
≥ 1

2

{
1− 2cε

τ

}
=

1

2
(1− ε2).

The above bounds taken collectively reveal that

1

1 + b(1 + ε)
· 1

2
(1− ε2) ≤ E

[
g(τZ, b)1{τZ>cε}

]
≤ 1

1 + b(1− ε)
· 1

2
. (31)

We can employ similar arguments to control the first term in the right-hand side of (28) as well. Since
cε > max{c2,b, c4 + ε}, on the event {τZ < −cε} we have

τZ − ε ≤ proxbρ(τZ) ≤ τZ + ε and − ε ≤ ρ′′(proxbρ(τZ)) ≤ ε,

a direct consequence of (16). This implies that

1

1 + bε
≤ g(τZ, b) ≤ 1

1− bε

and, therefore,
1

1 + bε
· 1

2
(1− ε2) ≤ E

[
g(τZ, b)1{τZ<−cε}

]
≤ 1

1− bε
· 1

2
. (32)

Combining (28), (31) and (32), we conclude that for any ε > 0,

1− ε2

2

{
1

1 + b(1 + ε)
+

1

1 + bε

}
≤ E

[
g(τZ, b)

]
≤ 1

2

{
1

1 + b(1− ε)
+

1

1− bε

}
+ ε,

as long as cε = 1
2τε

2 > max {c1,b, (c3 + ε) (b+ 1) , c2,b, c4 + ε}, or equivalently,

τ >
2 max {c1,b, (c3 + ε) (b+ 1) , c2,b, c4 + ε}

ε2
,

where the lower bound is on the order of b/ε3. Effectively, we have established that for any given b and any
sufficiently small ε > 0 (so that bε < 1 and ε < 1), if τ is sufficiently large (as specified above) one has∣∣∣∣E [g(τZ, b)

]
− 1

2

(
1

1 + b
+ 1

)∣∣∣∣ ≤ c̃4 (ε+ bε) (33)

for some universal constant c̃4 > 0 independent of b, ε, τ .
We can then combine this result (33) with the constraint (27) to derive an estimate on b(τ). Fix any

η > 0. Let b1 and b2 be two constants such that

1

2

(
1

1 + b1
+ 1

)
= 1− κ− η

4
,

1

2

(
1

1 + b2
+ 1

)
= 1− κ+

η

4
.

Picking ε > 0 sufficiently small so that max{c̃4(1 + b1)ε, c̃4(1 + b2)ε} < η/4 and τ � max {b1, b2} /ε3, we can
ensure that

E
[
g(τZ, b1)

]
< 1− κ < E

[
g(τZ, b2)

]
.

Recall that for any τ > 0, the function G(b) := 1− E
[
g(τZ, b)

]
is strictly increasing in b (see [1, Lemma 5])

and, hence,

b2 ≤ b(τ) ≤ b1, =⇒ 1

2(1 + b1)
≤ 1

2(1 + b(τ))
≤ 1

2(1 + b2)
.

Combining these together, we obtain ∣∣∣∣(1− 1

b(τ) + 1

)
− 2κ

∣∣∣∣ ≤ η, (34)
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for any η > 0 with the proviso that τ is sufficiently large. This finishes Step (ii). In particular, this yields

lim
τ→∞

b(τ) =
2κ

1− 2κ
. (35)

Step (iii). Now we move on to the variance map

V(τ2) =
b(τ)2

κ
E
[
ρ′(proxb(τ)ρ(τZ))2

]
. (36)

For notational convenience, we set
h(x) := ρ′(proxbρ(x))2,

a key mapping in the definition (36). Before proceeding, we remark that from the properties of ρ′, for any
ε > 0, there exist constants c5, c6 > 0, depending on ε, such that

sup
z>c5

|ρ′(z)− z| ≤ ε, sup
z<−c6

|ρ′(z)| ≤ ε. (37)

As before, we decompose the function V(τ2) as follows:∣∣∣∣V(τ2)− b(τ)2

κ
E
[
h(τZ)1{|τZ|>αε}

]∣∣∣∣ =
b(τ)2

κ
E
[
h(τZ)1{|τZ|≤αε}

]
for some point αε > 0 to be specified later. This gives

E[h(τZ)1{|τZ|<αε}] ≤
√
E[h2(τZ)1{|τZ|<αε}]

√
P (|τZ| < αε) ≤ C(αε, b)

√
2Φ
(αε
τ

)
− 1, (38)

where
C(αε, b) = ρ′(proxbρ(αε))

2.

The last inequality of (38) holds since (1) ρ′(z) ≥ 0 is an increasing function of z; (2) proxbρ(x) is an increasing
function of x (see [2, Eqn. (56)]). For any given ε > 0, one can pick τ sufficiently large so that the above

bound C(αε, b)
√

2Φ
(
αε
τ

)
− 1 is below ε. The particular choice of τ will be made clear later. Under these

conditions,

E[h(τZ)1{|τZ|>αε}] ≤ E[h(τZ)] ≤ E[h(τZ)1{τZ<−αε}] + E[h(τZ)1{τZ>αε}] + ε. (39)

We first control the second term in the right-hand side of (39). To this end, we choose

αε > max {c1,b, c2,b, (c5 + ε) (b+ 1) , c6 + 2ε}

as before. Then from (16) and (37), on the event {τZ > αε} we have

τZ

b+ 1
− ε ≤ proxbρ(τZ) ≤ τZ

b+ 1
+ ε and

τZ

b+ 1
− 2ε ≤ ρ′(proxbρ(τZ)) ≤ τZ

b+ 1
+ 2ε.

This yields (
τZ

b+ 1
− 2ε

)2

≤ h(τZ) ≤
(
τZ

b+ 1
+ 2ε

)2

on the event {τZ > αε}, and hence

E

[(
τZ

b+ 1
− 2ε

)2

1{τZ>αε}

]
≤ E[h(τZ)1{τZ>αε}] ≤ E

[(
τZ

b+ 1
+ 2ε

)2

1{τZ>αε}

]
. (40)

Similarly for the first term in the right-hand side of (39), as αε > max {c2, c6 + 2ε}, on the event
{τZ < −αε}, we have

τZ − ε ≤ proxbρ(τZ) ≤ τZ + ε and − ε ≤ ρ′(proxbρ(τZ) ≤ ε.

8



Note that P (τZ > αε) = P (τZ < −αε) = 1
2 (1 − δε) for some δε small which is a function of ε and which

vanishes as ε→ 0. This yields

0 ≤ E[h(τZ)1{τZ<−αε}] ≤
ε2

2
(1− δε). (41)

Combining the relations (39), (40) and (41) we obtain that

b2

κ
E

[(
τZ

b+ 1
− 2ε

)2

1{τZ>αε}

]
≤ V(τ2) ≤ b2

κ

{
E

[(
τZ

b+ 1
+ 2ε

)2

1{τZ>αε}

]
+
ε2

2
(1− δε) + ε

}
. (42)

We still need to evaluate E
[(

τZ
b+1 − 2ε

)2

1{τZ>αε}

]
. To this end, we define two quantities

α1 := E
[
Z1{τZ>αε}

]
and α2 := E

[
Z21{τZ>αε}

]
.

Using the properties of the normal CDF, one can show that

τ√
2π
− αε

δε
2
≤ τα1 ≤

τ√
2π

and
τ2

2
− α2

ε

δε
2
≤ τ2α2 ≤

τ2

2
. (43)

Using the above relations and rearranging, the bounds in (42) can be rewritten as

V(τ2) ≥ b2

κ

[
τ2

2(b+ 1)2
− α2

εδε
2(b+ 1)2

− 4ε
τ√

2π(b+ 1)
+ 2ε2(1− δε)

]
;

V(τ2) ≤ b2

κ

[
τ2

2(b+ 1)2
+ ε

(
4τ√

2π(b+ 1)
+ 1

)
+

5

2
ε2(1− δε)

]
.

Finally, observing that b ≥ 0, we arrive at∣∣∣∣V(τ2)− b2

2κ

τ2

(b+ 1)2

∣∣∣∣ ≤ b2

κ

{
ε

(
8τ√
2π

+ 1

)
+
δεα

2
ε

2
+
ε2

2
(1− δε)

}
,

which is equivalent to∣∣∣∣∣V(τ2)

τ2
− 1

2κ

(
1− 1

b+ 1

)2
∣∣∣∣∣ ≤ b2

κ

{
ε

(
8√
2πτ

+
1

τ2

)
+
δεα

2
ε

2τ2
+

ε2

2τ2
(1− δε)

}
. (44)

Note that in the bound above αε also depends on b. Henceforth we denote αε as αε(b). Next, we invoke the
result from Step (ii) to ensure that b(τ) is bounded for all sufficiently large values of τ .

Fix η′ > 0 such that 0 < η′ < 1− 2κ. Let τ0 be the threshold above which for all values of τ the relation
(34) holds with η = η′/2. Then ∀τ ≥ τ0, one has

b(τ) ≤ 2κ+ η′

1− 2κ− η′
=: a(η′).

For all τ ≥ τ0, we have∣∣∣∣∣V(τ2)

τ2
− 1

2κ

(
1− 1

b+ 1

)2
∣∣∣∣∣ ≤ a(η′)2

κ

{
ε

(
8√
2πτ

+
1

τ2

)
+
δε(αε(a(η)))2

2τ2
+

ε2

2τ2
(1− δε)

}
,

where αε(a(η)) is any constant above max{c1,a(η), c2,a(η), (c5 + ε)(a(η) + 1), c6 + 2ε}. We choose τ > τ0 so
that C(αε(a(η)), a(η))

√
2Φ(αε)− 1 is below ε, and the above bound in the RHS is below η = η′/2. This

gives ∣∣∣∣V(τ2)

τ2
− 2κ

∣∣∣∣ ≤
∣∣∣∣∣V(τ2)

τ2
− 1

2κ

(
1− 1

b+ 1

)2
∣∣∣∣∣+

∣∣∣∣∣2κ− 1

2κ

(
1− 1

b+ 1

)2
∣∣∣∣∣ ≤ η′.
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Hence, for any such τ
V(τ2)

τ2
≤ 2κ+ η′ < 1,

from the choice of η′. In particular, we have established that

lim
τ→∞

V(τ2)

τ2
= 2κ.

Remark 1. In fact, the above analysis works for a broader class of link functions beyond the probit case.
Specifically, more general sufficient conditions for the above result to hold are the following: in addition to
conditions mentioned in [1, Section 2.3.3].

• ρ′(x)→ 0 when x→ −∞, and ρ′(x)/x→ 1, when x→∞; further, |ρ′(x)−x| ≤ f(x) for all x positive,
where f(x) is some function obeying f(x)→ 0 when x→∞.

• ρ′′ is bounded, converges to 1 when x→∞ and converges to 0 when x→ −∞. −∞ are swapped.

• In addition, for any given z, bρ′′(proxbρ(z))→∞ when b→∞ .
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