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Abstract

This document presents proofs of Theorems 2,3 and 4 in the paper [8]: “A modern Maximum Likeli-
hood Theory for High-Dimensional Logistic Regression”.

1 The results

We recall Theorems 2, 3 and 4 from [8] below.1

Theorem 1. Assume the dimensionality and signal strength parameters κ and γ are such that γ < gMLE(κ)
(the region where the MLE exists asymptotically as characterized in [2]).2 For any pseudo-Lipschitz function
ψ of order 2, the marginal distributions of the MLE coordinates obey

1

p

p∑
j=1

ψ
(
β̂j − α?βj ,βj

)
a.s.−→ E [ψ (σ?Z,β)] , Z ∼ N (0, 1) , (1)

where β ∼ Π, independent of Z.

Theorem 2. Let j be any variable such that βj = 0. Then in the setting of Theorem 1, the MLE obeys

β̂j
d−→ N

(
0,σ2

?

)
. (2)

For any finite subset of null variables {i1, . . . , ik}, the components of (β̂i1 , . . . , β̂ik) are asymptotically inde-
pendent.

Theorem 3. Consider the LLR Λj = minb : bj=0 `(b)−minb `(b) for testing βj = 0, where `(b) is the negative
log-likelihood function. In the setting of Theorem 1, twice the LLR is asymptotically distributed as a multiple
of a chi-square under the null,

2Λj
d−→ κσ2

?

λ?
χ2
1. (3)

Also, the LLR for testing βi1 = βi2 = . . . = βik = 0 for any finite k converges to the rescaled chi-square(
κσ2

?/λ?
)
χ2
k under the null.

∗Department of Statistics, Stanford University, Stanford, CA 94305, U.S.A.
†Department of Mathematics, Stanford University, Stanford, CA 94305, U.S.A.
1Notations are the same as in [8].
2See [2] for a definition of gMLE(γ).
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In the aforementioned results, (α?,σ?,λ?) is a solution to the system of equations:
σ2 =

1

κ2
E
[
2ρ′ (Q1)

(
λρ′
(
proxλρ (Q2)

))2]
0 = E

[
ρ′(Q1)Q1λρ

′ (proxλρ (Q2)
)]

1− κ = E

[
2ρ′ (Q1)

1 + λρ′′
(
proxλρ (Q2)

)]
(4)

where (Q1,Q2) is a bivariate normal variable with mean 0 and covariance

Σ (α,σ) =

[
γ2 −αγ2
−αγ2 α2γ2 + κσ2

]
. (5)

It can be easily checked numerically that in the regime γ < gMLE(κ) the system (4) admits a solution. Hence,
we omit proving this fact. However, we establish that in the aforementioned regime, if (4) admits a solution
then the solution must be unique.3 Thus, the parameters (α?,σ?,λ?) are well-defined in our setup.

The proximal mapping operator for any λ > 0 and convex function ρ is defined via

proxλρ (z) = arg min
t∈R

{
λρ (t) +

1

2
(t− z)2

}
. (6)

In the subsequent text, it will be useful to note that the proximal mapping operator satisfies the relation:

λρ′
(
proxλρ (z)

)
+ proxλρ (z) = z. (7)

2 Road map to the proofs

This section presents the key steps in the proofs of each theorem. Detailed proofs are provided in Sections
4–6. At a high level, the proof of Theorem 1 has the following ingredients:

1. Introduce an iterative algorithm that has iterates {β̂t}t≥0, with the aim of tracking the large sample
behavior of the MLE. This was already done in [8, Section 4.1].

2. Characterize the asymptotic distribution of {β̂t}t≥0 for each fixed t, in the large sample limit. (See The-
orem 6). Here, we resort to existing results in the generalized approximate message passing (G-AMP)
literature [7]. However, to apply these results, one needs to establish that the algorithm introduced in
the first step can be cast in the framework of a G-AMP algorithm. This is a highly non-trivial step
and forms the core of the proof of Theorem 6.

3. Establish that in the large sample and large iteration limit, β̂t converges to the MLE β̂ in an appropriate
sense (see Theorem 7). In conjunction with the previous step, this provides the desired result.

In the logistic model, the MLE is far from exhibiting any closed form expression. In fact, all information
about it is contained in the optimality condition ∇`(β̂) = 0. Thus, the analysis of a single null coordinate
is hard. To circumvent this difficulty, we resort to the following two stage-approach:

1. Replace the MLE by a surrogate which is amenable to explicit mathematical analysis (Theorem 8). In
turn, this approximation yields a convenient representation of a null coordinate.

2. Characterize the asymptotic distribution of the aforementioned representation. This is the content of
the rest of the arguments in Section 5.

3See Remark 1 for a detailed explanation of this fact.
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Finally, we arrive at Theorem 3, the proof of which can be summarized in the following two steps:

1. In Theorem 9, we establish that if βj = 0, the quantity of interest 2Λj can be approximated as follows:

2Λj =
κβ̂2

j

λ[−j]
+ oP (1),

where β̂j denotes the j-th coordinate of the MLE, and λ[−j] defined later in (84) is a function of the
Hessian of the negative log-likelihood.

2. Theorem 2 already established that β̂j
d→ N (0,σ2

?). Thus, it suffices to show that λ[−j]
P→ λ?. This is

achieved in Theorem 10, deploying techniques similar to that in [9, Appendix I].

3 Crucial building blocks

This section gathers a few important results that will be useful throughout the manuscript. Let C0,C1, . . .,
c0, c1, . . . denote positive universal constants, independent of n and p, whose value can change from line to
line. We start by recalling a recursion from [8], and expressing it in an equivalent form.

3.1 A Useful Recursion
In [8], the authors introduced a sequence of scalar parameters: {αt,σt,λt}t≥0, defined recursively as follows.
Let (Qt1,Qt2) be a bivariate normal variable with mean 0 and covariance matrix Σ(αt,σt) specified by (5).
Starting from an initial pair α0,σ0, for t = 0, 1, . . ., inductively define λt as the solution to

E

[
2ρ′ (Qt1)

1 + λρ′′
(
proxλρ (Qt2)

)] = 1− κ, (8)

and define αt+1,σt+1 as

αt+1 = αt +
1

κγ2
E
[
2ρ′
(
Qt1
)
Qt1λtρ

′ (proxλtρ (Qt2))] ,

σ2
t+1 =

1

κ2
E
[
2ρ′
(
Qt1
) (
λtρ
′ (proxλtρ (Qt2)))2] .

(9)

Our goal is to express the aforementioned recursive system in an equivalent form. To this end, we introduce
a new sequence of scalar parameters {α̃t, σ̃t, λ̃t}t≥0 defined as follows. Let (Q̃t1, Q̃t2) be a bivariate normal
variable with mean 0 and covariance matrix Σ(−α̃t, σ̃t). Further, letW ∼ Unif(0, 1), independent of (Q̃t, Q̃t2)
for all t ≥ 0. Define the function

h(x, y) = 1y≤ρ′(x), where ρ′(x) =
ex

1 + ex
. (10)

Starting with initial conditions α̃0, σ̃0, for each t ≥ 0, obtain λ̃t by solving

EW ,Q̃t1,Q̃
t
2

 1

1 + λρ′′
(
proxλρ

(
λh
(
Q̃t1,W

)
+ Q̃t2

))
 = 1− κ. (11)

Subsequently, α̃t+1, σ̃t+1 are updated via

α̃t+1 = α̃t +
1

κγ2
E
[
Q̃t1Ψ̃t

(
Q̃t1,W , Q̃t2

)]
, (12)

σ̃2
t+1 =

1

κ2
E
[
Ψ̃2
t

(
Q̃1,W , Q̃t2

)]
,
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where
Ψ̃t (q1,w, q2) = λ̃t

[
h (q1,w)− ρ′

(
proxλ̃tρ

(
λ̃th (q1,w) + q2

))]
. (13)

We propose simplifying the right-hand side (RHS) of the first equation in (12) by first conditioning on
(Q̃t1, Q̃t2). This gives

EW ,Q̃t1,Q̃
t
2

[
Q̃t1Ψ̃t(Q̃

t
1,W , Q̃t2)

]
= E

[
ρ′(Q̃t1)Q̃t1(λ̃t − λ̃tρ′(proxλ̃tρ(λ̃tQ̃2)))

]
− E

[
(1− ρ′(Q̃1))Q̃1λ̃tρ

′(proxλ̃tρ(Q̃2))
]

.

One can easily verify the following identity

proxλρ (λ+ u) = −proxλρ (−u) .

This yields

λ̃t − λ̃tρ′(proxλ̃tρ(λ̃t + Q̃t2)) = λ̃t − λ̃tρ′(−proxλ̃tρ(−Q̃
t
2)) = λ̃tρ

′(proxλ̃tρ(−Q̃
t
2)).

Combining the above relations, we have

EW ,Q̃t1,Q̃
t
2

[
Q̃t1Ψ̃t(Q̃

t
1,W , Q̃t2)

]
(14)

= E
[
ρ′(Q̃t1)Q̃t1λ̃tρ

′(proxλ̃tρ(−Q̃
t
2))
]
− E

[
(1− ρ′(Q̃t1))Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]

= −E
[
ρ′(−Q̃t1)Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]
− E

[
(1− ρ′(Q̃t1))Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]

= −2E
[
ρ′(−Q̃t1)Q̃t1λ̃tρ

′(proxλ̃tρ(Q̃
t
2))
]

.

Performing similar calculations it can be shown that

E
[
Ψ̃2
λ̃t

(Q̃t1,W , Q̃t2)
]

= E
[
ρ′(Q̃t1)

{
λ̃tρ
′(proxλ̃tρ(−Q̃

t
2))
}2
]

+ E
[
(1− ρ′

(
Q̃t1)

){
λ̃tρ
′(proxλ̃tρ(Q̃

t
2))
}2
]

= E
[
2ρ′(−Q̃t1)

{
λ̃tρ
′(proxλ̃tρ(Q̃

t
2))
}2
]

. (15)

Similarly,

E

[
1

1 + λ̃tρ′′(proxλ̃tρ(λ̃th(Q̃t1,W ) + Q̃t2))

]
(16)

= E

[
ρ′(Q̃t1)

1 + λ̃tρ′′(−proxλ̃tρ(−Q̃
t
2))

]
+ E

[
1− ρ′(Q̃t1)

1 + λ̃tρ′′(proxλ̃tρ(Q̃
t
2))

]

= E

[
2ρ′(−Q̃t1)

1 + λ̃tρ′′(proxλ̃tρ(Q̃
t
2))

]
. (17)

Placing together (14), (15) and (16), we have effectively established that, if α0 = α̃0,σ0 = σ̃0, then for
all t ≥ 0,

αt ≡ α̃t, σt ≡ σ̃t, λt ≡ λ̃t. (18)
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3.2 When is the MLE bounded?
It was established in [2] that if γ < gMLE(κ) (resp. γ > gMLE(κ)), the MLE exists asymptotically with
probability 1 (resp. 0). [2] further characterized the width of the window in which the phase transition
occurs, in terms of the sample size. However, for establishing our main results Theorems 1–3, a stronger
version of the phase transition phenomenon is necessary. We require that with exponentially high probability,

‖β̂‖√
n

= O(1)

in the regime γ < gMLE(κ). This is the content of the theorem below.

Theorem 4. If γ < gMLE(κ), there exists N0 ≡ N0(γ,κ) such that, for all n ≥ N0, the norm of the MLE β̂
obeys

P

(
‖β̂‖√
n
≤ C1

)
≥ 1− C2n

−δ, (19)

where δ > 1.

Proof: By arguments similar to that in Section 5.2.2 from [8], it can be deduced that, for any ε > 0,

P

(
‖β̂‖√
n
≤ 4 log 2

ε2

)
≥ P ({y ◦ (Xb) |b ∈ Rp} ∩ A = {0}) , (20)

where ◦ denotes the usual Hadamard product and A is a cone specified by

A :=

u ∈ Rn|
n∑
j=1

max{−uj , 0} ≤ ε2
√
n‖u‖

 . (21)

Thus, it suffices to establish that the complement of the RHS of (20) has exponentially decaying proba-
bility. This is established in the remaining proof.

By rotational invariance, we can assume that all the signal lies in the first coordinate, that is,
β =

√
n(γn, 0, 0, . . . , 0), where γn = ‖β‖2/n. Letting Xi• denote the i-th row of X, we have,

yiXi•
d
= (V ,X2, . . . Xp) ,

where V d
= yiXi1, with density given by 2ρ′(γnt)φ(t) (φ(·) denotes the standard normal density), and

V |= (X2, . . . ,Xp). Denote T = [V ,X•2, . . . ,X•p], that is, it is the matrix with the 2 through p-th columns
same as that in X, and the first column given by (V1, . . . ,Vn) where Vi’s are i.i.d. copies of V . Then,

P ({y ◦ (Xb) |b ∈ Rp} ∩ A 6= {0}) = P ({Tb|b ∈ Rp} ∩ A 6= {0}) . (22)

With G defined to be the event
G := [span(V ) ∩ A 6= {0}] ,

we can decompose the required probability as

P ({Tb|b ∈ Rp} ∩ A 6= {0}) = P (G) + P (Gc ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) .

The following lemma ensures that P (G) decays to zero exponentially fast in n.

Lemma 1. Let V be a continuous random variable with density 2ρ′(γnt)φ(t), where γn = ‖β‖/
√
n. Suppose

V1, . . . ,Vn are i.i.d. copies of V and V = (V1, . . . ,Vn). There exists a fixed positive constant ε1 such that,4
for all ε ≤ ε1,

P (span(V ) ∩ A 6= {0}) ≤ C0 exp(−c0n).
4Recall that the definition of A in (21) involved a choice of ε.
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Henceforth, let ε < ε1. Thus,

P ({Tb|b ∈ Rp} ∩ A 6= {0}) ≤ P (Gc ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) + C0 exp(−c0n). (23)

Further, we restrict ourselves to a high probability event on which there is entry-wise control over the random
vector V in a sense specified below. The reasons for this restriction would become evident in later parts of
the analysis. To this end, note that since V has sub-Gaussian tails, for any ζ > 0,

P
[
max
i
V 2
i ≥ ζ log n

]
≤ nP

[
|V1| ≥

√
ζ log n

]
≤ C1 exp

(
log n− c1

ζ log n

K2

)
,

where K is the sub-Gaussian norm of the random variable V and c > 0 is a universal constant. We choose
ζ > 2K2/c and define the event

FV :=
{

max
i
V 2
i ≤ ζ log n

}
, (24)

that satisfies

P [FV ] ≥ 1− C1n
−δ, (25)

where δ > 1. Thus,

P (Gc ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) ≤ P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) + C1n
−δ. (26)

Regarding the cone A, [9] established that, there exists a collection of N = exp(2ε2p) closed convex cones
{Bi|1 ≤ i ≤ n} that form a cover of A with probability exceeding 1 − exp(−C1ε

2p), for some universal
positive constant C. Thus, by the union bound,

P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) ≤ P (Gc ∩ FV ∩ {Bi|1 ≤ i ≤ N} does not form a cover of A)

+

N∑
i=1

P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ Bi 6= {0}]) . (27)

For any fixed subspace W ∈ Rn, introduce the convex cones

Ci (W) := {w + d|w ∈ W,d ∈ Bi} .

Denoting L = span(X•2, . . . ,X•p), observe that the following events are equivalent,

[Gc ∩ {{Tb|b ∈ Rp} ∩ Bi 6= {0}}] ⇐⇒ [Gc ∩ {L ∩ Ci(span(V )) 6= {0}}] .

Hence, (27) reduces to

P (Gc ∩ FV ∩ [{Tb|b ∈ Rp} ∩ A 6= {0}]) ≤ P ({Bi|1 ≤ i ≤ N} does not form a cover of A)

+

N∑
i=1

P (FV ∩ [L ∩ Ci(span(V )) 6= {0}])

≤
N∑
i=1

P (FV ∩ [L ∩ Ci(span(V )) 6= {0}]) + exp
(
−C1ε

2p
)

. (28)
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To analyze the above, we will resort to ingredients from the literature on convex geometry. Using the
approximate kinematic formula [1, Theorem I], [9] argued that, for any closed convex cone C for which the
statistical dimension5 obeys δ(C) < n− δ(L) = n− p+ 1,

P (L ∩ C 6= {0}) ≤ 4 exp

{
− (n− p− δ(C))2

8n

}
. (29)

For any event GV measurable with respect to the sigma-algebra generated by V ,

P (FV ∩ L ∩ Ci(span(V )) 6= {0}) ≤ EV [1GV ∩FV P (L ∩ Ci(span(V )) 6= {0}|V )] + P (GcV ) . (30)

Here, the following lemma will be crucial.

Lemma 2. There exists an event GV in the σ-algebra generated by V and there exists a fixed constant ν0 > 0
such that for all 0 < ν < ν0, the following two properties hold:

1. GV has exponentially high probability, that is,

P (GV ) ≥ 1− C1 exp (−c1n) , (31)

for positive universal constants C1, c1.

2. For all v ∈ GV ∩ FV ,
δ (Ci (span(v))) ≤ n

(
1− g−1MLE(γ) + ν + o(1)

)
. (32)

Choose ν < min{ν0, g−1MLE(γ)−κ} in Lemma 2. Since, we are in the regime γ < gMLE(κ), for v ∈ GV ∩FV ,
we then have

δ (Ci (span(v)) < n− p+ 1.

Applying (29) and Lemma 2 leads to

1GV ∩FV P (L ∩ Ci (span(V )) 6= {0}|V ) ≤ 41v∈GV ∩FV exp

[
−{n− p− δ(Ci(span(v)))}2

8n

]
≤ 4 exp

[
−n

8

(
g−1MLE(γ)− κ− ν + o(1)

)2]
.

Thus, from (30), we have

P (FV ∩ [L ∩ Ci(span(V )) 6= {0}]) ≤ 4 exp
[
−n

8

(
g−1MLE(γ)− κ− ν + o(1)

)2]
+ C1 exp (−c1n) .

Consider n > 8 log 4/
(
g−1MLE(γ)− κ− ν + o(1)

)2
and choose ε such that,

2ε2κ < min

{
c,

1

8

(
g−1MLE(γ)− κ− ν + o(1)

)2 − log 4

n

}
.

Then
∑N
i=1 P (L ∩ Ci(span(V )) 6= {0}) decays exponentially fast in n. Thereby, recalling (22), (23),(26) and

(28) completes the proof. �

We defer the proofs of Lemmas 1–2 until Section 7.
5The statistical dimension of a convex cone is defined to be δ(C) = E ‖ΠC(Z)‖2, where Z ∼ N (0, In), and ΠC is the

projection onto C.
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3.3 Ingredients from G-AMP
As discussed in Section 2, the proof of Theorem 1 will require elements from the G-AMP literature. In this
Section, we provide a brief exposition of a key result established in [7] that will be central to our analysis in
Section 4. For convenience, we adhere to the same notations as in [7].

A G-AMP algorithm comprises iterates {xt}t≥0, where xt ∈ Vq×N ≡ (Rq)N , for some fixed q ∈ N, and N
is a function of the sample size n.6 Define A = G+G′, where G ∈ RN×N has i.i.d. entries from N (0, 1/2N).
Consider a collection of mappings F = {fk : k ∈ [N ]}, such that fk : Rq ×N → Rq, is locally Lipschitz in
the first argument for all k ∈ [N ]. Then, starting from some initial condition x0 ∈ Vq,N , a G-AMP algorithm
updates each element of xt as follows:

xt+1
•i =

N∑
j=1

Aijf
j
(
xt•j ; t

)
− 1

N

 N∑
j=1

∂f j

∂x

(
xt•j ; t

) f i
(
xt−1•i ; t− 1

)
, (33)

where any term with negative t-index is considered 0. Here, ∂f
j

∂x denotes the Jacobian of f j(·; t) : Rq → Rq.
The authors in [7] characterize the asymptotic variance of the iterates xt, for each t, as n → ∞. To

describe the characterization, we require a few additional notations which we introduce next:

1. Consider an integer q′ such that for each N , a finite partition CN1 ∪ . . .∪CNq′ = [N ] exists and for each
a ∈ [q′],

lim
N→∞

CNa
N

= ca ∈ (0, 1).

2. There exists Y := (y•1, . . . ,y•N ) ∈ Vq,N such that for each a ∈ [q′], the empirical distribution of
{y•i}i∈CNa , denoted by P̂a converges weakly to Pa; that is,

1

|CNa |
∑
i∈CNa

δy•i
d→ Pa.

Further, suppose EPa ‖Ya‖2k−2 is bounded for some k ≥ 2, and

EP̂a
(
‖Ya‖2k−2

)
→ EPa

(
‖Ya‖2k−2

)
.

3. There exists a function g : Rq′ × Rq′ × [q′] × N ∪ {0}, such that, for each r ∈ [q′], a ∈ [q′], t ∈
N ∪ {0}, gr(..., a, t) is Lipschitz continuous. Further, for each N ≥ 0, each a ∈ [q′] and each i ∈ CNa ,
x ∈ Rq,

f i (x; t) = g (x,y•i, a, t) . (34)

This requirement basically states that the functions f j(·; t) in (33) can only be of the aforementioned
form.

4. For each a ∈ [q′], define Σ̂ to be the limit (in probability),

lim
N→∞

1

|CNa |
∑
i∈CNa

g
(
x0
•i,y•i, a, 0

)
g
(
x0
•i,y•i, a, 0

)>
=: Σ̂(0)

a . (35)

For each t ≥ 1, define a positive semi-definite matrix Σ(t) ∈ Rq×q, obtained, by letting,

Σ(t) =

q′∑
b=1

cbΣ̂
(t−1)
b , Σ̂(t)

a = E
[
g(Zta,Ya, a, t)g(Zta,Ya, a, t)>

]
, (36)

where Ya ∼ Pa,Zta ∼ N
(
0, Σ(t)

)
and Ya |= Zta.

6One can think of an element x ∈ Vq,N as an N−vector (x•1, . . .x•N ) with entries in Rq .
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Under the above assumptions, asymptotic distribution of marginals of xt can be characterized as follows:

Theorem 5 ( [7] Theorem 1). For all t ≥ 1, each a ∈ [q′], and any pseudo-Lipschitz function ψ : Rq×Rq → R
of order k, almost surely,

lim
N→∞

1

|CNa |
∑
j∈CNa

ψ
(
xt•j ,y•j

)
= E

{
ψ
(
Zta,Ya

)}
, (37)

where Zta ∼ N
(
0, Σ(t)

)
is independent of Ya ∼ Pa.

4 Asymptotic average behavior of MLE

To begin with, we recall the iterative algorithm that [8] introduced for tracking the MLE. Starting with an
initial guess β̂0, set S0 = Xβ̂0 and for t = 1, 2, . . ., update {St, β̂t}t≥1, with St ∈ Rn, β̂t ∈ Rp, using the
following scheme:

β̂t = β̂t−1 + κ−1X ′Ψt−1
(
y,St−1

)
St = Xβ̂t −Ψt−1

(
y,St−1

) (38)

where the function Ψt is applied element-wise and is equal to

Ψt (y, s) = λtrt, rt = y − ρ′
(
proxλtρ (λty + s)

)
, (39)

and λt is described via the recursions (8)–(9). However, from (18), we know λt ≡ λ̃t, where λ̃t is described
via the update equations (11)–(12), when

α0 = α̃0, σ0 = σ̃0. (40)

Suppose we initialize the scalar sequence (λ̃0, σ̃0) in the aforementioned way. This leads to an alternate
characterization of the function Ψt, which will be useful in Subsection 4.1. Note that the response variables
can be expressed as

yi = h (X ′iβ,wi) , (41)

where h(x, y) is specified via (10) and w1, . . . ,wn
i.i.d.∼ U(0, 1), independent of all other random variables.

Rewriting Ψt in terms of these quantities and recalling definition (13), we observe that

Ψt

(
yi,S

t
i

)
≡ Ψ̃t

(
X ′iβ,wi,S

t
i

)
. (42)

4.1 State Evolution Analysis

In this section, we characterize the asymptotic average behavior of the AMP iterates (β̂t,St), for each fixed
t, in the large sample limit. In this regard, the scalar sequence (αt,σt,λt) introduced in (8)–(9) proves to be
useful, as is formalized in the theorem below.

Theorem 6. Suppose the initial conditions for the AMP iterative scheme (38), and the variance map updates
(8)–(9) satisfy

α0 =
1

γ2
lim
n→∞

〈β̂0,β〉
n

, σ2
0 = lim

n,p→∞

1

p
‖β̂0 − α0β‖2. (43)

For any pseudo-Lipshcitz function ψ of order 2,

lim
n→∞

1

p

p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)
a.s.
= E [ψ (σtZ,β)]

lim
n→∞

1

n

n∑
i=1

ψ

([
X ′iβ
Sti

]
,

[
wi
0

])
a.s.
= E

[
ψ

([
Qt1
Qt2

]
,

[
W
0

])]
, (44)
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where β ∼ Π,W ∼ U(0, 1) independent of each other7and independent of

(
Qt1,Qt2

)
∼ N

(
0,

[
γ2 αtγ

2

αtγ
2 κσ2

t + α2
tγ

2

])
. (45)

Proof: Introduce a new sequence of iterates {νt,Rt} defined as follows: starting with initial conditions
ν0 = β̂0 − α0β,R0 = S0, set:

νt = qt−1
(
νt−1 + αt−1β

)
− atβ + κ−1X ′Ψt−1

(
y,Rt−1)

Rt = X
(
νt + αtβ

)
−Ψt−1

(
y,Rt−1) ,

(46)

where

qt = − 1

κn

n∑
i=1

Ψ′t
(
yi,R

t
i

)
a0 = α0, at =

1

κn

n∑
i=1

∂

∂a
Ψt−1

(
h(a,Wi),R

t−1
i

)∣∣∣∣
a=X′iβ

for t ≥ 1; (47)

Ψ′t is the derivative w.r.t the second coordinate of Ψt. The difference between this recursion and that in
(38) is the introduction of the new variables {qt, at}, and the regression coefficients β. It turns out that
the recursive equations for {νt,Rt}, introduced in (46), fall under the class of G-AMP algorithms. Hence,
asymptotic average behavior of {νt,Rt} can be established by appropriately using Theorem 5. This leads
to the following lemma.

Lemma 3. For any t ≥ 1, under the assumptions of Theorem 6, the recursions {νt,Rt} introduced in (46)
satisfy

lim
n→∞

1

p

p∑
j=1

ψ
(
νtj ,βj

) a.s.
= E [ψ (σtZ,β)]

lim
n→∞

1

n

n∑
i=1

ψ

([
X ′iβ
Rti

]
,

[
wi
0

])
a.s.
= E

[
ψ

([
Qt1
Qt2

]
,

[
W
0

])]
.

Finally, Theorem 6 is established by noting the equivalence of the recursions {νt,Rt}, and the appropri-
ately centered versions of the original recursions, that is, {β̂t − αtβ,St}, which is formalized next.

Lemma 4. Under the assumptions of Theorem 6, and the assumptions on the initial conditions ν0 =
β̂0 − α0β,R0 = S0, for any fixed t ≥ 1,

lim
n→∞

1

p
‖β̂t − αtβ − νt‖2 =a.s. 0, lim

n→∞

1

n
‖St −Rt‖2 =a.s. 0.

7Recall Π is the weak limit of the empirical distribution of {βi}1≤i≤p.
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Since ψ is a pseudo-Lipschitz function of order 2, we have∣∣∣∣∣∣1p
p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)
− 1

p

p∑
j=1

ψ
(
νtj ,βj

)∣∣∣∣∣∣ ≤ 1

p

p∑
j=1

∣∣∣ψ (β̂tj − αtβj ,βj)− ψ (νtj ,βj)∣∣∣
≤ C 1

p

p∑
j=1

(
1 + ‖(β̂tj − αtβj ,βj)‖+ ‖(νtj ,βj)‖

) ∣∣∣β̂tj − αtβj − νtj∣∣∣
≤ C 1

p

√√√√ p∑
j=1

(
1 + ‖(β̂tj − αtβj ,βj)‖+ ‖(νtj ,βj)‖

)2
‖β̂t − αtβ − νt‖.

By definition, ‖β‖/√p is bounded. Putting together Lemma 3 and 4, we obtain ‖β̂t‖/√p is bounded for all
t. Hence, from Lemma 4 and the above inequality, we have

lim
n→∞

1

p

p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)
= lim
n→∞

1

p

p∑
j=1

ψ
(
νtj ,βj

)
.

This establishes the first relation in (44). A similar argument holds for the other relation. �

It remains to prove Lemmas 3–4, which we focus on next.

4.1.1 Proof of Lemma 3

Our first goal is to reduce the recursion (46) to the G-AMP form (33). Thereafter, computing the covariances
Σt from (36) and an application of Theorem 5 will complete the proof.

To this end, fix q = 2k0 + 1 for some large arbitrary integer k0, and let N = n + p. In the subsequent
analysis, restrict t ∈ {0, . . . , q}. Define xt ∈ Vq,N such that x0 = 0 and the values for other choices of t are
defined as follows: for the odd iterates t = 2k + 1 (k ≥ 0), for each i = 1, . . . n, define

xt•i :=
[
Zi, 0,R0

i , 0,R1
i , . . . ,R

t−1
2

i , 0, 0, . . .
]′

. (48)

For even iterates t = 2k (k ≥ 1), for each i = n+ 1, . . . ,n+ p, define

xt•i =
[
0, ν1i−n, 0, ν2i−n, 0, ν2i , . . . , ν

t
2
i−n, 0, 0, . . .

]′
. (49)

Let all other entries of xt be 0. Let Y ∈ Vq,N have the first two rows defined via[
Y1•
Y2•

]
=

[
W1, W2, . . . , Wn, β1, β2, . . . , βp

0 . . . 0 ν01 , ν02 , . . . , ν0p

]
(50)

and the rest of the entries are all 0. Note that, the functions f in (34) are allowed to be functions of the
elements of Y . For the odd iterates t = 2k + 1 (k ≥ 0), let f i(x; 2k + 1) = 0 for i = n + 1, . . . n + p. Let
h =

√
N/n. For i = 1, . . . ,n, define

f i(x; 2k + 1) =

[
0,
h

κ
Ψ0(h(x1,Y1i),x3), 0,

h

κ
Ψ1(h(x1,Y1i),x5), . . . ,

h

κ
Ψ t−1

2
(h(x1,Y1i),xt+2), 0, 0, . . .

]′
. (51)

For the even iterates t = 2k (k ≥ 0), let f i(x; 2k) = 0 for i = 1, . . . ,n and for i = n+ 1, . . . ,n+ p, define

f i(x; 2k) =
[
hY1i, 0,h(Y2i + α0Y1i), 0,h(x2 + α1Y1i), 0,h(x4 + α2Y1i), 0, . . . ,h(xt + αt/2Y1i), 0, 0, . . .

]′
.
(52)
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Let A ∈ RN×N be a symmetric matrix with Aii = 0,Aij = 1
hXi,j−n for 1 ≤ i ≤ n and n + 1 ≤ j ≤ n + p,

and all other entries Aij with i < j are i.i.d. N (0, 1/N). With these definitions in place, the following result
can be established.

Lemma 5. For even iterates with column indices i = n + 1, . . . ,n + p, and for odd iterates with column
indices i = 1, . . . n, xt•i defined via (48)–(49) satisfies the recursion (33), with the collection of functions
f i(, ; t) given by (51)–(52) and A as described above.

Proof: The proof follows directly from matrix multiplications and is, therefore, omitted.
�

Let x̃t be a new sequence of iterates in Vq,N such that x̃0 = 0. For all 1 ≤ t ≤ q, if a column i of xt is
non-zero, set the corresponding column of x̃t as x̃t•i = xt•i. If a column of xt is zero, set the corresponding
column of x̃t as follows: x̃1

•i =
∑N
j=1Aijf

j(x̃0
•j ; t) and for t ≥ 1,

x̃t+1
•i :=

N∑
j=1

Aijf
j
(
x̃t•j ; t

)
− 1

N

 N∑
j=1

∂f j

∂x

(
x̃t•j ; t

) f i
(
x̃t−1•i ; t− 1

)
,

where any term with negative t-index is zero. Then, from Lemma 5 we trivially arrive at the following
conclusion.

Lemma 6. The sequence of iterates {x̃t}1≤t≤q satisfies the recursion (33) with the choice of functions f i
specified in (51) and (52).

Thus, we have reduced the recursion in (46) to the G-AMP form (33). Theorem 5 then tells us that the
asymptotic covariance structure of x̃t can be obtained by carrying out the iterative scheme in (36), with
g defined via (51) and (52). We systematically list properties of Σ(t) that will be crucial for establishing
the proof. For t = 1, i = 1, . . . n, x̃1

•i has first and third entries Zi,R0
i , with all other entries 0. From the

definitions (35) and (36), it is easy to check that[
Σ

(1)
(1,1) Σ

(1)
(1,3)

Σ
(1)
(3,1) Σ

(1)
(3,3)

]
=

[
limn→∞

‖β‖2
n limn→∞

〈β,β̂0〉
n

limn→∞
〈β,β̂0〉
n limn→∞

‖β̂0‖2
n

]
, (53)

which is consistent with the asymptotic covariance structure we expect to see in this case, since Zi =
X ′iβ,R0

i = S0
i = X ′iβ̂

0. Computing Σ(2), using the formula (36) and applying Theorem 5 yields,

1

p

p∑
j=1

ψ
(
ν1j ,βj

)
→ E [ψ (τ1Z,β)] , where τ21 =

1

κ2
E
[
Ψ2

0

(
h
(
Q0

1,U
)

,Q0
2

)]
, (54)

and (Q0
1,Q0

2) is multivariate normal with mean 0 and covariance matrix specified in (53).
Note that, for Σ(3), the first 3× 3 sub-block would be the same as in (53). Among the rest, the distinct

non-trivial entries are Σ
(3)
(1,5), Σ

(3)
(3,5), Σ

(3)
(5,5), given by

Σ
(3)
(1,5) = α1γ

2, Σ
(3)
(3,5) = α1 lim

n→∞

〈β, β̂0〉
n

, Σ
(3)
(5,5) = κτ21 + α2

1γ
2.

From Theorem 5, this immediately yields,

lim
n→∞

1

n

n∑
i=1

ψ

X ′iβR0
i

R1
i

 ,

wi0
0

 a.s.
= E

ψ
Z(3),

W0
0

 , (55)
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where

Z(3) ∼ N

0,

 γ2 limn→∞
〈β,β̂0〉
n α1γ

2

limn→∞
〈β,β̂0〉
n limn→∞

‖β̂0‖2
n α1 limn→∞

〈β,β̂0〉
n

α1γ
2 α1 limn→∞

〈β,β̂0〉
n κτ21 + α2

1γ
2


 ,

W ∼ U(0, 1) |= Z(3).
Computing Σ(4), we obtain

1

p

p∑
j=1

ψ

([
ν1j
ν2j

]
,

[
βj
0

])
→ E

[
ψ

(
Z(4),

[
β
0

])]
, (56)

where Z(4) ∼ N
(

0,

[
τ21 ρ12
ρ12 τ22

])
, with

τ22 =
1

κ2
E
[
Ψ2

1

(
h
(
Z

(3)
1 ,U

)
,Z

(3)
3

)]
, ρ12 =

1

κ2
E
[
Ψ0

(
h
(
Z

(3)
1 ,U

)
,Z

(3)
2

)
Ψ1

(
h
(
Z

(3)
1 ,U

)
,Z

(3)
3

)]
.

(57)
We continue similar calculations to obtain Σ(5) and Σ(6). The 5×5 principal sub-matrix of Σ(5), is identical
to Σ(3). Other distinct non-zero entries are listed below:

Σ
(5)
(1,7) = α2γ

2,

Σ
(5)
(3,7) = α2 lim

n→∞

〈β, β̂0〉
n

,

Σ
(5)
(5,7) = κρ12 + α1α2γ

2,

Σ
(5)
(7,7) = κτ22 + α2

2γ
2.

Hence, we have

lim
n→∞

1

n

n∑
i=1

ψ



X ′iβ
R0
i

R1
i

R2
i

 ,


wi
0
0
0


 a.s.

= E

ψ
Z(5),


W
0
0
0



 , (58)

where W ∼ U(0, 1) |= Z(5) and

Z(5) ∼ N

0,


γ2 limn→∞

〈β,β̂0〉
n α1γ

2 α2γ
2

limn→∞
〈β,β̂0〉
n limn→∞

‖β̂0‖2
n α1 limn→∞

〈β,β̂0〉
n α2 limn→∞

〈β,β̂0〉
n

α1γ
2 α1 limn→∞

〈β,β̂0〉
n κτ21 + α2

1γ
2 κρ12 + α1α2γ

2

α2γ
2 α2 limn→∞

〈β,β̂0〉
n κρ12 + α1α2γ

2 κτ22 + α2
2γ

2


 .

Computing Σ(6), we obtain

1

p

p∑
j=1

ψ

ν1jν2j
ν3j

 ,

βj0
0

→ E
[
ψ

(
Z(6),

[
β
0

])]
, (59)

where Z(6) ∼ N

0,

 τ21 ρ12 ρ13
ρ12 τ22 ρ23
ρ13 ρ23 τ23

, with

τ23 =
1

κ2
E
[
Ψ2

2

(
h
(
Z

(5)
1 ,U

)
,Z

(5)
4

)]
, ρlm =

1

κ2
E
[
Ψl−1

(
h
(
Z

(5)
1 ,U

)
,Z

(5)
l+1

)
Ψm−1

(
h
(
Z

(5)
1 ,U

)
,Z

(5)
m+1

)]
.

(60)
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Repeating the above procedure and reading off the relevant entries in the covariance matrices, we arrive at
the following results: for all t ≤ q,

lim
n→∞

1

p

p∑
j=1

ψ
(
νtj ,βj

) a.s.
= E [ψ (τtZ,β)]

lim
n→∞

1

n

n∑
i=1

ψ

([
X ′iβ
Rti

]
,

[
wi
0

])
a.s.
= E

[
ψ

([
Z

(2t+1)
1

Z
(2t+1)
t+2

]
,

[
W
0

])]
,

where
(
Z

(2t+1)
1 ,Z

(2t+1)
t+2

)
∼ N (0, Σ (−αt, τt)) and τ2t is defined by the relation

τ2t =
1

κ2
E
[
Ψ2
t−1

(
h
(
Z

(2t−1)
1 ,U

)
,Z

(2t−1)
t+1

)]
,

with
(
Z

(2t−1)
1 ,Z

(2t−1)
t+1

)
∼ N (0, Σ (−αt−1, τt−1)) and Σ(α,σ) as in (5). The final step is to relate the scalar

sequence {τt}, first to the sequence {σ̃t} defined in (12), and thereafter to the sequence {σt} in the statement
of Theorem 6. To this end, recall the initial conditions on {αt,σt} imposed via the relations

α0 =
1

γ2
lim
n→∞

〈β̂0,β〉
n

, σ2
0 = lim

n→∞

‖β̂0 − α0β‖2

p
. (61)

It is easy to check that, with this choice, the covariance in (53) is precisely Σ(−α0,σ0) = Σ (−α̃0, σ̃0), since
(α̃0, σ̃0) was initialized to (α0,σ0) (recall (40)).

The equivalence between the functions Ψt and Ψ̃t from (42), and the definition of σ̃t from (12) then leads
to τ21 = σ̃2

1 , which subsequently yields τ2t ≡ σ̃t2. The equivalence between {σ̃t} and {σt} established in (18),
then completes the proof.

4.1.2 Proof of Lemma 4

The proof partly follows along lines similar to [3, Lemma 6.7], but has some additional ingredients which
we detail here. Denote θt = β̂t − αtβ. Comparing the recursive equations in (46) and (38), and using the
triangle inequality we obtain,∥∥Rt − St

∥∥ ≤ ‖X‖ ∥∥νt − θt∥∥+
∥∥Ψt−1

(
y,Rt−1)−Ψt−1

(
y,St−1

)∥∥ .

Applying [3, Proposition 6.3], we obtain

∂Ψt(y, s)

∂s
=
−λt ρ′′(x)|x=prox(λty+s)

1 + λt ρ′′(x)|prox(λty+s)
. (62)

Hence, Ψ(y, ·) is Lipschitz continuous with Lipschitz constant at most 1, which yields∥∥Rt − St
∥∥ ≤ ‖X‖ ∥∥νt − θt∥∥+

∥∥Rt−1 − St−1
∥∥ . (63)

Similarly, comparing (46) and (38) again, we obtain

νt − θt = qt−1
(
νt−1 + αt−1β

)
− atβ − β̂t−1 + αtβ + κ−1

(
X ′Ψt−1(y,Rt−1)−X ′Ψt−1

(
y,St−1

))
=
(
νt−1 − θt−1

)
+(qt−1 − 1)

(
νt−1 + αt−1β

)
+(αt − at)β+κ−1

(
X ′Ψt−1

(
y,Rt−1)−X ′Ψt−1

(
y,St−1

))
,

where the second equality is obtained after appropriate rearranging. Using the triangle inequality,∥∥νt − θt∥∥ ≤ ∥∥νt−1 − θt−1∥∥+ |qt−1 − 1|
∥∥νt−1 + αt−1β

∥∥+ |αt − at| ‖β‖+
1

κ
‖X‖

∥∥Rt−1 − St−1
∥∥ . (64)
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Since ν0 = θ0, iterating (63) and (64), it can be established that there exists a constant C, depending on κ,
such that ∥∥νt − θt∥∥ ≤ (C ‖X‖)2t

(
t−1∑
l=0

|ql − 1|
∥∥νl + αlβ

∥∥+

t−1∑
l=0

|αl − al| ‖β‖

)
. (65)

Using Lemma 3, the definition of qt and (62), we have,

lim
n→∞

qt = lim
n→∞

− 1

κn

n∑
i=1

{
−λtρ′′ (prox (λth (X ′iβ,wi) +Rti))

1 + λtρ′′ (prox (λth (X ′iβ,wi) +Rti))

}
= E

[
1

κ

{
1− 1

1 + λtρ′′ (prox (λth (Qt1,U) +Qt2))

}]
, (66)

where (Qt1,Qt2) ∼ N (0, Σ(−αt,σt)). The equivalence (18) yields

lim
n→∞

qt = E

 1

κ

1− 1

1 + λ̃tρ′′
(
prox

(
λ̃th

(
Q̃t1,U

)
+ Q̃t2

))

 = 1,

where
(
Q̃t1, Q̃t2

)
∼ N (0, Σ (−α̃t, σ̃t)), and the last equality follows from the definition of λ̃t in (11). Note

that to obtain (66), we applied Lemma 3 to the function ∂Ψ(y, s)/∂s which is not necessarily continuous, but
a smoothing argument similar to that in the proof of [3, Lemma 6.7] helps circumvent this technicality. Now,
recall that for each n, we have a matrix of covariatesX ≡X(n) that has dimension n×p and i.i.d. N (0, 1/n)
entries. Since, limn→∞ ‖X‖ <∞ and ‖νt‖/√p is bounded for all t, we arrive at

lim
n→∞

1
√
p

(C ‖X‖)2t
t−1∑
l=0

|ql − 1|
∥∥νl + αlβ

∥∥ = 0. (67)

It remains to analyze the second term in the RHS of (65). To analyze the large sample limit of at defined
in (47), we invoke Lemma 3 once again, in conjunction with the smoothing techniques from [3, Lemma 6.7],
which yields

lim
n→∞

at =
1

κ
E

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
. (68)

In order to analyze (68), we will invoke Stein’s lemma, which states that if X ∼ N (µ,σ2) and h is a function
for which Eh(X)(X − µ) and σ2 Eh′(X) both exist,

Eh(X)(X − µ) = σ2 Eh′(X). (69)

To this end, it will be useful to express Qt−12 in terms of Qt−11 and an independent standard Gaussian Z, as
shown below

Qt−12 = αt−1Q
t−1
1 +

√
κσ2

t−1Z =: f
(
Qt−11 ,Z

)
,

since
(
Qt−11 ,Qt−12

)
∼ N (0, Σ (−αt−1,σt−1)). Thus, one can represent Ψt−1 as

Ψt−1
(
h
(
Qt−11 ,W

)
,Qt−12

)
= Ψt−1

(
h
(
Qt−11 ,W

)
, f
(
Qt−11 ,Z

))
.

Obviously,

E

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
= EW ,Z

[
EQt−1

1

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]]
.
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Since Qt−11 is independent of (W ,Z), (69) immediately gives

γ2 EQt−1
1

[
∂

∂Qt−11

Ψt−1
(
h
(
Qt−11 ,W

)
, f
(
Qt−11 ,Z

))∣∣∣∣W ,Z

]
= E

[
Qt−11 Ψt−1

(
h
(
Qt−11 ,W

)
, f
(
Qt−11 ,Z

))∣∣W ,Z
]

.

The LHS can be decomposed using the chain rule as follows

EQt−1
1

[
∂

∂Qt−11

Ψt−1
(
h
(
Qt−11 ,W

)
, f
(
Qt−11 ,Z

))∣∣∣∣W ,Z

]
= EQt−1

1

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]

+ αt−1 EQt−1
1

[
∂

∂s
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]
.

Putting these together,

EQt−1
1

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]

=
1

γ2
EQt−1

1

[
Qt−11 Ψt−1

(
h
(
Qt−11 ,W

)
, f
(
Qt−11 ,Z

))∣∣W ,Z
]

− αt−1 EQt−1
1

[
∂

∂s
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=f(Qt−1
1 ,Z)

∣∣∣∣∣W ,Z

]
.

Marginalizing over W ,Z and recalling (68), we have

lim
n→∞

at =
1

κγ2
E
[
Qt−11 Ψt−1

(
h
(
Qt−11 ,W

)
,Qt−12

)]
− αt−1

κ
E

[
∂

∂s
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
.

Combining (16) and (62), we obtain

1

κ

[
1− E

[
2ρ′
(
−Qt−11

)
1 + λρ′′

(
proxλρ

(
Qt−12

))]] = − 1

κ
E

[
∂

∂a
Ψt−1 (h(a,W ), s)

∣∣∣∣
a=Qt−1

1 ,s=Qt−1
2

]
.

Since
(
−Qt−11 ,Qt−12

)
∼ N (0, Σ (αt−1,σt−1)), comparing with (8), we obtain that the LHS equals 1. Further,

from (14), we have

E
[
2ρ′
(
−Qt−11

) (
−Qt−11

)
λtρ
′ (proxλtρ (Qt−12

))]
= E

[
Qt−11 Ψt−1

(
h
(
Qt−11 ,W ),Qt−12

))]
.

Thus,

lim
n→∞

at = αt−1 +
1

κγ2
E
[
2ρ′
(
−Qt−11

) (
−Qt−11

)
λtρ
′ (proxλtρ (Qt−12

))]
= αt,

where the last equality follows directly from the definition of αt in (9). Hence, for any finite t,

lim
n→∞

|αt − at| = 0,

which leads to

lim
n→∞

1
√
p

(C ‖X‖)2t
t−1∑
l=0

|αl − al| ‖β‖ = 0.
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Combining this with (65) and (67), we obtain

lim
n→∞

1
√
p

∥∥νt − θt∥∥ = 0.

The scaled norm of Rt − St is then controlled using (63) and the fact that limn→∞ ‖X‖ is finite almost
surely. This completes the proof.

4.2 Convergence to the MLE

In this subsection, we establish that the AMP iterates {β̂t} converge to the MLE β̂, in the large n and t
limit. As mentioned earlier, it can be checked numerically that the system of equations (4) admits a solution
in the regime γ < gMLE(κ). In addition, we can establish the following result.

Lemma 7. Given a pair (α,σ), the equation

1− κ = E

[
2ρ′ (Q1)

1 + λρ′′
(
proxλρ (Q2)

)]

has a unique solution in λ, where (Q1,Q2) ∼ N (0, Σ(α,σ)), with the covariance function specified in (5).

We defer the proof of Lemma 7 to Section 7, and proceed with the rest of the proof here. The
aforementioned results together establish that if the variance map updates (8)–(9) are initialized using
α0 = α?,σ0 = σ?, the iterates (αt,σt,λt) remain stationary, that is, for all t,

αt = α?, σt = σ?, λt = λ?,

where, recall from Section 1 that (α?,σ?,λ?) refers to a solution of (4). In the subsequent theorem, we
adhere to this particular initialization.

Theorem 7. Suppose γ < gMLE(κ) and assume that the AMP iterates are initialized using

α0 =
1

γ2
, lim
n→∞

〈β̂0,β〉
n

, lim
n,p→∞

1

p
‖β̂0 − α?β‖2 = σ2

?,

where (α?,σ?,λ?) is a solution to (4). Then the AMP trajectory and the MLE can be related as

lim
t→∞

lim
n→∞

1
√
p
‖β̂t − β̂‖ =a.s. 0. (70)

Proof: The proof can be established using techniques similar to that in [9, Theorem 6]. The details are
therefore omitted. The crucial point is that, invoking these techniques requires that the following three
properties are satisfied:

• Almost surely, the MLE obeys

lim
n→∞

‖β̂‖√
n
<∞. (71)

This follows from Theorem 4, and an application of Borel-Cantelli.

• There exists some non-increasing continuous function 0 < ω(.) < 1 independent of n such that

P
[
∇2`(β) � ω

(
‖β‖√
n

)
· I for all β

]
= 1− c1e−c2n,

where c1, c2 are positive universal constants. This was established in [9, Lemma 4].
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• The AMP iterates satisfy a form of Cauchy property:

lim
t→∞

lim
n→∞

1
√
p

∥∥∥β̂t+1 − β̂t
∥∥∥ =a.s. 0,

lim
t→∞

lim
n→∞

1
√
p

∥∥St+1 − St
∥∥ =a.s. 0.

This can be established by straightforward modifications of [3, Lemma 6.8, Lemma 6.9], using the
covariances for Zt derived in the proof of Lemma 3.

�

Finally, we are in a position to complete the proof of Theorem 1.

Proof of Theorem 1: Start the variance map updates at α0 = α?,σ0 = σ?, so that αt ≡ α0,σt ≡ σ0.
Choosing ψ(x, y) = x2 in Theorem 6, it directly follows that for every t ≥ 0,

lim
n→∞

‖β̂t‖
√
p
≤ lim
n→∞

‖β̂t − α?β‖√
p

+ lim
n→∞

‖α?β‖√
p

= σ? +
γα?√
κ

=⇒ lim
t→∞

lim
n→∞

‖β̂t‖
√
p
<∞. (72)

Since ψ is a pseudo-Lipschitz function of order 2, by the triangle inequality and Cauchy-Schwartz,∣∣∣∣∣∣1p
p∑
j=1

ψ
(
β̂j − αtβj ,βj

)
− 1

p

p∑
j=1

ψ
(
β̂tj − αtβj ,βj

)∣∣∣∣∣∣
≤ C 1

p

√√√√ p∑
j=1

(
1 +

∥∥∥(β̂j − αtβj ,βj)
∥∥∥+

∥∥∥(β̂tj − αtβj ,βj)
∥∥∥)2 ∥∥∥β̂t − β̂∥∥∥ .

(73)

Using (72), (71) and invoking Theorem 7, we arrive at

lim
n→∞

1

p

p∑
i=1

ψ
(
β̂j − α?βj ,βj

)
= lim
t→∞

lim
n→∞

1

p

p∑
i=1

ψ
(
β̂tj − α?βj ,βj

)
= E [ψ (σ?Z,β)] .

This completes the proof. �

Remark 1. Theorem 1 in conjunction with Lemma 7 leads to the following crucial result: in the regime
γ < gMLE(κ), the system of equations (4) admits a unique solution. To see this, note that Theorem 1 tells
us that for any solution (α?,σ?,λ?),

α? =
limp→∞

1
p

∑p
i=1 β̂i

limp→∞
1
p

∑p
i=1 βi

.

Since for each n, p the MLE β̂ ∈ Rp is unique, the RHS above must be unique. Hence, α? has to be unique.
Similarly, since

σ2
? = lim

n→∞

1

p

∥∥∥β̂ − α?β∥∥∥2 ,

and the RHS above must be unique, we obtain that σ? is unique. Then, Lemma 7 establishes that λ? must
also be unique.
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5 Asymptotic behavior of the null MLE coordinates

This section presents the proof of Theorem 2. To begin with, we introduce a few notations that will be
useful throughout.The reduced MLE, obtained on dropping the j-th predictor is denoted by β̂[−j]. Define
X•j ,X•−j to be the j-th column and all the other columns of X respectively. Set D(β̂[−j]), D(β) to be
the n × n diagonal matrices with the i-th entry given by ρ′′(X ′i,−jβ̂[−j]) and ρ′′(X ′iβ) respectively, where
Xi,−j ,Xi denote the i-th row of X•−j and X respectively. Suppose the negative log-likelihood obtained on
removing the j-th predictor be represented by `−j . Introduce the Gram matrices

G = ∇2`(β̂), G[−j] = ∇2`−j

(
β̂[−j]

)
. (74)

Further, let β̂[−i][−j] be the MLE obtained on dropping the i-th observation and the j-th predictor and
`−i,−j denote the corresponding negative log-likelihood function. Analogously, denote β̂[−ik][−j] to be the
MLE obtained when both the i-th and the k-th (i 6= k) observations are dropped, and in addition, the
j-th predictor is removed. Suppose `−ik,−j is the corresponding negative log-likelihood function. Define the
respective versions of the Gram matrices

G[−i],[−j] = ∇2`[−i],[−j]

(
β̂[−i][−j]

)
, G[−ik],[−j] = ∇2`[−ik],[−j]

(
β̂[−ik][−j]

)
. (75)

Before proceeding, it is useful to record a few observations regarding the differences and similarities
between our setup here and that in [9]. Analogues of Theorems 2 and 3 were proved in [9] under the global
null, that is, β = 0 and under the assumption that the matrix of covariates X has i.i.d. N (0, 1) entries.
Along the way, [9] established some important generic properties of the logistic link function ρ(x) and the
Hessian of the negative log-likelihood function. The logistic link is naturally the same in both the cases, while
the Hessian of the negative log-likelihood here has the same distribution as the scaled Hessian ∇2`(β)/n
from [9].8 Thus, the properties of these objects established there will be extremely useful in the subsequent
discussion. Moreover, as we go along the proofs here, we will see that sometimes it is necessary to generalize
certain results in [9] to the β 6= 0 setup. In such scenarios, often the proof techniques from [9] will go
through verbatim when particular terms defined therein are replaced by more complicated terms that we
will define here. In these cases, we explain the appropriate mapping between the quantities in [9] and those
defined here. We leave it to the meticulous reader to check that after such a mapping, the proofs of the
corresponding results here indeed go through similarly.

In addition, note that [8, Appendix C] described the skeleton of the proofs for Theorems 2 and 3. In the
aforementioned outline, the authors provide a brief sketch of some of the intermediate steps and prove some
others rigorously. In Sections 5–7 of this manuscript, we will only provide rigorous proofs of the steps for
which the details were left out from [8, Appendix C]. Thus, it may be convenient for the reader to proceed
with the rest of this manuscript with [8] and [9] by her side.

The mathematical analyses in this and the subsequent section crucially hinge on the following fact: the
minimum eigenvalues of these different versions of G are bounded away from 0 with very high probability.
This is established in the following lemma.

Lemma 8. There exist positive universal constants λlb,C such that

P [λmin (G) ≥ λlb] ≥ 1− Cn−δ,

where δ > 1. The same result holds for G[−j],G[−i],[−j],G[−ik],[−j] for any j ∈ [p] and for all i, k ∈ [n], i 6= k.

Proof: In [9, Lemma 4], it was established that with exponentially high probability, for all sufficiently small
ε > 0, the Hessian of the negative log-likelihood satisfies

λmin
(
∇2` (β)

)
≥

(
inf

z:|z|≤ 3‖β‖√
nε

ρ′′(z)

)
C(ε),

8This is simply due to the difference in the variance of the entries of X in the two setups.
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where C(ε) is a positive constant depending on ε and independent of n. This, in conjunction with Theorem
4 completes the proof. �

Through the rest of this manuscript, for any given n, we restrict ourselves to the event:

Dn :=
{
λmin(G) > λlb} ∩ {λmin(G[−j]) > λlb} ∩ {∩ni=1λmin(G[−i],[−j]) > λlb} ∩ {λmin(G[−12],[−j]) > λlb

}
.

(76)
By Lemma 8, Dn occurs with high probability; to be precise,

P [Dn] ≥ 1− Cn−(δ−1).

Later, in Lemma 13 we will use the fact that for any given pair k, l ∈ [n] with k 6= l, P
[
λmin(G[−kl],[−j]) > λlb

]
≥

1−Cn−δ. In this context, without loss of generality, one can choose k = 1, l = 2 and this explains the choice
of the last event in (76).

We are now in a position to begin the proof of Theorem 2. To this end, note that the MLE has an implicit
description via the KKT conditions and is, therefore, potentially intractable mathematically. To circumvent
this barrier, we introduce a surrogate b[−j] for β̂ that would be more amenable to mathematical analysis.
Define

b[−j] =

[
0

β̂[−j]

]
+ b[−j],1

[
1

−G−1[−j]w

]
, (77)

where

w = X ′•−jD(β̂[−j])X•j ,

b[−j],1 =
X ′•j(y − ρ′(X•−jβ̂[−j]))

X ′•jD(β̂[−j])1/2HD(β̂[−j])1/2X•j
, (78)

with the convention that ρ′ is applied element-wise and H := I −D(β̂[−j])
1/2X•−jG

−1
[−j]X

′
•−jD(β̂[−j])

1/2.
Inspired by [5], an analogous surrogate was introduced in [9] for studying the MLE when β = 0, and the
choice was motivated in detail. Although the surrogate has a different definition here, the same insight is
applicable. Thus, we refer the readers to [9] for the reasoning behind this particular choice. As mentioned
earlier, the surrogate is constructed with the hope that β̂ ≈ b[−j]. This is formalized in the subsequent
theorem.

Theorem 8. The MLE β̂ and the surrogate b[−j] defined in (77) satisfy

P
[
‖β̂ − b[−j]‖ . n−1/2+o(1)

]
= 1− o(1),

P
[

sup
1≤i≤n

∣∣∣X ′ib[−j] −X ′i,−jβ̂[−j]

∣∣∣ . n−1/2+o(1)] = 1− o(1). (79)

The fitted values satisfy

P
[

sup
1≤i≤n

|X ′i,−jβ̂[−j] −X ′iβ̂| . n−1/2+o(1)
]

= 1− o(1). (80)

Further, we have
P
[
|β̂j − b[−j],1| . n−1/2+o(1)

]
= 1− o(1). (81)

Proof: The proof of (79) follows upon tracing out the steps in [9, Theorem 8] verbatim using b[−j], b[−j],1
and β̂[−j] defined in (77) instead of b̃, b̃1 and β̃ respectively. In [9], b̃ is the surrogate for the MLE and b̃1 is
the first coordinate of the surrogate, whereas β̃ refers to the MLE obtained on dropping the first predictor.
Now, note that the terms G[−j],w and b[−j],1 involve D(β̂[−j]) and ρ′(X•−jβ̂[−j]). They differ from their
corresponding counterparts since β̂[−j] and β̃ have different distributions. However, the only properties
pertaining to these objects that are used in the proof of [9, Theorem 8] are the following:
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1. ρ′(x), ρ′′(x) are bounded, a property we have by virtue of the logistic link,

2. the minimum eigenvalue of G[−j] is strictly positive with very high probability, a fact we have estab-
lished in our setup in Lemma 8.

Thus, the techniques from [9, Theorem 8] are applicable here for establishing (79). Next, note that by the
triangle inequality,

sup
1≤i≤n

|X ′i,−jβ̂[−j] −X ′iβ̂| ≤ sup
1≤i≤n

∣∣∣X ′ib[−j] −X ′iβ̂∣∣∣+ sup
1≤i≤n

∣∣∣X ′i,−jβ̂[−j] −X ′ib[−j]
∣∣∣ .

Combining this inequality with (79) and the fact that supi ‖Xi‖ = O(1) with high probability, we have the
required result (80). Finally, (81) follows trivially from (79). �

Henceforth, whenever necessary, we describe suitable correspondences between the terms here and their
appropriate analogues in [9], for the convenience of the reader. To keep the subsequent discussion concise,
we will no longer recall the definitions of the relevant terms in the context of [9].

Applying Theorem 8 we have the approximation

β̂j =
X ′•j(y − ρ′(X•−jβ̂[−j]))

X ′•jD(β̂[−j])1/2HD(β̂[−j])1/2X•j
+ oP (1). (82)

At this point, recall from [8, Appendix C, Equation 20] that the above expression can be simplified to the
following form:

X ′•j(y − ρ′(X•−jβ̂[−j]))

X ′•jD(β̂[−j])1/2HD(β̂[−j])1/2X•j
=
λ[−j]sj

κ
Z + oP (1), (83)

where

s2j =
‖y − ρ′(X•−jβ̂[−j])‖2

n
and λ[−j] =

1

n
Tr
(
G−1[−j]

)
. (84)

Later, in Theorem 10, we will establish that λ[−j]
P→ λ?, where λ? is part of the solution to the system of

equations (4). Hence, it remains to analyze the terms sj . For convenience of notation, denote the residuals
as

ri := yi − ρ′(X ′i,−jβ̂[−j]), (85)

which implies

s2j =
1

n

n∑
i=1

r2i . (86)

Since Xi,−j and β̂[−j] are dependent, the analysis of sj hard. To circumvent this issue, we express the fitted
values X ′i,−jβ̂[−j] as a function of yi,Xi,−j and β̂[−i],[−j], where recall that β̂[−i],[−j] is the MLE obtained
on removing the i-th observation and the j-th predictor. Such a representation of the fitted values makes
things more tractable since Xi,−j and β̂[−i],[−j] are independent. This reduction relies heavily on a leave-
one-observation out approach [5,9], in which one constructs a surrogate for β̂[−j], starting from β̂[−i],[−j], as
is done below.

Lemma 9. Suppose β̂[−j] is the MLE obtained on dropping the j-th predictor, and β̂[−i],[−j]] is the MLE
obtained on further removing the i-th observation. Define qi, b̂[−j] as follows:

qi := X ′i,−jG
−1
[−i],[−j]Xi,−j ,

b̂[−j] := β̂[−i],[−j] +G−1[−i],[−j]Xi,−j

(
yi − ρ′

(
proxqiρ(X

′
i,−jβ̂[−i],[−j] + qiyi)

))
, (87)
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where G[−i],[−j] is specified by (75). Then β̂[−j], b̂[−j] satisfy

P
[
‖β̂[−j] − b̂[−j]‖ . n−1/2+o(1)

]
= 1− o(1).

Proof: The proof follows using techniques from [9, Lemma 18], with the choice of qi specified in (87) and
b̂[−j] in place of b̂ in [9]. Note that, G[−i],[−j] and ρ′

(
proxqiρ

(
X ′i,−jβ̂[−i],[−j] + qiyi

))
differ in distribution

from the corresponding quantities there, but once again, the properties required in the proof are simply
boundedness of ρ′ and the eigenvalue bound for G[−i],[−j] established in Lemma 8. �

We are now in a position to express the fitted values X ′i,−jβ̂[−j] in a more convenient form.

Lemma 10. The fitted values X ′i,−jβ̂[−j] are uniformly close to a function of
{yi,X ′i,−jβ̂[−i][−j]}i=1,...n, in the following sense:

sup
i=1,...,n

∣∣∣X ′i,−jβ̂[−j] − proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣ P→ 0. (88)

Further, the residuals can be simultaneously approximated using

sup
i=1,...,n

∣∣∣ri − {yi − ρ′ (proxλ?ρ (X ′i,−jβ̂[−i][−j] + λ?yi

))}∣∣∣ P→ 0. (89)

Proof: Since ρ′′ is bounded, (89) follows from (88) trivially. Thus, it suffices to show (88). From the
definition of b̂[−j] in (87), it directly follows that

X ′i,−j b̂[−j] = X ′i,−jβ̂[−i],[−j] + qiyi − qiρ′
(
proxqiρ(X

′
i,−jβ̂[−i],[−j] + qiyi)

)
.

Comparing the above with relation (7) that involves the proximal mapping operator, we obtain

X ′i,−j b̂[−j] = proxqiρ

(
X ′i,−jβ̂[−i],[−j] + qiyi

)
.

Applying Lemma 9, since supi ‖Xi,−j‖ = O(1) with high probability (see [9, Lemma 2] for a formal state-
ment), we have

sup
i

∣∣∣X ′i,−jβ̂[−j] − proxqiρ

(
X ′i,−jβ̂[−i],[−j] + qiyi

)∣∣∣ . n−1/2+o(1), (90)

with high probability. For (88), it then suffices to establish that

sup
i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + qiyi

)
− proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣ P→ 0. (91)

To this end, we first examine the differences |qi − λ?|. By the triangle inequality,

sup
i
|qi − λ?| ≤ sup

i
|qi − λ[−j]|+ |λ[−j] − λ?|. (92)

Using qi,λ[−j] instead of q̃i, α̃ in [9, Lemma 19] and following the proof line by line in conjunction with
Lemma 8, we have

sup
i
|qi − λ[−j]| . n−1/2+o(1) (93)

with high probability. Further, it can be shown that λ[−j] = λ?+oP (1). This is established later in Theorem
10. For now, we assume this result and proceed with the rest of the arguments. Thus, we have

sup
i
|qi − λ?|

P→ 0.
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The partial derivatives of the proximal mapping operator are given by [4, Proposition 6.3]

∂

∂z
proxbρ(z) =

1

1 + bρ′′(x)

∣∣∣∣
x=proxbρ(z)

,
∂

∂b
proxbρ(z) = − ρ′(x)

1 + bρ′′(x)

∣∣∣∣
x=proxbρ(z)

, (94)

for b > 0. By repeated application of the triangle inequality,

sup
i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + qiyi

)
− proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣
≤ sup

i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + qiyi

)
− proxqiρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣
+ sup

i

∣∣∣proxqiρ (X ′i,−jβ̂[−i],[−j] + λ?yi

)
− proxλ?ρ

(
X ′i,−jβ̂[−i][−j] + λ?yi

)∣∣∣
≤ sup

i
|qi − λ?|

{∣∣∣∣∣ ∂∂z proxqiρ(z)
∣∣∣∣
z=q̃iyi

∣∣∣∣∣+

∣∣∣∣∣ ∂∂bproxbρ(X ′i,−jβ̂[−i][−j] + λ?yi)

∣∣∣∣
b=λ̃i

∣∣∣∣∣
}

, (95)

where q̃i lies between qiyi,λ?yi and λ̃i lies between qi and λ?. From (94), note that the partial derivatives
are both bounded by 1 since qi, λ̃i > 0. This establishes (91). Combining with (90), we have the required
result (88).

�

Recall from (83) and (86) that in order to analyze β̂j , we require to study the average of the squared
residuals, that is,

∑n
i=1 r

2
i /n. Note that the residuals are identically distributed. Hence, we have

Var

(
1

n

n∑
i=1

r2i

)
=

1

n2

n∑
i=1

Var(r2i ) +
1

n2

∑
i6=j

Cov (r2i , r
2
j )

=
1

n
Var(r21) +

(n− 1)

n
Cov (r21, r22).

The first term above is o(1). From (85), observe that each residual ri implicitly depends on n. We argue
in the subsequent text that

lim
n→∞

Cov (r21, r22) = 0. (96)

From (89), we know that r1, r2 are close in probability to functions of {y1,X ′1,−jβ̂[−1],[−j]} and
{y2,X ′2,−jβ̂[−2],[−j]} respectively. Thus, the entire dependence between r1 and r2 seeps in through the
dependence between β̂[−1],[−j] and β̂[−2],[−j]. To tackle this dependence structure, we will use a leave-two-
observation out approach, that is inspired by [5, 9]. To this end, we establish a crucial result below.

Lemma 11. For any pair (i, k) ∈ [n], let β̂[−i],[−j], β̂[−k],[−j] denote the MLEs obtained on dropping the i-th
and k-th observations respectively, and, in addition, removing the j-th predictor. Further, denote β̂[−ik],[−j]
to be the MLE obtained on dropping both the i-th, k-th observations and the j-th predictor. Then the following
relation holds

P
[
max

{∣∣∣X ′i,−j (β̂[−i],[−j] − β̂[−ik],[−j]

)∣∣∣ , ∣∣∣X ′k,−j (β̂[−k],[−j] − β̂[−ik],[−j]

)∣∣∣} . n−1/2+o(1)] = 1− o(1). (97)

Proof: We focus on one of the indices, say i. To this end, we will rely heavily on Lemma 9. Define b̂[−ik],[−j]
analogously to (87) as follows:

b̂[−i],[−j] := β̂[−ik],[−j] +G−1[−ik],[−j]Xk,−j

(
yk − ρ′

(
proxq̃kρ(X

′
k,−jβ̂[−ik],[−j] + q̃kyk)

))
,
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where q̃k = X ′k,−jG
−1
[−ik],[−j]Xk,−j . An application of Lemma 9 establishes that with high probability

‖β̂[−i],[−j] − b̂[−i],[−j]‖ . n−1/2+o(1). (98)

Hence, ∣∣∣X ′i,−j (β̂[−i],[−j] − β̂[−ik],[−j]

)∣∣∣ ≤ ‖Xi,−j‖‖β̂[−i],[−j] − b̂[−i],[−j]‖+
∣∣∣X ′i,−jG−1[−ik],[−j]Xk,−j

∣∣∣ .
The first term is controlled using (98) and the fact that ‖Xi,−j‖ = O(1) with high probability. For the
second term note that, conditional on Xi,−j ,G

−1
[−ik],[−j], it is a Gaussian random variable with mean zero

and varianceX ′i,−jG
−2
[−ik],[−j]Xi,−j/n . 1/n. Hence, the second term is O(n−1/2+o(1)) with high probability.

This completes the proof for index i. A similar argument works for index k, hence the result. �

We are now in a position to establish (96). From (89), we have that for each ϑ, δ > 0, there exists N
such that for all n ≥ N ,

P
[

sup
i=1,...,n

∣∣∣ri − {yi − ρ′ (proxλ?ρ (X ′i,−jβ̂[−i][−j] + λ?yi

))}∣∣∣ ≤ ϑ] ≥ 1− δ. (99)

Let E1, E2 denote the high probability event in (97) and the event in (99) respectively. DenoteH = Dn∩E1∩E2,
where Dn is defined via (76). Then,

|Cov(r21, r22)| ≤
∣∣E (r21 − E r21

) (
r22 − E r22

)
1H
∣∣+ P(Hc),

since |r2i − E r2i | is at most 1. Define for l = 1, 2,

f(Ml, yl) :=
(
yl − ρ′

(
proxλ?ρ (Ml + λ?yl)

))2 − E
(
yl − ρ′

(
proxλ?ρ (Ml + λ?yl)

))2
,

where Ml := X ′l,−jβ̂[−12],[−j]. Combining (97) and (99) we obtain that for any ϑ, δ > 0, for every n ≥ N ,

|Cov(r21, r22)| ≤ E f(M1, y1)f(M2, y2) + Cϑ2 + δ, (100)

where C > 0 is an absolute constant. By arguments similar to that in [5, Lemma 3.23], one can show that

E eit
′(M1,y1)+iw

′(M2,y2) − E eit
′(M1,y1) E eiw

′(M2,y2) → 0.

Thereafter, repeated applications of the multivariate inversion theorem to obtain densities from characteristic
functions yields

E f(M1, y1)f(M2, y2)− E f(M1, y1)E f(M2, y2)→ 0.

From (100), we have E f(Ml, yl) = 0, by definition. Then (100) leads to the required result (96). By
Chebyshev’s inequality, we have effectively established that

1

n

n∑
i=1

r2i −
1

n

n∑
i=1

E r2i
P→ 0. (101)

Since, the residuals are identically distributed, the approximation to β̂j derived in (82) and (83) yields that
for a null j and any m ∈ [n],

β̂j =
λ?
√
E r2mZ
κ

+ oP (1).

Appealing to (99) and using arguments similar to that for establishing (96), we have

lim
n→∞

E r2m = lim
n→∞

E
{
ym − ρ′

(
proxλ?ρ

(
X ′m,−jβ̂[−m][−j] + λ?ym

))}2

.
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Now, the discussion at the end of [8, Appendix C] rigorously established that

λ2? limn→∞ E
{
ym − ρ′

(
proxλ?ρ

(
X ′m,−jβ̂[−m][−j] + λ?ym

))}2

κ2
= σ2

?,

which leads to β̂j
d→ N (0,σ2

?) by Slutsky’s theorem. This completes the first part of the proof of Theorem 2.
Next, we investigate the joint distribution of multiple null MLE coordinates. Without loss of generality

assume βj = βl = 0 for some j, l ∈ [p]. From the relations in (82) and (83) in conjunction with Theorem 10,
it follows that [

β̂j
β̂l

]
=

λ?κ ∑iXij

(
yi − ρ′

(
X ′i,−jβ̂[−j]

))
λ?
κ

∑
iXil

(
yi − ρ′

(
X ′i,−lβ̂[−l]

))+ oP (1). (102)

Let Xi,[−jl] be the i-th row ofX without the j and l-th entries. Further define β̂[−jl] to be the MLE obtained
on dropping the j-th and l-th predictors. In (80) we established that if any one of p predictors is dropped,
the fitted values before and after are close with high probability. Applying this result to the p− 1 predictors
in [p]\{j} we obtain that on further dropping the l-th predictor, the fitted values satisfy

P
[
sup
i

∣∣∣X ′i,−jβ̂[−j] −X ′i,−[jl]β̂[−jl]

∣∣∣ . n−1/2+o(1)] = 1− o(1).

Similarly, we have

P
[
sup
i

∣∣∣X ′i,−lβ̂[−l] −X ′i,−[jl]β̂[−jl]

∣∣∣ . n−1/2+o(1)] = 1− o(1).

Combining with (102), this implies that

[
β̂j
β̂l

]
=

λ?κ ∑iXij

(
yi − ρ′

(
X ′i,−[jl]β̂[−jl]

))
λ?
κ

∑
iXil

(
yi − ρ′

(
X ′i,−[jl]β̂[−jl]

))+ oP (1)

=
λ?s[jl]

κ

[
Zj
Zl

]
+ oP (1),

where Zj ,Zl are independent standard normals and

s2[jl] =
1

n

n∑
i=1

(
yi − ρ′

(
X ′i,−[jl]β̂[−jl]

))2
.

By arguments similar to that for establishing (101), one can establish that s2[jl]
P→ E s2[jl] =: s?. Then we

have [
β̂j
β̂l

]
=
λ?s?
κ

[
Zj
Zl

]
+ oP (1),

which in turn implies that [
β̂j
β̂l

]
d→ N

(
0,σ2

?I
)

.

For any finite subset of null coordinates, say i1, . . . , ik, similar calculations can be carried out as above to
obtain that (β̂i1 , . . . , β̂ik)

d→ N (0,σ2
?I).
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6 Asymptotic distribution of the LRT

Finally we turn to the proof of Theorem 3. To this end, the following approximation to the LLR is extremely
useful.

Theorem 9. Suppose j is null, that is, βj = 0. If γ < gMLE(κ), the log-likelihood ratio statistic Λj =

`(β̂[−j])− `(β̂) can be approximated as follows:

2Λj =
κβ̂2

j

λ[−j]
+ oP (1), (103)

where λ[−j] is defined in (84).

Proof: Using the KKT condition ∇`(β̂) = 0 and Taylor expansion, we arrive at

2Λj =
(
X•−jβ̂[−j] −Xβ̂

)T
D(β̂)

(
X•−jβ̂[−j] −Xβ̂

)
+

1

3

n∑
i=1

ρ′′′(γi)
(
X ′i,−jβ̂[−j] −X ′iβ̂

)3
, (104)

where γi lies between X ′i,−jβ̂[−j] and X ′i,−jβ̂[−j]. Invoking Theorem 8 and the fact that |ρ′′′|∞ is bounded,
we obtain that the cubic term in (104) is oP (1). Subsequently, it can be checked that calculations similar to
those in [9, Section 7.3] go through in this setup on using Theorem 8. This completes the proof. �

To establish Theorem 3, it remains to analyze λ[−j]. To this end, the following lemma and an application
of Slutsky’s theorem completes the proof.

Theorem 10. If γ < gMLE(κ), the random variable λ[−j] defined in (84) converges in probability to a
constant. In fact,

λ[−j]
P→ λ?,

where λ? is part of the solution to the system (4).

Proof: The proof follows by arguments similar to that in [9, Appendix I] with some modifications. First, we
establish that λ[−j] is an approximate zero of a random function δn(x), in a sense that is formalized below.

Lemma 12. Define β̂[−i],[−j] to be the MLE obtained when the i-th observation and the j-th predictors are
removed and X ′i,−j to be the i-th row of the matrix X, with the j-th column removed. Let δn(x) be the
random function

δn(x) :=
p

n
− 1 +

1

n

n∑
i=1

1

1 + xρ′′
(
proxxρ

(
X ′i,−jβ̂[−i][−j] + xyi

)) . (105)

Then, λ[−j] obeys

δn
(
λ[−j]

) P→ 0.

Proof of Lemma 12: Upon replacing α̃ by λ[−j] in the proof of [9, Proposition 2], we obtain

p

n
− 1 +

1

n

n∑
i=1

 1

1 + ρ′′
(
X ′i,−jβ̂[−j]

)
λ[−j]

 P→ 0. (106)

We claim that the fitted values X ′i,−jβ̂[−j] can be approximated as follows:

sup
i

∣∣∣X ′i,−jβ̂[−j] − proxλ[−j]ρ

(
X ′i,−jβ̂[−i],[−j] + λ[−j]yi

)∣∣∣ . n−1/2+o(1), (107)
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with high probability. The claim is established by comparing (90), (93), and by arguments similar to that
in (95), with λ? replaced by λ[−j].

Using the fact that
∣∣∣ 1
1+x −

1
1+y

∣∣∣ ≤ |x− y| for x, y ≥ 0, we obtain∣∣∣∣∣∣ 1n
n∑
i=1

 1

1 + ρ′′
(
X ′i,−jβ̂[−j]

)
λ[−j]

− 1

n

n∑
i=1

 1

1 + ρ′′
(
proxλ[−j]ρ

(
X ′i,−jβ̂[−i],[−j] + λ[−j]yi

))
λ[−j]


∣∣∣∣∣∣

≤ |λ[−j]| |ρ′′′|∞ sup
i

∣∣∣X ′i,−jβ̂[−j] − proxλ[−j]ρ

(
X ′i,−jβ̂[−i],[−j] + λ[−j]yi

)∣∣∣ .
On the event Dn defined in (76), |λ[−j]| ≤ p/(nλlb). Further, ρ′′′ is bounded. Hence, from (107) we have the
desired result.

�

The next stage is to show that the random function δn(x) converges in a uniform sense to a deterministic
function ∆(x).

Lemma 13. Define ∆(x) to be the deterministic function

∆(x) = κ− 1 + E

 1

1 + xρ′′
(
proxxρ

(
xh(Q̃1,W ) + Q̃2

))
 , (108)

where (Q̃1, Q̃2) ∼ N (0, Σ(−α?,σ?)), W ∼ U(0, 1) |= (Q̃1, Q̃2), Σ is specified via (5) and (α?,σ?) form part
of the solution to the system (4). Then, for any B > 0,

sup
x∈[0,B]

|δn(x)−∆(x)| P→ 0. (109)

Proof of Lemma 13: As a first step, using compactness of the interval [0,B] and the definitions of δn(x)
and ∆(x) in (105) and (108) respectively, it can be established that for (109), it suffices to show the following:
for any given x ∈ [0,B]

|δn(x)−Gn(x)| P→ 0, (110)
|Gn(x)−∆(x)| → 0, (111)

where Gn(x) = E (δn(x)) . (We refer the interested reader to the proof of [9, Proposition 3] for a detailed
analogous computation in the simpler setup β = 0).

We first establish (111). To this end, we seek to express Gn(x) in an alternative, more convenient form.
Denote by β−j the vector of regression coefficients without the j-th coordinate. Recall that the discussion
at the end of [8, Appendix C] rigorously established the following fact:[

Q?1
Q?2

]
d→ N

(
0,

[
γ2 0
0 κσ2

?

])
, where Q?1 := X ′i,−jβ−j , Q?2 = X ′i,−j

(
β̂[−i][−j] − α?β−j

)
. (112)

As mentioned in (41), the responses can be expressed as yi = h(Q?1,wi), since we operate under the null
βj = 0, where wi ∼ U(0, 1) is independent of both Q?1 and Q?2. In terms of these random variables, Gn(x)
can be expressed as

Gn(x) =
p

n
− 1 + E

[
1

1 + xρ′′
(
proxxρ (Q?2 + α?Q?1 + xh (Q?1,wi))

)] .
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Now, the function

(t, l,w) 7→ 1

1 + xρ′′
(
proxxρ (l + α?t+ xh (t,w))

)
is bounded with the discontinuity points having Lebesgue measure zero. Note that (Q?1,Q?2,wi) arise from a
continuous joint distribution. Hence, from (112) we can conclude that

E

[
1

1 + xρ′′
(
proxxρ (Q?2 + α?Q?1 + xh (Q?1,wi))

)]→ E

 1

1 + xρ′′
(
proxxρ

(
Q̃2 + xh

(
Q̃1,W

)))
 ,

where Q̃1, Q̃2,W are as in the statement of the lemma. This completes the proof of (111).
To analyze (110), note that

δn(x)−Gn(x) =
1

n

n∑
i=1

f(Mi, yi), where Mi = X ′i,−jβ̂[−i][−j],

f(Mi, yi) =
1

1 + xρ′′
(
proxxρ (Mi + xyi)

) − E

[
1

1 + xρ′′
(
proxxρ (Mi + xyi)

)] .

Since {f(Mi, yi)}i=1...n are identically distributed this immediately gives,

Var(δn(x)) =
1

n2

n∑
i=1

E
[
f2 (Mi, yi)

]
+

1

n2

∑
i 6=j

E [f(Mi, yi)f(Mj , yj)]

=
E
[
f2(M1, y1)

]
n

+
n(n− 1)

n2
E [f(M1, y1)f(M2, y2)] .

It suffices to establish that E [f(M1, y1)f(M2, y2)] → 0, since it ensures δn(x)
L2→ Gn(x). To this end, we

resort to the leave-two-observation-out approach discussed in Section 5. By routine arguments using the
triangle inequality, properties of the partial derivatives of the proximal mapping operator (94), the fact that
‖f‖∞ ≤ 1, and invoking the approximations in Lemma 11, we arrive at

f(M1, y1)f(M2, y2)− f(X ′1,−jβ̂[−12],[−j], y1)f(X ′2,−jβ̂[−12],[−j], y2)
L1→ 0.

From arguments similar to [5, Lemma 3.23] and the multivariate inversion theorem, we obtain

E
[
f(X ′1,−jβ̂[−12],[−j], y1)f(X ′2,−jβ̂[−12],[−j], y2)

]
−E

[
f(X ′1,−jβ̂[−12],[−j], y1)

]
E
[
f(X ′2,−jβ̂[−12],[−j], y2)

]
→ 0,

which yields the desired result, since f is centered. �

Putting together Lemmas 12 and 13, since λ[−j] ≤ p/nλlb on the high probability event Dn defined in
(76), we obtain that

∆(λ[−j])
P→ 0.

To complete the proof, recall from (16) that ∆(x) can be alternatively expressed as

∆(x) = κ− 1 + E

 2ρ′(−Q̃1)

1 + xρ′′
(
proxxρ

(
Q̃2

))
 .

From Lemma 7, we know that ∆(x) = 0 has a unique solution. Comparing with the system of equations
in (4) and noting that (−Q̃1, Q̃2) ∼ N (0, Σ(α?,σ?)), we obtain that λ? is the unique solution to ∆(x) = 0.
Hence, λ[−j]

P→ λ?.
�
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7 Proof of Supporting Lemmas

In this section, we provide proofs of Lemmas 7, 2 and 1.

7.1 Proof of Lemma 7

Let a = −α, b =
√
κσ and denote the function

G(λ) = E
[

2ρ′(Q1)

1 + λρ′′(proxλρ(aQ1 + bZ))

]
,

where Z ∼ N (0, 1) |= Q1 and λ > 0. It is required to show that

1−G(λ) = κ (113)

has a unique solution. Note that λ 7→ G(λ) is continuous. To prove the lemma, it suffices to show that G is
strictly increasing and that

lim
λ→0

(1−G(λ)) = 0 (114)

lim
λ→∞

(1−G(λ)) = 1. (115)

To this end, define the function
Kλ(p, s) := λρ′

(
proxλρ (p+ s)

)
.

The partial derivative of the above with respect to the second argument is given by [3, Proposition 6.4]

K ′λ(p, s) :=
∂Kλ(p, s)

∂s
=

λρ′′(proxλρ(p+ s))

1 + λρ′′(proxλρ(p+ s))
. (116)

Hence, G(λ) can be expressed as

G(λ) = E [2ρ′(Q1) (1−K ′λ(aQ1, bZ))] . (117)

Applying Stein’s formula (69), one can check that

E [K ′λ(aQ1, bZ)|Q1] = −1

b

∫ ∞
−∞

Kλ(aQ1, bz)φ′(z)dz,

where φ(·) is the standard normal density. Plugging this back in (117) and differentiating with respect to λ,
we obtain

G′(λ) =
1

b
EQ1

[
2ρ′(Q1)

∫ ∞
−∞

∂Kλ(aQ1, bz)

∂λ
φ′(z)dz

]
.

Define f(·) to be the function

f(q) =
1

b

∫ ∞
−∞

∂Kλ(aq, bz)

∂λ
φ′(z)dz.

A result analogous to Lemma 7 was proved in [9, Lemma 5] for a different choice of the function G. In the
proof, it was established that f(0) < 0. One can check that, in order to study f(q) for any fixed q ∈ R, the
same arguments go through and we have f(q) < 0 for all q ∈ R. Since ρ′(·) > 0, this implies G′(λ) < 0.
Hence, the function 1−G(λ) is strictly increasing.

To show (114), note that for λ > 0, x 7→ λx/(1 + λx) is strictly increasing in x. Hence, for any (q1, z),

0 ≤ K ′λ (aq1, bz) ≤ λ‖ρ′′‖∞
1 + λ‖ρ′′‖∞

≤ 1.
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This implies that for any (q1, z), when λ → 0, K ′λ(aq1, bz) → 0. Further, since ρ′ is bounded, by the
dominated convergence theorem, we have

lim
λ→0

(1−G(λ)) = 1− E [2ρ′ (Q1)] ,

recalling the expression for G(λ) provided in (117). Now, we know that ρ′(x) = 1− ρ′(−x) and Q1
d
= −Q1,

which yields

2E ρ′(Q1) = E ρ′(Q1) + 1− E ρ′(−Q1)

= E ρ′(Q1) + 1− E ρ′(Q1)

=⇒ 1− 2E ρ′(Q1) = 0,

thus establishing (114).
Finally, we turn to the proof of (115). To this end, note that [9, Remark 3] established the following

crucial property regarding the logistic link function ρ: for any (q1, z) ∈ R2,

λρ′′
(
proxλρ (aq1 + bz)

)
→∞ when λ→∞.

Hence, for any (q1, z) recalling (116), we obtain that K ′λ(aq1, bz)→ 1 when λ→∞. Again, by the dominated
convergence theorem, we have

E [2ρ′(Q1) (1−K ′λ(aQ1, bZ))]→ 0 when λ→∞,

proving (115).

7.2 Proof of Lemma 2
Proof: For any v ∈ Rn, denote Ci(span(v)) = Cvi . From the definition of the statistical dimension,

δ(Cvi ) = E
[
‖ΠCvi ‖

2
]

= E
[
‖g‖2 −min

t∈R
min
u∈Cvi

‖g − tv − u‖2
]

, (118)

where g ∼ N (0, I). It can be checked that an approach similar to that in [9, Appendix D.2] leads to the
lower bound

min
t∈R

min
u∈Cvi

‖g − tv − u‖2

≥ min
t

 ∑
i:(gi−tvi)<0

(gi − tvi)2 − max
S⊂[n]:|S|=2

√
εn

∑
i∈S

(gi − tvi)2 − 2
√

2ε3/4‖g − tv‖2
 , (119)

where ε > 0 is a small constant. In the remaining proof, we carefully analyze the RHS of (119). To this end,
define Gv(t) = F v(t)− εv(t), where

F v(t) =
∑

i:(gi−tvi)<0

(gi − tvi)2

εv(t) = max
S⊂[n]:|S|=2

√
εn

∑
i∈S

(gi − tvi)2 + 2
√

2ε3/4‖g − tv‖2. (120)

Further, define fv(t) = E[F v(t)] and let t0 and t? be the minimizers of fv(t) and F v(t) respectively. At this
point, it is useful to record a crucial observation that follows from [2, Section 3.3]:

1

n
F v(t?)

P→ g−1MLE(γ). (121)

We require the following lemma to complete the proof.
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Lemma 14. There exists a fixed positive constant ε0 such that for all ε ≤ ε0, there exists an event GV in
the σ-algebra generated by V satisfying condition (31) and the following property: for all v ∈ GV ∩FV , with
high probability,9

sup
t∈[t0−M ,t0+M ]

|εv(t)| ≤ nf(ε), (122)

∀ t /∈ [t0 −M , t0 +M ] Gv(t) > ng−1MLE(γ), (123)

where εv(t),Gv(t) are defined via (120). Above, M ≡ M(ε) is a positive constant independent of n, FV is
the event defined in (24), f(x) is a smooth function such that limx→0 f(x) = 0 and f(x) is increasing on
[0, ε0].

Let ν0 = f(ε0). Then for all 0 < ν < ν0, applying Lemma 14 it can be established that, with high probability
for all v ∈ GV ∩ FV ,

min
t∈[t0−M ,t0+M ]

Gv(t) ≥ min
t∈[t0−M ,t0+M ]

F v(t)− sup
t∈[t0−M ,t0+M ]

εv(t)

≥ F v(t?)− nν + oP (1) ≥ n(g−1MLE(γ)− ν + oP (1)),

where the last inequality follows from (121). Here, oP (1) denotes a random variable that converges to zero in
probability as n→∞, under the law of g. Combining this with the high probability lower bound for Gv(t)
on the complement of [t0 −M , t0 +M ] obtained from Lemma 14 yields that, for all t and for all 0 < ν < ν0,

Gv(t) ≥ n(g−1MLE(γ)− ν + oP (1)).

In conjunction with (119), this yields that with high probability,

min
t∈R

min
u∈Cvi

‖g − tv − u‖2 ≥ n(g−1MLE(γ)− ν + o(1)).

Denote this high probability event byM. Since

E
[
min
t∈R

min
u∈Cvi

‖g − tv − u‖2
]
≥ E

[
min
t∈R

min
u∈Cvi

‖g − tv − u‖21M
]

,

recalling (118), we have
δ(Cvi ) ≤ n− n(g−1MLE(γ)− ν + o(1)),

thus completing the proof. �

It remains to prove Lemma 14, which is the focus of the rest of this subsection.

Proof of Lemma 14: To begin with, we will specify the event GV . Since V has sub-Gaussian tails, by an
application of [6] and the union bound, for a(ε) = 2 max{2

√
εH(2

√
ε)},

PV

[
max

S:|S|=2
√
εn

∑
i∈S

V 2
i ≤ C1na(ε)

]
≥ 1− e−H(2

√
ε)n, (124)

where H(x) = −x log x− (1−x) log(1−x) and PV denotes the probability under the law of V . From results
on the norm of a random vector with independent sub-Gaussian entries, [11, Sec 3.1], it can be established
that

PV
[
‖V ‖2 ≤ C1

√
n
]
≥ 1− 2 exp (−c1n) , (125)

9Here, the probability is over the law of g.
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where V denotes the random vector V = (V1, . . . ,Vn). Since, |V | − E |V | is sub-Gaussian, applying the
Hoeffding-type inequality [10, Proposition 5.10], we have

PV

[
n∑
i=1

|Vi| ≤ C1n

]
≥ 1− C1 exp (−c1n) . (126)

Next, note that V 21V >0 − EV 21V >0 is sub-exponential and from the Bernstein-type inequality [10, Propo-
sition 5.16], it can be shown that

PV

[
n∑
i=1

V 2
i 1Vi>0 ≥ C1n

]
≥ 1− 2 exp (−c1n) . (127)

Let GV denote the high probability event formed by the intersection of the events in (124),(125),(126)
and (127). Thus, any v ∈ GV ∩ FV satisfies the following properties:

max
S⊂[n]:|S|=2

√
εn

∑
i∈S

v2i ≤ C1na(ε), ‖v‖2 ≤ C2n,

n∑
i=1

|vi| ≤ C3n,
∑
i:vi>0

v2i ≥ C4n, max
i
v2i ≤ ζ log n.

(128)

We are now in a position to establish (122) and (123). To this end, recall that,

εv(t) = max
S⊂[n]:|S|=2

√
εn

∑
i∈S

(gi − tvi)2 + 2
√

2ε3/4‖g − tv‖2

≤ max
S⊂[n]:|S|=2

√
εn

2
∑
i∈S

g2i + max
S⊂[n]:|S|=2

√
εn

2t2
∑
i∈S

v2i + 2
√

2ε3/4{‖g‖2 + t2‖v‖2}.

To control the above, note that similar to (124) and (125), we have

max
S⊂[n]:|S|=2

√
εn

∑
i∈S

g2i ≤ C1na(ε), ‖g‖2 ≤ C2n,

with high probability. Putting these together, for all t,

εv(t) ≤ n
(
1 + t2

)
(C1a(ε) + C2ε

3/4), (129)

with high probability. Hence, for any positive universal constant M , for all v ∈ GV ∩ FV , with high
probability,

sup
t∈[t0−M ,t0+M ]

εv(t) ≤ nf(ε),

where f(x) is specified in the statement of the lemma.
It remains to lower bound Gv(t) outside the finite interval [t0 −M , t0 + M ] where M is any positive

constant independent of n. Consider t > 1. In this case, invoking (129) we have for all v ∈ GV ∩ FV ,

Gv(t) ≥
∑

i:gi<tvi

(gi − tvi)2 − nt2(C1a(ε) + C2ε
3/4) (130)

with high probability. Observe that {i : vi > 0, gi ≤ 0} ⊂ {i : gi − tvi < 0}. Thus,

∑
i:gi<tvi

(gi − tvi)2 ≥ t2
∑

i:vi>0,gi≤0

v2i − 2t
∑

i:vi>0,gi<0

|vigi| ≥ t2
∑

i:vi>0,gi≤0

v2i − 2t

n∑
i=1

|vigi|. (131)
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Since g →
∑n
i=1 |givi| is Lipschitz with Lipschitz constant at most ‖v‖, by Gaussian concentration of

Lipschitz functions and from the properties of v ∈ GV ∩ FV described in (128), we have
n∑
i=1

|givi| ≤ C2n (132)

with high probability.
Thus, it only remains to analyze the first term in the RHS of (131). Note that the vi’s are deterministic

in this term and g is the random variable. So, v2i 1vi>0,gi≤0− v2i 1vi>0/2 is a centered multiple of a Bernoulli
random variable and from [10, Proposition 5.10] we have,

Pg

[∣∣∣∣∣ ∑
i:vi>0

v2i 1gi≤0 −
1

2

∑
i:vi>0

v2i

∣∣∣∣∣ ≥ t
]
≤ C1 exp

(
− c1t

2

n (maxi v2i )
2

)
,

where Pg denotes the probability under the law of g. This is where the control over maxi v
2
i , that is ensured

by restricting v to FV defined via (24), is crucial. Recalling the properties of v from (128), we can choose
t = C1n such that ∑

i:vi>0

v2i 1gi≤0 ≥ C2n (133)

with high probability. Combining (132), (133) and recalling (131), we finally arrive at

Gv(t) ≥ C1t
2n− 2tC2n− nt2(C3a(ε) + C4ε

3/4)

for all v ∈ GV ∩ FV with high probability, when t > 1. If ε is sufficiently small, one can choose a positive
constant M such that t0 +M > 1 and for all t > t0 +M the RHS in the above inequality exceeds ng−1MLE(γ).
This establishes the desired result for all t > t0 +M . The case of t < t0 −M can be analyzed similarly and
is, therefore, omitted.

�

7.3 Proof. of Lemma 1
The event {span (V ) ∩ A 6= {0}} occurs if and only if

∃ a 6= 0 such that aV ∈ A.

Hence,
P [span (V ) ∩ A 6= {0}] ≤ P [∃ a > 0 s.t. aV ∈ A] + P [∃ a < 0 s.t. aV ∈ A] . (134)

From the definition of A in (21), it follows that

P [∃ a > 0 s.t. aV ∈ A] = P

 n∑
j=1

|Vj |1Vj<0 ≤ ε2
√
n‖V ‖

 ≤ P

 n∑
j=1

|Vj |1Vj<0 ≤ ε2n

+ C1 exp (−c1n) ,

(135)

where the last inequality follows from (125). Since |Vi|1Vi<0 − E |Vi|1Vi<0 is sub-gaussian, applying [10,
Proposition 5.10] we obtain

P

[
(E |V1|1V1<0)n

2
≤

n∑
i=1

|Vi|1Vi<0 ≤
3 (E |V1|1V1<0)n

2

]
≥ 1− C1 exp (−c1n) . (136)

Combining (135) and (136) yields that for sufficiently small ε,

P [∃ a > 0 s.t. aV ∈ A] ≤ C1 exp (−c1n) .

The second term in the RHS of (134) can be analyzed similarly.
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