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Bimodal truncated count distributions are frequently observed in aggregate survey data and in user ratings
when respondents are mixed in their opinion. They also arise in censored count data, where the highest
category might create an additional mode. Modeling bimodal behavior in discrete data is useful for various
purposes, from comparing shapes of different samples (or survey questions) to predicting future ratings
by new raters. The Poisson distribution is the most common distribution for fitting count data and can be
modified to achieve mixtures of truncated Poisson distributions. However, it is suitable only for modeling
equidispersed distributions and is limited in its ability to capture bimodality. The Conway–Maxwell–
Poisson (CMP) distribution is a two-parameter generalization of the Poisson distribution that allows for
over- and underdispersion. In this work, we propose a mixture of CMPs for capturing a wide range
of truncated discrete data, which can exhibit unimodal and bimodal behavior. We present methods for
estimating the parameters of a mixture of two CMP distributions using an EM approach. Our approach
introduces a special two-step optimization within the M step to estimate multiple parameters. We examine
computational and theoretical issues. The methods are illustrated for modeling ordered rating data as well
as truncated count data, using simulated and real examples.

KEY WORDS: Censored data; Count data; EM algorithm; Likert scale; Surveys.

1. INTRODUCTION AND MOTIVATION

Discrete data arise in many fields, including transportation,
marketing, healthcare, biology, psychology, public policy, and
more. Two particularly common types of discrete data are or-
dered ratings (or rankings) and counts. This article is motivated
by the need for a flexible distribution for modeling discrete data
that arise in truncated environments, and in particular, where the
empirical distributions exhibit bimodal behavior. One example
is aggregate counts of responses to Likert scale questions or
ratings such as online ratings of movies and hotels, typically
on a scale of one to five stars. Another context where bimodal
truncated discrete behavior is observed is when only a cen-
sored version of count data is available. For example, when the
data provider combines the highest count values into a single
“larger or equal to” bin, the result is often another mode at the
last bin.

Real data in the above contexts can take a wide range of
shapes, from symmetric to left- or right-skewed and from
unimodal to bimodal. Peaks and dips can occur at the extremes
of the scale, in the middle, etc. Data arising from ratings or
Likert scale questions exhibit bimodality when the respondents
have mixed opinions. For example, respondents might have
been asked to rate a certain product on a 10-point scale. If
some respondents like the item considerably and others do
not, we would find two modes in the resulting data, and the
location of the modes would depend on the extent of the
likes and dislikes. In online ratings, sometimes the owners
of the rated product/service illegally enter ratings, thereby

contributing to overly “good” ratings, while other users might
report very “bad” ratings. This behavior would again result in
bimodality.

In addition to bimodality, data from different groups of re-
spondents might be underdispersed or overdispersed, due to
various causes. For example, dependence between responders’
answers can cause overdispersion.

The most commonly used distribution for modeling count
data is the Poisson distribution. One of the major features of
the Poisson distribution is that the mean and variance of the
random variable are equal. However, data often exhibit over-
or underdispersion. In such cases, the Poisson distribution
often does not provide good approximations. For overdispersed
data, the negative Binomial model is a popular choice (Hilbe
2011). Other overdispersion models include Poisson mixtures
(McLachlan 1997). However, these models are not suitable for
underdispersion. A flexible alternative that captures both over-
and underdispersion is the Conway–Maxwell–Poisson (CMP)
distribution. The CMP is a two-parameter generalization of
the Poisson distribution which also includes the Bernoulli and
geometric distributions as special cases (Shmueli et al. 2005).
The CMP distribution has been used in a variety of count-data
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applications and has been extended methodologically in
various directions (see a survey of CMP-based methods and
applications in Sellers, Borle, and Shmueli 2012).

In the context of bimodal discrete data, and for capturing a
wide range of observed aggregate behavior, we therefore pro-
pose and evaluate the use of a mixture of two CMP distribu-
tions. We find that a mixture of Poisson distributions is often
insufficient for adequately capturing many bimodal distribution
shapes. Consider, for example, the situation of responses with
a U-shape with one peak at a low rating (say, 1), followed by a
steep decline, a deep valley, and then a sudden peak at a high
rating (say, 9). A mixture of two Poisson distributions will likely
be inadequate due to the steep decline after 1 and sudden rise
near 9. Such data might arise from a mixture of two under-
dispersed distributions. There might be other situations where
the data can be conceived of as a mixture of two overdispersed
distributions or an overdispersed and an underdispersed distribu-
tion. Under such setups, mixtures of two CMP distributions are
likely to better fit the data than mixtures of two Poisson distribu-
tions. While the CMP distribution has been the basis for various
models, to the best of our knowledge, it was not extended to
mixtures.

A model for approximating truncated discrete bimodal data
is useful for various goals. By approximating, we refer to
the ability to estimate the locations and magnitudes of the
peaks and dips of the distribution. One application is predic-
tion, where the purpose is to predict the magnitude of the
outcome for new observations (such as in online ratings). An-
other is to try and distinguish between two underlying groups
(such as between fraudulent self-rating providers and legitimate
raters).

We are interested both in the frequency of a given value as
well as in the value itself. In the case of “popular” values, we use
the term “peak” to refer to the magnitude and “mode” to refer to
the location of the peak. In the case of “unpopular” values, we
use the term “dip” to refer to the magnitude, and coin the term
“lode” to refer to the location of the dip. In bimodal data, we
expect to see two peaks and one, two, or three dips. We denote
these by mode1, mode2, lode1, lode2, lode3, where mode1 and
lode1 are the left-most (or top-most) mode and lode on a vertical
(horizontal) bar chart, respectively.

In the following, we introduce two real data examples to
illustrate the motivation for our proposed methodology.

1.1. Example 1: Online Ratings

Many websites rely on user ratings for different products or
services, and a “5-star” rating system is common. Amazon.com,
netflix.com, tripadvisor.com are just a few examples of such
websites. To illustrate such a scenario, Figure 1 shows the ratings
for a hotel in Bhutan as displayed on the popular travel website
tripadvisor.com (the data were recorded on May 24, 2012 and
can change as more ratings are added by users). In this example,
we see bimodal behavior that reflects mixed reviews. Some
responders have an “excellent” or “very good” impression of the
hotel while a few report a “terrible” experience. Here, mode1 =
Excellent, mode2 = Terrible, lode1 = Poor.

Figure 1. Distribution of user ratings of Druk Hotel on tripadvi-
sor.com. Recorded May 24, 2012.

1.2. Example 2: Censored Data

The Heritage Provider Network, a healthcare provider, re-
cently launched a $3,000,000 contest (www.heritagehealthprize.
com) with the following goal: “Identify patients who will be ad-
mitted to a hospital within the next year, using historical claims
data.” While the contest is much broader, for simplicity we look
at one of the main outcome variables, which is the distribution
of the number of days spent in the hospital for claims received
in a 2-year period (we excluded zero counts which represent pa-
tients who were not admitted at all. The latter consist of nearly
125,000 records). The censoring at 15 days of hospitalization
creates a second mode in the data, as can be seen in Figure 2. In
this example, mode1 = 1, mode2 = 15 + , lode1 = 14.

The remainder of the article is organized as follows: In Sec-
tion 2 we introduce a mixture of truncated CMP distributions
for capturing bimodality, and describe the EM algorithm for
estimating the five CMP mixture parameters and computational
considerations. We also discuss measures for comparing model
performance. Section 3 illustrates our proposed methodology by
applying it to simulated data, and Section 4 applies it to the two
real data examples. We conclude the article with a discussion
and future directions in Section 5.

2. A MIXTURE OF TRUNCATED CMP
DISTRIBUTIONS

2.1. The CMP Distribution

The CMP distribution is a generalization of the Poisson dis-
tribution obtained by introducing an additional parameter ν,
which can take any nonnegative real value, and accounts for
the cases of over- and underdispersion in the data. The dis-
tribution was briefly introduced by Conway and Maxwell in
1962 for modeling queuing systems with state-dependent ser-
vice rates. Non-Poisson datasets are commonly observed these
days. Overdispersion is often found in sales data, motor vehicle
crashes counts, etc. Underdispersion is often found in data on
word length, airfreight breakages, etc. (see Sellers, Borle, and
Shmueli 2012 for a survey of applications). The statistical prop-
erties of the CMP distribution, as well as methods for estimating
its parameters were established by Shmueli et al. (2005). Various
CMP-based models have since been published, including CMP
regression models (classic and Bayesian approaches), cure-rate
models, and more. The various methodological developments
take advantage of the flexibility of the CMP distribution in cap-
turing under- and overdispersion, and applications have shown

http://http://www.heritagehealthprize.com
http://http://www.heritagehealthprize.com
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Figure 2. Distribution of numbers of days at the hospital. Data reported in censored form.

its usefulness in such cases. However, to the best of our knowl-
edge, there has not been an attempt to fit bimodal count distribu-
tions using the CMP. The use of CMP mixtures is advantageous
compared to Poisson mixtures, as it allows the combination of
data with different dispersion levels with a resulting bimodal
distribution.

If X is a random variable from a CMP distribution with pa-
rameters λ and ν, its distribution is given by

P (X = x) = λx

x!υ
.

1∑∞
j=0

λj

j !υ

, for x = 0, 1, 2, . . .

λ > 0, ν ≥ 0. (1)

It is common to denote the normalizing factor by Z (λ, ν) =
∞∑

j=0

λj

j !υ . The common features of this distribution are:

1. The ratio of successive probabilities is nonlinear in x unlike
that for the Poisson distribution.

P (X = x − 1)

P (X = x)
= xν

λ

In case of the Poisson distribution (ν = 1) the above quantity
becomes linear (x/λ).
If ν < 1, successive ratios decrease at a slower rate compared
to the Poisson distribution giving rise to a longer tail. This
corresponds to the case of overdispersion. The reverse occurs
for the case of underdispersion.

2. This distribution is a generalization of a number of discrete
distributions:
• For ν = 0 and λ < 1, this is a geometric distribution with

parameter 1-λ.
• For ν = 1, this is the Poisson distribution with parameter

λ.
• For ν → ∞, this is a Bernoulli distribution with parameter

λ/(1 + λ).

3. The CMP distribution is a member of the exponential family

and (
n∑

i=1
xi,

n∑
i=1

log(xi!)) is sufficient for (λ, ν).

We modify the CMP distribution to the truncated scenario
considered in this article. For data in the range t, t + 1, t +
2,. . ., T , we truncate values below t and above T . For example,
for data from a 10-point Likert scale, the truncated CMP pmf is
given by

P (X = x) = λx

x!υ
.

1∑10
j=1

λj

j !υ

, x = 1, 2, . . . , 10; λ > 0, ν ≥ 0.(2)

2.2. CMP Mixtures

The principal objective of this article is to model bimodal-
ity in count data. Since both the Poisson and CMP can only
capture unimodal distributions, for capturing bimodality we re-
sort to mixtures. The standard technique for fitting a mixture
distribution is to employ the expectation-maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977). For example, in
case of Poisson mixtures, one assumes that the underlying distri-
bution is a mixture of two Poisson component distributions with
unknown parameters while the mixing parameter p is also un-
known. Further it is also assumed that there is a hidden variable
with a Bernoulli (p) distribution, which determines from which
component the data are coming from. Starting with some initial
values of the unknown parameters, in the first step (E-step) of
the algorithm, the conditional expectation of the missing hidden
variables are calculated. Then, in the second step (M-step), pa-
rameters are estimated by maximizing the full likelihood (where
the values of the hidden variables are replaced with the expected
values calculated in the E-step). Using these new estimates, the
E-step is repeated, and iteratively both steps are continued until
convergence.

Let X be a random variable assumed to have arisen from a
mixture of CMP (λ1, ν1) and CMP (λ2, ν2) with probability p of
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being generated from the first CMP distribution. We also assume
that each CMP is truncated to the interval [1, 2,. . ., T].

Let f1(x) and f2(x) denote the pmfs of the two CMP distri-
butions, respectively. Then the pmf of X is given by

f (x) = pf1 (x) + (1 − p) f2 (x) for x = 1, 2, . . . , T . (3)

If X1, X2, . . . , Xn are iid random variables from the above
mixture of two CMP distributions, their joint likelihood function
is given by

L′ =
n∏

i=1

f (xi) =
n∏

i=1

{pf1 (xi) + (1 − p) f2 (xi)}

log L′ =
n∑

i=1

log {pf1 (xi) + (1 − p) f2 (xi)}

=
n∑

i=1

log

⎧⎨⎩p.
λ

xi

1

xi!υ1
.

1∑T
j=1

λ
j

1
j !υ1

+ (1 − p) .
λ

xi

2

xi!υ2
.

1∑T
j=1

λ
j

2
j !υ2

⎫⎬⎭ . (4)

We would like to find the estimates
(
p̂, λ̂1, ν̂1, λ̂2, ν̂2

)
by

maximizing the likelihood function. However, due to the non-
linear structure of the likelihood function, differentiating it with
respect to each of the parameters and equating the partial deriva-
tives to zero does not yield a closed form solution for any of
the parameters. We therefore adopt an alternative procedure for
representing the likelihood function.

Define a new set of random variables Yi as follows:

Yi =
{

1 if Xi ∼ CMP (λ1, ν1)

0 if Xi ∼ CMP (λ2, ν2)

}
.

Then the likelihood and log-likelihood functions can be writ-
ten as

L =
n∏

i=1

{
(pf1 (xi))

yi ((1 − p) f2 (xi))
(1−yi )

}
l = logL =

n∑
i=1

yi{log(p) + logf1 (xi)} +
n∑

i=1

(1 − yi)

{log(1 − p) + logf2 (xi)} . (5)

From here we get a closed form solution for p̂ by
differentiation:

δl

δp
= 0 => p̂ =

∑n
i=1 yi

n
.

The problem lies in the fact that the yi’s are unknown. We
therefore use the EM algorithm technique.

2.2.1 E Step. Here we replace the yi’s with their condi-
tional expected value

Ỹi := E (Yi |Xi = xi) = pf1 (xi)

pf1 (xi) + (1 − p) f2 (xi)
. (6)

2.2.2 M Step. Thus, by replacing the unobserved yi’s in
the E-step, we get

p̂ =
∑n

i=1 ỹi

n
. (7)

For the other parameters, none of the equations

δl

δλ1
= 0,

δl

δν1
= 0,

δl

δλ2
= 0,

δl

δν2
= 0

yields closed form solutions. We propose an iterative technique
for obtaining the remaining estimates by maximizing L.

Because an estimate of p is easy to obtain, we only need to
maximize the likelihood based on the remaining four parameters
and then iterate. In particular: Plug in p̂ in the likelihood function
L. Then L becomes a function of λ1, ν1, λ2, ν2.

The idea is to use the grid search technique to maximize L.
In this technique, we divide the parameter space into a grid,
evaluate the function at each grid point, and find the grid point
where the maximum is obtained. Then, a neighborhood of this
grid point is further divided into finer areas and the same pro-
cedure is repeated until convergence. We continue until the grid
spacing is sufficiently small. This approach is expected to yield
the correct solution as CMP distribution is a member of the
exponential family. Wu (1983) established the convergence of
EM for the exponential family when the likelihood turns out to
be unimodal.

Since we have four parameters to estimate, carrying out a
grid search for all of them simultaneously is computationally
infeasible. We therefore propose a two-step algorithm. First, we
fix any two of the parameters at some initial value and carry out
a grid search for the remaining two. Then, fixing the values of
the estimated parameters in the first step, we carry out a grid
search for the remaining two.

One question is which two parameters should one fix initially.
From simulation studies, we observed that fixing the λ’s and
obtaining ν̂’s and then carrying out a grid search for estimating
the λ’s reduces the run time of the algorithm.

2.3. Model Estimation

To avoid identifiability issues, if the empirical distribution
exhibits a single peak, p is set to zero and a single CMP is es-
timated using ordinary maximum likelihood estimation (as in
Shmueli et al. 2005) with adjustment for the truncation. Other-
wise, if the empirical distribution shows two peaks, we execute
the following steps:

2.3.1 Initialization. Fit a Poisson mixture. If the resulting
estimates of λ1, λ2 are sufficiently different, use these three
estimates as the initial values for p, λ1, and λ2 and set the initial
ν1 = ν2 = 1.

If the estimated Poisson mixture fails to identify a mixture of
different distributions, that is, when λ1 and λ2 are very close,
then use the estimated p as the initial mixing probability, but
initialize λ’s by fixing them at the two peaks of the empirical
distribution and set the initial ν1 = ν2 = 1.

Alternatively, initialize λ’s by fixing them at the two peaks
of the empirical distribution but initialize ν’s by using the ratio
between frequencies at the peak and its neighbor(s).
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2.3.2 Iterations. After fixing the five parameters at
initial values, the two-step optimization follows the following
sequence:

For a given p,

• Optimize the likelihood for ν’s, fixing p, λ1, and λ2 using
a grid search.

• The optimal ν1, ν2 are then fixed (along with p). A grid
search finds the optimal λ1, λ2.

• Repeat Steps 1 and 2 until some convergence stopping rule
is reached.

• Once the λ’s and ν’s are estimated, go back to estimate p.
• Finally, the E step and M step are run until convergence.

Empirical observations for improving and speeding up the
convergence:

• Split the grid search for ν’s into three areas: [0,0.7], (0.7,1],
>1.

• Grid ranges and resolution can be changed over different
iterations.

• Even when the initial values are not based on the Poisson
mixture, the likelihood of the Poisson mixture must be
retained and used as a final benchmark, to assure that the
chosen CMP mixture is not inferior to a Poisson mixture. In
all our experiments, the alternative initialization described
above yielded better solutions.

• Choosing upper bounds on the λ’s and ν’s: The bounded
support of the truncated distributions means that values of
λ and ν beyond certain values lead to a degenerate distri-
bution. Based on our experience, it is sufficient to use ν =
20 as an upper bound (see Appendix A for illustrations).
For bounding λ, we take advantage of the identifiability
issue where different combinations of λ,ν yield similar
distribution shapes (see Section 3.1). In our algorithm, we
therefore set the upper bound of λ = 100 (an upper bound
of λ = 50 is sufficient, but for slightly more precision we
set it to 100).

2.4. Model Evaluation and Selection

We focus on two types of goals: a purely descriptive goal,
where we are looking for an approximating distribution that

captures the empirical distribution, and a predictive goal where
we are interested in the accuracy of predicting new observations.

In the context of bimodal ratings and truncated count data, it
is desirable that the fitted distribution should capture the modes,
lodes and shape of the data, as well as have a close match be-
tween the observed and expected counts. Because the data are
limited to a relatively small range of values, we can examine the
complete actual and fitted frequency tables. It is practical and
useful to start with a visual evaluation of the fitted distribution(s)
overlaid on the empirical bar chart. The visual evaluation can
be used to compare different models and to evaluate the fit in
different areas of the distribution, rather than relying on a single
overall measure. Performance is therefore a matter of capturing
the shape of the empirical distribution. One example is in sur-
veys, where it is often of interest to compare the distributions of
answers to different questions to one another, or to an aggregate
of a few questions.

In the bimodal context, it is typically important to properly
capture the mode(s) and lode(s). The locations of the popular
and unpopular values and their extremeness within the range of
values can be of importance, for instance, in ratings.

For these reasons, rather than relying on an overall “average”
measure of fit, such as likelihood-based metrics, we focus on re-
porting the modes and lodes as well as looking at the magnitudes
of the deviation at peaks and dips. We report AIC statistics only
for the purposes of illustrating their uninformativeness in this
context. In applications where the costs of misidentifying a mode
or lode can be elicited, a cost-based measure can be computed.

3. APPLICATION TO SIMULATED DATA

To illustrate and evaluate our CMP mixture approach and to
compare it to simpler Poisson mixtures, we simulated bimodal
discrete data over a truncated region, similar to the examples of
real data shown in Section 1.

3.1. Example 1: Bimodal Distribution on 10-Point Scale

We start by simulating data from a mixture of two CMP
distributions on a 10-point scale, one underdispersed (λ1 = 1,
ν1 = 3) and the other overdispersed (λ2 = 8, ν2 = 0.7),
with mixing parameter p = 0.3. Figure 3 shows the empirical

Figure 3. Fit of estimated Poisson mixture (p̂ = 0.3221, λ̂1 = 0.4094, λ̂2 = 13.5844) and CMP mixture (p̂ = 0.24, λ̂1 = 1.1, ν1 = 3.75, λ̂2

= 9, ν2 = 0.8).
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distribution for 100 observations simulated from this distribu-
tion. We see a mode at 1 and another at 10. We first fit a Poisson
mixture, resulting in the fit shown in Table 1 and Figure 3. As can
be seen, the Poisson mixture properly captures the two modes,
but their peak magnitudes are incorrectly flipped (thereby
identifying the highest peak at 1); it also does not capture the
single lode at 3, but rather estimates a longer dip throughout
3,4,5. Finally, the estimated overall U-shape is also distorted.
Note that the three estimated parameters (λ1, λ2, and p) are
quite close to the generating ones, yet the resulting fit is poor.

We then fit a CMP mixture using the algorithm described in
Section 2.3. The results are shown in Table 1 and Figure 3. The
fit appears satisfactory in terms of correctly capturing the two
modes and single load as well as the magnitudes of the peaks
and dip. Note that the AIC statistic is very close to that from the
Poisson mixture, yet the two models are visibly very different
in terms of capturing modes, lodes, magnitudes, and the overall
shape.

Although the good fit of the CMP mixture might not be sur-
prising (because the data were generated from a CMP mixture),
it is reassuring that the algorithm converges to a solution with
good fit. We also note that the estimated parameters are close
to the generating parameters. Finally, we note that the runtime
was about a minute.

3.1.1 Identifiability. Identifiability can be a challenge in
some cases and a blessing in other cases. When the goal is to
capture the underlying dispersion level, then identifiability is
obviously a challenge. However, for descriptive or predictive
goals, the ability to capture the empirical distribution with more
than one model allows for flexibility in choosing models based
on other important considerations such as computational speed
or predictive accuracy.

Exploring the likelihood function, which is quite flat in the
area of the maximum, we observe an identifiability issue. In
particular, we find multiple parameter combinations that yield
very similar results in terms of the estimated distribution. For
instance, in our above example, the estimated CMP mixture is
of one underdispersed CMP (λ1 = 1.13, ν1 = 3.75) and one
overdispersed CMP (λ2 = 9, ν2 = 0.8) with mixing parameter
p = 0.24. By replacing only the overdispersed CMP with the
underdispersed CMP (λ2 = 25, ν2 = 1.27), we obtain a nearly

Table 1. Simulated 10-point data (n = 100) and expected counts from
Poisson and CMP mixtures

Value
Simulated

data
Poisson
mixture CMP mixture

1 22 36 22
2 2 7 2
3 0 1 0
4 1 1 1
5 1 1 2
6 4 3 4
7 7 6 7
8 15 10 13
9 22 15 20

10 26 20 29
Estimates

p 0.3 0.32 0.24
λ1, λ2 1,8 0.41, 13.58 1.13, 9.00

ν1, ν2 3, 0.7 3.75, 0.8
First mode 1 1 1
Second mode 10 10 10
First lode 3 3,4,5 3
Second lode — — —
Third lode — — —
AIC 370.6 370.0

identical fit, as shown in Figure 4 and Table 2 (“CMP Mixture
2”). Mixture 2 is inferior to Mixture 1 only in terms of detecting
lode 1 (indicating a lode at 1–2), but otherwise very similar.
Another similar fit can be achieved by slightly modifying the two
parameters to λ2 = 30, ν2 = 1.36 (“CMP Mixture 3”). In other
words, we can achieve similar results by combining different
dispersion levels. In this example, we are able to achieve similar
results by combining an over- and an underdispersed CMP and
by combining two underdispersed CMPs.

To illustrate this issue further, we also show in Figure 5 the
contours of the log-likelihood functions (as functions of ν1 and
ν2) for three different fixed sets of values of p, λ1, and λ2.
These plots correspond to the parameter combinations given in

Figure 4. Three different CMP mixture models that achieve nearly identical fit. Model 1 is the CMP from Figure 6. Models 2 and 3 are
mixtures of two underdispersed CMPs.
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Figure 5. Contour plots of the log-likelihood for three different parameter combinations.
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Table 2. Three CMP mixtures fitted to the same data, with very
similar fit

Value Counts

CMP mixture
1 (λ2 = 9,
ν2 = 0.8)

CMP mixture
2 (λ2 = 25,
ν2 = 1.27)

CMP mixture
3 (λ2 = 30,
ν2 = 1.36)

1 22 22 21 22
2 2 2 3 2
3 0 0 0 0
4 1 1 0 0
5 1 2 1 1
6 4 4 4 4
7 7 8 8 8
8 15 13 14 14
9 22 20 21 21

10 26 28 28 28

Table 2. In the plots, only the region where the log-likelihood
function nears its peak is shown. It is quite evident from the
plots that the peaks of the functions achieve very similar values.
Therefore, the algorithm may converge to any of these parameter
combinations, and we have already observed that the fits are very
similar as well.

These plots also highlight the challenges of maximizing the
likelihood in this situation. The solution is highly dependent on
the initial values. The estimated value of the parameter ν2 de-
pends on the estimated parameter of λ2, and the former increases
with the latter. In the process, the estimated second CMP distri-
bution moves from being overdispersed to even underdispersed.

Table 3. First simulated 15-point dataset (n = 1000) and estimated
counts from Poisson and CMP mixtures

Value Simulated counts Poisson mixture CMP mixture

1 44 29 33
2 71 62 73
3 120 90 113
4 128 98 134
5 104 86 131
6 106 65 108
7 85 48 78
8 54 40 50
9 36 42 30

10 25 51 18
11 19 63 15
12 15 75 20
13 30 83 34
14 48 85 60
15 115 83 103
Estimates

p 0.8 0.50 0.77
λ1, λ2 2, 15 4.32,14.50 4.15,15.1

ν1,ν2 0.5,0.7 0.9, 0.8
First mode 4 4 4
Second mode 15 14 15
First lode 1 1 1
Second lode 12 8 11
Third lode — — —
AIC 5680 5210

Further, in each of the plots, it can be seen that the peaks are
very sharp. Therefore, it is quite difficult for the algorithm to
locate them. In the grid-search, the algorithm has to use very fine
grids to successfully capture them. Peaks may not be visible in
lower resolution. Thus the computational cost of the algorithm
increases substantially.

3.2. Example 2: Bimodal Distribution on 15-Point Scale

To further illustrate the ability of the CMP mixture to identify
the two modes and adequately capture their frequency, as well as
dips and overall shape, we further simulated two sets of 15-point
scale data, with n = 1000 for each set.

Table 3, Table 4, Figure 6, and Figure 7 present the simulated
data, the fitted Poisson mixture and the fitted CMP mixture.

In the first example (Table 3 and Figure 6), both Poisson and
CMP mixtures correctly identify the first mode (at 4), but the
CMP estimates the corresponding peak much more accurately
than the Poisson mixture. The second mode (at 15) is only
identified correctly by the CMP mixture, whereas the Poisson
mixture indicates a neighboring value (14) as the second mode.
In terms of dips, the first lode (1) is identified by both models.
However, for lode2 = 12 the Poisson estimate is far away at 8,
while the CMP estimate is at the neighboring 11. Overall, the
shape estimated by the CMP is dramatically closer to the data
than the shape estimated by the Poisson mixture.

The second example (Table 4 and Figure 7) illustrates the
dramatic underestimation of a mode’s peak magnitude using
the Poisson mixture. In this example, while both Poisson and

Table 4. Second simulated 15-point dataset (n = 1000) and estimated
counts from Poisson and CMP mixtures

Value Simulated counts Poisson mixture CMP mixture

1 302 141 304
2 115 49 112
3 24 18 26
4 13 20 13
5 21 36 22
6 37 59 39
7 51 81 57
8 81 99 72
9 80 107 79

10 84 104 77
11 64 92 67
12 49 74 53
13 36 56 38
14 30 39 25
15 13 25 16
Estimates
p 0.4 0.20 0.44
λ1, λ2 1,15 0.67,9.73 1.03,13.78

ν1, ν2 1.5,1.2 1.5, 1.15
First mode 1 1 1
Second mode 10 9 9
First lode 4 4 4
Second lode 15 15 15
Third lode — — —
AIC 5050 4720
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Figure 6. First simulated 15-point dataset (bars) and expected counts from Poisson and CMP mixtures.

CMP mixtures reasonably capture the modes and lodes (with the
CMP capturing them more accurately), they differ significantly
in their estimate for the magnitude of the first peak. Such data
shapes would not be uncommon in rating data.

4. APPLICATION TO REAL DATA

We now return to the two real-life examples presented in
Section 1. In each case, we fit a CMP mixture, evaluate its fit,
and compare it to a Poisson mixture.

4.1. Example 1: Online Ratings

Recall the Tripadvisor.com 5-point rating of Druk Hotel from
Section 1.1. The results of fitting a Poisson mixture and CMP
mixture are shown in Table 5 and Figure 8. A visual inspection
shows that the CMP mixture outperforms the Poisson mixture
in terms of capturing the overall shape of the distribution.

In this example and in ratings applications in general, it is
possible to flip the order of the values from low to high or from
high to low. Here, we can reorder the ratings from “excellent”
to “terrible.” Next, we show the results of fitting Poisson and
CMP mixtures to the flipped ratings (see Table 6 and Figure 9).
It is interesting to note that for the CMP mixture the estimates

Table 5. Observed and fitted counts for Druk Hotel online ratings

Rating Data
Poisson
mixture

CMP
mixture

Terrible 4 9 3
Poor 2 9 5
Average 10 9 8
Very good 17 10 14
Excellent 17 13 19
Estimates
p 0.22 0.09
λ1,λ2 1.58, 6.91 0.91, 5.23

ν1, ν2 0.5, 0.8
First mode Very good,

Excellent
Excellent Excellent

Second mode Terrible — —
Dip location Poor Terrible,

Poor,
Average

Terrible

AIC 178.3156 171.1

slightly change, but the fitted counts remain unchanged. In con-
trast, for the Poisson mixture, flipping the order yields a slightly
better fit in terms of shape.

Figure 7. Second simulated 15-point dataset (bars) and expected counts from Poisson and CMP mixtures.
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Figure 8. Observed and fitted Poisson and CMP mixture counts for Druk Hotel online rating example.

Table 6. Poisson and CMP mixtures fitted to the flipped ratings
(excellent to terrible)

Rating Data
Poisson
mixture

CMP
mixture

Excellent 17 15 19
Very good 17 14 14
Average 10 10 8
Poor 2 7 5
Terrible 4 4 3
Estimates
p 0.55 0.88
λ1,λ2 1.38,3.38 1.03, 4.68

ν1,ν2 0.6, 0.8
First mode Very good,

Excellent
Excellent Excellent

Second mode Terrible — —
Dip location Poor Terrible, Poor,

Average
Terrible

AIC 206.8623 204.1

4.2. Example 2: Heritage Insurance Competition

We return to the example from Section 1.2. The results
of fitting a Poisson mixture and CMP mixture are shown in
Table 7 and Figure 10. In this example, the two likelihood-
based measures are very similar but the CMP fit is visibly much
better. The CMP mixture correctly identifies the two modes and
the magnitude of their frequencies. In contrast, the Poisson mix-
ture not only misses the mode locations, but also the magnitude
of the inaccuracy for those frequencies is quite high.

4.2.1 Truncated Mixture Versus Censored Models. In this
particular example, the data are right-censored at 15, with all
15 + counts given in censored form. We therefore compare
the truncated CMP mixture to two alternative censored models:
(1) a single right-censored CMP (with support starting at 1),
and (2) a mixture of two right-censored CMP distributions. The
log-likelihood function for a right-censored CMP can be written
as

log L =
n∑

i=1

(1 − δi) log P (Yi = yi) + δi log P (Yi ≥ yi)

=
n∑

i=1

(1 − δi)
[
yi log λi − ν log yi! − log Z (λi, ν)

]
+δi log P (Yi ≥ yi) , (8)

Figure 9. Poisson and CMP mixtures, fitted to the flipped ratings (excellent to terrible).
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Figure 10. Observed and fitted Poisson and CMP mixture counts for Heritage Insurance Competition data.

where δi = 1 indicates that observation i is right-censored,
and otherwise δi = 0; in addition, log P (Yi ≥ yi) = 1 −
yi−1∑
i=0

λx
i

x!ν Z
−1 (λi, ν).

Results for fitting the two censored models are given in the
right columns of Table 7. Results for a single interval-censored
CMP model were identical to the single shifted and right-
censored CMP model.

In terms of fit, while the single censored CMP best captures
the first mode at 1, it fails to capture the bimodal shape with a
dip at 14 and a second mode at 15. A mixture of censored CMP

variables performs very similar to the truncated mixture except
for missing the magnitude of the second mode at 15 + .

We note that computationally, it is much easier to compute
a mixture of truncated CMP distributions over censored CMP
distributions, because in the latter case the Z function is com-
puted over a finite range whereas the censored case requires
computing the normalizing constant Z over an infinite range (see
Minka et al. 2003). From this aspect, if the truncated mixture
performs sufficiently well, it might be advantageous computa-
tionally in cases where the data are not necessarily truncated by
nature.

Table 7. Observed and fitted counts for Health Heritage Competition data

# Days in hospital Data Poisson mixture CMP mixture Single censored CMP
Right-censored CMP

mixture

1 9299 3284 7410 9003 8747
2 4548 2994 5567 5402 5950
3 2882 1860 3704 3241 3584
4 1819 976 2260 1945 1981
5 1093 641 1290 1167 1025
6 660 713 698 700 504
7 474 994 361 420 241
8 316 1327 183 252 117
9 263 1600 96 151 65

10 209 1742 62 91 48
11 145 1725 62 54 45
12 135 1566 89 33 47
13 111 1313 142 20 49
14 65 1021 227 12 49
15 + 479 742 347 7 46
Estimates and fit
p 0.4132 0.96 0.97
λ1,λ2 1.82, 10.89 0.93, 13.4 0.6 0.97, 13.48

ν1,ν2 0.3, 0.8 0 0.3, 0.9
First mode 1 1 1 1 1
Second mode 15 + 10 15 + — 13–14
Dip location 14 5 10–11 — 11
AIC 112006 85010 86471 85087
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5. DISCUSSION AND FUTURE DIRECTIONS

Discrete data often exhibit bimodality that is difficult to model
with standard distributions. A natural choice would be a mixture
of two (or more) Poisson distributions. However, due to the
presence of under- or overdispersion, often the Poisson mixture
appears to be inadequate. The more general CMP distribution
can capture under- or overdispersion in the data. Therefore a
mixture of CMP distributions (if necessary, properly truncated)
may be appropriate to model such data.

The usual EM algorithm for fitting mixtures of distribution
can be employed in this scenario. However, as the CMP distribu-
tion has an additional parameter (compared to the Poisson distri-
bution), the maximization of the likelihood is nontrivial. In the
absence of closed form solutions, iterative numerical algorithms
are used for this purpose. An innovative two-step optimization
with more than one possible initialization of the parameters has
been suggested to ensure and speed up the convergence of the
resulting algorithm. In our experiments, the proposed algorithm
for fitting CMP mixture models takes less than two minutes even
for very large datasets (such as the Heritage Competition data).
Further reduction in runtime may be possible by invoking more
efficient optimization techniques.

An interesting property was observed while fitting the mixture
of CMP distributions. If the ordering of the labels is reversed in
case of, for example, consumer evaluation data, the fit appears
to be very similar to the original one. This was not the case for
the mixture of Poisson distributions. However, this has to be
more thoroughly investigated.

Though there is an inherent identifiability issue in the case
of CMP mixture models, as there may be more than one
combination of λ,ν parameters of the underlying distributions
yielding very similar shapes for the resulting mixtures, it does
not cause any problem in terms of prediction. Rather it provides
flexibility in choosing a model among several competing
ones for improving predictive accuracy. This property is also
advantageous in terms of bounding the parameter space in the
grid search, whereby we can set relatively low upper bounds
on λ and ν values. Even for purposes of descriptive modeling,
where we are interested in an approximation of the empirical
distribution shape (location of peaks, etc.), the nonidentifiability
issue is not a challenge. It does, however, pose a challenge if the
goal is identifying the underlying dispersion levels of the CMP
distributions.

We note that the identifiability issue pertains only to combi-
nations of λ and ν, and does not extend to the mixing parameter
p in the sense that we did not encounter any situation where a
different combination of the five parameters yielded similar fit.
This is perhaps because we do get a closed form solution for p.
Never did we get a poor estimate of this mixing parameter in any
of the simulations. In other words, p identified the bimodality
(when it is clearly present) without failure. The lack of fit due
to a wrong choice of p cannot be compensated by changing the
values of the other parameters.

To illustrate the predictive performance of a CMP mixture
with a real example, we split the Heritage Healthcare data into
training and holdout datasets. The training data consist of data

Figure 11. Predictive accuracy evaluation. Predictions from two
CMP mixture models fitted to the Health Heritage training period (Year
2) compared to actual counts in holdout period (Year 3).

from year 2 and the holdout period is year 3. We fit a CMP
mixture to the training period and generate predictions for the
holdout period (see Figure 11). To show how the nonidentifi-
ability can be advantageous in terms of generating robust pre-
dictions, we fit another CMP mixture with slightly different
parameters (achieved by using different initial values). The sec-
ond model yields a nearly identical predictive distribution. The
two CMP mixture models also yield similar AIC values: 44965
and 44980, compared to a Poisson mixture which yields AIC =
62204. Yet, AIC and other predictive metrics that are common
for continuous data are not always useful for discrete data (e.g.,
Czado, Gneiting, and Held 2009). An important future direction
is therefore to develop and assess predictive metrics and criteria
for bimodal discrete data, and in particular within the context of
truncated mixture models that can capture bimodality.

While Poisson and CMP distributions are designed for mod-
eling count data, we note their usefulness in the context of
bimodal discrete data that can include not only count data but
also ordinal data such as ratings and rankings. Our illustrations
show that using the CMP mixture can adequately capture the
distribution of a sample from Likert-type scales and star rat-
ings. We also note that a truncated CMP mixture can provide
a useful alternative to censored CMP models, when modeling
censored over-/underdispersed count data. It can be advanta-
geous in terms of capturing the bimodal shape and especially
from a computational standpoint.

In our mixture scenario, observations are assumed to arise
from a mixture distribution where it is not possible to iden-
tify which observation came from which original distribution
(CMP1 or CMP2). Related work by Sellers and Shmueli (2013)
uses a CMP regression formulation where predictor information
is used to try and separate observations into dispersion groups
and estimate the separate group-level dispersion. They showed
that mixing different dispersion levels can result in data with un-
expected dispersion magnitude (e.g., mixing two underdispersed
CMPs can result in an apparent overdispersed distribution). Our
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work differs from that work not only in looking at truncated
CMPs, but also in the focus on predictive and descriptive mod-
eling, where the goal is to find a parsimonious approximation
for the observed empirical distribution.

One direction for expanding our work, is generalizing to k
(>2) mixtures. In that case, we can write the likelihood and
the E & M steps without any problem. Again the equations
for the mixing parameters p1, p2, . . ., pk−1 will yield closed
form solutions. The difficulty will be the grid-search over 2k
parameters. It is expected that the same strategy of fixing p1, p2,
. . ., pk−1 and the λ’s first and optimizing over the ν’s will work
better. However, the effectiveness of the grid-search has to be
tested in those situations.

This novel idea of CMP mixture modeling may also be ex-
tended to regression problems involving discrete bimodal data.
For example, the Health Heritage example that we used comes
from a larger contest for predicting length of stay at the hospital,
where the data included many potential predictor variables. If
the dependent variable shows bimodality, as in the case of the
truncated “days in hospital” variable, the ordinary CMP regres-
sion might not be able to capture this feature. CMP mixture
models may be very useful in this scenario. Sellers and Shmueli

(2010a,b) considered CMP regression models for censored data.
It would be interesting to explore the possibility of using a CMP
mixture model in this context as well.

APPENDIX A: PARAMETER UPPER BOUNDS FOR
GRID SEARCH

The bounded support of the truncated distributions means that values
of λ and ν beyond certain values lead to a degenerate distribution. To il-
lustrate this phenomenon, consider Figure A1 where we fix λ (in rows)
and increase ν from 0 to 10 (in columns). The same phenomenon
is observed for other values of λ, namely, that the PDF becomes
1 at x = 1 for values of ν greater than or equal to 15. Hence, for
the purpose of grid search it is sufficient to set 15 as an upper bound
for the range of ν.

In terms of bounding λ, the identifiability issue where different com-
binations of λ,ν yield similar distribution shapes, helps us in obtaining
an upper bound on λ. For illustration, Figure A2 shows results for
three pairs of combinations that yield similar results (we have obtained
similar results for many more pairs of examples).

In our algorithm, we set the upper bound for λ as 100. In fact, a
bound of 50 is sufficient, but for slightly higher precision we set it to
100.

Figure A1. Increasing ν for a fixed λ. PDF of truncated CMP mixture becomes degenerate.
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Figure A2. Parameter combinations that yield nearly identical PDF results. Each row corresponds to a pair of parameter combinations that
yield a nearly identical PDF.
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