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Estimation of small-area population counts in an intercensal year and in a future
year is a challenging task. This paper presents preliminary results in the development
of a geographic-knowledge-guided cellular automata (CA) for modelling growth
in small geographic areas. Geographic knowledge contains rules dictating growth
patterns that typically cannot be captured by a traditional CA model. Nighttime
stable light images and census population counts in censal years are used to
determine base-year population counts in each cell in the CA model, and these
estimated base-year population counts are used to manually calibrate the model.
We use census data in 1990 and 2000 in El Paso County of Texas as the base-year
population data, develop a set of rules based on specific urban-growth situations in
El Paso and use the model to estimate population counts in block groups in a
future year in the study area. Preliminary results in El Paso County suggest that the
model has the potential to produce reasonably accurate population counts in sub-
county areas in a future year. Future work will include the development of
computational procedures that can be used to automate the calibration of the
CA model.

1. Introduction

In some applications, such as health research and water demand management, it is
necessary to use estimated population counts in small geographic areas (e.g. sub-
county areas). In the developed world, population data in small geographic areas are
known in censal years, but estimation of population counts in small areas in an
intercensal year and in a future year with acceptable accuracy has remained a
challenging problem. When the base-population data in a censal year is known, the
key for estimating population counts in a small area from the base population in a
censal year is the determination of population growth/decline in the small area from
the censal year. The problem then becomes how to model population growth/decline
in a small area from that censal year and then use the results from the model to
estimate population counts in the small area in a given year.
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Among a variety ofmethods, cellular-automata (CA)models have beenwidely used
to simulate urban growth. One limitation of existing CAmodels is that they lack local
geographic knowledge that typically dictates growth patterns in a specific region. We
first argue that the inclusion of geographic knowledge in CA models is important for
more accurately simulating urban-growth patterns and associated spatial distribution
of population growth in a given area. We then discuss procedures for developing such
a model and present preliminary results of a geographic-knowledge-guided CAmodel
that can be used to estimate small-area population growth.

2. Related work

2.1 Nighttime imagery (NTI) and its application in population estimation

Nighttime imagery (NTI) is a product of the Operational Linescan System (OLS) of the
USDefenseMeteorological Satellite Program (DMSP). Some researchers have verified
the usability of NTI to distinguish and characterize urban areas and their extensions.
For example, Henderson et al. (2003) used DMSP stable lights and radiance-calibrated
images to delineate the boundaries of urban areas in cities where the levels of urbaniza-
tion and economic development were different. They compared these results with those
obtained from high-resolution Landsat Thematic Mapper (TM) images and computed
light thresholds that minimized the discrepancies between TM images and NTI. They
then used the thresholds to calibrate NTIs to monitor the growth of cities with
comparable levels of development and urbanization. Amaral et al. (2006) used NTI
data to detect and estimate urban population in the Amazon region. These researchers
recorded urbanized settlements that were larger than 2.5 km2 in the study area.
Kohiyama et al. (2004) used NTI to estimate areas damaged by natural disasters
based on an index measuring the loss of city light in the impacted area.

Milesi et al. (2003) used a 1992 Landsat-based land-cover map, Moderate
Resolution Imaging Spectroradiometer (MODIS) data and NTI derived from
DMSP OLS to estimate the extent of urban development and its impact on net
primary productivity. Their approach provides a means for rapidly assessing changes
in urban land use and their impacts on ecosystem resources at a regional scale. Doll
et al. (2000) considered the NTI lit area of a city and combined it with statistical
information to estimate socio-economic parameters and greenhouse-gas emissions.
Sutton (2003) used NTI as a proxy measure of urban areas and used a combination of
census block-group level data from the 1990 US census and NTI data to estimate the
population size of some urban areas. In this study, we use an approach similar to the
one used by Sutton to estimate population size in urban areas, but in much smaller
geographic areas, in cells at a resolution of 85 m.

2.2 CA models for urban-growth modelling

CAmodels can be understood as discrete and nonlinear dynamic systems that consist
of regular grid cells in a spatial domain, each cell being in a state that depends on the
previous states of the neighbouring cells via a transition rule. Variations to this
formalism in the dynamics of the model have been implemented to include relevant
spatial factors such as terrain elevation, slope, connectivity, distance to roads and
land price, among many other factors. These variations have been called CA-based
models and have become a natural choice in urban modelling because these models
can be used to mimic urban global structures or patterns from local interaction rules.
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CAmodels have beenwidely used to simulate urban growth (e.g. Batty et al. 1999,Wu
andWebster 2000). In CA models, various approaches have been investigated to define
cell sizes and transition rules. These approaches included Monte Carlo simulations
(Clarke and Gaydos 1998) and neural networks (Li and Yeh 2002, Guan et al. 2005).
O’Sullivan and Torrens (2000) discussed some of the limitations of using CA models as
representations of human systems and indicated that various attempts had beenmade to
improve CA models to model urban growth. These researchers suggested that theoreti-
cally motivated improvements in the formalism of CA models are necessary to under-
stand how variations of the model would affect the behaviours of model dynamics.

Other researchers have observed serious problems of the CA technique as a ‘bottom-
up’ simulation approach. These researchers have proposed some improvements in the
model to address influences of certain processes associated with urban growth in large
geographic areas. Ward et al. (2000) considered macro-scale economic, political and
cultural driving forces in the model and studied how these factors would influence
urban expansion and how the inclusion of these factors in themodel would improve the
performance of general growth rules defined normally in the context of a ‘bottom-up’
CA-based modelling approach. Using a similar approach employed by Ward et al.
(2000), He et al. (2006) treated urban expansion as a complex process that is self-
organizing at a local level, but constrained and modified by several broad-scale factors
in a broader context. Examples of these factors include socio-economic and political
systems, urban and regional planning policies, as well as environmental and natural
resource constraints. He et al. (2006) coupled a CA-based model and one ‘top-down’
system dynamics (SD)-basedmodel to accomplish this goal. The coupledmodel had the
capacity of predicting complex system changes under different ‘what-if’ scenarios.

In this study, we include a geographic-knowledge layer in the CA model to identify
regions where settlements are most likely to occur or grow, resembling human-expert
knowledge about possible growth in a given area. By human-expert knowledge, we
simply mean the knowledge that urban and regional planners and developers may have
about a certain geographic region. We advocate that in future implementations of CA
models, real expert knowledge should eventually be acquired and used in the models. In
the following sections, we briefly describe the Strabo technique (in honour of the ancient
Greek cartographer) as an example of a process that may be useful in synthesizing such
knowledge into a geographic-knowledge layer. We then describe an extension of the
methodology developed by Santillana and Serrano (2005) through an inclusion of the
geographic-knowledge layer mentioned above to represent additional factors to be
considered in the transition rules of the model.

Even though Santillana and Serrano conceived their model subject to the limita-
tions and needs of a particular case study in which urbanization took place in a
protected natural preserve in the outskirts of Mexico City, the adjustable transition
rules of their CA model allowed them to capture processes also observed in the
dynamics of El Paso County, Texas, in which land development took place, for
example, through diffusion along roads or due to the existence of previous settlements
and through densification in a given settlement along roads or in surrounding areas.
The list of spatial factors they used included: closeness to roads, closeness to previous
settlements, slope, major topographical features and the state of the neighbourhood
of a given cell in the grid. In this study, we use a modified version of their model and
include a geographic-knowledge layer in the model. We keep the same list of factors
that Santillana and Serrano used in their model. Details of the geographic-knowledge-
guided CA model and its implementation are described in §4.
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3. Estimation of past and current small-area population using census and NTI data

As mentioned in the previous section, the basic idea of using stable lights to estimate
population counts is to determine the proportion of radiance of stable lights in a grid
cell relative to the total radiance in a block-group polygon. Because the population
counts in a block-group polygon are known, the population in a grid cell can be
estimated using the proportion of radiance mentioned above. We used a four-step
procedure summarized in figure 1 to estimate the population density in each grid cell.

In the first step, we aggregated the 1990 and 2000 point-population data to each
block-group polygon and calculated the population counts in each polygon for 1990
and 2000. Although the boundaries of block-group polygons could change from 1990
to 2000, this change is not important for the purpose of estimating population counts
in a grid cell, and the usage of the 2000 block-group polygons serve this purpose well.

Second, we constructed a grid covering the study area and obtain stable lights in
each cell and in each block-group polygon for both 1990 and 2000. We then aggre-
gated the stable lights to each cell and each block-group polygon. To minimize the
boundary effect, we used a cell size of 85 m. Because of this fine resolution, the
boundary effect became tolerable, although it cannot be completely eliminated. We
conducted various experiments during the study and made sure that the boundary
effect was within a tolerable range. For each cell that crossed the boundaries of
different block-group polygons, we treated it as if the cell completely belonged to
the block-group polygon that covered most of the cell among all polygons that
covered part of the cell. This simple treatment avoids the problem of having to
allocate population counts from different block-group polygons to the same cell.

Geodatabase 1:
US census

point-population 
data in

1990 and 2000

Geodatabase 2:
US census 2000

block-group
polygons

Geodatabase 3:
Stable lights (NTI
radiance) images

Geodatabase 5:
Stable lights (NTI

radiance) for
block-group

polygons

Geodatabase 6:
NTI radiance per cell

as a percentage
relative to the total
radiance in each

block-group polygon

Geodatabase 7:
Population density in each

cell in 1990 and 2000

Geodatabase 4:
Population counts in 1990

and 2000 at the block-group
level in every 2000

block-group polygon

Step 4: Estimate
population counts for

each cell using
Geodatabases 4 and 6

and equation (2)

Step 3: Calculate the
radiance index value for

each cell using
Geodatabases 3 and 5

and equation (1)

Step 1: Aggregate point-
population data in
Geodatabase 1 to 

block-group polygons using
spatial join procedures

Step 2: Obtain stable lights for 
each block-group polygon using a

zonal sum operation. Zones are the
block-group polygons and stable
lights per cell are the values to be

summed up for each zone

Figure 1. Procedures for estimating population density in a grid cell using census block-group
data and nighttime imagery (NTI) data.
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Third, we use equation (1) to calculate the radiance index associated with grid cell i:

Pik ¼ RadiPn
i Radi

¼ Radi

Radk
; (1)

where Pik is the proportion between the radiance in cell i and the radiance in block-
group polygon k in which cell i is located, Radi is the radiance in cell i, n is the number
of grid cells covered by block-group polygon k andRadk is the total radiance in block-
group polygon k.

In the fourth and final step, we use equation (2) to estimate the population counts in
each grid cell:

Popik ¼ PopkPik; (2)

where Popik is the population counts in cell i located in block-group polygon k and
Popk is the population counts in block group k.

4. A knowledge-guided CA

4.1 Basic components of the CA model

Throughout the process of allocating population to grid cells using census data and
NTI, we obtained a map layer with grid cells containing an estimated number of
people in 1990 and 2000.We used population density as the state variable of a cell and
defined four cell states based on the population density in each cell. These four cell
states are: not-populated (no people in a cell), low density (from 1 to 5 people in a cell),
medium density (from 5 to 10) and high density (more than 10). The reason that we
decided to use population density as the main state variable in the CA model is based
on the assumption that population density changes over time reflect urban growth,
meaning areas with high growth would eventually have a higher population density
and areas with less growth would have a lower population density.

As mentioned in §2, we extend the model developed and implemented by Santillana
and Serrano (2005) and add a geographic-knowledge layer to enhance the model in
this study. This additional layer provides the needed flexibility in the transition rules
of the model to resemble human-expert knowledge. By expert knowledge, we mean
knowledge about themost probable tendencies in the growth or decline of a given area.
This type of knowledge may be understood as local rules governing the growth in a
given area or may be viewed as the consensus from a group of experts who have
significant insights about growth patterns in the area in question. The term group of
experts refers to decision makers, city planners, policy makers, developers or other
people who may have deep knowledge about how an area may grow or play an active
role in policy issues that affect growth patterns in the area.

Even though the Strabo technique was conceived as a decision-making support tool to
build geo-spatial consensus among a group of experts (Luscombe and Poiker 1983), we
believe that it can serve as useful tool to define local-growth rules in the geographic-
knowledge layer. Themain idea behind the Strabo technique is to bring a group of expert
individuals together so that they can dynamically solve a problem in a geo-spatial
environment through the use of a geographic information system (GIS). For our pur-
poses, the idea would be to bring urban planners and stakeholders together with the
objective of building consensus about different growth patterns in an area of interest.

The transition rules in the model are defined according to certain observed pro-
cesses that depend on the location, connectivity and the densification rate of the areas
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represented as cells in the model. For a detailed discussion about these and other
transition rules, see, for example, O’Sullivan and Torrens (2000) or White and
Engelen (1993). Examples of these processes are:

l Expansion of a settlement as a result of the influence of its proximity to the road
networks in an area, a process often called diffusion along roads.

l Growth of a settlement influenced by both the existing populated areas in areas
surrounding the settlement and its connectivity to road networks in the area.

l Densification rate of a given settlement.

In addition to the basic processes mentioned above, we need to develop themodel in
such a way that it can be used to account for a number of geographic factors that may
affect growth in a given area. For example, cells whose slopes exceed a threshold value
or cells located in areas where growth is not possible should be excluded from
consideration of future growth. Some examples of these cells include areas covered
by rivers, lakes, parks and roads.

Furthermore, a randomly defined map, referred to in the pseudo code as
RandomNum, corresponding to a constant probability distribution throughout the
study area, combined with a threshold value, was used to judge whether a specific cell
would be processed at a specific time step in the simulation process using the CA
model. This approach helps obtain more realistic growth patterns from the simula-
tion. The state variable of a cell in the CAmodel may be assigned a value correspond-
ing to one of the four cell states corresponding to different population densities as
described above. During the simulation, a cell is only allowed to transition from its
current state to the next state, meaning from not-populated to low density, from low
to medium density, or from medium to high density.

The factors used to control a change of cell value from one state to the next include
the minimum number of neighbours of a cell, the threshold distance from the cell to
the closest road and the maximum distance to other urban settlements. The variable
neighbour value, related to the minimum number of neighbours of a cell in a particular
cell state, was obtained by adding the cell values of a circular neighbourhood of 3! 3
cells. When computing the neighbour value, cells with category 1 population density
(not-populated) receive a value 0, cells in category 2 (low density) are assigned a value
1, cells in category 3 (medium density) are given a value 10 and cells in category 4 (high
density) get a value 100. These values are used to provide a one-to-one correspon-
dence between the number of neighbours of a cell in a given state within the neigh-
bourhood in question and the numeric value of the variable neighbour value. Other
variables and the computation of their values can be understood similarly.

The growth in an area (change of cell states), as determined by the CA model, is
controlled by the cell value calculated by the model and the values of variable
accelerate from the geographic-knowledge layer of the model. A short pseudo code
is shown below to illustrate a typical transition rule used in the CA model. In this
example, not-populated cells are considered for a state change if they are located in a
region where no geographic limitations exist and if the value associated with the cell
by the randomly generated map is greater than the threshold value p, and if it satisfies
the slope threshold criterion (related to the value of !1) and if it is located in an area
where growth is most likely to occur as defined by the value of variable accelerate in
the geographic-knowledge layer. Detailed discussions about the geographic-
knowledge layer are provided in the next section.
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The value of p is a number between 0 and 1 that the user provides in order to process
more (closer to the value ‘0’) or less (closer to the value ‘1’) cells at each time step. In
addition, the value of variable accelerate can be used to reflect the change of the state
of a cell in two directions, an increase in population density or a decrease in popula-
tion density. Once a cell satisfies the conditions mentioned above, the cell is consid-
ered for a state change provided that it also satisfies other appropriate conditions that
account for its proximity to the road network, the state of its neighbours and its
proximity to other settlements.

At a given time step:

IF (cell_state¼ not-populated) and (cell_factor¼ possible growth) and
(RandomNum " p) and (slope # !1) and (accelerate " ")

THEN

IF (neighbour value " m2) AND
IF (closeness_to_roads # m3) and
IF (distance_to_centre_of_closest_settlement # m4)

THEN (cell_state ¼ low density).

4.2 The multi-scale similarity index

As stated above, we used a similarity index to quantitatively evaluate the results from the
model against urban-growth situations on the ground in the study area when calibrating
the model. The original similarity index defined by Santillana and Serrano (2005) can be
used to assess similarity at multiple scales. However, we analysed the different domain
partitions and decided to assess the similarity using 128 partitions only in the study area.
More details will be provided in the next section. This approach allows us to objectively
measure the effectiveness of the parameter values and the growth rules used in themodel
(i.e. the goodness-of-fit between results from the model and the actual data) and hence
helps us choose the appropriate parameter values and local-growth rules.

The set of similarity indexes was previously defined by Santillana and Serrano (2005).
The indexes produce amulti-scale similarity metric. To obtain these similarity indexes, we
first divide the study areaW into a set of sub-areasWj such that the union of all sub-areas
UWj covers W completely, i.e. UWj ¼ W. Secondly, we use two binary images O and R
(where O is the output image of the model and R is the actual image) to construct a
similarity index i at a given scale using the formula below (Santillana and Serrano 2005):

i ¼ iðR;OÞ ¼ 1

NðWjÞ
X

ck2!j

ðckðRÞ & ckðOÞÞ2; 0 # i # 1; (3)

where N(Wj) is the total number of sub-areas Wj and ck (R) and ck (O) represent the
state of a given cell in Wj, either 1 or 0, in the binary images R and O, respectively.

For each pair of images R or O, the value of i represents the square of the count of
cells that are different from one image to the other, and it is normalized to 1. The
higher the value of i is, the larger the difference between the two images. For the
simplest case (given by the choice N(Wj) ¼ 1, where the only element of the partition
W1 ¼ W), i does not provide any morphologic insight about the similarity of the
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images. It only provides a normalized count of the number of cells that are different
from one image to the other.

4.3 Model calibration

Once the model is initiated, the next step is to use an appropriate technique to
calibrate the model. We used the following steps to calibrate the model. First, based
on an initial state map with cells containing an estimated number of people in each cell
in 1990, we manually changed the values of variables p and mi in the transition rules to
conduct the simulations using the CAmodel without the geographic-knowledge layer
and obtained population counts in each cell in 2000. As stated above, the value of p is
a number between 0 and 1. The ranges of values of mi were set to vary as follows:
closeness to roads, 200–300 m; and distance to centre of closest settlement, 200–1000
m. In addition, the status of a cell reflecting its closeness to human settlements is set to
change from 0 to 1 when the sum of the cell values in a 3! 3 window reaches 8; from 1
to 2 when the sum reaches 500; and from 2 to 3 when the sum reaches 1000.

We then compared the simulated population counts in the cells with the estimated
population data in 2000. We initially compared the results from the model with the
estimated data by manual visual inspections and realized that it was difficult to use
manual visual inspection to distinguish improvements in the results of the model.
Therefore, we used the similarity index proposed by Santillana and Serrano (2005) to
quantitatively evaluate the results from the model against the estimated population
data. We repeatedly ran the simulation a sufficient number of times until the best
possible goodness-of-fit between the results of the model and the estimated popula-
tion data in 2000 was obtained.

We observed that, even though the growth dynamics in the majority of the study
area was captured by the model, some parts of the study area showed a strong level of
disagreement, presumably due to the differences in the local-growth processes taking
place in different parts of the study area. A geographic-knowledge layer was then
added to the CA model to account for the effects of these local-growth rules. We
provide a detailed discussion about the generation and implementation of the
geographic-knowledge layer in the next subsection.

4.4 Local-growth rules and the construction of a geographic-knowledge layer

Local-growth rules in the geographic-knowledge layer can be defined in different
ways. In this study, we examined growth patterns from 1990 to 2000 in the study area
and identified five different categories of areas with atypical growth patterns as stated
below. These five different categories of areas were used as local-growth rules in the
geographic-knowledge layer.

l Areas that experienced population decline.
l Areas where new urban settlements were not likely to take place. For example,

the presence of a military field (containing an airport and a big park in the
middle of the city) in the study area prevented the establishment of new urban
settlements. The presence of this military base, however, caused a higher rate of
densification in the surrounding areas. This was taken into account in the model,
through both imposing a physical barrier (such as a lake or infinite slope) in the
model resembling the military area and setting a higher growth rate in the
surrounding areas (through the value of variable accelerate).

5696 F. B. Zhan et al.
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l Areas experienced either lower or higher rates of growth than other areas.
Although these areas appeared to have the same conditions as other areas that
exhibited average growth, growth rate in these areas was either lower or higher
than that in other areas, presumably due to factors that are not or cannot be taken
into account once the relevant variables in the model are chosen.

l Areas with close proximity to roads that exhibitedmore intensive densification than
other areas. This growth situation was also reported by Silva and Clarke (2002).

These differences of growth patterns in these areas were represented in the model
using different values of variable accelerate to help control the growth process in the
CA simulations. These five categories of areas and their values of variable accelerate
were: (1) areas that experienced population decline (accelerate ¼ ‘-1’), (2) areas in
which growth is not permitted (0), (3) areas that experienced low growth (0.001), (4)
areas that experienced fast growth (10) and (5) areas with proximity to roads that
experienced more growth (25). This geographic-knowledge layer resembles, in some
sense, the expert knowledge layer that should eventually be generated a priori in order
to simulate a possible future scenario.

5. Case study

We used El Paso County of Texas in the US as the case study area to test the CA
model. El Paso is a county located at the southwest corner of the state of Texas. The
county had a total population of 594 571 in 1990 and 685 508 in 2000 based on
information from the US Census Bureau. The population in the county increased
more than 15.29% in the 10-year period. The city of El Paso is located in El Paso
County, and it is a border city between the US and Mexico. The city has experienced
fast growth in the past decade and it has been projected to be a fast-growing city in the
foreseeable future. To understand the growth patterns and future growth trajectories
in the city, it is important to model and simulate population growth in different parts
of El Paso County. We describe how we used the model developed in this study to
simulate population growth in different parts of the county in the rest of this section.

5.1 Data compilation

Table 1 provides a summary of input data sources and operations applied to the data
to generate the necessary layers as input to the CAmodel. Themain input data for this
research were the 1990 and 2000 census data and the NTIs over the years of this time
period. Additional data used for the simulation were digital elevation data, road
networks and water bodies in the study area. The census data were obtained from
the Environmental SystemsResearch Institute (ESRI) Data &MapsMedia Kit!. The
data included layers of point population geo-referenced to the centroids of street
blocks in 1990 and 2000, as well as population data at the block-group level in 2000.

NTI from 1990 and 2000 consisted of downloaded maps showing stable lighting
activity (radiance) derived from the DMSPOLS website (NGDC 2006). According to
information at this site, the DMSP currently operates satellites carrying the OLS in
low-altitude polar orbits. The DMSP OLS has the capability to detect low levels of
visible–near-infrared (VNIR) radiance at night. The nighttime lights of human set-
tlements were separated from other classes of lights (e.g. fires) based on location,
brightness/persistence and visual appearance.
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The NTIs are cloud-free composites produced from archived DMSP OLS smooth-
resolution data for different calendar years. The products used in this study are the
images corresponding to 30 arc second grids. The digital elevation model (DEM) data
were obtained from the project Shuttle Radar TopographyMission (SRTM) operated
by the US Geological Survey (USGS) Earth Resources Observation Systems (EROS)
Data Center (2006). These DEM data were a part of the 1 arc second (30 m) SRTM
Digital Terrain ElevationData (DTED!) Level 2 ‘Finished’ data derived from SRTM
Interferometric Synthetic Aperture Radar (IFSAR) data. The layer of roads was also

Table 1. Overview of input data layers of the CA model.

Data layer Data source Description

Number of people
per grid cell in
1990 and 2000

The 1990 and 2000 population data
georeferenced to the centroids of
blocks and block-group polygons
from the ESRI Data & Maps
Media Kit!; Nighttime imagery
as maps of stable lighting activity
from DMSP OLS sensor.

US census population data
aggregated to centroids of blocks
were re-assigned to block-group
polygons. An index based on
stable lighting activity (radiance)
was generated for each cell at a
resolution of 85 m and used to
determine the population counts
in each cell. Cells are classified
into four categories based on
population density: not-
populated: ,1 person, low
density: 1–5 persons, medium
density: 5–10, high density: .10.
Cells corresponding to water
bodies, rivers or roads were
assigned a ‘null’ value.

Grid cells
representing
rivers, parks
and roads

ESRI Data & Maps Media Kit!. Rivers, parks and roads in the study
area were extracted from ESRI
Data & Maps Media Kit!.

Grid cells covering
water bodies

ESRI Data & Maps Media Kit!;
Map of water bodies from STRM.

The layer of water bodies from the
ESRI Data & Maps Media Kit!

was combined with the SRTM
water bodies provided by the
USGS EROS Data Center to
obtain the complete layer of water
bodies.

Grid cells
containing
slope in
percentage

1 arc second (30 m) SRTM DTED!

Level 2 ‘finished’ data derived
from SRTM IFSAR data.

DEM data were downloaded and
used to calculate slope expressed
in percentage. The DEM data
were interpolated (bilinear) to
obtain DEM data at the
resolution of the cell size used in
the CA model (85 m ! 85 m).

Grid cells with
distance to
roads

Roads from the ESRI Data
& Maps Media Kit!.

Euclidian distance from each cell to
its nearest road was calculated
using a Euclidian distance
function in Arc/Info, and this
distance was used to represent the
minimum distance from the cell to
its nearest road.
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obtained from this data source. The layer of rivers and other water bodies was created
by combining the water bodies obtained from the SRTM and those from the ESRI
map layer of geographic water bodies.

All geographic data were projected to the Universe Transverse Mercator (UTM)
coordinate system with the parameters associated with WGS84 zone 13N. The down-
loaded SRTMDEMwas converted to a grid-format data file and processed to fill out
possible void areas. The slope (in percentage) map was derived from the DEM data.
The roads were used to construct themap layer of minimumEuclidian distance from a
cell to its nearest road. This distance was calculated using a function in the Grid
module of Arc/Info. Cells corresponding to water bodies, rivers or roads were
assigned the value ‘null’, meaning no growth was possible in these cells.

As stated above, we used a grid-cell resolution of 85 m in this study. This resolution
was chosen after a number of experiments with the NTI data and the census popula-
tion data.We found that when the original cell size ofNTI (approximately 0.00833! or
850 m under the UTM projection) was used for estimating the population counts in
each cell following the procedures discussed in §2 and summarized in figure 1, there
was a loss of about 20% in the total population in El Paso County in 2000 when we
compared the estimated population data against the 2000 census population data.
When we changed the resolution to 85 m, the population loss no longer existed.
Figure 2 shows the calculated radiance of grid cells in the study area in 1990.

When running the CA-based model, all input data layers were converted to a
resolution of 85 m under the UTM projection. The SRTM DEM data were

Figure 2. Radiance of grid cells in the study area for 1990 obtained from nighttime imagery
(NTI) derived from the Operational Linescan System (OLS) of the US Defense Meteorological
Satellite Program (DMSP).
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re-sampled from its original resolution of 30m. This is a normal procedure used by the
SRTM team to give global access to the SRTM DEM for all countries in the world.
They re-sampled the 30 m DEMs to obtain the 90 m DEMs that can be downloaded
by the general public.

5.2 Model calibration

Themodel was used to simulate the population density in 2000, using the estimated 1990
population density from the census and NTI data as the initial state. Then, we manually
calibrated the model, by changing the values of the parameters, in order to obtain a
simulated population density as close as possible to the one estimated by the census and
NTI data for 2000.We used 1 year as the time step in the calibration and the simulations.
We ran the model more than 250 times when calibrating the model. The goodness-of-fit
between the simulated population density in 2000 and the estimated population density
in 2000 at each trial run was measured by the similarity index described in the last
section. After a number of different trial runs, we observed that the domain partition
defined by N(Wj) ¼ 128 was suitable for evaluating the performance of the model. We
thus used this domain partition to compute the similarity index.

The goodness-of-fit of the CA model can be illustrated in different ways. Figure 3
gives the goodness-of-fit of the calibrated model when we classify the study area into
not-populated and populated areas. Figure 3(a) is an image showing the not-populated
and populated areas in 2000 based on estimated population density from census and
NTI data, figure 3(b) is an image depicting the simulated not-populated and populated
areas in 2000 using the CAmodel without local-growth rules and figure 3(c) is an image
showing the simulated not-populated and populated areas in 2000 using the CA model
with local-growth rules. A similarity index was constructed between the estimated 2000
population density and the simulated population density without local-growth rules
(figure 3(d)), and another similarity index was constructed between the estimated 2000
population density and the simulated 2000 population density with local-growth rules
(figure 3(e)). Figure 3(f) gives a graphical comparison of the two similarity indices.

For the majority of the domain partitions, the values of i in the image obtained by
the CA model without local-growth rules are much greater than those of their
counterparts in the image obtained by the CA model with local-growth rules. This
situation indicates that the CA model with local-growth rules is more suitable to
mimic the real growth situation on the ground from 1990 to 2000. In the images shown
in figures 2(d) and 2(e), partitions (5,6), (8,7) and (10,10) have the greatest differences
between their corresponding i values in the two images, suggesting that the inclusion
of an ‘expert’ knowledge layer, or local-growth rules, in the model is an effective way
to improve the power of the CA model.

In a similar manner, we can divide the study area into high-population-density
areas and other areas, construct the images showing the two categories of areas and
determine the similarity indices. Figure 4 illustrates the images showing the two
categories of population density in the study area. These images can be understood
in a way similar to those of figure 3 described above.

5.3 Simulation results and evaluation

Figure 5 shows the input population density in 1990 and 2000 in the study area
estimated from census and NIT data (figure 5(a) and 5(b)), the simulated population
density in 2000 using the CA model without local-growth rules (figure 5(c)), the
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Figure 3. Goodness-of-fit images of estimated and simulated population density in not-
populated areas (less than 1 person cell-1 at a resolution of 85m) and urban areas (1 or more
people cell-1) in 2000 asmeasured by the similarity index i for an image partition ofN(Wj)¼ 128.
(a) Not-populated areas in 2000 as estimated from census and NTI data, (b) simulated not-
populated and populated areas in 2000 without local growth rules, (c) simulated not-populated
and populated areas in 2000 with local growth rules, (d) similarity index i based on 128
partitions (x,y) calculated with R ¼ (a) and O ¼ (b) using equation (3), (e) similarity index
i based on 128 partitions (x,y) calculated with R ¼ (a) and O ¼ (c) using equation (3) and (f) a
graphic comparison of (d) and (e).
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Figure 4. Goodness-of-fit images of estimated and simulated population density in areas with
high population density (more than 10 people cell-1) as measured in 2000 by the similarity index i
for an image partition of N(Wj) ¼ 128. (a) High-population-density areas in 2000 as estimated
from census and NTI data, (b) simulated high-population-density areas in 2000 without local
growth rules, (c) simulated high-population-density areas in 2000 with local growth rules, (d)
similarity index i based on 128 partitions (x,y) calculated withR¼ (a) andO¼ (b) using equation
(3), (e) similarity index i based on 128 partitions (x,y) calculated with R ¼ (a) and O ¼ (c) using
equation (3) and (f) a graphic comparison of (d) and (e).
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Figure 5. Estimated and simulated population density in El PasoCounty, Texas, in 1990, 2000
and 2011 (grid cell resolution: 85 m). (a) Population density in 1990 as estimated from census
and NTI data, (b) population density in 2000 as estimated from census and NTI data, (c)
simulated 2000 population density without local growth rules, (d) selected areas for defining
local growth rules in the geographic knowledge layer, (e) simulated 2000 population density
with local growth rules and (f) simulated 2011 population density with local growth rules.
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selected area for defining and calibrating the local-growth rules (i.e. the geographic-
knowledge layer) (figure 5(d)), the simulated population density in 2000 with local-
growth rules (figure 5(e)) and the simulated population density in 2011 using the
calibrated CAmodel with local-growth rules (figure 5(f)). The total number of people
in El Paso County will be 803 408 in 2011 based on simulation results from the CA
model. This 2011 total population obtained from the CAmodel is remarkably close to
the total population projected by the Texas State Data Center, who projected that the
total population in El Paso County could reach 804 349 in 2010 (Texas State Data
Center 2007). Given that population in the county is assumed to continue to grow, the
CA model only slightly underestimated the total population in the county.

To evaluate the simulation results, we also compared the simulated population
counts in 2011 against the estimated population counts in 2011 from Claritas (2006).
Based on data from Claritas, the estimated population counts in El Paso County in
2011 will be 742 687. This number is 60 721 (8.18%) less than the number estimated by
the CAmodel, and it is also noticeably lower than the number projected by the Texas
State Data Center. Nevertheless, this was the only projected population data in 2011
at the census block-group level that we had access to. Although there is no way to tell
that the estimated population data at the census block-group level from Claritas are
accurate, the Claritas data serve as one source of reference.

Estimated population
in 2011
CA-based simulation

0−1000
1000−6000
6000−11000
11000−16000
16000−30000

(a)

Estimated population
in 2011
Data from Claritas

0−1000
1000−6000
6000−11000
11000−16000
16000−50000

(b)

Percentage of
population change

2011 CA-estimated
vs 2000 census

−1−0
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Figure 6. A comparison of simulated population counts and population change at the block
group level from 2000 to 2011 between simulated data using the CA model and data from
Claritas. (Note: percentage of population change is calculated as the population change in a
block-group polygon from 2000 to 2011 divided by the population change in the whole county
during the same time period.)
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Because of the difference in the total population counts at the county level between
the estimated data from the CA model and the Claritas data, we compared the
percentage of population change in each block-group polygon from 2000 to 2011
between the estimated data from the CAmodel and the data from Claritas, instead of
using the absolute data at the block-group level. Figure 6 shows the map of popula-
tion counts as well as the percentage of population change at the census block-group
level. The percentages of population change (Pci) shown in figure 6(c) and figure 6(d)
are calculated using:

Pci ¼
!Pi

!P
%; !Pi ¼ Pi

2011 " Pi
2000; (4)

where Pci is the percentage of population change from 2000 to 2011 in block-group
polygon i, !Pi is the population change from 2000 to 2011 in block-group polygon i
based on either the simulated data of the CA model or the estimated data from
Claritas, !P is the population change from 2000 to 2011 in the whole county based
on either the simulated data or the estimated data from Claritas, !Pi

2011 is the
population counts in 2011 in block-group polygon i based on either the simulated
data or the estimated data fromClaritas and!Pi

2000 is the census population counts in
2000 in block-group polygon i.
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Figure 7. Correlation between percentages of population change from 2000 to 2011 at the
block-group level between simulated results of the CA model and estimated data from Claritas
(shown in figures 6(c) and 6(d)). (Note: percentage of population change was calculated as the
population change in a block-group polygon from 2000 to 2011 divided by the population
change in the whole county during the same time period.)
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Figure 7 gives the Pearson correlation coefficient between the percentage of population
change at the block-group level from 2000 to 2011 between the simulated population data
from the CA model and the estimated population data from Claritas. A correlation
coefficient of R ¼ 0.65 was obtained when all 414 block groups in the study area were
used in the analysis. When we excluded seven block groups (from a total of 414) that
appeared to be outliers in the analysis, the correlation coefficient became 0.73 (figure 7).

6. Concluding remarks

We presented a geographic-knowledge-guided CA model and demonstrated how the
model can be used in estimating small-area population growth in this paper. There are
three essential components in this model: (1) a procedure for estimating past and
current small-area population data using census and nighttime imagery (NTI) data,
(2) a geographic-knowledge layer that can be used to represent local-growth rules
governing the growth process in the area of interest and (3) a manual model-
calibration process that helps fine-tune the model to more accurately reflect local-
growth patterns.We used El Paso County in Texas, US, as a case-study area to test the
model. Results from the case study suggest that the total population in the county in a
future year (2011) aggregated from the estimated population counts at the census
block-group level through the simulations matches that of the projected population
reasonably well. In addition, the population counts at the block-group level obtained
from the simulation are comparable to the data obtained from a commonly used data
provider.
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