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a b s t r a c t

In this paper, we study a local discontinuous Galerkin (LDG) method to approximate solutions of a doubly
nonlinear diffusion equation, known in the literature as the diffusive wave approximation of the shallow
water equations (DSW). This equation arises in shallow water flow models when special assumptions are
used to simplify the shallow water equations and contains as particular cases: the Porous Medium equa-
tion and the parabolic p-Laplacian. Continuous in time a priori error estimates are established between
the approximate solutions obtained using the proposed LDG method and weak solutions to the DSW
equation under physically consistent assumptions. The results of numerical experiments in 2D are pre-
sented to verify the numerical accuracy of the method, and to show the qualitative properties of water
flow captured by the DSW equation, when used as a model to simulate an idealized dam break problem
with vegetation.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study a numerical scheme based on the local
discontinuous Galerkin (LDG) method as a means to approximate
solutions to a doubly nonlinear diffusion equation, known in the
literature as the diffusive wave approximation of the shallow
water equations (DSW). This equation arises in shallow water flow
models when special assumptions are used to simplify the shallow
water equations (SWE), and it gives rise to the following initial/
boundary-value problem (IBVP):

@u
@t !r " ðu!zÞa

jruj1!c
ru

! "
¼ f on X& ð0; T';

u ¼ u0 on X& ft ¼ 0g;
ðu!zÞa

jruj1!c
ru

! "
" n ¼ BN on @X \ CN & ð0; T';

u ¼ BD on @X \ CD & ð0; T';

8
>>>>><

>>>>>:

ð1Þ

where X is an open, bounded subset of R2, CN and CD are subsets of
@X 2 C1 such that @X ¼ CN þ CD:f : X& ð0; T' ! R;u0 : X ! R; BN :
@X \ CN & ð0; T' ! R, and BD : @X \ CD & ð0; T' ! R are given,
z : X ! Rþ is a positive time independent function, n is the out-
ward normal to CN; 0 < c 6 1;1 < a < 2 and u : X& ð0; T' ! R is
the unknown. Here, j " j : Rd ! R refers to the Euclidean norm in
Rd (d ¼ 1;2, in our work).

The DSW equation has been successfully applied as a model to
simulate overland flow and shallow water flow in vegetated areas,
where water flow is driven mainly by gravitational forces and
dominated by shear stresses. See for example [29,20,33,17,18]
and [25]. In these water flow regimes, the solution uðx; tÞ of the
IBVP (1) represents the time evolution of the water height with re-
spect to a given datum. The time independent function zðxÞ repre-
sents the bathymetry or topography over which the water flows, the
– frequently time dependent – function f represents sources and
sinks (e.g. rainfall or infiltration) and the boundary conditions, BN

and BD, simulate lateral inflow/outflow and the presence of speci-
fied water elevation, respectively. A detailed mathematical formu-
lation and derivation of the IBVP (1), in the context of shallow
water modeling can be found in [2].

The use of a single equation to describe the time evolution of
water flow in lieu of the full shallow water system of equations be-
comes advantageous, both from the conceptual and computational
points of view. Indeed, numerically solving the DSW equation is
considerably cheaper than numerically solving the SWE [20]. How-
ever, determining convergence and stability of numerical schemes
to approximate solutions of the DSW equation is not a simple task
[25]. Difficulties to analyze numerical schemes aimed at
approximating solutions of the DSW equation arise from the fact
that – to the best of our knowledge – existence, uniqueness, and
regularity of solutions to the DSW equation for general non-zero
bathymetries, zðxÞ, have not been studied. Note that the DSW
equation contains as particular cases two complicated nonlinear
diffusion equations: the Porous Medium equation (PME), when
z ¼ 0 and c ¼ 1, and the p-Laplacian for 1 < p < 2, when a ¼ 0
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and p ¼ cþ 1, this case is not considered in our work, recall that
we consider only 1 < a < 2.

The motivation for the present work emanates from our previ-
ous work contained in [2] and [25]. Particularly from [25], where
we studied numerically some qualitative properties of solutions
to the DSW for a collection of non-zero bathymetries zðxÞ in 1D,
using the continuous Galerkin method. Our findings indicated that
characteristics such as: the existence of compactly supported solu-
tions, as well as the finite speed of propagation of disturbances
(found analytically for solutions for the DSW equation, for flat
bathymetries in 1D in [16] ðz ¼ 0Þ), persisted for non-zero bathym-
etries. The property of finite speed of propagation – as opposed to
the infinite speed of propagation in the heat equation, for example
– can be understood as a consequence of the advection–diffusion
nature of certain types of nonlinear diffusion equations such as
the PME (see [27]) and the DSW equation, and gives rise the pres-
ence of free boundaries (locations where the solution goes from
u ¼ 0 to u > 0) and oftentimes traveling sharp fronts. Discontinu-
ous Galerkin methods are well known to be able to capture sharp
fronts in solutions to hyperbolic systems – as well as to be locally
mass conservative – thus, making them suitable methods to solve
our problem. Furthermore, the LDG approach outlined here fits
into an overall discontinuous Galerkin framework being developed
by our group for the approximation of shallow water systems [21].

The work presented in this paper is organized in the following
way. In Sections 1.1–1.4 and 1.5, we introduce the DSW equation,
and present a brief introduction to DG methods, the notation used
in such methods, and all the preliminary information needed to
carefully set up and study our particular LDG method. The numer-
ical method is constructed in Section 2, and the details of the con-
tinuous in time error analysis are presented in Section 2.2. In
Section 3 the results of 2D numerical experiments are shown.

1.1. The DSW equation

For completeness in our presentation, we mention some of the
key characteristics of the DSW equation that make it an interesting
problem to be studied, as well as the context in which we intend to
approach our convergence analysis.

The DSW is a doubly nonlinear diffusion equation, since the
product of two nonlinearities involving u and ru, namely
ðu% zÞa and ru=jruj1%c, appear inside the divergence term. Also,
when written in the form

@u
@t

%r & ðaðu;ruÞruÞ ¼ f ð2Þ

with the diffusion coefficient a given by

aðu;ruÞ ¼ ðu% zÞa

jruj1%c
; ð3Þ

one immediately notices that the nonlinearity involving the gradi-
ent of u inside the divergence, ru=jruj1%c, is at best c-Hölder con-
tinuous w.r.t. ru, since it scales as jrujc and 0 < c 6 1. As a
consequence, the familiar coercivity and continuity conditions

lkuk2V 6 ðaðuÞru;ruÞ and ðaðuÞru;rwÞ
6 MkukVkwkV for u;w 2 V ; ð4Þ

commonly assumed in the numerical analysis of nonlinear diffusion
equations (see [28,15] or [26]) will not hold.1 This fact motivates the
need for further assumptions or properties on the type of solutions
to be approximated if one is to produce a meaningful numerical
method. To this end, we follow the strategy we presented in [25],
for the convergence of the continuous Galerkin method, to restrict

our analysis to the approximation of solutions satisfying physically
consistent properties based on shallow water modeling theory. Even
though the DSW is a degenerate diffusion equation, we will assume
that (1) the solution u does not vanish (i.e. u > !, for a small ! > 0),
which corresponds to a wet condition throughout the domain, and
(2) that the gradient of u is bounded. The latter assumption is consis-
tent with the derivation of the DSW from the SWE, for general and
smooth bathymetries. With these assumptions, we proved in [25]
that the continuous Galerkin (CG) method converges to the (as-
sumed to be unique and regular) solution of the DSW equation, for
finite elements of polynomial order k with order OðhkcÞ (here h rep-
resents the diameter of the spatial triangulation). We also found
that, in theory, we had to use polynomials of degree k > 4 in order
to ensure the boundedness needed on the discrete solution for the
proof to succeed. In our numerical experiments in [25], however,
we found that we could achieve convergence for our method even
for solutions of the DSW that vanished in large regions of the do-
main, as well as for solutions with unbounded gradient. Moreover,
we found that for nondegenerate solutions we could achieve – opti-
mal – convergence rates Oðh2Þ with piecewise linear elements. These
results show the gap between our conservative theoretical conver-
gence analysis and the actual numerically achievable convergence
rates. We do not address this gap in this work. Instead, we focus
on extending the results obtained for the CG method to the LDG
method.

1.2. DG methods

The LDG method is one of many discontinuous Galerkin (DG)
methods. These methods are characterized by the fact that conti-
nuity across elements is not enforced in the linear space where
the basis functions live, and thus, the approximate solutions pro-
duced are discontinuous or ‘‘broken”. This major difference with
the continuous Galerkin finite element method gives rise to very
interesting properties that characterize all DG methods. These
can be summarized as follows: (1) They can easily handle various
shapes in different elements across the domain, as well as local
spaces of different types (orders). This is the case since continuity
is not enforced strongly across elements. (2) The previous property
makes these methods suitable to handle structured and unstruc-
tured meshes in domains with general geometries. (3) Their high
degree of locality makes them highly parallelizable. (4) They are
element-wise conservative (This statement is meaningful when
modeling nonlinear conservation laws). (5) They are ideally suited
for hp-refinement (or hp-adaptivity). A good reference that offers a
review on the development of discontinuous Galerkin methods is
the book by Cockburn et al. [13].

The LDG method was introduced by Cockburn and Shu in [14]
as an extension, to general convection–diffusion problems, from
the numerical techniques introduced by Bassi and Rebay in [4] to
solve the compressible Navier–Stokes equations. One of the basic
ideas in the LDG method is to rewrite, say the parabolic equation
at hand, as a degenerate first order system of equations, and solve
for u andruð¼ qÞ as independent unknowns. Even though this strat-
egy is also utilized in methods based on a mixed formulation, in the
LDGmethod one further discretizes the resulting first order system
using particular DG techniques. It is particular to the LDG method
studied in this work that the approximation to u, and the approx-
imation to each of the components of q belong to the same approx-
imation spaces. This choice makes the coding of the method
simpler than the standard mixed methods. Also, the so-called
numerical flux, bU , (introduced to properly define the values of the
solution u and the fluxes across all element boundaries) does not
depend on q, making it possible for the local variable q to be solved
in terms of u. The particular numerical fluxes, bU and bQ , used in our
method are introduced in Section 2. Examples of other consistent1 In (4), ð&; &Þ represents the appropriate duality pairing.
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numerical fluxes, in the context of elliptic problems, can be found
in [9].

Works addressing the properties of the LDG method in the con-
text of convection–diffusion problems include for example:
[14,12,10] and [1]. The applicability of the LDG method has been
explored for example, for elliptic problems in [3], and in [19]; for
nonlinear diffusion problems in [7], and in [22]; for a class of non-
linear problems in fluid mechanics in [8]; for Richard’s equation
(another nonlinear parabolic equation) in [23]; for nonlinear sec-
ond-order elliptic and hyperbolic systems in [24]; for nonlinear
convection–diffusion and KdV equations in [30]; and for PDE’s with
higher order derivatives in [31] and [32].

1.3. Regularized problem

In [25] we used a strategy that consisted of constructing a reg-
ularized numerical scheme to approximate the possibly degenerate
diffusion coefficient aðu;ruÞ in (3) with nondegenerate diffusion
coefficients a! in (1), such that 0 < ! 6 a!ðuÞ and with the property
that aðuÞ ¼ lim!!0a!ðuÞ, for a small parameter !. We will use a sim-
ilar strategy in our study.

We present the nondegenerate problem that we will approxi-
mate numerically along with some properties and results that will
be used in the analysis carried out in the next sections. We begin
by introducing the nondegenerate version of the IBVP (1), obtained
by replacing the function ðs$ zÞa with a sequence of bounded Lips-
chitz functions fb!ðsÞg, with the properties that (i) fb!ðsÞg con-
verges uniformly to ðs$ zÞa as !! 0, and (ii) for small ! > 0 the
following holds b!ðsÞ P ! for all t 2 ½0; T&. To this end, the bathym-
etry zðxÞ will be assumed to be a smooth and bounded time inde-
pendent function defined in X. The nondegenerate IBVP is given by

@u
@t $r ' b!ðuÞ ru

jruj1$c

! "
¼ f on X( ð0; T&;

u ¼ u0 on X( ft ¼ 0g;
b!ðuÞ

jruj1$c
ru

! "
' n ¼ BN on @X \ CN ( ð0; T&;

u ¼ BD on @X \ CD ( ð0; T&:

8
>>>>><

>>>>>:

ð5Þ

In the next section we develop a numerical scheme to approximate
this nondegenerate problem as explained in Section 1.1. The fact
that solutions to the nondegenerate problem (5) are close to the ori-
ginal solution to problem (1) as !! 0 will be understood as in [2]
for z ¼ 0, and will be assumed for the general case z – 0.

Remark 1.1. For intuition purposes one could choose for example
the following sequence b!ðuÞ ¼ ðu$ zÞa þ !:

1.4. Previous results

For completeness, we present some essential results needed in
the subsequent sections. For proofs of the next two lemmas see
Section 1.5 in [25] and the references therein.

Lemma 1.1. Let u1 and u2 be non negative L1ðXÞ functions, then for
aP 1

jua1 $ ua2j 6 a maxðku1kL1ðXÞ; ku2kL1ðXÞÞ
! "a$1

ju1 $ u2j: ð6Þ

Lemma 1.2 (Coercivity and continuity). Let g1 and g2 be bounded
vector valued functions in Rnðn P 1Þ, then the following estimates
hold true

cA0jg1 $ g2j
2 6 g1

jg1j
1$c $

g2

jg2j
1$c

 !
ðg1 $ g2Þ ð7Þ

and

g1

jg1j
1$c $

g2

jg2j
1$c

#####

##### 6 A0jg1 $ g2j 6
2
c jg1 $ g2j

c; ð8Þ

where

A0 :¼
Z 1

0
jkg1 þ ð1$ kÞg2Þj

c$1dk:

1.5. DG notation

Let fThg denote a family of regular finite element partitions of
X such that no individual element Xe crosses @X. For the error
analysis described below, we will assume that Th is a locally qua-
si-uniform finite element mesh. Let he denote the element diame-
ter with h being the maximal element diameter. We will also
assume each element Xe is Lipschitz and affinely equivalent to
one of several reference elements [6]. Let PkðXeÞ denote the space
of (possibly) discontinuous piecewise polynomials of degree at
most k; k P 1, defined on Xe, and let

M ¼ fv : vjXe
2 PkðXeÞg:

We will assume that PkðXeÞ is chosen such that the usual space of
continuous, piecewise polynomials of order k defined on the trian-
gulation Th are contained in M.

We will denote by ei the set of all interior element faces, with eD
the set of all element faces along the Dirichlet boundary CD, and eN
the set of all element faces along the Newmann boundary CN . Note
that if e is an interior face in the finite element mesh, then e has
two elements adjacent to it, we will denote them by X$

e and Xþ
e .

Also, if v andw are smooth real valued and vector valued functions,
respectively, defined on these elements, we will denote their traces
on e, from the interior of the element X$

e , as v$ and w$; and from
the exterior of the element Xþ

e , as vþ and wþ. We will denote by n$

the outward normal vector to the element X$
e at e and by nþ the

outward normal vector to the element Xþ
e at e. The previous defini-

tion implies naturally that nþ ¼ $n$. We will define the average
f'g and the jump s ' t on the face e as:

fvg ¼ ðv$ þ vþÞ
2

; fwg ¼ ðw$ þwþÞ
2

; ð9Þ

svt ¼ v$n$ þ vþnþ; swt ¼ w$ ' n$ þwþ ' nþ: ð10Þ

We will also denote by ð'; 'ÞE, the usual L2 inner product over a d-
dimensional domain E, and by h'; 'i@E, the ðd$ 1Þ-dimensional inte-
gral over the surface @E. To simplify notation, we will omit the
dependence on the domain and denote with ð'; 'Þ the integrals over
the whole domain E ¼ X; ð'; 'ÞX.

Throughout the paper, Cwill be a generic positive constant with
different values and the explicit dependence with respect to
parameters will be written inside parenthesis.

We refer the reader to Chapter 4 in [6] and [11] for proofs of the
following lemmas.

Lemma 1.3 (Interpolation error). Let u 2 Hkþ1ðXÞ, then there exists
an ‘‘interpolant” û 2 M which satisfies

kû$ ukHsðXÞ 6 Chkþ1$skukHkþ1ðXÞ:

Lemma 1.4 (Inverse inequalities). Let v 2 M then, there exists a
constant K0 independent of h and v such that

kvkL1ðXÞ 6 K0h
$1kvkL2ðXÞ and krvkL1ðXÞ 6 K0h

$1krvkL2ðXÞ:

The following trace theorem is well known. See Chapter 4 in [6]:

Theorem 1.1 (Trace inequality). Suppose that region R has a
Lipschitz boundary. Then there exists a constant C ¼ CðRÞ such that
for v 2 H1ðRÞ,
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kvkL2ð@RÞ 6 C kvk1=2
L2ðRÞ

kvk1=2
H1ðRÞ

:

By the trace inequality and inverse inequality, for any v 2 M

kvkL2ð@XeÞ 6 CðXe;K0Þh#1
2

e kvkL2ðXeÞ: ð11Þ

2. The local discontinuous Galerkin method

In this section, we study the approximation properties of
numerical solutions to the DSW equation, through the regularized
initial/boundary-value problem (5), obtained using the LDG meth-
od. In order to formulate the LDG method it is appropriate to re-
write the nonlinear degenerate parabolic IBVP (1) as a
degenerate first order system of equations where u;ru, and
aðu;ruÞru, are now considered as independent unknowns:

ut #r $ q ¼ f on X& ð0; T';
~q ¼ ru on X& ð0; T';
q ¼ aðu; ~qÞ~q on X& ð0; T';

8
><

>:
ð12Þ

where

aðu; ~qÞ ¼ ðu# zÞa

j~qj1#c
; ð13Þ

with initial and boundary conditions given as before by

u ¼ u0 on X& f0g;
q $ n ¼ BN on @X \ CN & ð0; T';
u ¼ BD on @X \ CD & ð0; T';

8
><

>:
ð14Þ

where @X ¼ C ¼ CN þ CD. Moreover, assuming u;q and ~q are
smooth enough, we multiply each equation in (12) by test functions
w 2 M;v 2 ðMÞd and ~v 2 ðMÞd respectively (where d is the spatial
dimension), and integrate by parts over an element Xe to obtain
the local weak form of (12):

ðut ;wÞXe
þ ðq;rwÞXe

# hq $ ne;wi@Xe
¼ ðf ;wÞXe

8w 2 M;

ð~q; ~vÞXe
þ ðu;r $ ~vÞXe

# hu;v $ nei@Xe
¼ 0 8~v 2 ðMÞd;

ðq;vÞXe
# ðaðu; ~qÞ~q;vÞXe

¼ 0 8v 2 ðMÞd;

8
>><

>>:

ð15Þ

where ne represents the outward normal vector to the faces of the
element Xe. The discontinuous Galerkin method consists of finding
approximations ðU;Q ; ~QÞ to the solution ðu;q; ~qÞ of (15), where
U 2 M and Q ; ~Q 2 Md, satisfying for all t 2 ½0; T'

ðUt ;wÞXe
þ ðQ ;rwÞXe

# h bQ $ ne;wi@Xe
¼ ðf ;wÞXe

8w 2 M;

ð ~Q ; ~vÞXe
þ ðU;r $ ~vÞXe

# hbU ;v $ nei@Xe
¼ 0; 8~v 2 ðMÞd;

ðQ ;vÞXe
# ðaðU; ~QÞ ~Q ;vÞXe

¼ 0 8v 2 ðMÞd;

8
>><

>>:

ð16Þ

for every element Xe in the domain X.
By construction, the approximants ðU;Q ; ~Q Þ may be discontinu-

ous across element boundaries. As a consequence, at a given face e
the functions ðU;Q ; ~Q Þmay bemulti-valued. This is why the numer-
ical fluxes bQ and bU are introduced in (16). This issue is clearly ex-
plained in the context of elliptic problems in [9] and in [3], and in
the context of nonlinear diffusion problems in [7].

For the LDG method that we will analyze and implement, the
numerical fluxes are chosen in the following simple way:

bU ¼
fUg if e 2 ei;
BD if e 2 CD;

U if e 2 CN;

8
><

>:
ð17Þ

and

bQ ¼
fQg# rsUt if e 2 ei;
Q # rðUn# BDnÞ if e 2 CD;

BN if e 2 CN:

8
><

>:
ð18Þ

Note that the numerical flux bU does not depend on Q . This
makes it possible for the local variable Q to be solved in terms of
U by using the second and third equations of (16). This is a partic-
ular property that distinguishes the LDG method (hence the name
‘‘local”). The penalty parameter r appearing in the definition of the
numerical fluxes will be chosen in order to enhance the stability
and thus, the accuracy of the method.

Remark 2.1. The fluxes defined in (17) and (18) are both consistent
and conservative as defined in [3] and [9].

The resulting LDG formulation is obtained in two steps. First, by
summing over all elements Xe to find

ðUt ;wÞ þ ðQ ;rwÞ # h bQ ; swtiei # h bQ $ n;wi@X ¼ ðf ;wÞ 8w 2M;

ð ~Q ; ~vÞ þ ðU;r $ ~vÞ # hbU ; svtiei # hbU ;v $ ni@X ¼ 0 8~v 2 ðMÞd;

ðaðU; ~QÞ ~Q ;vÞ # ðQ ;vÞ ¼ 0 8v 2 ðMÞd;

8
>><

>>:

ð19Þ

where we have denoted with ð$; $Þ ¼
P

eð$; $ÞXe
the sum of all element

integrals. And second, by substituting the values of the numerical
fluxes (17) and (18) in (19)

ðUt ;wÞ þ ðQ ;rwÞ # hfQg; swtiei þ hrsUt; swtiei
#hBN ;wiCN

# hQ $ n;wiCD
þ hrðU # BDÞ;wiCD

¼ ðf ;wÞ 8w 2 M;

ð ~Q ; ~vÞ þ ðU;r $ ~vÞ # hfUg; s~vtiei # hU; ~v $ niCN
¼ hBD; ~v $ niCD

8~v 2 ðMÞd;

ðaðU; ~Q Þ ~Q ;vÞ # ðQ ;vÞ ¼ 0 8v 2 ðMÞd;

8
>>>><

>>>>:

ð20Þ
where, for simplicity, we have denoted with

h$; $iei :¼
X

e

h$; $i@XenC; h$; $iCN
¼

X

e

h$; $i@Xe\ CN
; and

h$; $iCD
¼

X

e

h$; $i@Xe\CD

the sum of the boundary integrals in all interior element boundaries
ei, in all element boundaries along the Newman boundary CN , and
in all element boundaries along the Dirichlet boundary CD, respec-
tively. In order to enforce the initial condition we set

ðU0;wÞ ¼ ðu0;wÞ 8w 2 M; t ¼ 0: ð21Þ

Note that using integration by parts for some of the terms in the
second equation of (20), the following expression holds,

ðU;r $ ~vÞ # hfUg; s~vtiei # hU; ~v $ niCN

¼ #ðrU;vÞ þ hsUt; f~vgiei þ hU; ~v $ niCD
: ð22Þ

Based on the previous observation we will rewrite the LDG formu-
lation for the IBVP (5) as,

ðUt ;wÞ þ ðQ ;rwÞ # hfQg; swtiei þ hrsUt; swtiei
#hBN ;wiCN

# hQ $ n;wiCD
þ hrðU # BDÞ;wiCD

¼ ðf ;wÞ 8w 2 M;

ð ~Q ; ~vÞ # ðrU; ~vÞ þ hsUt; f~vgiei þ hU; ~v $ niCD
¼ hBD; ~v $ niCD

8~v 2 ðMÞd;

ðaðU; ~Q Þ ~Q ;vÞ # ðQ ;vÞ ¼ 0 8v 2 ðMÞd

8
>>>><

>>>>:

ð23Þ

Remark 2.2. It is clear that any continuous classical solution of
problem (12)–(14) will satisfy problem (23) since all terms
involving jumps across elements s $ t, will be zero and all boundary
terms will satisfy strongly the boundary conditions.
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Remark 2.3. As mentioned in Section 1.3, the diffusion coefficient
aðu; ~qÞ in (13) will be approximated by the family of Lipschitz non-
degenerate diffusion coefficients of the form

a!ðu; ~qÞ ¼
b!ðuÞ
j~qj1$c

; ð24Þ

and we will denote with bð%Þ any member of the family fb!ð%Þg in the
subsequent analysis to simplify the notation. Furthermore, note
that any solution of the IBVP (5) will also be a solution (12)–(14)
with the regularized diffusion coefficient (24).

Remark 2.4. It is not difficult to see that, for a given r > 0, the sys-
tem of nonlinear ordinary differential equations arising from (23)
will have at least one solution. Indeed, the fact that the right hand
side of this system is – at least – locally Hölder continuous with
respect to U and each component of eQ ensures existence of at least
one solution. See [25] for a more detailed argument.

2.1. Stability analysis

Even though the proof of Theorem 2.1 can be established as a
Corollary of Theorem 2.2, we present it here for clarity. Indeed,
many of the mathematical manipulations presented in the proof
of Theorem 2.1 can be easily followed and will be used in the more
elaborate setting of the proof of Theorem 2.2.

Theorem 2.1 (Stability). Let U and eQ be solutions of (23) and (21)
with BN ¼ 0, and BD ¼ 0. Then

kUðtÞk2L2ðXÞ þ k ~Qk1þc
L1þcð0;T;L1þcðXÞ

þ
Z T

0
kr1

2sUtk2L2ðeiÞ þ kr1
2Uk2L2ðCDÞ

! "

6 C !; ku0k2L2ðXÞ; kfk
2
L2ð0;T;L2ðXÞÞ

! "
: ð25Þ

Proof. Note that choosing w ¼ U, ~v ¼ Q , and v ¼ eQ and adding all
terms on the left hand side in (23) we obtain, after several
cancellations

1
2
@

@t
kUðtÞk2L2ðXÞ þ hrsUt;sUtiei þ hrU;UiCD

þ aðU; eQ Þ eQ ; eQ
! "

¼ðf ;UÞ:

ð26Þ

From the observation that

!k eQ k1þc
L1þcðXÞ

6
Z

X
bðUÞj eQ j1þc ¼ ðaðU; eQ Þ eQ ; eQ Þ:

Eq. (26) leads to

1
2

@

@t
kUðtÞk2L2ðXÞ þ kr1

2sUtk2L2ðeiÞ þ kr1
2Uk2L2ðCDÞ

þ !k eQ k1þc
L1þcðXÞ

6 ðf ;UÞ:

ð27Þ

Furthermore, since

ðf ;UÞ 6 1
2
kUðtÞk2L2ðXÞ þ

1
2
kfk2L2ðXÞ:

Eq. (27) implies

1
2

@

@t
kUðtÞk2L2ðXÞ þ kr1

2sUtk2L2ðeiÞ þ
1
2
kr1

2Uk2L2ðCDÞ
þ !k eQ k1þc

L1þcðXÞ

6 1
2
kUðtÞk2L2ðXÞ þ

1
2
kfk2L2ðXÞ: ð28Þ

Since the second, third, and fourth terms of the left hand side of the
previous equation are nonnegative we obtain

1
2

@

@t
kUðtÞk2L2ðXÞ 6

1
2
kUðtÞk2L2ðXÞ þ

1
2
kfk2L2ðXÞ

which, by Gronwall’s Lemma, leads to

kUðtÞk2L2ðXÞ 6 CðkU0k2L2ðXÞ; kfk
2
L2ð0;T;L2ðXÞÞÞ for all t 2 ½0; T(:

Integrating (28) in time from 0 to T, the following must also hold:

k eQ k1þc
L1þcð0;T;L1þcðXÞ

6 Cð!; kU0k2L2ðXÞ; kfk
2
L2ð0;T;L2ðXÞÞÞ: ð29Þ

Likewise for the second and third terms of (28). Finally, by choosing
w ¼ U0 in the first equation of (21) we obtain

ðU0;U0Þ ¼ ðu0;U0Þ 6
1
2
kU0k2L2ðXÞ þ

1
2
ku0k2L2ðXÞ

which implies

kU0k2L2ðXÞ 6 ku0k2L2ðXÞ

Thus, the result of the Theorem follows at once. h

2.2. Continuous in time a priori error analysis

In this section, we will study how close (possibly nonunique)
solutions to the LDG approximation problem (23), U, are to the true
weak solution u of problem (12)–(14) with the regularized diffu-
sion coefficient (24).

The analysis requires that comparison functions be carefully
chosen.

We define û 2 M and q̂ 2 Md to be L2 projections, given by

ðu$ û; vÞ ¼ 0 8v 2 M ð30Þ

and

ðq$ q̂;vÞ ¼ 0 8v 2 Md: ð31Þ

Furthermore, define ~̂q 2 Md by

ð~̂q;vÞ ¼ ðrû;vÞ $ hsût; fvgiei $ hû$ BD;v % niCD
8v 2 Md: ð32Þ

We note that, defining the projection p~q 2 Md by

ðp~q;vÞ ¼ ðru;vÞ 8v 2 Md

we have

ð~̂q$ p~q;vÞ ¼ ðrðû$ uÞ;vÞ $ hsû$ ut; f~vgiei $ hû$ u;v % niCD
:

ð33Þ

Choosing v ¼ ~̂q$ p~q and applying the trace theorem and (11) it is
easily seen that

k~̂q$ p~qkL2ðXÞ

6 C
X

e

krðû$ uÞkL2ðXeÞ þ h$1=2
e kû$ uk1=2

L2ðXeÞ
kû$ uk1=2

H1ðXeÞ

h i
: ð34Þ

We make the following assumptions on the boundedness of the
solution and approximations, namely that there exist positive con-
stants K1;K1;K2 and K2 such that

kukL1ð0;T;L1ðXÞÞ 6 K1; ð35Þ

kUkL1ð0;T;L1ðXÞÞ 6 K1; ð36Þ

k~̂qkL1ð0;T;L1ðXÞÞ 6 K2; ð37Þ

k ~QkL1ð0;T;L1ðXÞÞ 6 K2: ð38Þ

We will show in Lemmas 2.1 and 2.2 that the constants in our
error estimate are independent of !K1 and K2 provided we choose
the maximum diameter of the mesh, h, small enough and the finite
element space is of high enough order. We note that (37) holds if
ru is bounded and ru$ ~̂q is small (or merely bounded).

Theorem 2.2. Let ðu; ~q;qÞ be the solution of problem (12)–(14) and
let ðU; ~Q ;QÞ be the solution of problem (23). Let vu ¼ u$ û; ~vq ¼
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~q! ~̂q and vq ¼ q! q̂. Furthermore assume (35)–(38) hold. Then for all
t 2 ½0; T$, there exists a constant C ¼ Cð!; c;K1;K1;K2;K2; TÞ such that

kUðtÞ ! uðtÞk2L2ðXÞ þ k ~Q ! ~qk2L2ð0;T;;L2ðXÞÞ

þ
Z T

0
kr1

2sUðtÞ ! uðtÞtk2L2ðeiÞ þ kr1
2 UðtÞ ! uðtÞð Þk2L2ðCDÞ

! "

6 kvuðtÞk
2
L2ðXÞ þ k ~vqk

2
L2ð0;T;L2ðXÞÞ þ C kUð0Þ ! uð0Þk2L2ðXÞ þ kvuk

2
L2ð0;T;L2ðXÞÞ

! "

þ C
Z T

0
kr!1

2fvqgk
2
L2ðeiÞ

þ kr1
2vuk

2
L2ðCDÞ

þ kr!1
2vqk

2
L2ðCDÞ

þ kr1
2fvugk

2
L2ðeiÞ

! "

þ C
Z T

0

Z

X
~vq

## ##2c: ð39Þ

Proof. Since the solution u of (12)–(14) satisfies the weak form
(23), the following three equations hold:

ðUt ! ût ;wÞþðQ ! q̂;rwÞ! hfQ ! q̂g;swtiei þ hrsU! ût;swtiei
! hðQ ! q̂Þ (n;wiCD

þ hrðU! ûÞ;wiCD

¼ðut ! ût ;wÞþðq! q̂;rwÞ! hfq! q̂g;swtiei þ hrsu! ût;swtieiþ

! hðq! q̂Þ (n;wiCD
þ hrðu! ûÞ;wiCD

; ð40Þ

ð ~Q ! ~̂q; ~vÞ ! ðrðU ! ûÞ; ~vÞ þ hsU ! ût; f~vgiei
þ hU ! û; ~v ( niCD

¼ ð~q! ~̂q; ~vÞ ! ðrðu! ûÞ; ~vÞ
þ hsu! ût; f~vgiei þ hBD ! û; ~v ( niCD

; ð41Þ

and

bðUÞ
~Q

j ~Q j1!c
!

~̂q

j~̂qj1!c

 !
;v

 !
! ðQ ! q̂;vÞ

¼ bðuÞ
~q

j~qj1!c
!

~̂q

j~̂qj1!c

 !
;v

 !
! ðq! q̂;vÞ

! bðUÞ ! bðuÞð Þ
~̂q

j~̂qj1!c
;v

 !
: ð42Þ

Note that the first and second terms on the right hand side of (40)
and the second term on the right hand side of (42) are zero by def-
inition of û and q̂. Furthermore, by (32), the entire right hand side of
(41) vanishes.

To simplify notation, let nu ¼ U ! û; ~nq ¼ ~Q ! ~̂q and nq ¼ Q ! q̂.
Now, choosing w ¼ nu; ~v ¼ nq, and v ¼ ~nq, and adding Eqs. (40)–
(42) we obtain, after multiple cancellations:

1
2

@

@t
knuðtÞk

2
L2ðXÞ þ hrsnut; snutiei þ hrnu; nuiCD

þ bðUÞ
~Q

j ~Q j1!c
!

~̂q

j~̂qj1!c

 !

; ~nq

 !

¼ !hfvqg; snutiei þ hrsvut; snutiei ! hnu; vq ( niCD

þ hrvu; nuiCD
þ bðuÞ

~q
j~qj1!c

!
~̂q

j~̂qj1!c

 !
; ~nq

 !

! bðUÞ ! bðuÞð Þ
~̂q

j~̂qj1!c
; ~nq

 !
: ð43Þ

Furthermore, from the result of Lemma 1.2 and provided
bðUÞ P ! > 0

c!Aj ~nqj
2
L2ðXÞ 6 bðUÞ

~Q
j ~Q j1!c

!
~̂q

j~̂qj1!c

 !
; ~q! ~̂q

 !
; ð44Þ

where A :¼ inf ð0;TÞ)XðA0Þ ¼ 1=ðk ~QkL1ð0;T;L1ðXÞÞ þ k~̂qkL1ð0;T;L1ðXÞÞÞÞ
1!c.

Using (44), we can establish that

1
2
@

@t
knuðtÞk

2
L2ðXÞ þkr1

2snutk
2
L2ðeiÞ

þkr1
2nuk

2
L2ðCDÞ

þc!Ak ~nqk
2
L2ðXÞ 6

X6

i¼1

Ti;

ð45Þ

where Ti; i ¼ 1; . . . ;6, are the terms arising from the right hand side
of (43). We now proceed to bound the terms T1 ! T6.

For T1, we multiply and divide by r1
2 to get

T1 ¼ hr!1
2fvqg;r

1
2snutiei 6

!1
2
kr1

2snutk
2
L2ðeiÞ

þ 1
2!1

kr!1
2fvqgk

2
L2ðeiÞ

:

ð46Þ

For term T2 we have the following inequality

T2 ¼ hrsvut; snutiei 6
1
2
kr1

2svutk
2
L2ðeiÞ

þ 1
2
kr1

2snutk
2
L2ðeiÞ

: ð47Þ

The terms T3 and T4 are handled identically to T1 and T2 with ei re-
placed by CD.

As for terms T5 and T6, note that

T5 ¼
Z

X
bðuÞ

~q
j~qj1!c

!
~̂q

j~̂qj1!c

 !
~nq 6

2
c C1

Z

X
j ~vqj

cj ~nqj

6 2
c C1

1
2!2

Z

X
~vq

## ##2c þ !2
2
k ~nqk

2
L2ðXÞ

$ %
; ð48Þ

where C1 ¼ CðK1Þ, and

T6 ¼ ðbðUÞ ! bðuÞÞ
~̂q

j~̂qj1!c
; ~nq

 !
6 C2

Z

X
ju! Uk~̂qjcj ~nqj

6 C2k~̂qkcL1ðXÞku! UkL2ðXÞk ~nqkL2ðXÞ

6 C2k~̂qkcL1ðXÞ
1
2!3

ðkvuk
2
L2ðXÞ þ knuk

2
L2ðXÞÞ þ

!3
2
k ~nqk

2
L2ðXÞ

$ %
; ð49Þ

where C2 ¼ CðK1; !K1Þ. From (45)–(49) and choosing !1; !2 and !3
small enough so that for ! and !* small positive numbers,
0 < ! 6 c!A! 1

c C1!2 þ 1
2C2k~̂qkcL1ðXÞ!3

! "
and 0 < !* 6 1

2 ð1! !1Þ, we
obtain
1
2

@

@t
knuðtÞk

2
L2ðXÞ þ !*kr1

2snutk
2
L2ðeiÞ

þ 1
2
kr1

2nuk
2
L2ðCDÞ

þ !k ~nqk
2
L2ðXÞ

6 C knuk
2
L2ðXÞ þ kvuk

2
L2ðXÞ þ kr1=2svutk

2
ei þ kr!1

2vq ( nk
2
L2ðCDÞ

!

þkr!1
2fvqgk

2
L2ðeiÞ

þ kr1
2vuk

2
L2ðCDÞ

þ
Z

X
~vq

## ##2c
%
: ð50Þ

Since the second, third, and fourth terms of the left hand side in the
previous inequality are nonnegative, we can use Gronwall’s Lemma
to find that for all t 2 ½0; T$,

knuðtÞk
2
L2ðXÞ 6 C knuð0Þk

2
L2ðXÞ þ kvuk

2
L2ð0;T;L2ðXÞÞ þ

Z T

0

Z

X
~vq

## ##2c
&

þ
Z T

0
kr!1

2fvqgk
2
L2ðeiÞ

þ kr1
2vuk

2
L2ðCDÞ

!

þkr1=2svutk
2
ei þ kr!1

2vq ( nk
2
L2ðCDÞ

"i
: ð51Þ

Likewise, integrating (50) again in time from 0 to T, we can establish
the boundedness of the three remaining terms of the left hand side
of (50):
Z T

0
kr1

2snutk
2
L2ðeiÞ

þ kr1
2nuk

2
L2ðCDÞ

! "
and k ~nqk

2
L2ð0;T;L2ðXÞÞ: ð52Þ

The result of the Theorem follows immediately from the trian-
gle inequality. h

Corollary 2.1. If uðtÞ; ~qðtÞ;qðtÞ are sufficiently smooth for 0 < t 6 T,
and the approximations U; ~Q ;Q are constructed with piecewise poly-
nomials of degree at most k and satisfy the assumptions of Theorem
2.2, then for all t 2 ½0; T$ and r ¼ Oð1hÞ, there exists a constant
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C ¼ Cð!; c;X; T;K1;K1;K2;K2; kukL1ð0;T;Hkþ1ðXÞÞ; kqkL1ð0;T;HkðXÞÞÞ ð53Þ

such that

kUðtÞ%uðtÞkL2ðXÞ þ k ~QðtÞ% ~qðtÞkL2ð0;T;L2ðXÞÞ

þ
Z T

0

1
h

ksUðtÞ%uðtÞtkL2ðeiÞ þ kðUðtÞ%uðtÞÞkL2ðCDÞ

! "
6 Chkc: ð54Þ

Proof. The corollary follows from Theorem 2.2 and the following
bounds.

kvuðtÞk
2
L2ðXÞ 6 Ch2ðkþ1Þkuk2Hkþ1ðXÞ; ð55Þ

k ~vqk
2
L2ðXÞ2 6 Ch2kkuk2Hkþ1ðXÞ; ð56Þ

kvuk
2
L2ð0;T;L2ðXÞÞ 6 Ch2ðkþ1Þ

Z T

0
kuk2Hkþ1ðXÞ: ð57Þ

Using the trace inequality,

kr1
2svutk

2
L2ðeiÞ

þ kr1
2vuk

2
L2ðCDÞ

6 Ch%1X
e
kvukL2ðXeÞkvukH1ðXeÞ

6 Ch2kkuk2Hkþ1ðXÞ: ð58Þ

Note also that

Z

X
~vq

## ##2c 6
Z

X
~vq

## ##2
$ %2c

2

Xj j1%c ¼ k ~vqk
2c
L2ðXÞ

Xj j1%c

6 Ch2kckuk2c
Hkþ1ðXÞ

ð59Þ

and

kr%1
2fvqgk

2
L2ðeiÞ

þ kr%1
2fvqgk

2
L2ðCDÞ

6 Ch
X

e

kq% q̂kL2ðXeÞkq% q̂kH1ðXeÞ 6 Ch2kkqkHkðXÞ: ð60Þ

The result of the Corollary follows immediately. h

Lemma 2.1 (Boundedness of the approximation). Under the
assumptions of Theorem 2.2, choosing c P 1=2, and provided h is suf-
ficiently small and k P 3, if kukL1ð0;T;L1ðXÞÞ 6 K1, then kUkL1ð0;T;L1ðXÞÞ 6
K1ð1þ !k1 Þ for a small parameter !k1 .

Proof. Clearly

kUkL1ð0;T;L1ðXÞÞ 6 kU % ukL1ð0;T;L1ðXÞÞ þ kukL1ð0;T;L1ðXÞÞ: ð61Þ

From Corollary 2.1 and Lemma 1.4 we obtain

kUkL1ð0;T;L1ðXÞÞ 6 kU % ukL1ð0;T;L1ðXÞÞ þ K1

6 Ch%1kU % ûkL1ð0;T;L2ðXÞÞ þ kû% ukL1ð0;T;L1ðXÞÞ þ K1

6 Cðh3c%1 þ h3Þ þ K1

Thus, we can choose a sufficiently small h so that Ch1=2 6 !k1K1,
which implies

kUkL1ð0;T;L1ðXÞÞ 6 K1ð1þ !k1 Þ !

Lemma 2.2 (Boundedness of the gradient of the approxima-
tion). Under the assumptions of Theorem 2.2, choosing
c P 1=2þ k=4 with 2 P k > 0, and provided h is sufficiently small
and k P 4, if krukL1ð0;T;L1ðXÞÞ 6 K3, then k ~QkL1ð0;T;L1ðXÞÞ 6 K3

ð1þ !k2 Þ for a small parameter !k2 .

Proof. Returning to (41), for any 0 < t < T ,

ð ~Q % ~̂q; ~vÞ ¼ ðrðU % ûÞ; ~vÞ % hsU % ût; f~vgiei % hU % û; ~v & niCD
:

ð62Þ

Setting ~v ¼ ~vq, and using trace and inverse inequalities

k ~vqk
2
L2ðXÞ ¼ ðrnu; ~vqÞ % hsnut; f ~vqgiei % hnu; ~vq & niCD

6 krnukL2ðXÞk ~vqkL2ðXÞ þ knukL2ðeiÞk ~vqkL2ðeiÞ þ knukL2ðCDÞk ~vqkL2ðCDÞ

6 Ch%1knukL2ðXÞk ~vqkL2ðXÞ:

Therefore,

k ~vqkL2ðXÞ 6 Chkc%1
: ð63Þ

Now following the argument used in the proof of Lemma 2.1, we see
that the result follows if k P 4 and h is small enough so that
Ch4c%2 6 Chk 6 !k2K2. h

3. Numerical experiments: 2D

In this section, we investigate numerically, the order of accuracy
of the proposed LDG method. We also present results of some
numerical experiments aimed at solving two ideal 2D problems: a
dam break event, and flow in a channel with vegetation resulting
from a dam break event. The main motivation to show the latter re-
sults is to provide the readerwith convincing evidence that theDSW
equationcaptures thephysicsof theaforementioned ideal problems.
In fact, the setting of the simulatedflow in a channelwith vegetation
was inspired by an actual experiment shown in [5].

The 2D LDG finite element formulation on unstructured trian-
gular elements was coded in order to carry out the numerical
experiments. A second-order backward difference formula (BDF)
time integrator was used to solve the problem forward in time. Pi-
card iteration was used to linearize the resulting nonlinear system,
and the conjugate gradient method was used to solve the resulting
linear systems.

Fig. 1. Mesh for the dam break simulation (left) without vegetation (right) with
vegetation.

Table 1
Convergence rates to approximate Barenblatt solutions for a ¼ 5=3 and c ¼ 1=2 using
t0 ¼ 2 and tf ¼ 2:1 and X ¼ ½%2;2(.

dt h kU % ukL2ðXÞ Conv. rate

1/100 1/2 2:81) 10%3 –
1/400 1/4 6:76) 10%4 2.06
1/800 1/8 1:58) 10%4 2.10
1/1600 1/16 3:68) 10%5 2.10
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3.1. Numerical convergence

In order to verify the accuracy of the implemented 2D LDG
scheme, we chose to reproduce an analytic Barenblatt solution to
the DSW equation for a flat bathymetry ðzðx; yÞ ¼ 0Þ. The explicit

expression for such solution uðx; tÞ in 1D (spatially) is presented
in [16] and used in [25] to numerically investigate the convergence
rates of a one dimensional CG scheme. We extended this analytic
solutions to 2D (spatially) by simply by setting uðx; y; tÞ ¼ uðx; tÞ
where

Fig. 2. Dam break simulation. Figures showing evolution of water depth (meters) at times = 0.0, 0.5, and 5 s. (left) 3D views, (right) 2D views.
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uðx; tÞ ¼ t$
1

cðmþ1Þ½C $ kðm; cÞjUj
cþ1
c '

c
mc$1
þ ; ð64Þ

where ½sðxÞ'þ denotes the positive part of sðxÞ,m ¼ 1þ a=c, C is a po-
sitive function related to the initial mass M, given by

M ¼
Z 1

$1
uðx; tÞdx;

kðm; cÞ ¼ mc$ 1
mðcþ 1Þ

1
cðmþ 1Þ

! "1
c

; and U ¼ x t$
1

cðmþ1Þ:

Fig. 3. Dam break simulation. Figures showing evolution of water depth (meters) at times = 9.0, 54.0, and 70.0 s. (left) 3D views, (right) 2D views.
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We used our 2D code to reproduce this solution on the domain
X ¼ ½#2;2$ % ½#0:5; 0:5$, for the time interval t 2 ½2;2:1$, for
a ¼ 5=3 and c ¼ 1=2. We prescribed the appropriate Dirichlet
boundary conditions (Uð#2; y; tÞ ¼ uð#2; tÞ and Uð2; y; tÞ ¼ uð2; tÞ)
on the boundaries x ¼ #2 and x ¼ 2, and zero-Newmann boundary
conditions on the boundaries y ¼ #0:5 and y ¼ 0:5. We restricted

our error analysis to a numerical domain X such that u is nonde-
generate (u > 0) everywhere for our simulation time, t 2 ½ti; tf $.
The results are shown in Table 1. Note that the function given
by (64) is Lipschitz continuous and compactly supported, in partic-
ular, its gradient is bounded and continuous in our cylinder
X% ½t0; tf $.

Fig. 4. Dam break simulation with vegetation. Figures showing evolution of water depth (meters) at times = 0, 1.0, and 3.0 s. (left) 3D views, (right) 2D views.

M. Santillana, C. Dawson / Comput. Methods Appl. Mech. Engrg. 199 (2010) 1424–1436 1433



Author's personal copy

Remark 3.1. Assuming that the BDF integrator gives rise to order
Dt2 errors, where Dt is the time step, we chose to push the limits in
our investigation to see if we could observe optimal convergence
(h2 for piecewise linear elements), despite the fact that Corollary
2.1 suggests convergence results of the type, kuðtnÞ # UnkL2ðXÞ 6

Cðu; tnÞðDt2 þ h1=2Þ for c ¼ 1=2, when approximating nondegener-
ate solutions u 2 H2ðXÞ, using piecewise linear basis functions
(k ¼ 1). The previous motivation lead us to chose the time step
much smaller than the grid diameter in our convergence
experiments.

Fig. 5. Dam break simulation with vegetation. Figures showing evolution of water depth (meters) at times = 9.0, 11.0, and 13.0 s. (left) 3D views, (right) 2D views.
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The convergence rates shown in Table 1 show that the error
estimates obtained in Corollary 2.1 for c ¼ 1=2 are very conserva-
tive. Corollary 2.1, loosely speaking, suggests that the error de-
creases as Oðh1=2Þ for piecewise linear basis functions, yet in
practice, we observe Oðh2Þ convergence. This is not necessarily sur-
prising since removing the degeneracy in the IBVP (1) gives rise to
a presumably well-behaved parabolic problem, where optimal
convergence rates – such as the ones observed in the numerical
experiments – could, in principle, be achieved.

3.2. The Dam break problem

In this section, we present the results of 2D simulations of the
evolution of water depth profiles in an ideal dam break problem.
This problem consists of simulating the water flow resulting from
removing an ideal dam that keeps water on a confined area of the
domain. The set up is as follows, a channel was designed to connect
two reservoirs, one completely filled with water (up hill) and the
other completely empty (down hill). The channel is considered to
be dry at the beginning as well. When the ideal dam is removed
from the upper reservoir, water is expected to flow down hill,
flooding first the channel with a well defined front, and later flood-
ing the lower reservoir; first with a well defined and radially sym-
metric front, and later filling it gradually. This process is expected
to continue until all the water is transferred fully to the lower
reservoir.

The units used in this ideal setting were meters for the water
depth and height, and seconds for the time. This numerical exper-
iment was computed in a domain with a uniform friction coeffi-
cient cf ¼ 1 (this value was chosen for simplicity and without
any physical meaning) and with zero Newmann boundary condi-
tions on @X. The mesh of the computational domain is shown in
Fig. 1 (left), the initial condition and water bed of this problem
are presented at the top left of Fig. 2. The – wet condition – param-
eter, introduced in Sections 1.1 and 1.3, was chosen to be ! ¼ :01 to
provide stability in the code. Recall that the typical depth in the do-
main is Oð1Þ. The mesh radius is of the order h $ 0:125 m (in a do-
main with characteristic lengths of order L $ 6 m and W $ 3 m,
respectively), and the time step was comparable in size, i.e.
Dt ¼ 0:125 s. The experiment was run from t ¼ 0:0 s to t ¼ 70:0 s.
3D and 2D views of the numerically simulated evolution of the
water depth are presented in Figs. 2 and 3.

As discussed before, the main features of the phenomenon are
captured, these include: (1) The down-hill flow of water, (2) the
appearance of a flooding wave with a well defined front propagat-
ing in the direction of lowest potential energy points (lowest
points in space), see Figs. 2 and 3, (3) the radial symmetry of the
water flow both, at the entrance of the channel (uphill) as well
as at the exit of the channel (down hill) throughout the event,
(4) the radial symmetry in the flooding front when reaching the
lowest reservoir, see upper views of Fig. 3, (this is a consequence
of the previous observation), and (5) the eventually gradual trans-
fer of water from the upper part to the lowest one.

Some of the characteristics of the phenomenon that are not cap-
tured are mostly related to two factors: the diffusive nature of the
DSW equation, and the vertical integration utilized to derive it. Re-
lated to the first factor, the physical interaction of the water flow
with the walls is not captured. For example, when water flows in
a confined channel, ripples form as a consequence of momentum
transfers between the water and the walls (as well as friction).
Also, when water frontally hits a wall (as it happens in the lower
views of Fig. 3) water sloshes and forms reflecting waves. These
features are not present in the experiments we show. Another
obvious characteristic not captured with the DSW equation as a
model, and related to the second factor, is the vertical velocity pro-
file of the water flow.

3.3. The Dam Break problem with vegetation

In this section, we present the results of 2D simulations of the
evolutionofwaterdepthprofiles in an ideal dambreakproblemwith
vegetation in some regionsof thedomain. This problemwas inspired
by the experimental setting shown in [5]. The numerical implemen-
tation was set up similarly to the one presented in Section 3.2. The
main difference consists of including three islands of vegetation in
different locations of the domain. These vegetated regions, consid-
ered to have the same vegetation density, modify the water flow
lines in the experimental setting of [5]. It is observed, as intuition
would suggest, thatwaterflowsmore rapidly away fromthem. Their
inclusion in the numerical simulations is done only by assigning a
higher value of the friction coefficient cf inside these areas. Through-
out the domain cf ¼ 1 and in the vegetated regions cf ¼ 5. The
bathymetry remained the same as well as all the remaining compu-
tational variablespresented in thedambreakproblem inSection3.2.
Again, we chose to simulate thewater flow resulting from removing
an ideal dam that keeps water on a confined (uphill) area of the do-
main. The mesh for this problem and the location of the islands of
vegetation are shown in Fig. 1 (right). This experimentwas run from
t ¼ 0:0 to t ¼ 70:0 aswell. However, since themost relevant features
of this event take place before t ¼ 20:0, only views for t 2 ½0;20& are
presented. 3D and 2D views of the numerically simulated evolution
of the water depth are presented in Figs. 4 and 5.

Figs. 4 and 5 show very good agreement with the expected fea-
tures of the phenomenon. In particular, they clearly display the fact
that, as expected, water flows more rapidly away from the vege-
tated areas. Also, the flooding front propagates throughout the do-
main in a way that qualitatively captures the expected dynamics.
Again, the limitations of the DSW equation as a model appear as
described in the previous section.

4. Conclusions

In this study, we prove that nondegenerate approximate solu-
tions to the DSW equation, obtained using the LDG method, con-
verge to true solutions of such equation, provided the true
solution is sufficiently smooth. We show that for discontinuous fi-
nite elements of polynomial order k (with k P 4, see Corollary 2.1),
one can ensure convergence OðhkcÞ. Numerical experiments in 2D
show that the theoretical convergence rate obtained in Corollary
2.1 – for a nondegenerate true solution u 2 C1ðX; tÞ of the DSW
equation, and c ¼ 1=2 – is conservative. Indeed, in this case we ob-
serve numerical convergence rates Oðh2Þ for piecewise linear finite
elements ðk ¼ 1Þ.

We also present numerical experiments aimed at showing the
qualitative characteristics of water flow captured by the DSW
equation when used as a model to simulate an idealized dam break
problem with vegetation. The numerical experiments show very
good agreement with the expected features of the phenomenon.
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