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Abstract In this paper, we study the properties of
approximate solutions to a doubly nonlinear and de-
generate diffusion equation, known in the literature as
the diffusive wave approximation of the shallow water
equations (DSW), using a numerical approach based
on the Galerkin finite element method. This equa-
tion arises in shallow water flow models when special
assumptions are used to simplify the shallow water
equations and contains as particular cases the porous
medium equation and the p-Laplacian. Diverse numer-
ical schemes have been implemented to approximately
solve the DSW equation and have been successfully
applied as suitable models to simulate overland flow
and water flow in vegetated areas such as wetlands; yet,
no formal mathematical analysis has been carried out in
order to study the properties of approximate solutions.
In this study, we propose a numerical approach as a
means to understand some properties of solutions to
the DSW equation and, thus, to provide conditions for
which the use of the DSW equation may be inappropri-
ate from both the physical and the mathematical points
of view, within the context of shallow water modeling.
For analysis purposes, we propose a numerical method
based on the Galerkin method and we obtain a pri-
ori error estimates between the approximate solutions
and weak solutions to the DSW equation under physi-
cally consistent assumptions. We also present some nu-
merical experiments that provide relevant information
about the accuracy of the proposed numerical method
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to solve the DSW equation and the applicability of
the DSW equation as a model to simulate observed
quantities in an experimental setting.
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1 Introduction

In this paper, we study the properties of approximate
solutions to a doubly nonlinear and degenerate diffu-
sion equation, known in the literature as the diffusive
wave approximation of the shallow water equations
(DSW), using a numerical approach based on the
Galerkin finite element method. This equation arises
in shallow water flow models when special assump-
tions are used to simplify the shallow water equations,
and it gives rise to the following initial/boundary-value
problem (IBVP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− ∇ ·
(

(u − z)α

|∇u|1−γ
∇u

)

= f on � × (0, T]

u = u0 on � × {t = 0}
(

(u − z)α

|∇u|1−γ
∇u

)

· n = BN on ∂� ∩ �N ×(0, T]

u = BD on ∂� ∩ �D×(0, T]
(1)

where � is an open, bounded subset of R
2 and �N and

�D are subsets of ∂� ∈ C1 such that ∂� = �N + �D.
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f : �×(0, T]→R, u0 : �→R, BN : ∂� ∩ �N ×(0, T]→
R, and BD : ∂�∩�D×(0, T]→R are given; z : �→R

+
is a positive time-independent function; n is the out-
ward normal to �N ; 0 < γ ≤ 1; 1 < α < 2; and u : � ×
(0, T] → R is the unknown. Here, | · | : R

n → R refers
to the Euclidean norm in R

n (n = 1, 2 in our work).
Diverse numerical schemes have been implemented

to approximately solve the DSW equation appearing in
the IBVP (Eq. 1) and have been successfully applied
as suitable models to simulate overland flow and water
flow in vegetated areas such as wetlands [14, 15, 19,
36, 37]; yet, no formal mathematical analysis has been
carried out in order to study the properties of approx-
imate solutions such as well posedness of the discrete
problem, error estimates between the true solution
(if uniqueness holds) and the numerical approximant,
rates of convergence, and so on. This paper is an initial
step in that direction.

Shallow water flow over land or in vegetated areas
is driven mainly by gravitational forces and dominated
by shear stresses, giving rise to uniform and fully devel-
oped turbulent flow conditions. These conditions allow
the use of scaling arguments to approximate the shallow
water system of equations (SWE) by a single doubly
nonlinear and degenerate diffusion equation, the DSW
equation. Solving the DSW equation computationally
requires significantly less work than solving the SWE
[19]; thus, it is relevant to explore its applicability and
mathematical properties.

Despite the obvious appeal to use the DSW in lieu
of the SWE, analyzing the mathematical properties
of the DSW equation is not a simple task. Note that
the DSW equation contains as particular cases two
complicated nonlinear diffusion equations: the porous
medium equation (PME) (when z = 0 and γ = 1) and
the p-Laplacian for 1 < p < 2 (when α = 0 and p =
γ + 1, this case is not considered in this paper). In fact,
to the best of our knowledge, existence, uniqueness,
and regularity of solutions of the DSW equation in
its general form, as it appears in the IBVP (Eq. 1),
have not been studied. However, relevant results and
techniques coming from nonlinear diffusion equations
and other doubly nonlinear diffusion equations [3, 10,
16, 21, 24, 28] can be applied to the analysis of the DSW
equation when topographic effects are ignored (i.e.,
when z = 0). An extensive survey of these results and
techniques can be found in [1]. Difficulties arise when
topographic effects are considered (i.e., when z �= 0)
since the mathematical techniques developed to study
nonlinear diffusion equations, such as the PME, the
p-Laplacian, and other doubly nonlinear degenerate
equations, do not extend directly for this case. Never-
theless, they provide the right setting to start our study.

In this study, we propose a numerical approach as
a means to understand some properties of solutions
to the DSW equation and, thus, to provide conditions
for which the use of the DSW equation may be inap-
propriate from both the physical and the mathematical
points of view, within the context of shallow water
modeling. The work presented in this paper is a natural
continuation of the study presented in [1]. The outline
of this paper is as follows. We begin by presenting a
physical motivation and some remarks about the DSW
in Sections 1.1 and 1.2. We continue with a review of
relevant works existing in the literature, both from the
analytical and numerical points of view in Section 1.3.
The following sections are devoted to developing our
overall strategy, which consists of two steps. First, in
Section 2, we will focus our attention on setting up a
numerical method based on the Galerkin method to
obtain approximate solutions to the IBVP (Eq. 1) and
we will obtain a priori error estimates between these
approximate solutions and weak solutions to the DSW
equation. For this purpose, we will make assumptions
about the true weak solution to problem 1 based on
two criteria, the first one being the physical relevance
of solutions to the DSW in the context of shallow water
models, and the second one coming from previous ana-
lytical results that address the properties of particular
cases of the DSW equation in the context of doubly
nonlinear and degenerate diffusion equations. Regard-
ing the first criterion, we will restrict our error analysis
to approximating the set of nondegenerate solutions to
problem 1, whose gradients are bounded. Despite the
fact that these solutions may seem very particular, they
play an important role in physical applications. The
second criterion will ensure uniqueness of solutions
from a purely mathematical point of view. Secondly, in
Section 3, we will present some numerical experiments
that provide relevant information about the accuracy
of the proposed numerical method to solve the DSW
equation (even for the degenerate case), and the ap-
plicability of the DSW equation as a model to simulate
observed quantities in an experimental setting. We will
also present some numerical experiments aimed at in-
vestigating whether some of the qualitative properties,
such as the existence of compactly supported solutions
or finite speed of propagation of disturbances, found for
the solution in [10] for the 1-D case and z = 0, persist
in the more general case for a nonzero and regular
topography z.

1.1 Preliminaries

The doubly nonlinear nature of the IBVP (Eq. 1) comes
from the fact that the nonlinear behavior appears inside
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the divergence term as a product of two nonlinearities
involving u and ∇u, namely, (u − z)α and ∇u/|∇u|1−γ .
For the time being, it will be useful to write the first
equation of problem 1 as

∂u
∂t

− ∇ · (a(u, ∇u) ∇u) = f, (2)

where the diffusion coefficient a is given by

a(u, ∇u) = (u − z)α

|∇u|1−γ
, (3)

and f is a given source/sink function independent of u.
Previous work aimed to analyze approximate solutions
to nonlinear diffusion equations using the Galerkin
finite element method, such as the work of Wheeler
[35] and Douglas and Dupont [23], deal with nonlinear
diffusion coefficients that only depend on the function
u itself and not on ∇u, i.e., diffusion coefficients of the
form a = a(u). The analysis carried out in such cases
requires roughly two assumptions:

0 < μ ≤ a(u) ≤ M, and |a′(u)| ≤ B for u ∈ R (4)

so that a is uniformly Lipschitz with respect to u and
bounded below by a small constant μ. These assump-
tions ensure, in particular, that one can construct a
weak formulation such that, for some Sobolev space V,
one has two fundamental conditions:

μ‖u‖2
V ≤ (a(u)∇u, ∇u) and

(a(u)∇u, ∇w) ≤ M‖u‖V‖w‖V for u, w ∈ V, (5)

where (·, ·) represents the appropriate duality pairing.
See [31] for a comprehensive study of Galerkin finite
element methods for parabolic problems.

The doubly nonlinear nature of the IBVP (Eq. 1)
poses new challenges that come from the possible de-
generacy of the diffusion coefficient Eq. 3 when (u −
z) = 0, and the nonlinear dependency of Eq. 3 with
respect to ∇u. In fact, with the condition that 0 < γ ≤ 1,
one can only expect that the diffusion coefficient be
uniformly Lipschitz with respect to ∇u if γ = 1, that
is, when the dependency with respect to ∇u disappears
and the first equation of problem 1 becomes the PME
(for z ≡ 0). In general, the diffusion coefficient given by
Eq. 3 is, at most, Hölder continuous with respect to ∇u
and possibly degenerate (i.e., a(u, ∇u) = 0) in subsets
of �; thus, one cannot expect that similar expressions
such as those shown in Eq. 5 will hold. This fact mo-
tivates the need of further assumptions or properties
on the type of solutions to be approximated, such as
physical consistency, if one is to produce a meaningful
numerical method. A natural way to handle the degen-
erate character of the diffusion coefficient Eq. 3, for

example, is to construct a numerical scheme that ap-
proximates nondegenerate problems obtained by sub-
stituting the (possibly degenerate) diffusion coefficient
Eq. 3, a, with approximate diffusion coefficients aε in
Eq. 1, such that 0 < ε ≤ aε(u) and with the property
that a(u) = limε→0 aε(u), for a small parameter ε. One
then needs to show that solutions of these alternative
nondegenerate problems are indeed close, in some
sense, to the original (possibly degenerate) solution of
problem 3 with a. This approach has been used pre-
viously in the approximation of other degenerate par-
abolic problems, for example, in [20, 25], and [29]. We
will show that, in order to ensure convergence of the
proposed method to approximate solutions of problem
1, we will further need to assume that ∇u is bounded.
This assumption will be shown to be meaningful and
physically consistent in the context of shallow wa-
ter modeling in the next section; see Remark 1.7 in
Section 1.3.

1.2 Motivation

Even though some of the material of this section has
been presented previously in [1], we present it here
for completeness. Models for surface water flows are
derived from the incompressible, 3-D Navier–Stokes
equations, which consist of momentum equations for
the three velocity components and a continuity equa-
tion. Depending on the physics of the flow, scaling
arguments are used in order to obtain effective equa-
tions for the problem at hand; see [34]. The IBVP
(Eq. 1) is a simplified version of the 2-D shallow wa-
ter equations called the diffusive wave or zero-inertia
approach, which neglects the inertial terms in the hori-
zontal momentum equations.

Recall that, in shallow water theory, the main scal-
ing assumption consists in considering that the vertical
scales are small relative to the horizontal ones. This ap-
proximation reduces the vertical momentum equation
to the hydrostatic pressure relation

∂p
∂z

= ρg,

where g is the gravitational constant, z is the vertical
coordinate, and p is the pressure, and leaves us with
two effective momentum equations in the horizontal
direction. Upon vertical integration, we can obtain the
2-D shallow water momentum equations. In the dif-
fusive wave approximation, the depth-averaged hori-
zontal momentum equations are further approximated
using empirical laws, such as Manning’s formula and
Chézy’s formula, to find an effective expression for the
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horizontal velocity of the fluid in terms of the free water
surface slope, given by

V = − (H − z)α−1

c f

∇ H
|∇ H|1−γ

, (6)

where H(t, x) is the free water surface elevation or
hydraulic head, z(x) is the bed surface or land elevation,
0 < γ ≤ 1 and 1 < α < 2 are non-negative parameters,
and c f (x) is a friction coefficient.

Remark 1.1 Manning’s formula in Eq. 6 corresponds to
α = 5/3 and γ = 1/2, and c f is known as Manning’s
coefficient (denoted by n in the hydraulic literature).
Chézy’s formula corresponds to α = 3/2 and γ = 1/2.

The resulting effective model is given by a doubly
nonlinear and degenerate parabolic equation for the
water elevation H, obtained from substituting the par-
ticular form of the depth-averaged horizontal veloc-
ity, given by Eq. 6, into an equation that arises from
combining the depth-averaged continuity equation with
the free-surface boundary condition. Equation 1 is a
simplification of such model. Furthermore, it is more
commonly found in the literature written as

∂ H
∂t

− ∇ ·
(

(H − z)α

c f

∇ H
|∇ H|1−γ

)

= f (t, x),

for (t, x) ∈ R
+ × R

2, (7)

where f (t, x) is a source/sink (such as rain/infiltration).
At this point, it is of great importance to mention two of
the main requirements for the use of approximation 6,
and thus, Eq. 7, to serve as a suitable model to simulate
water flow. The first one is that the water depth must
be nonnegative, (H − z) ≥ 0, see Fig. 1, and the second
one is that the gradient of the water elevation, ∇ H,
needs to be comparable to the gradient of the bathym-
etry ∇z. The latter requirement characterizes water
flow regimes not far from uniform flow conditions in
open channels, i.e., when the fluid motion is dominated
by gravity and balanced by boundary shear stresses, see
[8]. In hydrological systems, z describes the bed surface
over which water flows; thus, in physically meaningful
situations, one assumes that ∇z must be bounded. This
in turn implies, in physically meaningful solutions, the
boundedness of ∇ H. This is an extra assumption that
will be assumed in the error analysis that aligns well
with the physics of the associated problem.

Remark 1.2 Note that if one identifies the water ele-
vation H with the hydrostatic pressure p, the expres-
sion that relates the velocity and the water elevation

Water Surface

Y

X

H ( x , y )

Land Surface

Datum

h ( x , y )

z ( x ,y )

Fig. 1 Water depth diagram, h = H − z

gradient Eq. 6 becomes a modified nonlinear version
of the empirical Darcy’s law for gas flow through a
porous medium. Indeed, flow in vegetated areas such as
wetlands can be understood as a flow through a porous
medium.

Remark 1.3 In this context, Eq. 7 makes sense physi-
cally only if H − z ≥ 0. It is with this in mind that we
will not pay attention to the approximation of negative
solutions of Eq. 1. Note that, in writing Eq. 1, we have
assumed that c f (x) ≡ 1.

Remark 1.4 Whenever H − z = 0 (or alternatively,
u − z = 0 in Eq. 1), Eq. 7 degenerates, i.e., it is no
longer of parabolic type.

Remark 1.5 Note in particular that, for the case when
γ = 1, c f ≡ 1, and z ≡ 0, Eq. 7 becomes the PME. A
comprehensive study of the PME can be found in the
book by Vázquez [33], and appropriate error analysis
references for this particular case can be found, for
example, in [25] and [20].

1.3 Literature review

To the best of our knowledge, existence, uniqueness,
and regularity of solutions of the DSW equation in
its general form, as in the IBVP (Eq. 1), have not
been studied. However, when (a) topographic effects
are ignored (i.e., when z = 0) and (b) zero-Dirichlet
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boundary conditions are assumed (∂� = �D), the DSW
equation can be rewritten in the form:

∂u
∂t

− ∇ · ( |∇um|γ−1∇um ) = f, (8)

with m = 1 + α/γ . Esteban and Vázquez [10] studied
this equation in 1-D for the Cauchy problem (� = R)
and established: (1) existence, uniqueness, and regu-
larity of strong solutions of Eq. 8; (2) existence and
regularity of free boundaries; and (3) asymptotic be-
havior of solutions and free boundaries for initial data
with compact support. In Section 3, we will investigate
whether some of the qualitative properties they found
for the solution of Eq. 8 persist in the more general case
for a nonzero and regular topography z in 1-D.

Other relevant works have studied the nonlinear
diffusion equation shown in Eq. 9 in higher dimensions.
This equation can be immediately related to the DSW,
for nonnegative solutions and z = 0. This is achieved
using the change of variables u = v1/m to transform the
DSW into:

∂v1/m

∂t
− m−γ ∇ ·

( ∇v

|∇v|1−γ

)

= f, (9)

where 0 < 1/m = γ /(α + γ ) < 1. This change of vari-
ables allows sending the nonlinearity uα , inside the
divergence term in Eq. 1, to the time derivative term in
Eq. 9. This, in turn, moves the difficulty of dealing with
the possible degeneracy when u = 0 to dealing with
differentiability issues of the function v1/m at v = 0.
Existence, uniqueness, and some regularity of solutions
of Eq. 9 have been studied in higher dimensions consid-
ering zero Dirichlet boundary conditions by [3, 16, 21,
28], and [1]. It is worthwhile to mention that uniqueness
can only be ensured for particular conditions that will
be explained further in this section. We pay particu-
lar attention to [1], where we provide a constructive
method to prove the existence of weak degenerate so-
lutions of Eq. 9 using the Faedo Galerkin method. This
proof offers a natural setting for the current numerical
analysis and computational method. In this proof, we
propose the use of a sequence of regularized functions
{φε(vε)} converging uniformly to φ(v) = v1/m with the
property that φ′

ε(0) < +∞ in order to construct approx-
imate solutions to Eq. 9. If one transforms Eq. 9 using
the change of variables um = v into

∂u
∂t

− m−γ ∇ ·
(

(
(φ−1)′(u)

)γ ∇u
|∇u|1−γ

)

= f, (10)

or further into the DSW for z = 0,

∂u
∂t

− ∇ ·
(

|u|α ∇u
|∇u|1−γ

)

= f, (11)

by observing that (φ−1)′(x) = m xm−1 and m − 1 = α/γ ,
then this regularized function strategy naturally sug-
gests the use of a sequence of nondegenerate diffu-
sion coefficients aε such that 0 < ε ≤ aε(u, ∇u) and
given by

aε(u, ∇u) = (φ−1
ε )′(u)

|∇u|1−γ
. (12)

as a means to approximate the solutions of problem
1 when z = 0 and for small ε. This is the case since
the property that φ′

ε(0) < +∞ implies directly that
(φ−1

ε )′(0) > 0. When proceeding this way, one then
needs to show that the solution of these alternative non-
degenerate problems are indeed close, in some sense,
to the original (possibly degenerate) problem 2. This
is done in [1] for the case when z = 0; see Lemma 1.1.
The overall strategy will be used in the analysis of the
current numerical scheme even in the case when z �= 0.

Finite difference schemes and finite element tech-
niques have been implemented to approximate the
solution of the DSW equation and have been used
successfully to simulate water flow in shallow systems
in [5, 14, 15, 19, 32, 36, 37]. However, no formal mathe-
matical analysis has been carried out in order to show,
for example, that the proposed methods converge in
some sense to the true solution of the IBVP (Eq. 1).
This is not surprising given the complexity of the gen-
eral formulation of the IBVP (Eq. 1) and the lack of
analytical techniques to prove for example uniqueness
of solutions in the presence of topographic effects.
Some relevant works approximating degenerate par-
abolic equations include, for example, [12, 13, 17, 20,
25, 29, 30], and [2]. In particular, in [25], the authors
present a numerical method to approximate degenerate
parabolic problems similar to the one used in this paper.
In their study, they analyze equations of the form

∂u
∂t

− ∇ · ( ∇v + b(r(v)) ) + f (r(v)) = 0, u ∈ m(v),

(13)

where m(v) is a maximal monotone graph in R × R

possibly with a singularity at the origin (m′(0) = ∞).
Stefan type, nonstationary filtration type, and porous-
medium type degenerate parabolic equations can be
written in the form Eq. 13. Even though the authors
introduce the use of r(v) to obtain more general results,
one may replace r(v) by v for clarity. In cases when
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singularities in m appear, the authors use a smoothing
procedure similar to the one explained above used in
[1]. As a first step of the approximation, they construct
a numerical scheme that approximates a regularized
problem obtained by replacing m by a smooth func-
tion mε with maximal slope equal to 1/ε, for some
regularization parameter ε > 0. Then, they discretize
this regularized problem in space and time to compute
the regularized numerical approximation Uh

ε . Finally,
roughly speaking, in order to obtain global error esti-
mates between the solution u(t) of Eq. 13 and the reg-
ularized numerical approximation Uh

ε (t), they obtain
bounds for the quantities ‖u(t) − uε(t)‖L∞ and ‖uε(t) −
Uh

ε (t)‖L∞ for 0 ≤ t ≤ T, where uε(t) is the true solution
of the regularized problem (solving Eq. 13 with mε

instead of m). From the two L∞-estimates, they can
obtain a global estimate of ‖u(t) − Uh

ε (t)‖L∞ using the
triangle inequality. Even though our strategy is similar,
in our case, the analysis will not be as complete. We will
find bounds similarly, for the quantity ‖uε(t) − Uh

ε (t)‖L2

associated to the nondegenerate problem, however,
estimating the difference between the solution u to the
IBVP (Eq. 1) and uε , the solutions to the nondegen-
erate problems (solving Eq. 1 with a nondegenerate
diffusion coefficient aε instead of a as described in the
previous paragraphs) is not yet completely understood
in the general setting when topographic effects are
considered (z �= 0). This is so, in this case, since an
appropriate proof of uniqueness of solutions has not
been developed yet.

To overcome this difficulty and justify our approach,
we rely on the fact that, in [1], we proved that one
can approximate a (unique) weak solution v of Eq. 9
as v = limε→0 vε using the Faedo Galerkin method for
flat topographies (z = 0) and under physically consis-
tent conditions. Recalling that the sequence of {vε}
is obtained by solving the regularized problem sub-
stituting v1/m by {φε(vε)} as described in the previous
paragraphs, one can see that such limit implies that a
(unique) solution u of the IBVP (Eq. 1) can be con-
structed similarly as u = limε→0 uε (where the sequence
of {uε} is obtained by solving the nondegenerate prob-
lems substituting a in Eq. 3 by aε) for flat topographies
(z = 0).

According to Bamberger [3], when z = 0, a suf-
ficient condition for uniqueness of solutions is that
ut ∈ L1(0, T; L1(�)); see Theorem 1.1. This condi-
tion implies, since u ∈ L∞(0, T; L∞(�)), that u ∈
C0(0, T; L1(�)). If one identifies u (or H as described
in Section 1.2) with the free water surface elevation
in a hydrological context, this condition implies that
there will be a unique solution if the volume of water
in the domain

∫

�
u changes continuously in time. This

is a natural and physically consistent condition when
modeling hydrologic systems.

Remark 1.6 Note that the natural norm induced by
multiplying the DSW equation by u and integrating
by parts, in the nondegenerate case, is the W1,1+γ (�)

norm. Indeed,
∫

�

∂u
∂t

u −
∫

�

(
(u − z)α

|∇u|1−γ
∇u

)

· ∇u =
∫

�

f u

implies that, for a sufficiently regular u and, say, zero
Newmann boundary conditions,

1

2

∂

∂t
‖u‖L2(�) +

∫

�

(u − z)α|∇u|1+γ =
∫

�

f u.

After some manipulations on the previous expression
along with assumptions on the nondegeneracy u − z >

ε > 0, and u0, f ∈ L2(�) for all t ∈ [0, T], one obtains
the analytic stability result,

‖u‖L2(�) ≤ C (‖u0‖L2(�), ‖ f‖L2(�))

and

‖∇u‖L1+γ (�) ≤ C (‖u0‖L2(�), ‖ f‖L2(�))

In our error analysis, we obtain stability and a pri-
ori error estimates for the approximations of u, and
∇u, namely, U and ∇U , in the L2-norm, by assuming
the appropriate regularity on u, nondegeneracy and
the physical-consistency assumption on the uniform
boundedness of ∇uε . Working with a norm that is not
naturally induced by the problem has advantages and
disadvantages. The advantages are that the arguments
used to prove estimates in our study extend naturally
from the classical arguments developed by Wheeler
[35], and Douglas and Dupont [23] for nonlinear par-
abolic problems. The disadvantage is that the error
bounds may be too conservative. The previous state-
ment is supported by the numerical findings on the per-
formance of our method presented in Section 3, which
show higher convergence rates than those ensured by
our analysis.

Remark 1.7 It is important to mention that the condi-
tion that ∇u be bounded in the L∞ sense does not nec-
essarily hold for all solutions of Eq. 1. In fact, even in
the particular case when Eq. 1 becomes the PME (z = 0
and γ = 1) in two or higher dimensions, there exists a
class of solutions called focusing solutions that exhibit
no local regularity on the gradient in subsets of �; see
Chapter 19 in [33]. Even though we ignore this class of
solutions in our analysis by assuming boundedness of
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∇u, it is justified to do so in the context of shallow water
modeling where, for small beds z, one expects small
values of ∇z and, thus, small values of ∇u, as explained
in Section 1.2.

Remark 1.8 In order to prove uniqueness of solutions
for problem 1 in its general form, presumably, one
has to impose two conditions: one on the regularity
of the time-independent function z(x) describing the
topography and another one in the form of an en-
tropy condition as described in [7]. The latter one may
provide means to identify unique physically consistent
solutions. This in turn may imply regularity properties
on the gradient of the solution ∇u such as boundedness
in some appropriate norm.

1.4 Notation

We will use the standard notation introduced in [11].
Let X be a real Banach space, with norm ‖ · ‖. The
symbol Lp(0, T; X) will denote the Banach space of all
measurable functions u : [0, T] → X such that

• ‖u‖Lp(0,T;X) :=
(∫ T

0 ‖u(t)‖p
)1/p

<∞, for 1 ≤ p<∞,
and

• ‖u‖L∞(0,T;X) := ess sup0≤t≤T ‖u(t)‖ < ∞.

For 1 ≤ p ≤ +∞, we will denote its conjugate as p∗,
i.e., 1/p + 1/p∗ = 1. For any measurable set E ⊂ � and
real valued vector functions u ∈ Lp(E) and v ∈ Lp∗

(E),
we will denote for the duality pairing between u and
v as

(u, v)E :=
∫

E
u · v.

For simplicity, we use (u, v) := (u, v)�. Throughout the
paper, C will be a generic positive constant with differ-
ent values, and the explicit dependence with respect to
parameters will be written inside parentheses.

1.5 Auxiliary results

In this section we present the nondegenerate problem
we will approximate numerically along with some prop-
erties and results that will be used in the analysis carried
out in the next sections. We begin by introducing the
nondegenerate version of the IBVP (Eq. 1) obtained
by replacing the function (s − z)α with a sequence of
bounded Lipschitz functions {βε(s)}, with the properties
that (1) {βε(s)} converges uniformly to (s−z)α as ε →0,
and (2) for small ε > 0 the following holds βε(s) ≥ ε

for all t ∈ [0, T]. To this end, the bathymetry z(x)

will be assumed to be a smooth and bounded time-
independent function defined in �. The nondegenerate
IBVP is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− ∇ ·
(

βε(u)
∇u

|∇u|1−γ

)

= f on � × (0, T]

u = u0 on � × {t = 0}
(

βε(u)

|∇u|1−γ
∇u

)

· n = BN on ∂� ∩ �N ×(0, T]

u = BD on ∂� ∩ �D×(0, T].
(14)

In the next section, we develop a numerical scheme to
approximate this nondegenerate problem as explained
in Section 1.3. The fact that solutions to the nondegen-
erate problem 14 are close to the original solution to
problem 1 as ε → 0 will be understood as in [1] for
z = 0 and will be assumed for the general case z �= 0.

Remark 1.9 In Eq. 14, for each ε and, thus, for each
βε(u), one has a solution uε .

Remark 1.10 Frequently, in the actual computational
code, one does not need to implement the sequence
of {βε(u)}; however, it becomes crucial to use this se-
quence if one wants to find error estimates. For in-
tuition purposes, one could choose, for example, the
following sequence: βε(u) = (u − z)α + ε.

We proceed to list some results about the solu-
tion of problem 1 under conditions a and b stated in
Section 1.3, coming from previous analytical works
[3, 10, 16, 21, 28], and [1].

Lemma 1.1 We can approximate a nonnegative solution
v of Eq. 9 as:

v = lim
ε→0

vε,

where {vε} is a sequence of Faedo–Galerkin solutions of
the regularized problems obtained by substituting φε(vε)

for φ(v) = v1/m in Eq. 9, with the properties that {φε(vε)}
converges uniformly to φ = v1/m (or more generally to
φ = v|v| 1−m

m ) as ε → 0, and φ′
ε(0) < +∞. Furthermore,

u, defined as u = v 1/m, is a nonnegative solution of
the IBVP (Eq. 1) under conditions a and b, defined in
Section 1.3.

Proof See step 5 in proof of Theorem 2.1 and Corollary
2.1 in [1]. ��
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Lemma 1.2 If u is a solution of the IBVP (Eq. 1) under
conditions a and b, and

u0 ∈ L∞(�) and f ∈ L∞(0, T; L∞(�)),

then

sup
t∈[0,T]

‖u‖L∞(�) ≤ C
(‖u0‖L∞(�), ‖ f‖L∞(0,T;L∞(�)), T

)
.

Proof See Corollary 3.2 in [1]. ��

Theorem 1.1 (Bamberger) Assume u and v are weak
solutions of the IBVP (Eq. 1) under conditions a and
b and satisfying

ut, vt ∈ L1(0, T; L1(�)), (15)

then u = v.

Proof This is a consequence of Theorem 4.1 in [1]. See
also [3]. ��

Lemma 1.3 Let u1 and u2 be nonnegative L∞(�) func-
tions; then, for α ≥ 1,

|uα
1 − uα

2 |≤α
(
max(‖u1‖L∞(�), ‖u2‖L∞(�))

)α−1 |u1 − u2|
(16)

Proof We can express

|uα
1 − uα

2 | =
∣
∣
∣
∣

∫ 1

0

d
dτ

(τu1 + (1 − τ)u2)
αdτ

∣
∣
∣
∣

≤ α|u1 − u2|
∫ 1

0
(τu1 + (1 − τ)u2)

α−1dτ

≤ α|u1 − u2|
∫ 1

0
(τ‖u1‖L∞(�)

+ (1 − τ)‖u2‖L∞(�))
α−1dτ

≤ α|u1 − u2|
(
max(‖u1‖L∞(�), ‖u2‖L∞(�))

)α−1

��

Lemma 1.4 (Coercivity and continuity) Let u1 and u2

be L∞(�) positive functions with the property that
∇u1, ∇u2 ∈ L∞(�); then, the following estimates hold
true:

γA0|∇u1 − ∇u2|2 ≤
( ∇u1

|∇u1|1−γ
− ∇u2

|∇u2|1−γ

)

× (∇u1 − ∇u2) (17)

and
∣
∣
∣
∣

∇u1

|∇u1|1−γ
− ∇u2

|∇u2|1−γ

∣
∣
∣
∣ ≤ A0|∇u1 − ∇u2|

≤ 2

γ
|∇u1 − ∇u2|γ , (18)

where

A0 :=
∫ 1

0
| λ ∇u1 + (1 − λ) ∇u2)|γ−1dλ

Proof See [9], pp. 348–350. ��
See also [4] and the references therein for a more

general result.

1.5.1 Interpolation theory results

For Lemmas 1.5 and 1.6, we will consider τ to be
a quasiuniform triangulation of � into elements Ei,
i = 1, ..., m, with diam(Ei) = hi and h = maxi(hi).
M(= Pk) will denote a finite-dimensional subspace
of H1

0(�) defined on this triangulation consisting of
piecewise polynomials of degree at most k, and K0 will
denote a constant independent of h and v.

Lemma 1.5 (Interpolation error) Let u ∈ Hk+1(�);
then, there exists û ∈ M, interpolant of u, defined by
∫

(û − u)v = 0 ∀ v ∈ M, (19)

with the following property:

‖û − u‖Hs(�) ≤ C hk+1−s ‖u‖Hk+1(�),

where 0 ≤ s ≤ k.

Proof See Section 4.4 in [6]. ��
Remark 1.11 Lemma 1.5 implies that, for a subspace
M = P1 consisting of piecewise linear polynomials,

‖û − u‖L2(�) ≤ C h2 ‖u‖H2(�) and

‖∇û − ∇u‖L2(�) ≤ C‖û − u‖H1(�) ≤ C h ‖u‖H2(�) (20)

These inequalities will be useful in Section 3.

Lemma 1.6 (Inverse inequalities) Let v∈M; then, there
exists a constant K0 independent of h and v such that

‖v‖L∞(�) ≤ K0h−1‖v‖L2(�) and

‖∇v‖L∞(�) ≤ K0h−1‖∇v‖L2(�)

Proof See Section 4.5 in [6]. ��
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2 Discrete approach

In this section, we will use the continuous Galerkin
method in order to numerically approximate the so-
lution of the initial/boundary value problem 14. We
will provide a priori error estimates between the true
solution of Eq. 14, uε , and the Galerkin approximate
solutions Uh

ε , both in the semidiscrete and fully discrete
cases for the zero Dirichlet and Newmann boundary
conditions. The analysis will be an extension of the
techniques presented in [35] and [23] and holds true for
any sequence of Lipschitz functions, βε(u), with prop-
erties 1 and 2 described in Section 1.5. The (unique)
solution uε to the nondegenerate problem 14 and the
Galerkin approximate solution Uh

ε will be denoted with
u and U , respectively, in the following paragraphs.
Based on Lemmas 1.1 and 1.2, the following assump-
tions will be made in the following paragraphs for the
general case when z �= 0, as discussed in Section 1.3:

• Solutions to the nondegenerate problem 14 are
close to the original solution of problem in some
sense as ε → 0. See Lemma 1.1.

• u ∈ L∞(0, T; L∞(�)). See Lemma 1.2.
• ∇u ∈ L∞(0, T; L∞(�))

The latter assumption restricts our analysis to physi-
cally consistent solutions in the context of shallow water
modeling. Our numerical analysis is carried out for
piecewise polynomial basis functions of order k. How-
ever, the limited regularity of solutions of the DSW
calls in general for lower-order approximation spaces.

2.1 The semidiscrete case

In the Galerkin method, we seek a differentiable func-
tion U(·, t) ∈ M, a finite dimensional subspace of
H1(�) if the boundary conditions in problem 14 are of
Newman-type, or H1

0(�)) if they are of Dirichlet-type,
such that it satisfies the following weak form:

⎧
⎪⎨

⎪⎩

(
∂U
∂t

, v

)

+
(

βε(U)
∇U

|∇U |1−γ
,∇v

)

=( f, v) t>0, ∀v∈M,

and (U(·, 0), v)=(u0, v) t=0, ∀v∈M,

(21)

where M denotes the span {vi}M
i=1, and v1, ..., vM are

linearly independent functions in H1(�) and βε(u) is a
Lipschitz function, with properties 1 and 2 as described
in Section 1.5. By construction, we can represent any

function in M as a linear combination of the family {vi},
thus, in particular,

U(x, t) =
M∑

i=1

ζi(t)vi(x). (22)

Substituting Eq. 22 in Eq. 21, we observe that the semi-
discrete problem can be stated: Find coefficients ζi(t) in
Eq. 22 such that

M∑

i=1

ζ ′
i (t)(vi, v j) +

M∑

i=1

ζi(t)
(
β∗

ε (ζ )∇vi, ∇v j
) = ( f, v j)

for j = 1, ..., M, (23)

with
M∑

i=1

ζi(0)(vi, v j) = (u0, v j), and

β∗
ε (ζ ) := βε

(
M∑

i=1

ζi(t)vi(x)

) (
M∑

i=1

[ζi(t)∇vi(x)]2

) γ−1
2

.

(24)

Equivalently, we can express the previous problem as
the initial value problem for the system of nonlinear
ordinary differential equations given by
{

Gζ ′(t) = −B(ζ )ζ + F,

Gζ(0) = b ,
(25)

where the entries of the matrix G = (Gij) are given by
Gij = (vi, v j); the entries of the matrix B(ζ ) = (Bij(ζ ))

are given by

Bij(ζ ) = (β∗
ε (ζ )∇vi, ∇v j); (26)

the components of the vectors b = (b j) and F = (F j)

are given by b j = (u0, v j) and F j = ( f, v j), respectively;
and the vector of unknowns is ζ(t) = (ζ j(t)).

Whenever U(x, t) given by Eq. 22 exists, it is called
the continuous in time Galerkin approximation or
semidiscrete approximation to the weak solution of
problem 14. Though this approximation is never com-
puted in practice, it is easy to understand and gives
us insight into our method development. For compu-
tational purposes, the variable t is discretized and a
fully algebraic nonlinear system of equations needs to
be solved at each time step in order to obtain a fully
discrete approximation to the solution. This is studied
in Section 2.2.

2.1.1 Existence of the continuous in time
Galerkin approximation

Theorem 2.1 There exists at least one solution to
problem 25.
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Proof Since the family {vi} is linearly independent, the
mass matrix G is a Gram matrix, and thus, in particular,
it is a positive definite and invertible matrix. Hence,
problem 25 can be written as:

{
ζ ′(t) = −G−1 B(ζ )ζ + G−1 F,

ζ(0) = G−1b .
(27)

Note that the mapping �(ζ) : R
M → R

M defined by
�(ζ) = −G−1 B(ζ )ζ + G−1 F is γ -Hölder continuous,
and thus, by Peano’s existence theorem for ordinary
differential equations (see [18] pp. 10), there exists at
least one solution to problem 27, which immediately
implies the statement of the Theorem. ��

Remark 2.1 The fact that �(ζ) is γ -Hölder continuous
is a consequence of B(ζ )ζ being γ -Hölder continuous
itself. This can be easily verified recalling definition
26. Indeed, if we let Y = ∇U , the diffusion operator
βε(U)Y|Y|γ−1 is Lipschitz continuous with respect to
U and γ -Hölder continuous with respect to Y. Since U
and Y depend linearly on ζ , the diffusion operator will
be γ -Hölder continuous with respect to ζ , and thus, the
discrete diffusion operator defined by Eq. 26 will inherit
this property; see Lemma 1 in the Appendix.

2.1.2 Continuous in time a priori error estimate

In this section, we will study how close (possibly non-
unique) solutions to the continuous in time Galerkin
approximation problem 25, U , are to the true weak
solution u of problem 14. We focus our analysis on
the case when ∇u ∈ L∞(0, T, L∞(�)). In the following
paragraphs, we will assume that there exists a func-
tion û called the interpolant of u, provided that u be-
longs to some Banach space with certain regularity.
The interpolant could be, for example, the L2 projec-
tion as defined in Lemma 1.5. Further assumptions in-
clude that βε(û), βε(U), ∇û, ∇U ∈ L∞(0, T, L∞(�));
see Remark 2.2 below. The error between solutions of
problem 25 and the solution of problem 14, ‖u − U‖L2 ,
will be shown to be bounded by terms that only involve
approximation errors between the interpolant and the
true solution of problem 14, ‖u − û‖L2 . Thus, reducing
the global problem to well known results in interpola-
tion theory in Hilbert spaces, such as those presented in
Section 1.5.1. To simplify the notation in the analysis,
we will denote with β(x) any element of the sequence
{βε(x)} as described in Section 1.5.

Remark 2.2 The fact that βε(û), ∇û∈ L∞(0, T, L∞(�)),
for particular finite element approximation spaces,
is a direct consequence of the assumptions that
∇u ∈ L∞(0, T, L∞(�)), (u − z) ∈ L∞(0, T, L∞(�)),
and Theorem 4.8.7 in [6]. We will further
show that, provided ‖u − z‖L∞(0,T,L∞(�)) ≤ K1 and
‖∇u‖L∞(0,T,L∞(�)) ≤ K2 for some (possibly large)
constants K1, K2 > 0, then ‖U − z‖L∞(0,T,L∞(�)) ≤
K1(1 + εk1) and ‖∇U‖L∞(0,T,L∞(�)) ≤ K2(1 + εk2), for
small parameters εk1 and εk2 , and for particular finite
element approximation spaces; see Lemmas 2.1 and
2.2 below.

Theorem 2.2 Let u ∈ W1,∞(�) be the solution of prob-
lem 14 and let U be a solution of problem 25. Let
χ = u − û be the approximation error between the in-
terpolant and the true solution of problem 1. Further,
assume that ∇û, ∇U ∈ L∞(0, T, L∞(�)). Then, for all
t ∈ [0, T],

‖u − U‖2
L2(�) + ‖∇u − ∇U‖2

L2(0,T,L2(�)) ≤ ‖χ(t)‖2
H1(�)

+ C
(

‖b − u0‖2
L2(�) + ‖χ(0)‖2

L2(�) +
∫ T

0
‖χt‖2

L2(�)+

+
∫ T

0
‖χ‖2

L2(�) +
∫ T

0

∫

�

|∇χ |2γ

)

(28)

Proof Note that a weak solution u of problem 14 satis-
fies the weak form given by Eq. 21. Thus, in particular,
the following holds:

(
∂û
∂t

, v

)

+
(

β(U)
∇û

|∇û|1−γ
, ∇v

)

= ( f, v) −
(

∂(u − û)

∂t
, v

)

+
(

β(u)

( ∇û
|∇û|1−γ

− ∇u
|∇u|1−γ

)

, ∇v

)

+
(

(β(U) − β(u))
∇û

|∇û|1−γ
, ∇v

)

(29)

Subtracting Eq. 29 from Eq. 21, we obtain that

(
∂(U − û)

∂t
, v

)

+
(

β(U)

( ∇U
|∇U |1−γ

− ∇û
|∇û|1−γ

)

, ∇v

)

=
(

∂(u − û)

∂t
, v

)

+
(

β(u)

( ∇u
|∇u|1−γ

− ∇û
|∇û|1−γ

)

, ∇v

)

+
(

(β(u) − β(U))
∇û

|∇û|1−γ
, ∇v

)

(30)
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Let ξ = U − û and χ = u − û. Set v = ξ in the previous
expression to find

(
∂ξ

∂t
, ξ

)

+
(

β(U)

( ∇U
|∇U |1−γ

− ∇û
|∇û|1−γ

)

, ∇ξ

)

=
(

∂χ

∂t
, ξ

)

+
(

β(u)

( ∇u
|∇u|1−γ

− ∇û
|∇û|1−γ

)

, ∇ξ

)

+
(

(β(u) − β(U))
∇û

|∇û|1−γ
, ∇ξ

)

(31)

The above expression and estimate 17 lead to the
following inequality:

1

2

∂

∂t
‖ξ‖2

L2(�) + γ ε A‖∇ξ‖2
L2(�)

≤
(

∂χ

∂t
, ξ

)

+
(

β(u)

( ∇u
|∇u|1−γ

− ∇û
|∇û|1−γ

)

, ∇ξ

)

+
(

(β(u) − β(U))
∇û

|∇û|1−γ
, ∇ξ

)

, (32)

where A := inf
(0,T)×�

(A0) = (
sup(‖∇U‖L∞(0,T,L∞(�)),

‖∇û‖L∞(0,T,L∞(�))))
)γ−1.

The terms on the right-hand side can be bounded
in the following way: The first one, using Young’s
inequality:

∣
∣
∣
∣

∫

�

∂χ

∂t
ξ

∣
∣
∣
∣ ≤ 1

2

(
‖χt‖2

L2(�) + ‖ξ‖2
L2(�)

)
. (33)

The second one, using estimate Eq. 18 and Young’s
inequality with ε1:

∣
∣
∣
∣

∫

�

β(u)

( ∇u
|∇u|1−γ

− ∇û
|∇û|1−γ

)

∇ξ

∣
∣
∣
∣

≤ 2

γ
M

∫

�

|∇χ |γ |∇ξ | (34)

≤ 2

γ
M

(
1

2ε1

∫

�

|∇χ |2γ + ε1

2
‖∇ξ‖2

L2(�)

)

, (35)

where M = ‖β(u)‖L∞(�). The third one, using esti-
mate 16 and Cauchy–Schwarz and Young’s inequalities
with ε2

∣
∣
∣
∣

∫

�

(β(u) − β(U))
∇û

|∇û|1−γ
∇ξ

∣
∣
∣
∣

≤ M∗
∫

�

|u − U ||∇û|γ |∇ξ |

≤ M∗‖∇û‖γ

L∞(�)‖u − U‖L2(�)‖∇ξ‖L2(�)

≤ M∗‖∇û‖γ

L∞(�)

×
(

1

2ε2

(
‖χ‖2

L2(�) + ‖ξ‖2
L2(�)

)
+ ε2

2
‖∇ξ‖2

L2(�)

)

,

(36)

where M∗ = α max(‖β(u)‖L∞(�), ‖β(U)‖L∞(�))
α−1.

From estimate Eq. 17, provided ∇û, ∇U ∈ L∞(0, T,

L∞(�)), there exists a constant ε3 > 0 such that

γ ε A ≥ ε3 for all t ∈ [0, T] (37)

we can combine expressions 32–36 and choose ε1 and
ε2 small enough to obtain that for some ε̄ > 0 and some
constants Ci > 0 (1 ≤ i ≤ 4)

1

2

∂

∂t
‖ξ‖2

L2(�) + ε̄‖∇ξ‖2
L2(�)

≤ C1‖ξ‖2
L2(�) + C2‖χt‖2

L2(�) + C3‖χ‖2
L2(�)

+ C4

∫

�

|∇χ |2γ (38)

Since the second term on the left-hand side is nonneg-
ative, we can use Gronwall’s Lemma in the previous
expression to obtain that, for all t ∈ [0, T],

‖ξ(t)‖2
L2(�) ≤ C5(T)

(

‖ξ(0)‖2
L2(�) + C2

∫ T

0
‖χt‖2

L2(�)

+ C3

∫ T

0
‖χ‖2

L2(�)

+ C4

∫ T

0

∫

�

|∇χ |2γ

)

. (39)

Observe that

‖u − U‖2
L2(�) ≤ ‖U − û‖2

L2(�) + ‖u − û‖2
L2(�)

= ‖ξ(t)‖2
L2(�) + ‖χ(t)‖2

L2(�). (40)
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and

‖ξ(0)‖2
L2(�) = ‖b − û0‖2

L2(�)

≤ ‖b − u0‖2
L2(�) + ‖u0 − û0‖2

L2(�)

≤ ‖b − u0‖2
L2(�) + ‖χ(0)‖2

L2(�) (41)

Thus, combining result 39, the two previous expressions
and letting C = max(C5Ci) for i = 2, 3, 4, we can estab-
lish the first portion of the statement of Theorem 28.

In order to complete the proof, we need to find a
bound for the gradients. This is done by integrating
expression 38 in time. Note that, on the left-hand side,
we have

1

2
‖ξ(T)‖2

L2(�)−
1

2
‖ξ(0)‖2

L2(�)+ε‖∇u−∇U‖2
L2(0,T,L2(�)).

(42)

Since the first term is nonnegative, the following holds
from the time integration of Eq. 38

‖∇ξ‖2
L2(0,T,L2(�))

≤ C
(

1

2
‖ξ(0)‖2

L2(�) +
∫ T

0
‖ξ‖2

L2(�) +
∫ T

0
‖χt‖2

L2(�)

+
∫ T

0
‖χ‖2

L2(�) +
∫ T

0

∫

�

|∇χ |2γ

)

. (43)

Estimate 28 follows from the observation that

‖∇u − ∇U‖2
L2(0,T,L2(�))

≤ ‖∇U − ∇û‖2
L2(0,T,L2(�)) + ‖∇u − ∇û‖2

L2(0,T,L2(�))

≤ ‖∇ξ(t)‖2
L2(0,T,L2(�)) + ‖∇χ(t)‖2

L2(0,T,L2(�)),

and the combination of Eqs. 39 and 43. This concludes
the proof. ��

Remark 2.3 Note that the error estimate collapses if
condition 37 is not satisfied. This is the reason why we
need to use both: the family of nondegenerate {βε(x)} >

ε and the assumptions that ∇u ∈ L∞(0, T, L∞(�)) and
∇U ∈ L∞(0, T, L∞(�)). The latter assumptions ensure
that A > 0 since ∇u ∈ L∞(0, T, L∞(�)) implies that
∇û ∈ L∞(0, T, L∞(�)) for an appropriate finite ele-
ment space; see Lemma 2.2.

Corollary 2.1 (Stability) Under the conditions of Theo-
rem 2.2, the method is stable.

Proof Write U(t) = U(t) − u(t) + u(t) and use the tri-
angle inequality to find

‖U(t)‖L2(�) ≤ ‖U(t) − u(t)‖L2(�) + ‖u(t)‖L2(�)

Using the previous theorem and assuming that u ∈
L2(�), the result is immediate. ��

Corollary 2.2 If u ∈ W1,∞(�) ∩ Hk+1(�) is the solution
of problem 14 and U is a solution of problem 21, con-
structed with piecewise polynomials of degree at most k,
then, for all t ∈ [0, T],

‖u − U‖L2(�) + ‖∇u − ∇U‖L2(0,T,L2(�))

≤ C hkγ

(∫ T

0
‖u‖2γ

Hk+1(�)

) 1
2

. (44)

Proof Assuming such regularity on u, the estimates
given by Lemma 1.5 hold. Thus, by applying the result
of Theorem 2.2, and using Hölder’s inequality with
p = 1/γ ≥ 1 and p∗ = 1/(1 − γ ) ≥ 1 in the following
expression,

∫

�

|∇χ |2γ ≤
(∫

�

|∇χ |2
) 2γ

2 |�|1−γ = ‖∇χ‖2γ

L2(�)
|�|1−γ

(45)

we obtain that, for small h,

‖u − U‖2
L2(�) + ‖∇u − ∇U‖2

L2(�)

≤ h2k ‖u‖2
Hk+1(�)

+ C
(

h2(k+1) ‖u0‖2
Hk+1(�)

+ h2kγ

∫ T

0
‖u‖2γ

Hk+1(�)

)

≤ C h2kγ

∫ T

0
‖u‖2γ

Hk+1(�)
,

since ‖b − u0‖2
L2(�)

≤ h2(k+1) ‖u0‖2
Hk+1(�)

. The result of
the Corollary comes from the observation that, for
p, q, s positive numbers, p2 + q2 ≤ s2 implies that
p + q ≤ √

2 s. ��

Remark 2.4 Note that the error estimate obtained in
Corollary 2.2 is constrained by the value of γ ∈ (0, 1).
In the hydraulic context, γ = 1/2 for both Manning’s
and Chézy’s formulas. According to Corollary 2.2, we
can ensure O(h) convergence, for γ = 1/2, by using
quadratic basis functions (k = 2) to approximate a very
regular solution u ∈ W1,∞(�) ∩ H3(�) of problem 14.
In Section 3, we present numerical experiments that
show that our analysis is conservative. In fact, we
show that our method, implemented with piecewise
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linear basis functions, can approximate the true solu-
tion as O(h2) in nondegenerate scenarios, and as O(h)

even when degeneracy happens in subregions of the
domain �.

Lemma 2.1 (Boundedness of approximation) Under
the assumptions of Theorem 2.2, choosing γ ≥ 1/2,
and provided h is sufficiently small, if (u − z) ∈
L∞(0, T, L∞(�)) ∩ H4(�) and ‖u − z‖L∞(0,T,L∞(�)) ≤
K1, then ‖U − z‖L∞(0,T,L∞(�)) ≤ K1(1 + εk1) for a small
parameter εk1 , and for a finite element approxima-
tion space consisting of at least piecewise cubic basis
functions.

Proof Write (U − z) as (U − û + û − z) to find

‖U − z‖L∞(0,T,L∞(�)) ≤ ‖U − û‖L∞(0,T,L∞(�))

+ ‖û − z‖L∞(0,T,L∞(�)). (46)

Choose û as in the definition Eq. 19, and choose at least
M = P3 (piecewise cubic basis functions, k = 3). The
fact that the interpolant (û − z) ∈ L∞(0, T, L∞(�))

provided (u − z) ∈ L∞(0, T, L∞(�)) ∩ H4(�), for a
bounded and smooth time-independent function z, is
a consequence of Theorem 4.8.7 in [6]. Thus, ‖û −
z‖L∞(0,T,L∞(�)) ≤ K1 for sufficiently small h. Now, from
Corollary 2.2 and Lemma 1.6, we obtain

‖U − z‖L∞(0,T,L∞(�)) ≤ ‖U − û‖L∞(0,T,L∞(�)) + K1

≤ K0 h−1‖U −û‖L∞(0,T,L2(�))+K1

≤ K0 h3γ−1

(∫ T

0
‖u‖2γ

H4(�)

) 1
2

+K1

Thus, we can choose a sufficiently small h so that

K0 h1/2
(∫ T

0 ‖u‖2γ

H4(�)

) 1
2 ≤ εk1 K1, which implies

‖U − z‖L∞(0,T,L∞(�)) ≤ K1(1 + εk1)

This establishes the result of the lemma. ��

Lemma 2.2 (Boundedness of the gradient of the ap-
proximation) Under the assumptions of Theorem 2.2,
choosing γ ≥ 1/2, and provided h is sufficiently small, if
u ∈ L∞(0, T, L∞(�)) ∩ H5(�), ∇u ∈ L∞(0, T, L∞(�))

and ‖∇u‖L∞(0,T,L∞(�)) ≤ K2, then ‖∇U‖L∞(0,T,L∞(�)) ≤
K2(1 + εk2) for a finite element approximation space
consisting of at least fourth-degree piecewise polynomial
basis functions.

Proof Similar to the one in Lemma 2.1. ��

2.2 Fully discrete approximation

In this section, we will further proceed to consider
discretization with respect to time. We will denote with
dt the time step and with Un the approximation of
u(t) at time t = tn = n dt. In order to write down the
method, we will replace the time derivative in Eq. 21
with the quotient

δUn = Un − Un−1

dt
, (47)

to obtain the following backward Euler scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δUn, v) +
(

βε(Un)

|∇Un|1−γ
∇Un, ∇v

)

= ( f n, v)

n dt ∈ [0, T], ∀v ∈ M,

and (U0, v) = (u0, v)

∀v ∈ M.

(48)

The previous expression defines Un implicitly for Un−1

given, and it can be written as follows:

(Un, v) + dt
(

βε(Un)

|∇Un|1−γ
∇Un, ∇v

)

= (Un−1 + dt f n, v) ∀v ∈ M, (49)

or in matrix form, using the definitions explained in
Section 2.1,

(G + dt B(ζ n))ζ n = Gζ n−1 + dt F(tn), (50)

where f n (alt. F(tn)) is a known function (alt. matrix)

2.2.1 Fully discrete a priori error estimate

In this section, we will study how close solutions to
the fully discrete Galerkin approximation problem 48
are to the true weak solution of problem 1. The proof
follows immediately from the semidiscrete estimates,
and it is presented for completeness. Once more, in the
analysis, we will denote with β(x) any element of the
sequence {βε(x)} as described in Section 1.5.

Theorem 2.3 Let u ∈ W1,∞(�) be the solution of prob-
lem 14 and let Un be a solution of problem 48 at tn =
n dt. Let also χn = u(tn) − û(tn) be the approximation
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error between the interpolant and the true solution of
problem 1. Then, for all tn ∈ [0, T],

‖u(tn) − Un‖2
L2(�) + ‖∇u(tn) − ∇Un‖2

L2(�)

≤ C‖b − u0‖2
L2(�) + ‖χ0‖2

L2(�)

+ dt C
n∑

j=1

(

‖ut(t j) − δû(t j)‖2
L2(�)

+ ‖χ j‖2
L2(�) +

∫

�

∣
∣∇χ j

∣
∣2γ

)

(51)

Proof Observe that, identifying un = u(tn) and ûn =
û(tn), a similar calculation to Eq. 30 yields

(
δ(Un−ûn), v

)+
(

β(Un)

( ∇Un

|∇Un|1−γ
− ∇ûn

|∇ûn|1−γ

)

, ∇v

)

=(
un

t −δûn, v
)+

(

β(un)

( ∇un

|∇un|1−γ
− ∇ûn

|∇ûn|1−γ

)

, ∇v

)

+
(

(
β(un) − β(Un)

) ∇ûn

|∇ûn|1−γ
, ∇v

)

(52)

Now, let ξn = Un − û(tn) and χn = u(tn) − û(tn) and
choose v = ξn. Using estimates Eqs. 34 and 36, we
obtain

(
δξn, ξn) + γ (β(Un)) A‖∇ξn‖2

L2(�)

≤(
un

t −δûn, ξn)+ 1

ε2
C‖ξn‖2

L2(�)+C(ε2+ε1)‖∇ξn‖2
L2(�)

+ 1

2ε2
‖χn‖2

L2(�) + 1

2ε1
C

∫

�

∣
∣∇χn

∣
∣2γ

. (53)

If condition 37 is satisfied, then for ε1 and ε2 small
enough, the previous expression implies

‖ξn‖2
L2(�) ≤ (ξn−1, ξn) + dt

(
un

t − δûn, ξn)

+ dt C‖ξn‖2
L2(�) + dt C‖χn‖2

L2(�)

+ dt C
∫

�

∣
∣∇χn

∣
∣2γ

, (54)

which yields

(1 − dt C)‖ξn‖2
L2(�)

≤ ‖ξn−1‖2
L2(�) + dt ‖un

t − δûn‖2
L2(�) + dt C‖χn‖2

L2(�)

+ dt C
∫

�

∣
∣∇χn

∣
∣2γ

. (55)

Using the Taylor expansion for (1 − dt C)−1 around
zero, we can rewrite the previous expression for
small dt:

‖ξn‖2
L2(�) ≤ (1 + dt C)‖ξn−1‖2

L2(�) + dt C Rn, (56)

where

Rn = ‖un
t − δûn‖2

L2(�) + ‖χn‖2
L2(�) +

∫

�

∣
∣∇χn

∣
∣2γ

Making use of inequality 56 repeatedly, we find that

‖ξn‖2
L2(�) ≤ (1 + dt C)n‖ξ 0‖2

L2(�)

+ dt C
n∑

j=1

(1 + dt C)n− jR j

≤ C‖ξ 0‖2
L2(�) + dt C

n∑

j=1

R j

for tn = dt n ∈ [0, T], (57)

which, together with

‖ξ 0‖2
L2(�) =‖b −û0‖2

L2(�) ≤‖b −u0‖2
L2(�)+‖u0 − û0‖2

L2(�)

≤‖b −u0‖2
L2(�)+‖χ0‖2

L2(�),

establish the first portion of the statement of the
Theorem. In order to find the appropriate estimate on
the gradients, a similar argument to the one in the proof
of the continuous in time a priori error estimate has
to be used. Both estimates lead to the result of the
theorem. ��

Corollary 2.3 If u ∈ W1,∞(�) ∩ Hk+1(�) is the solution
of problem 14, Un is a solution of problem 48 at tn =
n dt, constructed with piecewise polynomials of degree
at most k. Then, for all tn ∈ [0, T],

‖u(tn) − Un‖L2(�) + ‖∇u(tn) − ∇Un‖L2(�)

≤ C(u, tn) (dt + hkγ ) (58)

Proof Given the regularity of u, the quantity R j can
be bounded using the estimates given by Lemma 1.5,
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the fact that ‖un
t − δûn‖2

L2(�)
≤ C∗(u)dt2 (see [31]), and

applying the results of Theorem 2.3. Thus,

‖u(tn) − Un‖2
L2(�) + ‖∇u(tn) − ∇Un‖2

L2(�)

≤ C‖b − u0‖2
L2(�) + h2(k+1) ‖u0‖2

Hk+1(�)

+ dt C
n∑

j=1

(
C∗(u)dt2 + h2k ‖u(tn)‖2

Hk+1(�)
+

+ h2kγ ‖u(tn)‖2γ

Hk+1(�)

)

≤ C(u, tn) (dt + hkγ )2. (59)

Recall that, for p, q, s positive numbers, p2 + q2 ≤ s2

implies that p + q ≤ √
2 s. Thus, the result of the Corol-

lary follows immediately. ��

3 Numerical experiments

A lumped mass continuous Galerkin code with piece-
wise linear basis functions was implemented in order to
perform numerical experiments aimed at investigating:
(1) the accuracy and validity of the numerical method
previously described to solve the DSW equation for the
case when z = 0, see Section 3.1; (2) the applicability
of the DSW equation as a model to simulate observed
quantities (such as water discharge and depth profile)
in an experimental setting for a prescribed bathymetry
z = z(x) �= 0, see Section 3.2; and (3) the qualitative
properties of solutions to the DSW in its general form
(Eq. 1).

Even though Lemmas 2.1 and 2.2 suggest that one
should use at least fourth-order polynomial basis func-
tions in order to ensure the boundedness of both
U − z and ∇U and, thus, convergence of the numerical
scheme, in practice, we found that the use of piecewise
linear basis functions was appropriate. Furthermore,
our numerical experiments showed that the implemen-
tation of the regularizing Lipschitz functional βε(u) > ε

(instead of u − z), as described in Section 1.5, was not
necessary. In fact, we found that the stability of the code
behaved similarly with or without the implementation
of the βε(u) > 0, and generally, ‖Uε − U‖L2(�) � O(ε),
with Uε , the numerical solution of the nondegenerate
problem 14, and U the numerical solution of the possi-
bly degenerate problem 1.

A lumped mass approach was chosen since, for well
behaved nonlinear parabolic equations, such schemes
satisfy a maximum principle and, thus, provide a mono-
tone and physically consistent way to approach the

solution, see [31]. For computational purposes, prob-
lem 50 was approximated by the semi-implicit scheme

(G + dt B(ζ(l)))ζ
n = Gζ n−1 + dt F(tn). (60)

A Picard iteration approach

ζ(l) = (G + dt B(ζ(l−1)))
−1(Gζ n−1 + dt F(tn)),

with an initial guess ζ(0) = ζ n−1 was used in order to
resolve the nonlinearity, with the assumption that

lim
l→∞

(G + dt B(ζ(l))) = (G + dt B(ζ n)). (61)

In practice, the iteration process was stopped when
‖ζ(l) − ζ(l−1)‖2

l2(�)
≤ τ for a prescribed tolerance τ , and

ζ n was set equal to the value of ζ(l) in the last iteration.
In all our experiments, we chose α = 5/3 and γ =
1/2 (as in [37] and [14]). These values correspond to
Manning’s formula. Numerical studies addressing the
case when z = 0, α ≥ 1 and γ = 1, which corresponds
to the PME, include, for example, [25] and [20].

3.1 Convergence analysis

As suggested in the previous sections, convergence of
the numerical method proposed to approximate the
DSW equation may fail if the depth u − z is zero or if
its gradient ∇u is unbounded. In order to investigate
the accuracy and validity of the numerical method in
different circumstances, we chose two approaches: the
first one consisted of reproducing a Lipschitz continu-
ous compactly supported solution of Eq. 1 presented
in [10] for the 1-D case, for z = 0, f = 0, and � = R.
The second one consisted of choosing a simple function
u(x, t) ≥ 0 with unbounded gradient at x = 0 that we
used to create a right-hand-side f (x, t). This was done
by applying the differential operator defined by the left-
hand side of Eq. 1. We then used our method to approx-
imate this u. For both cases, we obtained convergence
rates for a variety of scenarios and present them in the
following paragraphs.

Remark 3.1 Despite the fact that Corollary 2.3 would
only ensure convergence results of the type, ‖u(tn) −
Un‖L2(�) ≤ C(u, tn) (dt + h1/2) for γ = 1/2, and non-
degenerate solutions u ∈ H2(�) using piecewise linear
basis functions (k = 1), we chose the time step compa-
rable to or smaller than the square of the grid diameter,
dt � h2 = dx2, in our convergence experiments. This
was done in order to investigate if optimality in the con-
vergence rates (i.e., ‖u(tn) − Un‖L2(�) ≤ C(u, tn) (dt +
h2)) could be achieved for, say, nondegenerate solu-
tions with bounded gradients. Intuitively, under these
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conditions, Eq. 1 should resemble a well behaved non-
linear parabolic problem.

3.1.1 Compactly supported solution

The explicit expression of a Barenblatt solution for
Eq. 1 is presented in [10] and given by

u(x, t) = t−
1

γ (m+1)

[
C − k(m, γ ) |�| γ+1

γ

] γ

mγ−1

+
, (62)

where [s(x)]+ denotes the positive part of s(x), m = 1 +
α/γ , C is a positive function related to the initial mass
M, given by

M =
∫ ∞

−∞
u(x, t)dx,

and

k(m, γ )= mγ −1

m(γ +1)

(
1

γ (m+1)

) 1
γ

, and �=x t−
1

γ (m+1)

The function given by Eq. 62 is Lipschitz continuous
and compactly supported; thus, it is almost everywhere
differentiable and its gradient is bounded wherever it
exists. By changing the numerical domain �, we man-
aged to verify how the numerical method approximates
the solution both when it is globally not degenerate,
u > 0, and when it degenerates in some subsets of �.
For our calculations in the degenerate case, we chose
a numerical interval [−L, L] big enough so that the
free boundary would always be inside the domain � for
t ∈ [t0, t f ]. The results are shown in Table 1, panel a, for

Table 1 Convergence rates to approximate Barenblatt solutions
for α = 5/3 and γ = 1/2 using t0 = 2 and t f = 2.1

dt dx ‖U − u‖L2(�) Conv. rate

(a) Nondegenerate case
1/50 1 6.34 × 10−3 ·
1/50 1/2 1.79 × 10−3 1.82
1/100 1/4 4.87 × 10−4 1.88
1/200 1/8 1.21 × 10−4 2.00
1/400 1/16 2.88 × 10−5 2.08
1/1000 1/32 7.37 × 10−6 1.97
1/4000 1/64 1.87 × 10−6 1.98

(b) Degenerate case
1/50 1 1.32 × 10−1 ·
1/50 1/2 8.39 × 10−2 0.65
1/100 1/4 3.97 × 10−2 1.08
1/200 1/8 2.47 × 10−2 0.69
1/400 1/16 1.36 × 10−2 0.85
1/1000 1/32 7.83 × 10−3 0.80
1/4000 1/64 4.74 × 10−3 0.72

(a) � = [−5, 5] degenerate case and (b) � = [−2, 2] nondegener-
ate case

the nondegenerate case, and in Table 1, panel b, for the
degenerate case. In all cases, t0 = 2 and t f = 2.1, and
the Picard iteration scheme was run until the tolerance
value met the condition τ ≤ 10−10. We computed the
numerical solutions and compared them to the true
solution using dt = 1/10 and dx = 1/20 to produce the
plots in Fig. 2. The computed mass M of the numerical
solution was calculated as a function of time t, and it
was observed to be close to the constant M = 5.8465,
which corresponds to the value of the mass of the true
solution Eq. 62 in the time interval t ∈ [.1, 2.5].

3.1.2 Artificial right-hand side

The function u(x, t) ≥ 0 with unbounded gradient at
x = 0 that we used to create a right-hand-side f (x, t) by
applying the differential operator defined by the left-
hand side of Eq. 1 was:

u =
{

(100 − t2)
√

x if x ≥ 0,

0 if x < 0.
(63)

with α = 5
3 and γ = 1

2 , the right-hand-side f is given by

f = ∂u
∂t

− ∂

∂x

(
u

5
3

| ∂u
∂x | 1

2

∂u
∂x

)

=

⎧
⎪⎨

⎪⎩

− 2t
√

x − 7

12
√

2
(100 − t2)

13
6 x

−5
12 if x ≥ 0,

0 if x < 0,

Examples of convergence rates between the numerical
solution and the true solution Eq. 63 in three different
domains � can be found in Table 2, panels a, b, and c.
All results were calculated with t0 = 9 and t f = 9.1, and
the Picard iteration scheme was run until the tolerance
value met the condition τ ≤ 10−10. Table 2, panel a,
shows results for � = [5, 10], where the solution u is not
degenerate and its gradient is bounded. Table 2, panel
b, shows results corresponding to � = [0, 5]. In this
case, the gradient of the solution u is unbounded and
u = 0 at x = 0. Finally, for � = [−0.5, 4.5], the results
are shown in Table 2, panel c. Here, the solution u
degenerates in the interval [−0.5, 0] and the gradient
of u is unbounded at x = 0.

3.1.3 Convergence results discussion

Corollary 2.3 establishes that the numerical scheme
will approximate the true solution as O(hkγ ), whenever
piecewise polynomials of degree at most k are used and
the true solution u ∈ Hk+1(�) is nondegenerate and its
gradient is bounded. In Tables 1, panel a, and 2, panel
a, we show the convergence rates of the numerical
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Fig. 2 Comparison of numerically simulated compactly supported solutions for α = 5/3 and γ = 1/2. (Left) Analytical Barenblatt
solutions (z = 0), (right) numerical vs analytical solutions (z = 0)

method in cases when the true solution is nondegener-
ate and its gradient is bounded. Note that the numerical
solution converges quadratically to the true solution
(O(h2)) for piecewise linear basis functions (k = 1),
suggesting that, under these conditions, Eq. 1 becomes
a well behaved nonlinear parabolic problem and the
expected convergence rates from Corollary 2.3 appear
to be too conservative. On the other hand, when the

Table 2 Convergence rates, with t0 = 9 and t f = 9.1

dt dx ‖U − u‖L2(�) Conv. rate

(a) Nondeg. & bdd gradient, �=(5,10)
1/50 1 1.28 × 10−1 ·
1/50 1/2 3.52 × 10−2 1.86
1/100 1/4 9.57 × 10−3 1.88
1/200 1/8 2.62 × 10−3 1.87
1/400 1/16 7.53 × 10−4 1.80
1/1000 1/32 2.16 × 10−4 1.80
1/4000 1/64 5.44 × 10−5 1.99

(b) Unbdd gradient, �=(0,5)
1/50 1 2.83 ·
1/50 1/2 1.48 0.93
1/100 1/4 7.85 × 10−1 0.92
1/200 1/8 4.05 × 10−1 0.95
1/400 1/16 2.04 × 10−1 0.98
1/1000 1/32 1.03 × 10−1 1.00
1/4000 1/64 5.14 × 10−2 1.00

(c) Deg. & unbdd gradient, � = (−0.5, 4.5)

1/50 1/2 4.99 ·
1/100 1/4 3.61 0.47
1/200 1/8 2.64 0.45
1/400 1/16 1.96 0.43
1/1000 1/32 1.48 0.41
1/4000 1/64 1.11 0.41

solution degenerates at one point and the gradient is
unbounded (thus, the conditions to ensure convergence
according to Corollary 2.3 are not satisfied), optimality
is lost but the numerical scheme still converges linearly
to the true solution (O(h)), see Table 2, panel b. Close
to linear convergence is observed when degeneracy
happens and the gradient of the solution is discontin-
uous, see Table 1, panel b. The worst-case scenario
takes place when degeneracy happens in an interval and
the gradient of the solution is unbounded, see Table 2,
panel c. In this case the order of convergence seems
to behave close to O(h2/5). It is important to mention
at this point that the regions of the domain where the
numerical approximation differs mostly from the true
solution correspond to regions where the gradient is
discontinuous, which generally takes place near the free
boundary. We show this fact in Fig. 3.

3.2 Validation: Iwagaki’s experiment

In order to validate our code in the case when z �= 0,
we chose to numerically reproduce a set of laboratory
experiments conducted by Iwagaki [22]. This approach
was followed by Zhang and Cundy [37] and by Feng and
Molz [14]. We used the friction parameters reported
by Iwagaki and no calibration was pursued. The nu-
merical simulations were obtained using a regular mesh
with element diameter �x = 1/2 m and a time step
�t = 1/2 s.

Iwagaki’s experiments were designed to produce un-
steady flows in a channel 24 m long with a cross sec-
tion of 19.6 cm. The channel was divided into three
sections of equal length (8 m) and different slopes
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Fig. 3 Comparison of numerically computed solutions (left) (with initial condition u0 = 19
√

x at t = 9) vs true solutions u = (100 −
t2)

√
x at time t = 9.2 using an artificial right-hand-side � = [−0.5, 4.5] (right) Numerical approx. of Barenblatt � = [−6, 6]

(θ = 0.02, 0.015, 0.01%) each. During experiments,
three different rainfall intensities ( f = 0.108, 0.064,
and 0.80 cm/s) were simultaneously applied to each
section for different time periods (t = 10, 20 and 30 s).
Figure 4 shows snapshots of the depth profiles along
the domain, both measured and numerically simulated,
at the cessation of three different rain events lasting
t = 10, 20, and 30 s, respectively. We can see that,
overall, the relevant qualitative nature of the phenom-
ena is captured in the numerical simulations. In Fig. 5,
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Fig. 4 Comparison of the numerically calculated depth profiles
at the cessation of rainfall with Iwagaki’s experimental results on
a three plane cascade. Solid lines are experimental results and
dashed points are numerical results

the simulated water discharge q = Vh as a function
of time t, at the lowest end of the domain, x = 24 m,
was plotted and compared to the experimental data
for three different rain events.1 In Fig. 5, top left, the
agreement of the hydrograph with the experimental
data is very good. The inability to get the full maximum
of the curve and the extra spread in the curve by the
numerical results is clearly one of the limitations of the
diffusive wave approximation. Nevertheless, the time
when a maximum discharge is achieved is matched well
by the simulation. In Fig. 5, top right, the agreement
of the hydrograph with the experimental data is good.
In fact, we can observe that the breakthrough time
in the simulation is smaller; however, the area under
the curve corresponding to the water discharge volume
seems to be in good agreement with the experimental
data. Figure 5, bottom, shows the hydrograph for a
10-s rain event. Breakthrough times, as well as the main
qualitative behavior, are captured by the simulation
even though the maximum values are not accurately
reproduced due to the diffusive nature of the approxi-
mation. It must be emphasized that, in a flooding event,
the most relevant pieces of information obtained from
hydrographs are the breakthrough time and the overall
discharged water volume, which are nicely modeled by
the numerical simulation. Moreover, it is interesting to

1It is important to note that the discharge q is calculated using the
expression inside the divergence term in the first equation of the
IBVP (Eq. 1).
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Fig. 5 Comparison of the numerically calculated hydrographs at
x = 24 m with Iwagaki’s experimental results on a three-plane
cascade, during a rain event of (top left) 20 s, (top right) 30 s, and

(bottom) 10 s. Solid lines are numerical results and dashed points
are experimental results

observe that, despite the fact that, in the derivation of
the DSW equation, one assumes uniform flow condi-
tions, the numerical results match reasonably well with
the unsteady flow experimental measurements.

3.3 Qualitative properties of solutions

In this section, we present qualitative properties of
solutions to the DSW when the topographic effects are
not neglected (z �= 0). Our findings are based on nu-
merically simulated solutions obtained with our code.
Our aim was to investigate if the properties of solutions
of the DSW equation found in the 1-D case when z = 0
in [3, 10], and [1] persist in a more general setting

when the bathymetry z is a smooth and bounded time-
independent function. Properties such as boundedness
and existence of compactly supported solutions, finite
speed of propagation of disturbances, and extinction
in finite time were found to persist for regular z �= 0.
We did not pursue any convergence analysis for this
case due to the lack of an analytic expression for true
solutions of the IBVP (Eq. 1). We present snapshots of
solutions at different times for different bathymetries
z(x) �= 0 in Figs. 6 and 7. In all our numerical exper-
iments, we used �x = 1/20 and �t = 1/20. Observe in
particular that, in Fig. 7 (right), the water depth reaches
equilibrium without the appearance of sloshing. This
is a consequence of the diffusive wave approximation
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Fig. 6 Evolution of a compactly supported initial condition sim-
ulating a well localized rain event. (Left) Initial condition u0 =
z + [−2(x − 1)(x + 1)]+ on a steep bathymetry, (right) initial con-

dition u0 = z + [−2(x + 3)(x + 1)]+ on an inclined bathymetry
with two obstacles

and would model the flow of a very viscous fluid flow
or a flow dominated by bottom friction. In Figs. 6
and 7, we observe that the DSW equation has some
regularization effect on the solution in regions where
the problem is not degenerate. However, the regular-
ity of the solution u(x) corresponds to that of z(x)

whenever the problem becomes degenerate (i.e., when
u − z = 0).

4 Conclusions

In this study, we have shown the results of a numer-
ical approach to study the properties of solutions of
the IBVP (Eq. 1). Our emphasis was placed in ana-
lyzing the mathematical properties of the partial dif-
ferential equation appearing in the IBVP (Eq. 1),
the DSW equation, in order to find estimates for the
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Fig. 7 Evolution of a compactly supported initial condition simulating a well localized rain event. (Left) Initial condition u0 = z +
2 exp(−2x2) on two diverging planes, (right) initial condition u0 = z + 2 exp(−2(x − 2)2) on a two-plane bathymetry



Comput Geosci

error between numerical solutions constructed using
the Galerkin method and true solutions of this equa-
tion. We proved that the numerical solutions converge
to the true solution of the DSW equation under cer-
tain physically consistent conditions. These consist of
requiring that the solution u ∈ L∞(0, T; L∞(�)) and
∇u ∈ L∞(0, T; L∞(�)). Furthermore, we showed in
Lemmas 2.1 and 2.2 that these conditions ensure the
boundedness of the discrete solution U and its gradient
∇U for particular finite element approximation spaces.

Our analytical a priori error estimates are not
optimal. In particular, the absence of appropriate con-
ditions leading to a proof to ensure uniqueness of solu-
tions of the DSW equation, in its general form (Eq. 1),
imposes restrictions in our analysis. We presented nu-
merical evidence that shows that the proposed numer-
ical method converges to the true weak solution even
when the conditions for Theorem 2.2 to hold are not
met, for example, when the true solution degenerates
and its gradient is unbounded. Furthermore, we found
that, in regions where the solution does not degenerate
(u − z �= 0), the method reaches optimal convergence
rates. We showed that, despite the fact that the IBVP
(Eq. 1) has not been fully studied analytically when
z �= 0, properties such as boundedness and existence of
compactly supported solutions, finite speed of propaga-
tion of disturbances, and extinction in finite time found
in the 1-D case when z = 0 in [3, 10], and [1], persist for
a bounded and smooth bathymetry z �= 0, based on our
numerical solutions.

For studies addressing the applicability of the DSW
equation as a model to simulate shallow water flow,
instead of the full Saint Venant (or shallow water)
equations in experimental and real life settings, we
refer the reader, for example, to the works of Ponce
et al. [27] and [26] in the 1-D case and to the references
mentioned in Section 1.3 in 2-D cases. In our study,
we show solutions of the DSW equation that locally
violate some of the essential assumptions in the flow
regimes used to derive the DSW from the Navier–
Stokes equations. Such is the case for the family of com-
pactly supported Barenblatt solutions exhibited when
z = 0 in Section 3.1. The gradient of these solutions
(water surface slope) is not comparable to the gradient
of the bathymetry ∇z close to the free boundary. A
more extreme case of solutions that violate the uniform
flow conditions happen even when the DSW equation
becomes the PME (z = 0 and γ = 1) in two or higher
dimensions. In Chapter 19 in [33], the author shows
that there exists a class of solutions called focusing
solutions that exhibit no local regularity on the gradient

in subsets of �. The existence of these kinds of solutions
serves as a reminder of the limitations of using the DSW
equation as a hydrodynamical model.

One interesting fact about solutions of the DSW is
the following: When one sees the DSW equation as a
conservation law with respect to the depth u∗ = u − z,
it becomes

∂u∗

∂t
− ∇ · ( u∗V

) = f,

where the horizontal velocity V is given by Eq. 6, and
its magnitude is

|V| = |u∗|α−1

c f
|∇u|γ ,

which indicates that, at the free boundary (interface
between regions where u∗ > 0 and u∗ = 0) or any place
in the domain where the depth of the water u∗ is zero,
the magnitude of the velocity is zero since α > 1 (and
provided ∇u does not tend to infinity faster than u∗
tends to zero).

In Section 3.2, we show that, despite the limitations
of the diffusive wave approximation nature of the DSW
equation, the main qualitative behavior of water flow in
an experimental setting designed to produce unsteady
flows, such as breakthrough time and discharge, were
captured by the simulation using the DSW as a model.
However, the maximum values of the water depth are
not accurately reproduced due to the diffusive nature
of the approximation.

4.1 Future work

From a purely mathematical point of view, the inade-
quacy of the continuous Galerkin method as an approx-
imation technique is seen in locations close to the free
boundary; see Fig. 3. Future studies should include the
investigation of alternative techniques that are capable
of capturing sharper fronts such as the discontinuous
Galerkin approach or other stabilized methods.
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Appendix

Lemma 1 The operator A(x) : R
n −→ R

n defined by

A(x) = x
|x|1−γ

(64)

is monotone, i.e., for any x, y ∈ R
n

(A(x) − A(y)) · (x − y) ≥ 0.

Proof Define the function B(x) : R
n −→ R as

B(x) = |x|γ+1 where |x| =
⎛

⎝
n∑

j=1

x2
j

⎞

⎠

1
2

and note that

∂

∂xi
|x|γ+1 =(γ +1)|x|γ−1xi =⇒ 1

γ +1
∇B(x)=A(x).

Since γ + 1 > 1, the function B(x) is strictly convex.
The gradient of a convex function is strictly increasing
in each and all of its components; thus, the result of the
lemma holds true. ��

Lemma 2 Let x ∈ R
M and f (x), g(x) be L∞ functions.

If f (x) is Lipschitz continuous and g(x) is γ - Hölder
continuous, with 0 < γ < 1, then the product f (x)g(x)

is γ - Hölder continuous for x1 and x2 in a bounded
domain �.

Proof Observe that

| f (x1)g(x1) − f (x2)g(x2)|
≤ | f (x1)(g(x1) − g(x2))| + |g(x2)( f (x1) − f (x2))|
≤ ‖ f (x)‖L∞|x1 − x2|γ + ‖g(x)‖L∞|x1 − x2|
≤ (‖ f (x)‖L∞ + C‖g(x)‖L∞) |x1 − x2|γ

��
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