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Abstract  

In this paper, we describe the diffusive shallow water equation (DSW) and discuss a numerical 
strategy to solve it using the generalized-ߙ method as a method for temporal discretization. This 
method provides a good norm estimate of the error and guarantees an optimal convergence rate 
for the spatial discretization. We also discuss the effect of higher polynomial orders on the 
convergence rates, focusing on the nonlinear DSW problem. Our numerical experiments show 
that optional convergence rates can be obtained for polynomial orders 1 through 4. 
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1 Introduction 

The shallow water equations are derived from the Navier-Stokes equations by assuming that the 
vertical momentum scales are small relative to the horizontal ones. Further details can be found 
in [Vreugdenhil 1994]. The shallow water equations describe and model the propagation of 
disturbances in water and other incompressible fluids in response to gravitational and rotational 
accelerations. Their solutions give rise to a system of hyperbolic/parabolic partial differential 
equations that govern fluid flow in the ocean, coastal regions, estuaries, floods, dam breaks, 
open channels, rivers, and porous media. They can also be used to predict tides, storm surge 
levels and coastline changes from hurricanes, ocean currents, atmospheric flow, and to study 
dredging feasibility. The diffusive shallow water equations (DSW) are derived from the shallow 
water equations, by assuming that the horizontal momentum can be linked to the water height. 
Manning’s equation is generally used for this purpose [Chow et al 1988]. The DSW is then 
reduced to a nonlinear diffusion problem of the water height which substitutes the momentum 
balance equations. This presents challenges but is nonetheless less computationally expensive 
than solving the shallow water equations [Nochetto and Verdi 1988]. 
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In this paper, we present a solution strategy for the DSW equation using the generalized-ߙ 
method for temporal evolution of the finite element discretization for horizontal terrain with no 
source or sink terms. The effect of polynomial order on the spatial discretization is dis- cussed. 
Our numerical experiments show that optimal convergence rates are obtained for p = 1, 2, 3, 4. 

2 Diffusive shallow water equations 

2.1 Introduction 

The Navier-Stokes equations describe the conservation of mass and momentum for 
incompressible fluid [Vreugdenhil 1994]. For a free water surface, disregarding the lateral 
stresses, assuming the simplest possible expression for the bottom stress, and by considering 
vertical and horizontal scaling, the Navier-Stokes equations will simplify to the shallow water 
equations which can be written as follows: 
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where (x, y) correspond to the coordinate system shown in Fig.1, ݐ is time , ߩ is density, ݃ is the 
acceleration of gravity, ଵ݂ ൌ 2Ω݊݅ݏ߶ is the Coriolis parameter which indicates the effect of the 
rotation of the earth (Ω is the angular rate of revolution, ߶ the geographic latitude), and the 
viscous stresses ߬௜௝ are expressed in terms of the fluid deformation rate as follows. 
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The conservation of mass for a fluid element leads to the following mass-conservation equation: 
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where f(x, y, t) is the forcing function. The shallow water equations can in turn be simplified 

to the diffusive shallow water equation by assuming that [Alonso  et al 2008, Feng  and Molz  
1997, Giammarco et al 1996, Fiedler and Ramirez  2000, Hamrick  1997]: 

1. The horizontal momentum is simplified through Manning’s equation. 

2. The slope of the bathymetry is small. 

3. The hydraulic radius can be approximated by the water depth (rectangular cross 
section). 

4. The bottom slope is comparable to the free water surface slope (uniform flow). 

The strong form of the DSW model as an initial/boundary-value problem (IBVP) on the 
domain Ω for times ݐ ∈ [0, T] is [Alonso  et al 2008, Santillana and Dawson 2010]: 
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Fig. 1. Control volume for flow through a prism of wetland.    

where H is the water height, ݖ is the land surface elevation, ݂ is the forcing function 
(precipitation acting as a source or infiltration and evaporation acting as sink) as shown in Fig. 
 ஽ are the Neumann and Dirichletܤ ே andܤ ,଴ is the initial water height distributionܪ ,1
conditions, respectively, ߙ and ߛ are empirical parameters present in Manning’s equation 

[Turner and Chanmeesri 1984], set here to be 
ହ

ଷ
 and 

ଵ

ଶ
, respectively and ܥ௙ is the Manning 

roughness coefficient. We assume ܥ௙ ൌ 1 to compare our results with a self-similar solution 
proposed by Barenblatt [Grundy and McLaughlin 1784]. 

Eq. (3) is characterized as doubly nonlinear because inside the divergence term there is a 
product of two non-linearities consisting of ሺܪ െ  For this reason, the previous .ܪ׏ ሻ andݖ
strong form is rewritten in different alternative forms [Alonso et al 2008, Santillana and 
Dawson 2010, Esteban and Vazquez 1988]. 
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where ߙ is the diffusion coefficient. The nonlinear character of Eq. (4) is analyzed in [Alonso et 
al 2008, Santillana and Dawson 2010 a, Santillana and Dawson 2010 b, Calo et al 2011]. New 
challenges come from the possible degeneracy of a whenሺܪ െ ሻݖ ൌ 0, and its nonlinear 
dependence with respect to [13] ܪ׏. The DSW equation has been studied in several 
publications where topographic effects are neglected ሺݖ ൌ 0ሻ and zero-Dirichlet boundary 
conditions are assumed [Alonso et al 2008, Esteban and Vazquez 1988]. 

2.2 Compactly supported solution 

Barenblatt made one of the first mathematical contributions to study the initial-value problem 
for the DSW equation. He constructed a class of self-similar solutions which have the property 
of finite propagation in 1D, for ݖ ൌ 0 and݂ ൌ 0. These solutions will be extensively used later 
on as a paradigm for the behavior of all non-negative solutions with integrable initial data ܪ଴, 
especially when ܪ଴ has compact support. More details can be found in [Grundy and 
McLaughlin 1784, Esteban and Vazquez 1988]. Barenblatt’s solution can be expressed as 
follows: 
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where ሾݏሺݔሻሿା denotes the positive part of ݏሺݔሻ, ݉ ൌ 1 ൅
ఈ

ఊ
, C is a positive function (in this 

case taken to be equal to 1 [Santillana and Dawson 2010]) which depends on the initial mass M, 
given by: 
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3. Discrete approach 

3.1 Space discretization 

In the weak form of the DSW, the problem is to find ܪ ∈ ܸ such that ∀௪∈ ܹ, 
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where ሺ. , . ሻஐ refers to the ܮଶ inner product. The trial and weighting spaces V and W, 
respectively, are appropriately chosen for Eq.(6) to be well defned, that is, bounded [Santillana 
and Dawson 2010]. A discrete approximation to the solution is obtained using Galerkin’s 
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method by choosing proper sub-spaces ௛ܸ and ௛ܹ of V and W, respectively [Hughes 2000]. In 
this particular case, we chose piecewise polynomial spaces formed by B-splines which have a 
high degree of continuity at element interfaces. 

3.2 Time discretization  

When solving highly nonlinear problems, high frequency numerical dissipation has been found 
to improve the solution behavior [Hughes 2000]. The generalized-ߙ method is a family of time 
integration algorithms that possess high frequency damping, which can be controlled by the 
user. It achieves high frequency dissipation while minimizing unwanted low frequency 
dissipation [Chung and Hulbert 1993]. Due to the non-linearity of the DSW equation and the 
fact that it is a first order equation in time, we use the temporal discretization method described 
in [Chung and Hulbert 1993, Jansen et al 2000], which has been used successfully in other 
complex applications [Gomez et al 2008, Gomez et al2010, Bazilevs et al 2007]. 

The generalized-ߙ method for problems which are first order in time is stated as [Jansen et 
al 2000, Gomez et al 2008]: givenሺܪ௡,ܪሶ௡, findሺܪ௡ାଵ, ,ሶ௡ାଵܪ ,௡ାఈ೑ܪ  ሶ௡ାఈ೘ሻ, such thatܪ

 RሺH௡ାఈ೑, ሶ௡ାఈ೘ሻܪ ൌ 0 (7) 

 H௡ାఈ೑ ൌ ௡ܪ ൅ ௡ାଵܪ௙ሺߙ െ  ௡ሻ (8)ܪ

ሶ௡ାఈ೘ܪ  ൌ ሶ௡ܪ ൅ ሶ௡ାଵܪ௠ሺߙ െ  ሶ௡ሻ (9)ܪ

 H௡ାଵ ൌ ௡ܪ ൅ ሺሺ1ݐ׏ െ ሶ௡ܪ෤ሻߛ ൅  ሶ௡ାଵሻ (10)ܪ෤ߛ

where R is the residual function, ݐ׏ ൌ ௡ାଵݐ െ ,௡ݐ ,௙ߙ  .are parameters of the method ߛ̅ ௠, andߙ
It is useful to combine the two parameters ߙ௠ and ߙ௙ and express them in terms of the spectral 
radius for an infinite time step. Chung and Hulbert (1993) referred to this parameter as ߩஶ. 

Unconditional stability is attained when	ߙ௠ ൒ ௙ߙ ൒
ଵ

ଶ
, while second order accuracy is ensured 

by imposing ߛ෤ ൌ
ଵ

ଶ
൅ ௠ߙ െ  ௙ as in [17]. The time step size selected followsߙ

ݐ݀  ൌ   ሺ௉ାଵሻݔ݀√0.025

where p is the polynomial order and dx is the space step size. The algorithm that describes the 
generalized-ߙ method is illustrated in Alg.(1), where the consistent tangent matrix K 
corresponds to the derivative of the residual R with respect to the solution variables [Jansen et 
al 2000, Gomez et al 2008] and ߝ is selected to be 10ିଵହ . All computations were performed 
with extended precision 80 bit floating point using PETSc libraries [Balay et al 2010, Balay et 
al 2008]. The algorithm implementation uses a predictor/multi-corrector scheme where the 
corrector steps are indicated by a superscript index inside parenthesis. The predictor used in step 
1 is one of many possible choices. A time adaptive scheme using this discretization is presented 
in [Collier et al 2011]. 

Algorithm 1 Generalized-ࢻ method 

1: Compute predictor ܪ௡ାଵ
ሺ଴ሻ ൌ ሶ௡ାଵܪ ௡ andܪ

ሺ଴ሻ ൌ 	
ఊ෥ିଵ

ఊ෥
 ሶ௡ܪ

௡ାఈ೑ܪ :2
ሺ଴ሻ ൌ ௡ܪ ൅ ௡ାଵܪ௙൫ߙ

ሺ଴ሻ െ  ௡൯ܪ

ሶ௡ାఈ೘ܪ :3
ሺ଴ሻ ൌ ሶ௡ܪ ൅ ሶ௡ାଵܪ௠൫ߙ

ሺ଴ሻ െ  ሶ௡൯ܪ
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4: i=0 

5: while i<maximum iterations do 

6: ܴሺ௜ሻ ൌ ܴ ቀܪ௡ାఈ೑
ሺ௜ሻ , ሶ௡ାఈ೘ܪ

ሺ௜ሻ ቁ 

௡ାఈ೑ܭ :7
ሺ௜ሻ ൌ ൬

ఈ೘
ఊ෥׏௧ఈ೑

൰
డோሺு೙శഀ೑

ሺ೔ሻ ,ுሶ೙శഀ೘
ሺ೔ሻ ሻ

డுሶ೙శഀ೘
൅

డோሺு೙శഀ೑
ሺ೔ሻ ,ுሶ೙శഀ೘

ሺ೔ሻ ሻ

డு೙శഀ೑
 

8: Solve ܭ௡ାఈ೑
ሺ௜ሻ ௡ାఈ೑ܪ׏

ሺ௜ሻ ൌ െܴሺ௜ሻ 

9: Corrector ܪ௡ାఈ೑
ሺ௜ାଵሻ ൌ ௡ାఈ೑ܪ

ሺ௜ሻ ൅ ௡ାఈ೑ܪ∆
ሺ௜ሻ  

10: Corrector ܪሶ௡ାఈ೘
ሺ௜ାଵሻ ൌ ቀ1 െ

ఈ೘
ఊ෥
ቁܪሶ௡ ൅ ൬

ఈ೘
ఊ	෥׏௧ఈ೑

൰ ቀܪ௡ାఈ೑
ሺ௜ାଵሻ െ  ௡ቁܪ

11: if ቚหܴሺ௜ሻหቚ ൑ ߳ఈห|ܴ
ሺ଴ሻ|ห then 

12:  stop 

13: end if 

14: i=i+1 

15: end while 

16: Solution ܪ௡ାଵ ൌ ௡ܪ ൅ ൭
ு೙శഀ೑
ሺ೔೘ഀೣሻିு೙

ఈ೑
൱ and ܪሶ௡ାଵ ൌ ሶ௡ܪ ൅ ቆ

ுሶ೙శഀ೘
ሺ೔೘ഀೣሻିுሶ೙

ఈ೘
ቇ 

 

Table 1: Norm estimate of errors and convergence rates for higher polynomial orders using the 
generalized-ߙ method (Non-degenerate case) 

4 Convergence rates for higher polynomial orders 

Convergence rates of the numerical method proposed to approximate the DSW equation may 
fail if the depth H - z is zero or if its gradient ܪ׏ is unbounded. Santillana et al.[ Santillana and 
Dawson 2010] proved that one should use at least fourth-order polynomial basis functions in 
order to ensure their boundedness and thus the convergence of the numerical scheme. This point 
is checked by using higher polynomial orders p, where p = 1, 2, 3, 4. Table 1 shows the 
summary of the norm estimates of the error, and the corresponding convergence rates for higher 
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polynomial orders for the non-degenerate case. ܪ௘ is the exact solution obtained from Eq. (5). 
The previous table shows that the convergence rates are of order p + 1, and these are plotted in 
Fig. (2). These simulation results show that optimal rates of convergence can be obtained for 
polynomial orders lower than four. Thus, the necessary conditions used in [Esteban and 
Vazquez 1988] may be relaxed to derive a more nuanced approximation theory. 

 

Fig. 2. Convergence rates for higher polynomial orders using the generalized-ߙ method    

5 Conclusions 

We briefly described the derivation of the diffusive shallow water equations and presented the 
numerical strategy used for their approximation using the Galerkin finite element procedure for 
spatial discretization. We then discussed the generalized-ߙ method to be used for temporal 
discretization. This work shows that the convergence rates for higher order polynomials are of 
order p + 1. 
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Извод 
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Резиме 

У овом раду дајемо опис дифузионе једначине за плитку воду (DSW) и дискутујемо 
нумеричку стратегију да решимо ову једначину користећи генералисани ࢻ െметод као 
метод временске дискретизације. Овај метод даје добру процену норме грешке и 
гарантује оптималну брзину конвергенције за временску дискретизацију. Такође 
дискутујемо ефекат полинома вишег реда на брзине конвергенције, са посебном пажњом 
на нелинеарни DSW проблем. Наши нумерички експерименти показују да се оптималне 
брзине конвергенције могу добити за ред полинома од 1 до 4. 

Кључне речи: плитка вода, Баренблатова решења, брзине конвергенције, DSW 
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